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Abstract. In this paper, we are interested in edge intersection graphs
of paths in a grid, such that each such path has at most one bend. These
graphs were introduced in [12] and they are called B1-EPG graphs. In
particular, we focus on split graphs and characterise those that are B1-
EPG. This characterisation allows us to disprove a conjecture of Cameron
et al. [7]. The existence of polynomial-time recognition algorithm for
this graph class is still unknown. We furthermore investigate inclusion
relationships among subclasses of split graphs that are B1-EPG.

1 Introduction

Golumbic et al. introduced in [12] the notion of edge intersection graphs of paths
in a grid (referred to as EPG graphs). An undirected graph G = (V,E) is called
an EPG graph, if one can associate a path in a rectangular grid with each vertex
such that two vertices are adjacent if and only if the corresponding paths intersect
on at least one grid-edge. The authors showed in [12] that every graph is in fact
an EPG graph. Therefore, they introduced additional restrictions on the paths
by limiting the number of bends (a bend is a 90◦ turn of a path at a grid-point)
that a path can have. An undirected graph G = (V,E) is then called a Bk-EPG
graph, for some integer k ≥ 0, if one can associate with each vertex a path with
at most k bends in a rectangular grid such that two vertices are adjacent if and
only if the corresponding paths intersect on at least one grid-edge.

One motivation for introducing these graphs comes from chip manufacturing.
Indeed, each wire on a chip can be seen as a path on a rectangular grid. Since
each wire bend requires a so-called transition hole, and since a large number of
such holes increase the layout area as well as the overall cost of the chip, it is
of interest to limit the total number of holes respectively to limit the number of
bends per wire. Another motivation comes from the fact that Bk-EPG graphs
generalize the well-known class of interval graphs. From its definition, it is easy
to see that the class of B0-EPG graphs is indeed equivalent to the class of interval
graphs.
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Since the introduction of the notion of Bk-EPG graphs, there has been a lot
of research done on these graphs from several points of view (see for instance
[1–8,10,11,13–15]). Since B0-EPG graphs coincide with the class of interval
graphs, particular attention has been paid to the class of B1-EPG graphs. The
authors in [13] showed that recognizing B1-EPG graphs is an NP-complete prob-
lem; the same holds for B2-EPG graphs as recently shown in [15]. In any repre-
sentation of a B1-EPG graph, each path can only have one of the following four
shapes: �, �, �, � (a path with only a horizontal part or only a vertical part can
be considered as a degenerate path of one of the four shapes mentioned before).
In [7], the authors analysed B1-EPG graphs for which the number of different
shapes is restricted to a subset of the set above. They showed that testing mem-
bership to each of these restricted classes is also NP-complete. Furthermore,
they focused on chordal graphs that are B1-EPG with the additional restriction
that only one particular shape (namely �) is allowed for all paths. In particular,
they state a conjecture concerning the characterisation of split graphs that are
B1-EPG and where only paths with an � shape are allowed, by a family of for-
bidden induced subgraphs. Indeed, they present a list of nine forbidden induced
subgraphs and conjecture that these are the only ones. In this paper, we disprove
this conjecture by providing an additional forbidden induced subgraph. However,
giving a complete list of forbidden induced subgraphs or deciding whether such
a finite list exists remains open. Furthermore, we provide a characterisation of
split graphs that are B1-EPG and where only paths with an � shape are allowed.
Notice that this characterisation does not imply a polynomial-time recognition
algorithm. In addition, for any subset P of the four possible shapes mentioned
above, we investigate inclusion relationships among subclasses of split graphs
that are B1-EPG and where only shapes from P are allowed.

Our paper is organised as follows. In Sect. 2, we present definitions and nota-
tions as well as some preliminary results and observations that we will use
throughout the paper. Section 3 deals with the inclusion relationships among
subclasses of split graphs that are B1-EPG. In Sect. 4, we present a characteri-
sation of split B1-EPG graphs and disprove the conjecture of Cameron et al. [7].
We finish with Sect. 5 in which we also mention further results that we obtained
and suggest some further research directions.

