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Synonyms

e Knowledge base embeddings
e RDF graph embeddings

Definitions

Knowledge graph embeddings: a vector
representation of entities and relations in
a knowledge graph that preserves the in-
herent structure of the knowledge graph
as well as the reasoning ability over the
graph.

Introduction

With the growing popularity of multi-
relational data on the Web, knowledge
graphs (KGs) have become a key data
source in various application domains,
such as Web search, question answering,

and natural language understanding. In
a typical KG such as Freebase Bollacker
et al| (2008) or Google’s Knowledge
Graph |Google| (2014), entities are
connected via relations. For example,
Bern is capital of Switzerland. Formally,
a popular approach to represent such
relational data is to use the Resource
Description Framework. It defines a
fact as a triple (subject, predicate and
object), which is also known as head,
relation, and tail or (h,rt) for short.
Following the above example, the head,
relation and tail are Bern, capitalOf
and Switzerland, respectively. With a
considerable number of entities and
relations (e.g., Google’s Knowledge
Graph has more than 18 billion of triples
with 570 million of entities and 35,000
of relations by the end of 2014), KGs
now become a valuable information
source that can empower many semantic
Web applications.

Despite the importance of building
large-scale KGs, their symbolic and log-
ical frameworks are not flexible enough
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to be compatible with modern statistical
and machine-learning techniques which
require often numerical inputs. In this
context, knowledge graph embeddings
that project entities and relations in a KG
into a low-dimensional continuous vec-
tor space have attracted much attention.
One of the key benefits of such numeric
representation is that they can easily
serve as input to classical statistical
and machine learning approaches. The
learnt entity and relation embeddings
can thus be used in different tasks, such
as KG completion Bordes et al| (2013),
relation extraction [Weston et al| (2013)),
entity classification and entity resolution
Nickel et al| (2011).

In the following, we first discuss typi-
cal KG embedding models and then their
extensions by integrating additional data
sources. We then summarize the applica-
tions of KG embeddings.

Learning knowledge graph
embeddings

Learning KG embeddings consists in
two key steps in general:

1. Defining a KG embedding model
with a specific scoring function,
which computes the probability that
a given triple is true;

2. Initializing entity and relation embed-
dings (e.g. vectors) according to the
KG embedding model, and learning
those embeddings by maximizing the
sum of the scoring function over all
triples in the KG. Triples appearing in
the KG will have higher scores than
the triples that do not exist in the KG.
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KG embedding models

Depending on the type of scoring
function, there are two categories of
embedding models: translational dis-
tance models and semantic matching
models. Translational distance models,
such as TransE |Bordes et all (2013),
use a scoring function that measures
the distance between two entities, while
semantic matching models, such as
RESCAL, use a scoring function that
measures the similarity of the facts.

Translational distance model: TransE
and its extensions

TransE is a representative translational
distance model that projects entities and
relations onto a unique vector space. In
this model, the head & and the tail ¢ of
a triplet are connected by their relation
r, holding the fact that the embedding
of ¢ should be similar to the embedding
of h plus the embedding of r (i.e., h
+ r = t). The proposed idea is based
on the vector-offset method for identi-
fying linguistic regularities in continu-
ous space word representations Mikolov
et al| (2013), for example, USA - dollar
= Japan - yen. In a KG, this analogy
holds since through the currencyOf rela-
tion we get dollar + currencyOf ~ USA
and yen + currencyOf = Japan. In this
way, the scoring function is defined as
the negative distance between the sum of
the head and the relation, subtracted by
the tail:

fr(ht) =—[lh+r—tl[;, (D

Following this initial idea, several
techniques improved TransE by de-
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signing sophisticated scoring functions
that are able to capture complex KG
structures, in particular multi-mapping
relations (one-to-many, many-to-one,
or many-to-many). TransH Wang et al
(2014b)), for instance, suggests a new
approach by projecting the relations on
different hyperplanes in order to capture
many-to-many mapping properties of
some relations; TransR |[Lin et al| (2015b)
defines a mapping matrix and a vector
for every relation; TransD Ji et all (2015))
introduces dynamic matrices for each
entity-relation pair by considering
the diversity of entities and relations
simultaneously. Sophisticated scoring
functions can indeed improve the KG
embeddings in some downstream learn-
ing tasks, tough they also increase the
complexity of the embedding models.