2 Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple
edges. We refer to [9] or [16] for undefined terminology. Let G = (V,E) be a
graph. For a subset S ⊆ V , we let G[S] denote the subgraph of G induced by S,
which has vertex set S and edge set {uv ∈ E | u, v ∈ S}. We write H ⊆i G if a
graph H is an induced subgraph of G. Moreover, for a vertex v ∈ V , we write
G − v = G[V \{v}] and for a subset V ′ ⊆ V , we write G − V ′ = G[V \V ′]. The set
of vertices adjacent to some vertex u is called the neighborhood of u and will be
denoted by N(u). The closed neighborhood of u is defined as N [u] = N(u)∪{u}.
A vertex u dominates some adjacent (resp. non-adjacent) vertex v if N [v] ⊆ N [u]



(resp. if N(v) ⊆ N(u)). Two vertices u, v in G are said to be comparable if u
dominates v or v dominates u. Two vertices that are not comparable are said to
be incomparable. A split graph is a graph G = (V,E) whose vertex set V can be
partitioned into a clique K (i.e., a set of pairwise adjacent vertices) and a stable
set S (i.e., a set of pairwise non-adjacent vertices). We say that (K,S) is a split
partition of G. The vertices in S will be called the S-vertices.

Let G be a rectangular grid of size m × m′. The horizontal grid lines will
be referred to as rows and denoted by x0, x1, · · · , xm−1 and the vertical grid
lines will be referred to as columns and denoted by y0, y1, · · · , ym′−1. As already
mentioned above, in any representation of a B1-EPG graph, each path can only
have one of the following four possible shapes: �, �, �, �. A path with an �-shape
will be called an �-path. In a similar way we define �-path, �-path and �-path. For
any subset P of the four possible shapes, we denote by [P ] the class of B1-EPG
graphs which admit a representation in which each path has one of the shapes in
P . In particular, we denote by [P ]s the class of B1-EPG split graphs which admit
a representation in which each path has one of the shapes in P . For simplicity,
if P contains all four shapes, we write B1-EPGs. A representation of a B1-EPG
graph containing only paths with a shape in P is called a [P ]-representation.

Let G = (V,E) be a B1-EPG graph and let v ∈ V . We denote by Pv the path
representing v in a B1-EPG representation of G. Consider a clique K (resp. a
stable set S) in G. Any path representing a vertex in K (resp. in S) will simply
be referred to as a path of K (resp. path of S). Concerning cliques, the following
useful lemma has been shown in [12].

Lemma 1. Let G = (V,E) be a B1-EPG graph. In any B1-EPG representation
of G, a clique K of G is represented either as an edge-clique or as a claw-clique
(see Fig. 1).

Notice that in an edge-clique, all paths share a common grid-edge, called the
base of the clique, while in a claw-clique, all paths share a common grid-point,
called the center of the clique.

A gem is a graph with vertex set {c1, c2, c3, s1, s2} and edge set {s1c1, s1c2,
c1c2, c2c3, c1c3, s2c2, s2c3} (see Fig. 2(a)). It is easy to see that a gem, as an
induced subgraph of a split graph G = (V,E) with split partition (K,S),
must satisfy c1, c2, c3 ∈ K and s1, s2 ∈ S. A bull is a graph with vertex set
{c1, c2, s1, s2, s3} and edge set {c1c2, c1s2, c2s2, c1s1, c2s3} (see Fig. 2(b)). Again,
it is easy to see that a bull, as an induced subgraph of a split graph G = (V,E)
with split partition (K,S), must satisfy c1, c2 ∈ K and s1, s3 ∈ S. In the case

(a) (b)

Fig. 1. An edge-clique (a) and a claw-clique (b).



where s2 ∈ S as well, the bull is called an S-bull. Gems and S-bulls have played
an important role in [7]. As we will see, they are also crucial in our results.

s1 c2 s2

c3c1

(a)

c1 c2

s3s2s1

(b)

Fig. 2. (a) A gem. (b) An S-bull.

The following definitions have been introduced in [7]. Let G = (V,E) be in
[�]s with split partition (K,S). Consider an [�]s-representation of G. Clearly,
the clique K must be represented as an edge-clique. This grid-edge is called the
base. Without loss of generality, we may assume that the base is vertical. The
horizontal parts of the paths representing vertices in K are called branches. Let
F be the vertical line-segment which is the union of the vertical parts of all paths
representing vertices in K. The part of F below the base is called the trunk. The
part of F above trunk is called the crown (see Fig. 3).

The following three observations have been made in [7]. As we will see, they
will be very helpful in the proof of our main results.

Observation 1 ([7]). Let G = (V,E) be a split graph in [�]s. Then, the S-
vertices whose paths lie on the same branch (or on the crown) are pairwise
comparable. Furthermore, an S-vertex whose path lies on the trunk dominates
all S-vertices whose paths lie below it in the representation.

Base

Crown

Trunk
Branches

Fig. 3. An [�]-representation of a split graph with the notions of crown, base, branches
and trunk.



Observation 2 ([7]). Let G = (V,E) be a split graph in [�]s. If G contains a
gem, then exactly one of the gem’s S-vertices has its path lying on the crown of
the representation.

Observation 3 ([7]). Let G = (V,E) be a split graph in [�]s. If G contains
an S-bull, then some S-vertices of this bull have their paths lying on either the
crown or trunk of the representation.

It is easy to see that we can generalize Observation 1 in the following way.

Observation 4. Let G = (V,E) be a split graph in B1-EPGs with split partition
(K,S).

Assume that K is represented as an edge-clique with base going from (xi, yj)
to (xi+1, yj) (see Fig. 4(a)). Then, the S-vertices whose paths use column yj

above (xi+1, yj), say between rows xi+1 and xi+k (resp. below (xi, yj), say between
rows xi−k and xi) and the S-vertices whose paths use some row xi+�, � ≥ k (resp.
xi−�, � ≥ k) on a same side of yj (right or left) are pairwise comparable.

Similarly, assume that K is represented as a claw-clique with center (xi, yj)
and assume that no path of K uses the grid-edge going from (xi, yj−1) to (xi, yj)
(see Fig. 4(b)). Then, the S-vertices whose paths use column yj above (xi, yj),
say between rows xi+1 and xi+k (resp. below (xi, yj), say between rows xi−k

and xi−1) and the S-vertices whose paths use some row xi+�, � ≥ k (resp. xi−�,
� ≥ k) on a same side of yj are pairwise comparable. Furthermore, the S-vertices
whose paths use row xi to the right of (xi, yj) are also pairwise comparable.

xi

xi+1

xi+k

xi−k

yj

S4

S5

S1

S3

Base

S2

(a)

xi−1

xi

xi+1

xi+k

xi−k

yjS4

S5

S1

S3

S2

(b)

Fig. 4. (a) Vertices in S1 ∪ S2 (resp. S1 ∪ S5, S3 ∪ S4) are pairwise comparable. (b)
Vertices in S1 ∪ S2 (resp. S3 ∪ S4) are pairwise comparable; also the vertices of S5 are
pairwise comparable.



3 Subclasses of B1-EPGs

In [7], the authors showed that [�] � [�, �], [�, �] � [�, �, �] � B1-EPG and that
the two classes [�, �], [�, �] are incomparable. Here, we obtain a similar result
when restricted to split graphs.

Theorem 1. [�]s � [�, �]s � [�, �]s � [�, �, �]s � B1-EPGs.

Notice that for split graphs we have [�, �]s � [�, �]s. We will prove Theorem 1
by a series of four lemmas (Lemmas 2, 3, 4 and 5). We first start with a useful
proposition.

Proposition 1. Consider a B1-EPG representation of a gem (see Fig. 2(a)).
Let K = {c1, c2, c3} and S = {s1, s2}. If K is represented as an edge-clique
with base going from (xi, yj) to (xi+1, yj) or if K is represented as a claw-clique
with center (xi, yj) and no path of K uses the grid-edge going from (xi, yj−1) to
(xi, yj), then at least one of Ps1 , Ps2 intersects paths of K on column yj.

Proof. Consider a B1-EPG representation of a gem with K = {c1, c2, c3} and
S = {s1, s2}. Suppose that K is represented as an edge-clique with base going
from (xi, yj) to (xi+1, yj) or K is represented as a claw-clique with center (xi, yj)
and no path of K uses the grid-edge going from (xi, yj−1) to (xi, yj). By con-
tradiction assume that both Ps1 , Ps2 do not intersect paths of K on column yj .
Since all paths have at most one bend, it follows that both Ps1 , Ps2 intersect
paths of K on rows. Since s1, s2 have a common neighbour, Ps1 , Ps2 must inter-
sect paths of K on a same row xk either both to the right of yj or both to the left
of yj . But this is not possible since s1, s2 are incomparable (see Observation 4).

Lemma 2. [�]s � [�, �]s.