Semantic matching model: RESCAL
and its extensions

RESCAL is a tensor factorization model
for KG embeddings, which decomposes
a three-way tensor consisting of head,
relation and tail dimensions. RESCAL
generates for each entity a vector, and
for each relation a matrix capturing the
interaction between the entities. The
proposed model allows for discover-
ing the correlation between multiple
interconnected entities. The model
represents facts via a tensor product
with a corresponding scoring function
defined as follows:

d d
fr(hvt) = hTMrt = Z Z [Mr]ij ' [h]l ) [t]j
(2

where h and ¢ are the vectors of the head
and tail, respectively, and M, is the ma-
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trix that represents the relations. d refers
to the dimension of the embeddings.

Several pieces of work extend
RESCAL by designing customized ten-
sor factorization models. DistMult|Yang
et all (2014) simplifies the RESCAL
model by using a bilinear formulation,
showing similar performance with
less parameters (more efficient in the
learning process). However, the model
works with symmetric relations only.
Trouillon et all (2016) propose a model
called Complex Embeddings (Com-
plEx) that extends DistMult in order to
model asymmetric relations. ComplEx
introduces a complex space in which
head, relation and tail embeddings are
represented. In this model, the scoring
function generates different scores
from facts with asymmetric relations.
Neural Tensor Network (NTN) Socher
et all (2013) is another model with a
neural network architecture. For each
fact, the embedding vectors of its head
and tail are fed into the input layer of
a neural network, and then mapped
onto its hidden layer combined with
a relation-specific tensor. Finally, the
output layer generates a score for each
fact.

Learning process

The goal of the learning process is to
maximize the sum of the scoring func-
tion over all triples in the KG. Typical
examples of optimization algorithms
used in this context include Stochastic
Gradient Descent (SGD) Robbins and
Monro| (1951), BroydenFletcherGold-
farbShanno (BFGS) [Battiti and Masulli
(1990) and AdaGrad |Duchi et al| (2011).
In order to accelerate the training pro-
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cess, negative sampling techniques can
be applied by replacing the head, the
relation or the tail of a given fact. These
generated triples are called negative
samples. There are two main methods
of generating negative samples, based
on the Open World Assumption (OWA)
and on the Closed World Assumption
(CWA).

Open World Assumption

The open world assumption assumes
that the KG only contains true facts
and the facts that do not appear can
either be false or just missing |Drumond
et al (2012). Under this assumption, a
negative fact is probabilistically gener-
ated given a positive fact by randomly
corrupting its head, relation or tail. The
entity and relation representations are
learned by minimizing a loss function
defined based on the scoring function,
such as the logistic loss defined as
follows:

min Z
horit (h,rt)eDTUD—
3)
where D™ and D™ are positive and neg-
ative training samples, and yy,, is equal
to 1 if the label is positive, -1 otherwise.
The logistic loss can be optimized us-
ing for instance stochastic gradient de-
scent in mini-batch mode. In the train-
ing phase, a set of true facts are sam-
pled and a set of negative fact get gen-
erated, and the embeddings can be iter-
atively updated with a fixed or adaptive
learning rate.

log(1+exp(—yur - fr(h,t
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Closed World Assumption

The closed world assumption assumes
that all the facts that are not in the KG
are negative samples (i.e., assuming the
KG is complete). The entity and relation
representations are learned by minimiz-
ing, for example, the squared loss:

min Y (e — fr(h,t))?

hrt (R oreRr

“)

where E and R are the set of entities
and relations, respectively. yy,, is equal
to 1 if the triplet appears in the KG, 0
otherwise. In addition, Nickel and Tresp
(2013)) proposes the logistic loss and | Mi-
ettinen| (2011) the absolute loss as alter-
natives to the squared loss.

In summary, the closed world as-
sumption usually has more limitations
than the open world assumption, as
it penalizes the missing true facts
from a KG. In practice, despite their
tremendous size, modern KGs all suffer
from incompleteness issues [West et al
(2014). Consequently, the open world
assumption is more realistic for most

? ttings and thus performs better on
)t

erage better than the closed world
assumption |Guo et al| (2017).