Proof. We clearly have [�]s ⊆ [�, �]s. Consider the graph G4 in Fig. 5(a). We
know from [7] that G4 is not in [�]s. But it is easy to see that G4 is in [�, �]s (see
Fig. 5(b)). Thus, [�]s � [�, �]s.

c3 c4

c5

c6c1

c2

s2

s1

s4

s3

(a)

Ps1

Ps3

Ps2

Ps4

Pc6Pc1

Pc2Pc3

Pc4Pc5

(b)

Fig. 5. The graph G4 and a [�, �]-EPG representation of it.

Since G4 is a minimal forbidden induced subgraph for the class [�]s, it is minimal
under inclusion with the property that it belongs to [�, �]s\[�]s. However, there
may exist other examples with fewer vertices.



s1 c1 s2

c2c3

s3

(a)

Ps1

Pc1
Pc3

Pc2 Ps2

Ps3

(b)

Fig. 6. The graph G1 and a [�, �]-EPG representation of it.

Lemma 3. [�, �]s � [�, �]s.

Proof. Consider the graph G1, also called the 3-sun, in Fig. 6(a). It is clearly a
split graph, and it has been shown in [7] to belong to [�, �]\[�, �] (see Fig. 6(b)
for a [�, �]-EPG representation of it).

So we conclude that [�, �]s �= [�, �]s. It remains to show that [�, �]s ⊂ [�, �]s.
Consider a split graph G in [�, �]s with split partition (K,S). It follows from
Lemma 1, that K must be represented as an edge-clique. Without loss of gen-
erality, we may assume that the base of K is vertical and goes from (xi, yj)
to (xi+1, yj). Notice that, since only �-paths and �-paths are allowed, we may
assume that each path of S intersects paths of K either with its vertical part or
with its horizontal part, but never with both and thus, it is a degenerate path.
Notice that no �-path has its horizontal part below (xi+1, yj), and no �-path has
its horizontal part above (xi, yj). We may therefore transform the part above
(xi+1, yj) of the whole representation by a symmetry with respect to column yj ,
resulting in a [�, �] representation of G. Thus, [�, �]s � [�, �]s.

Notice that the symmetry used in the proof of Lemma 3 could not be used
if one wanted to show that [�, �]s � [�, �]s, since the graph may have its clique
represented by a claw-clique. Therefore, [�, �]s\[�, �]s is exactly the set of those
[�, �]s-EPG graphs admitting no split partition (K,S) such that K can be rep-
resented by an edge-clique. Notice also that since G1 is the smallest graph not
in [�]s (see [7]), it is also the smallest graph in [�, �]s\[�, �]s.

Lemma 4. [�, �]s � [�, �, �]s.

Proof. We clearly have [�, �]s ⊆ [�, �, �]s. Let us consider the graph G5 which
belongs to [�, �, �]s (see Fig. 7(a) and (b)). We will show that G5 does not belong
to [�, �]s.

By contradiction, assume that G5 belongs to [�, �]s. We will distinguish two
cases. First, suppose that the clique K induced by {c1, · · · , c8} is represented as
an edge-clique. Without loss of generality, we may assume that the base of K is
vertical and goes from (xi, yj) to (xi+1, yj). Since the vertex set {c1, c2, c3, s1, s2}
induces a gem, it follows from Proposition 1 that at least one of Ps1 , Ps2 inter-
sects paths of K on column yj , say Ps1 . Also, we may assume, without loss
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Fig. 7. The graph G5 and a [�, �, �]-EPG representation of it.

of generality, that it intersects paths of K above row xi+1, say above row xr1 ,
r1 ≥ i + 1. Using the same argument for the gem induced by {c4, c5, c6, s3, s4},
we may assume that Ps3 intersects path of K on column yj . Since s1, s3 are
incomparable, it follows that Ps3 lies below row xi, say below row xr3 , r3 ≤ i
(see Observation 4). Now consider the S-bull induced by {c7, c8, s5, s6, s7}. Since
c7, c8 are non-adjacent to s1, s3, their paths do neither go above row xr1 , nor
below row xr3 . Since s5, s6, s7 are non-adjacent to c1, · · · , c6, it follows that
Ps5 , Ps6 , Ps7 cannot intersect paths of K on column yj . Therefore, they must
intersect paths of K on some same row xr (since s5 is adjacent to both c7, c8)
and these intersections are all to the right of yj (since we only allow �-paths and
�-paths. But this is clearly impossible, since s6 and s7 are incomparable. So we
conclude that K cannot be represented as an edge-clique.

So we may assume now that K is represented as a claw-clique with center
(xi, yj). Without loss of generality, we may assume that only paths of K use the
grid edges going from (xi−1, yj) to (xi+1, yj). Clearly, all paths of S intersecting
paths of K on row xi must be pairwise comparable (see Observation 4). Hence,
we immediately see that there are at most two such paths of S.

First assume there are exactly two paths of S intersecting paths of K on
row xi. Then, these must be paths Ps5 , Ps6 (resp. Ps5 , Ps7). Without loss of
generality, we may assume that c7 is represented as a �-path and c8 is represented
as an �-path. Notice that every other path of K with bend point (xi, yj) can be
transformed into a vertical path (by deleting its horizontal part and extending it
to (xi−1, yj) if it is an �-path and to (xi+1, yj) if it is a �-path), since it does not
intersect any path on row xi. Hence, Pc7 , Pc8 are the only paths of K with bend
point (xi, yj). Now, since c7 (resp. c8) has only two neighbours in S, namely
s5, s6 (resp. s5, s7), it follows that it does not intersect any path of S with its
vertical part. So we may transform Pc7 (resp. Pc8) into an �-path (resp. a �-path)



with vertical part going from (xi, yj) to (xi+1, yj) (resp. to (xi−1, yj)). Hence,
K is representable as an edge-clique. But we know from the above that this is
not possible.

So let us now assume, that exactly one path of S is intersecting paths of K
on row xi. As before, notice that every path of K with bend point (xi, yj) not
intersecting any path of S on row xi can be transformed into a vertical path
(by deleting its horizontal part and extending it to (xi−1, yj) if it is an �-path
and to (xi+1, yj) if it is a �-path). So this unique path of S intersecting paths of
K on row xi represents a vertex of degree at least two, hence one of s1, · · · , s5
(otherwise we obtain again the case where K is represented as an edge-clique).
First assume it represents s1 (the cases when it represents s2, s3 or s4 can be
handled similarly). In other words, Pc1 , Pc2 are the only paths of K using row
xi. We may assume, without loss of generality, that c1 is represented by a �-path
and c2 by an �-path. Since c1 does not have any neighbour in S except s1, it
follows that it does not intersect any path of S with its vertical part. Thus, as in
the previous case, we can transform Pc1 into an �-path with vertical part going
from (xi, yj) to (xi+1, yj). But then K is again represented as an edge-clique, a
contradiction. So we may assume now that this unique path of S intersecting
paths of K is s5. Using the same arguments as above, we may assume that c7 is
represented by a �-path and c8 by an �-path and Pc7 , Pc8 are the only paths of K
using row xi. We immediately conclude that Ps6 must intersect Pc7 on column
yj below row xi−1, and Ps7 must intersect Pc8 on column yj above row xi+1. It
follows from Proposition 1, that at least one of Ps1 , Ps2 intersects paths of K on
column yj , since {c1, c2, c3, s1, s2} induces a gem. But this is not possible since
neither of them is comparable with one of s6, s7 (see Observation 4). Thus, G5

does not belong to [�, �]s.

Lemma 5. [�, �, �]s � B1-EPGs.

Proof. We clearly have [�, �, �]s ⊆ B1-EPGs. Consider the graph G8 which
belongs to B1-EPGs (see Fig. 8(a) and (b)). We will show that G8 does not
belong to [�, �, �]s. By contradiction suppose that G8 ∈ [�, �, �]s. Assume first
there exists a [�, �, �]-representation of G8, where the clique K induced by
{c1, · · · , c10} is an edge-clique. Without loss of generality, we may assume
that the base of K is vertical, say it goes from (xi, yj) to (xi+1, yj). Since
{s3, s6, c2, c3, c4} induces a gem, it follows from Proposition 1 that at least
one of Ps3 , Ps6 intersects paths of K on column yj , say Ps3 . Similarly, since
{s9, s12, c7, c8, c9} also induces a gem, we may assume that Ps9 intersects paths
of K on column yj . Since s3 and s9 are incomparable, one of these paths will
be above row xi+1, say Ps3 , and the other will be below row xi, say Ps9 (see
Observation 4). Now consider Ps12 . Since s9 and s12 are incomparable and have
a common neighbor, it follows from Observation 4 that Ps12 must be above row
xi+1. But s12 has no common neighbour with s3, so it follows from Observation
4 that Ps12 must intersect all three paths Pc8 , Pc9 and Pc10 on a same row, say
row xk, k > i, below Ps3 . Next consider s10 and s11. Since they have each only
one neighbour in K, and it is a common neighbour with s12, it follows from the