KG embedding extension by
integrating additional
information

When learning KG embeddings, addi-
tional information, such as entity types,
relation paths, textual descriptions
or logical rules, can be added to the
embedding model to improve the quality
of the embeddings on certain tasks.
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Entity types represent semantic
categories the entity belongs to. For
example, the entity PresidentObama
can be annotated as a PERSON entity
type. This piece of information can be
incorporated in different ways. |[Nickel
et al| (2012) use the entity type as a
relation and its corresponding facts
(h,rt) as training example. Guo et al
(2015) propose a method in which
entities of the same type are close to
each other in the vector space. The entity
type can also be used to set constraints
for different relations. For example,
Xie et all (2016) use this constraint to
generate correct negative samples by
filtering out triples with incorrect entity
types.

Relation paths refer to a sequence
of relations between two entities. The
multi-hop relationships contain use-
ful information that can be used for
KG completion. For example, [Lao
and Cohen| (2010) predict the relation
between entities using a path ranking
algorithm that connects two entities.
More precisely, the relations can be rep-
resented as vectors or matrices, and their
addition or multiplication can be used
to compose a path as vector or matrix
composition. [Lin et al| (2015a) show a
method to approximate the relation path
via sampling and pruning. Along similar
lines, [Toutanova et al| (2016) propose
an algorithm that incorporates paths
with specific lengths and intermediate
entities in the model.

Most of the KGs contain entity
descriptions that can be used to enrich
the semantic information of the entities.
External information sources, such as
Wikipedia articles [Wang et all (2014al)
or news releases [Socher et al (2013),
can be used to extend the entity de-
scription by providing richer textual
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information. A representative work by
Wang et al (2014a) introduces a model
that combines text corpus and KG to
align them in the same vector space
and creates KG embeddings and text
embeddings. The model includes three
main parts: a KG model, a text model
and an alignment model. Specifically,
the KG model is used to generate
embeddings of entities and relations in
the KG while the text model is used
to generate embeddings from the text
corpus. Finally, the alignment model is
used to align the KG embedding and
text embedding in the same vector space
using different alignment mechanisms,
such as entity name and Wikipedia
anchors. In this way, the model is able
to predict out-of-KG entities (phrases
not stored in the KG but that appear in
the text).

Logical rules are another type of
information that could be integrated
into embedding models. For instance,
if two entities are connected by the
relation HasWife, then they should also
be connected by the relation HasSpouse.
There exist systems, such as WARMR
Dehaspe and Toivonen! (1999), ALEPH
Muggleton| (1995)), and AMIE |Galarraga
et all (2013), that can automatically ex-
tract such kinds of relations. Richardson
and Domingos| (2006) prove that the
logical rules contain rich information
and that they can be used to acquire
and infer further knowledge. Following
this idea, [Wang et al (2015) propose
an approach seamlessly incorporating
logic rules into KG embedding models
by reducing the solution space and
thus improving the inference accuracy
for knowledge base completion tasks.
Guo et al (2016) propose a model
that embeds KG and logical rules in a
unified framework. Specifically, logical
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rules are first instantiated into ground
rules, for example, HasWife(x,y) implies
HasSpouse(x,y) and vector embeddings
are introduced for entity pairs. For
each fact of the logical rule, a score is
computed in order to indicate whether
the ground rule is satisfied or not. The
embedding model is then learned based
on the unified facts and rules. In this
way, the model is more effective for
knowledge acquisition and inference
as the embeddings are compatible with
both facts and rules.

In addition to the information
described above, further types of in-
formation that can be added to the
embedding models include entity
attributes, temporal information and
graph structures. [Nickel et al (2012)
highlight the fact that entity attributes
and relations must be separated. The
authors propose a new algorithm to
handle attributes efficiently. Jiang et al
(2016) show that the KG facts are often
time-sensitive and that they develop a
time-aware knowledge base embedding
approach by taking advantage of the
time at which facts have occurred. The
proposed solution forces the embed-
dings to be temporally consistent by
using temporal constraints to model
the relations. [Feng et al| (2016) show a
graph-aware approach that learns entitiy
and relation embeddings by leveraging
the relation paths and edge context (i.e.,
all the relations that connect an entity).
The intuition behind this approach is
that all the relations linking to and from
an entity are representative of that entity.
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KG embedding applications

Typical applications of KG embedding
include link prediction, triple classifica-
tion, entity classification and entity reso-
lution.

e Link prediction (also called KG
completion) attempts to discover
missing facts based on the contents
of the KG. Specifically, it predicts an
entity given a relation and a second
entity, i.e., given (7 t) it predicts A,
denoted also as (?, r t), or given
(h, r) it predicts ¢, denoted also as
(h, r, ?). lLin et al (2015a)) define
this task as entity prediction while
Bordes et al (2014b) define it as
entity ranking. A similar approach
predicts a relation given its head and
tail entities, denoted also as (h, ?,
t), which is similar also to relation
prediction [Xie et al| (2016). In order
to evaluate the results generated by
this task, a common practice is to
store in a list all the answers and
see the rank of the correct answer.
Several evaluation metrics can be
used in this context, such as Hits@n
that considers only the ranks smaller
than n, or the mean rank, that is, the
average of the predicted ranks.

e Triple classification aims at determin-
ing whether a triple appears in a KG.
More precisely, triple classification
can be performed based on the score
of a candidate triple (h, 7 t) that can
be easily computed using the scoring
function. In this way, an unseen fact
can be either true if its score is higher
than a threshold and false otherwise.
Traditional evaluation metrics can be
used in this task, for example, mean
average precision |Guo et al (2016) or
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micro and macro averaged accuracy
Guo et al| (2015)).

e Entity classification classifies entities
into different semantic categories.
Concretely, the type of an entity is
usually denoted using a IsA relation,
and entity classification can thus be
seen as a particular case of the link
prediction task, in which only (A, IsA,
?) triples are predicted.

e Entity resolution verifies whether
two entities are actually referring
to the same object or not. Bordes
et al (2014b)) tackle this problem by
considering a scenario in which the
relation of two equivalent entities
is explicit denoted as EqualTo. By
learning the embedding for this type
of relation, the problem of entity
resolution becomes a triple classifi-
cation problem. Fundamentally, the
triple classification problem judges
whether the fact (h, EqualTo, t) is
true or not. Alternatively, Nickel et al
(2011), propose a different approach
that computes the similarity between
two entities and use the score to
calculate the likelihood that two
entities refer to the same object. This
method works even if the relation
EqualTo is not encoded in the KG.

KG embeddings can also be applied
to other application domains beyond
KGs. Three most popular out-of-KG
applications are relation extraction,
question answering and recommenda-
tion systems.

e Relation extraction tries to discover
relations from text where entities
have already been identified. Weston
et al (2013) propose a method to ex-
tract relations by combining TransE
and text, showing that the integration
of TransE and a traditional text-based

extractor can actually improve the
performance of relation extraction.

Question answering refers to the task
of answering questions over KGs.
Given a question in plain text, a fact
or a set of facts containing the correct
answer is extracted as an answer.
This task is challenging because of
the extended variability of natural
language text used to formulate the
question and of the extensive size of
the KGs. A successful solution that
involves KG embedding is proposed
by Bordes et all (2014al)), which learns
embeddings in order to put questions
and corresponding answers closer in
the vector space. Given a question
and an answer, the model generates
a high score if the answer is correct,
low score otherwise. The results
show that, by involving the KG,
the task is successfully performed
without using any rules or additional
tagging step as most traditional
question answering applications do.

Recommendation systems suggest
users a list of items according to
the users’ preferences. Collaborative
filtering techniques are often used
to perform recommendations based
on the historical interaction between
users and items. However, user-item
interactions are often sparse, leading
to unsatisfactory performance. To
alleviate this issue, hybrid recom-
mendation systems were developed
by adding auxiliary information |Yu
et al| (2014). Zhang et al (2016)
propose a hybrid recommendation
system that integrates a KG. More
precisely, the hybrid recommen-
dation system models structural
knowledge by applying a KG em-
bedding technique such as TransR
in order to learn the representation



of each item. Similarly, the users
are represented by vectors, and each
item is represented by its KG vector
representation plus an offset. Finally,
the preference of a user for a specific
item is computed as a product of the
user and item vectors. In this way,
the hybrid recommendation system
automatically  extracts  semantic
representations from facts in the
KG to improve the quality of the
recommendation system.

Conclusion

With the booming of multi-relational
data on the Web, knowledge graphs have
become an important data source em-
powering many applications. However,
the symbolic and logical representation
of KGs make it difficult to take them as
input to machine-learning or processing
pipelines. To tackle this issue, knowl-
edge graph embedding techniques were
proposed to project entities and relations
from a KG into a low-dimensional
continuous vector space, while still
preserving the inherent structure of
the KG and reasoning capabilities
over the KG. The learnt embeddings
have been successfully used in both
KG-reasoning applications, such as link
prediction, triple classification, entity
classification and entity resolution, and
out-of-KG applications, such as relation
extraction, question answering and
recommendation systems.
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