above that they must intersect this neighbour on the same row xk. But since
s10, s11 are incomparable, they cannot intersect their neighbours on the same
side of column yj . So one will be to the right and the other to the left of column
yj (see Fig. 8(b)). Thus one of Pc9 and Pc10 must be a �-path and one must be
a �-path. The same reasoning can be done for s6, s4 and s5 with the conclusion
that one of Pc4 and Pc5 must be an �-path and one must be a �-path. But this
contradicts the fact that G8 ∈ [�, �, �].
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Ps12

Ps6

(b)

Fig. 8. The graph G8 and a B1-EPG representation of it.

Now assume there exists a [�, �, �]-representation of G8 where the clique K
is a claw-clique with center (xi, yj). Without loss of generality, we may assume
that only paths of K use the grid-edges going from (xi−1, yj) to (xi+1, yj). Also,
we may assume that all paths of K have a part lying on column yj . It follows
from Observation 4 that the S-vertices whose paths intersect paths of K on row
xi are pairwise comparable. Thus, we conclude that there can be at most two
such vertices. First assume there are exactly two. Without loss of generality, we
may assume that Ps1 and Ps3 intersect paths of K on row xi (the proof is the
same if two other paths of comparable S-vertices intersect paths of K on row xi).
Since s2 and s6 have both a common neighbour with s3, their paths intersect
paths of K on column yj . Furthermore, s2, s6 are not comparable, so one of
the paths Ps2 , Ps6 uses column yj above (xi+1, yj) and the other uses column
yj below (xi−1, yj). Now {s9, s12, c7, c8, c9} induces a gem, thus it follows from
Proposition 1 that at least one of the paths Ps9 , Ps12 intersects paths of K on the
column yj . But this implies that s9 or s12 is comparable with one of s2 and s6, a
contradiction. So we may assume now that there is exactly one S-vertex whose
path intersects paths of K on row xi. We will distinguish two cases: this path
represents an S-vertex of degree 3, or this paths represents an S-vertex of degree
1. First assume it is an S-vertex of degree 3, say, without loss of generality, s3.
Since s1, s2 and s6 have a common neighbour with s3, their paths must intersect
paths of K on column yj . But these three vertices are pairwise incomparable, a
contradiction with Observation 4. Now assume, without loss of generality, that
the path Ps1 is the unique path representing an S-vertex which intersects paths
of K on row xi. Similar to the proof of Lemma 4, every path of K with bend



point (xi, yj) not intersecting any path of S on row xi can be transformed into a
vertical path (by deleting its horizontal part and extending it to (xi−1, yj) if it is
an �-path and to (xi+1, yj) if it is a �-path). Since s1 has degree 1, it follows that
exactly one path of K uses row xi. Hence K is represented as an edge-clique,
but this is impossible due to the above. Thus, G8 is not in [�, �, �]s.

As for G4 in the proof of Lemma 2, we can say that G5 and G8 are inclusion-
wise minimal examples to show strictness of class inclusion for Lemmas 4 and 5,
respectively. However, in both cases, we do not know whether there exist other
examples with fewer vertices.

4 Split Graphs as [�]-Graphs

In this section, we characterise those split graphs that are in [�]. As already
noticed in [7], gems and S-bulls play an important role with respect to the
characterisation of split [�]-graphs.

Theorem 2. Let G be a split graph with split partition (K,S). Then G ∈ [�] if
and only if there exist S1, S2 ⊆ S such that:

(a) each Si for i ∈ {1, 2} is a set of pairwise comparable vertices;
(b) for every gem in G with vertex set {c1, s1, c2, s2, c3} (see Fig. 2(a)), either

s1 ∈ S1 or s2 ∈ S1;
(c) for every S-bull in G with vertex set {s1, c1, s2, c2, s3} (see Fig. 2(b)), at least

one of s1, s2, s3 belongs to S1 or s2 ∈ S2.

Proof. Let G be a split graph with split partition (K,S). Assume that G ∈ [�],
and consider an [�]-representation of G. We define S1 and S2 as follows:

• S1 is the set of vertices whose corresponding paths belong to the crown;
• S2 is the set of vertices whose corresponding paths belong to the trunk.

It immediately follows from Observation 1 that each Si, i ∈ {1, 2} as defined
above is a set of pairwise comparable vertices. Furthermore, it follows from
Observation 2 that (b) is satisfied. Finally, (c) is an immediate consequence of
Observation 3.

Conversely, let G = (V,E) be a split graph with split partition (K,S), and
assume that there exist S1, S2 ⊆ S satisfying (a), (b) and (c). In addition, let us
assume that we choose S2 maximal with these properties. Let S′ = S \ (S1 ∪S2).
Consider a partition S′

1, S
′
2, ..., S

′
k of S′ into non-empty sets such that ∀ i �=

j,N(S′
i) ∩ N(S′

j) = ∅ and k is maximal.

Claim 1: The vertices in S′
i, i ∈ {1, ..., k}, are pairwise comparable.

Let s, s′ ∈ S′
i, for some i ∈ {1, ..., k}. Suppose that s, s′ are not comparable.

Denote by S′′
i the vertices in S′

i that have a common neighbour with s. Then
each vertex in S′′

i is comparable to s. Indeed, let u ∈ S′′
i . If u and s are not

comparable, then there exist c, c′ ∈ K such that sc, uc′ ∈ E and sc′, uc �∈ E.



Since u ∈ S′′
i , it follows that there exists c′′ such that sc′′, uc′′ ∈ E. But then,

{u, s, c, c′, c′′} induces a gem, and hence (b) is not satisfied, a contradiction. So
we conclude that s′ �∈ S′′

i , since s, s′ are incomparable. Now, assume there exist
a vertex u ∈ S′′

i and a vertex v ∈ S′
i \ S′′

i , v �= s, that have a common neighbour
c1. Since v �∈ S′′

i , it follows that sc1 �∈ E. Then {s, u, v, c1, c2} induces an S-bull,
where c2 is a common neighbour of s and u, and hence (c) is not satisfied, a
contradiction. It follows from the above that we may partition S′

i into two sets,
S′′

i ∪ {s} and S′
i \ (S′′

i ∪ {s}) such that N(S′′
i ∪ {s}) ∩ N(S′

i \ (S′′
i ∪ {s})) = ∅.

But this contradicts the maximality of k. Therefore, s, s′ are comparable. This
proves Claim 1.

Let S2 = {u1, ..., u�} such that N(u�) ⊆ N(u�−1) ⊆ ... ⊆ N(u2) ⊆ N(u1).
Furthermore, let A0 = K \ N(u1), for all i ∈ {1, ..., � − 1} Ai = N(ui) \ N(ui+1)
and A� = N(u�).

Claim 2: There exists no set S′
i, i ∈ {1, ..., k}, such that N(S′

i) ∩ Aj1 �= ∅ and
N(S′

i) ∩ Aj2 �= ∅, for j1 �= j2 and j1, j2 ∈ {0, 1, . . . , �}.

Let S′
i be such that x ∈ N(S′

i) ∩ Aj1 and y ∈ N(S′
i) ∩ Aj2 , for j1 �= j2 and

j1, j2 ∈ {0, 1, . . . , �}. Without loss of generality, we may assume that j1 < j2 and
that j1 is chosen smallest with the property that N(S′

i) ∩ Aj1 �= ∅. Let u be a
dominant vertex in S′

i, i.e. N(u) = N(S′
i). Consider vertex uj1+1 ∈ S2. Notice

that x and uj1+1 are not adjacent. Hence, if there exists a vertex z ∈ K which is
adjacent to uj1+1 and non-adjacent to u, then {u, uj1+1, x, y, z} induces a gem,
and hence (b) is not satisfied, a contradiction. Thus, u dominates uj1+1. Since
uj1+1 dominates uj , for j = j1 +2, . . . , �, we conclude that u actually dominates
uj , for j = j1 + 1, . . . , �. If j1 = 0, we obtain that u dominates all vertices in S2,
and thus we may add u to S2 (and (a), (b), (c) would still be satisfied), which
contradicts the maximality of S2. So we may assume that j1 > 0. Notice that u
is dominated by every vertex uj , with j ∈ {1, . . . , j1}, since j1 is chosen smallest
with the property that N(S′

i) ∩ Aj1 �= ∅. Hence, we may again add u to S2 (and
(a), (b), (c) would still be satisfied), which contradicts the maximality of S2.
This proves Claim 2.

We will construct an [�]-representation of G as follows. We start with the base,
which, without loss of generality, we may assume vertical. Next, we extend the
paths of the base and add all vertices of S1 in the crown and all vertices of
S2 in the trunk (see Fig. 9(a)). This is possible since the vertices in S1 (resp.
S2) are pairwise comparable. Notice that currently each path Pc, for c ∈ Aj ,
j ∈ {1, . . . , �}, has its lower endpoint below Puj

and above Puj+1 , and each
path Pc, for c ∈ A0, has its lower endpoint above Pu1 . Consider a set Aj , j ∈
{0, 1, . . . , �} as well as all sets among S′

1, . . . , S
′
k which have neighbours in Aj ,

say S′
i1

, . . . , S′
ir

. It follows from Claim 2 and the fact that N(S′
i) ∩ N(S′

l) = ∅
for all i, l ∈ {1, . . . , k}, i �= l, that we may partition the vertices of Aj into sets
Ai1

j , . . . , Air
j , A′

l such that N(S′
is

) = Ais
j , for s = 1, . . . , r and the vertices of A′

j

have no neighbours in S′. Since each set S′
i for i ∈ {1, ..., k} contains pairwise

comparable vertices (see Claim 1), we may now represent the vertices of each set



Fig. 9. Illustration of Theorem 2.

S′
is

on a separate branch formed by the horizontal parts of the paths Pc, with
c ∈ Ais

j , for s = 1, . . . , r (see Fig. 9(b)).
Notice that the previous characterisation does not imply that graphs in [�]s

can be recognised in polynomial time. This still remains open.
In [7], the authors state a conjecture concerning the characterisation of the

class [�]s by a family of forbidden induced subgraphs. Here, we will show that
the conjecture is wrong by presenting an additional forbidden induced subgraph
that was not mentioned in their list (and which is not contained in any of their
forbidden graphs as induced subgraph), using Theorem 2. Consider the graph
H shown in Fig. 10. We obtain the following.

c1 c2

c3c4

s1

s2 s3 s4

s5

Fig. 10. The graph H.

Lemma 6. The graph H is not in [�]s.

Proof. Suppose by contradiction that H ∈ [�]s. Since {c1, c3, c4, s1, s3} induces
a gem, it follows from Theorem 2, that either s1 or s3 belong to S1.

First assume that s1 ∈ S1. Hence s3 �∈ S1. Now {c2, c3, c4, s3, s5} also induces
a gem. It follows again from Theorem 2 and the fact that s3 �∈ S1 that s5 ∈ S1.
So both s1, s5 belong to S1. But they are incomparable, a contradiction.



So we may assume now that s3 ∈ S1 and s1 �∈ S1. The vertex set
{c1, c3, c4, s1, s4} induces a gem. Thus, it follows from Theorem 2 and the fact
that s1 �∈ S1 that s4 ∈ S1. Similarly, the vertices {c2, c3, c4, s2, s5} induces a
gem. So according to Theorem 2, either s2 or s5 belongs to S1. But s2, s4 are
incomparable and s5, s3 are incomparable. Thus, we obtain again a contradiction
since S1 is a set of pairwise comparable vertices.

Note that one can easily check that the graph H is a minimal forbidden induced
subgraph by removing each vertex separately and applying Theorem 2.

5 Conclusion

In this paper, we were interested in split graphs as edge intersection graphs of
single bend paths on a grid. We presented a characterisation of this graph class
using the notions of gems and S-bulls. Our characterisation allowed us to dis-
prove a conjecture by Cameron et al. stating that this class can be characterised
by a list of 9 forbidden induced subgraphs [7]. Notice that, even though we only
gave here a single additional forbidden induced subgraph, we actually managed
to detect 20 new ones so far. Furthermore, we investigated some subclasses of
split B1-EPG graphs for which only a subset of the four possible shapes are
allowed. We presented the complete set of inclusion relationships between these
graph families.

Our characterisation mentioned above does not immediately lead to a
polynomial-time recognition algorithm. Thus, it is still open whether split B1-
EPG graphs can be recognised in polynomial time or not. Furthermore, it would
be interesting to obtain a characterisation of chordal B1-EPG graphs.

In [7], the authors present a characterisation of gem-free (resp. S-bull-free)
graphs that are in [�]s. We managed to generalise these results to gem-free (resp.
S-bull-free) graphs that are in [P ]s, for any subset P of {�, �, �, �}. All these
graph classes can be recognised in polynomial time. Due to space constraints,
we were not able to include these results in the present paper.
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