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regression and resampling methods
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Consistency of propensity score matching estimators hinges on the propensity score’s ability to balance the
distributions of covariates in the pools of treated and non-treated units. Conventional balance tests merely
check for differences in covariates’ means, but cannot account for differences in higher moments. For this
reason, this paper proposes balance tests which test for differences in the entire distributions of continuous
covariates based on quantile regression (to derive Kolmogorov–Smirnov and Cramer–von-Mises–Smirnov-
type test statistics) and resampling methods (for inference). Simulations suggest that these methods are
very powerful and capture imbalances related to higher moments when conventional balance tests fail to
do so.

Keywords: balancing property; balance test; propensity score matching

JEL classification: C12, C15, C21

1. Introduction

Propensity score matching (PSM) [33,35] has become an increasingly popular estimation method
in many fields of empirical research concerned with the evaluation of treatment effects in a
conditional independence or selection on observables framework (see [21]). Applications include
the evaluation of active labor market policies [14,15], the estimation of the health effects of
unemployment [7], the evaluation of trade gains due to a common currency [31] and many others.

PSM is attractive because it does not rely on tight functional form assumptions as parametric
estimators, nor is it prone to the curse of dimensionality issue inherent in matching on a high
dimensional covariate vector directly. However, one condition for consistency of PSM is the
balancing property of the presumed propensity score model. It states that conditional on the
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2882 M. Huber

propensity score, the distributions of the covariates in the pools of treated and non-treated units
must be equal, i.e., balanced.

All balance tests conventionally used in the literature, as the DW test (see [10,11]), the regression
test of Smith and Todd [40], or the two-sample t-test for matched samples, merely check for
differences in the means of covariates. Thus, they might lack power when imbalances affect
distributional features other than the mean. An alternative is the specification test proposed by
Shaikh et al. [39] which tests the entire propensity score model, not just the balancing property.
However, the caveat of this method is that it may reject misspecified propensity score models
which are nevertheless balancing, e.g., when the misspecified propensity score is only a monotonic
transformation of the true one. Therefore, the availability of suitable balance tests for PSM appears
to be unsatisfactory.

This paper aims at filling this gap by suggesting test procedures for continuous covariates1

which account for differences in the entire distribution. In contrast to commonly applied mean
difference tests, the proposed methods also capture distributional imbalances related to higher
moments. The procedures are based on (i) quantile regression (see, for instance [5,8,23,24]),
(ii) the computation of Kolmogorov–Smirnov (KS) and Cramer–von-Mises–Smirnov (CMS) test
statistics on the empirical inference process, and (iii) resampling in order to estimate the distri-
butions and p-values of the KS and CMS statistics (see [9]). We discuss the implementation of
these methods as full sample tests (based on the entire sample) and after-matching tests (based
on the sample of matched units alone) and point to differences in the interpretation of the results.
Furthermore, we provide simulation evidence on the performance of the tests relative to existing
balance tests. Therefore, this paper complements the analysis of the finite sample properties of
balance tests by Lee [27] and extends the range of tests investigated.

The remainder of this paper is organized as follows. Section 2 motivates PSM and more formally
discusses the condition to be tested. Section 3 briefly reviews the literature on balance tests and
introduces our full sample and after-matching tests for continuous covariates based on resampling
and quantile regression. Section 4 presents simulation results about the finite sample properties
of our methods and the tests applied in the literature. Section 5 presents an empirical application
of full sample and after-matching tests to Italian labor market data. Section 6 concludes.

2. Propensity score matching and testable conditions

In the treatment evaluation literature, identification strategies based on ‘selection on observables’
rely on the assumption that all factors jointly affecting the treatment probability and the outcome
are observed and thus, can be controlled for. Hence, hypothetical outcomes that would have been
realized under alternative treatment states are assumed to be independent of the actual treatment
status conditional on the observed covariates. This is known as the conditional independence
assumption (CIA), see, for instance, Imbens [21] for an in-depth discussion. It implies that the
effect of the treatment on the outcome is conditionally unconfounded. Let Y denote the outcome
variable, D a binary treatment taking either the value 1 (treated) or 0 (non-treated),2 and X a
vector of observed covariates with support X . The CIA states that

Y 1, Y 0⊥D|X = x ∀x ∈ X , (1)

where Y 1 and Y 0 are the hypothetical outcomes for D = 0, 1 and ⊥ denotes independence.
From a practitioner’s perspective, conditioning on a high dimensional X may be problematic,

as the number of possible combinations of elements in X increases exponentially in the dimension
of X such that a precise estimation quickly becomes exorbitantly data hungry. This problem is
known as curse of dimensionality. Let p∗(X) ≡ Pr(D = 1|X) denote the unknown probability of
being treated conditional on X, henceforth referred to as true propensity score. Rosenbaum and
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Journal of Applied Statistics 2883

Rubin [33] have shown that conditioning on the true propensity score is equivalent to conditioning
on the covariates directly, as both X and p∗(X) are balancing scores in the sense that they adjust
the distributions of covariates in the treatment and in the control (or non-treated) group. Thus,
if Equation (1) is satisfied, it also holds that the hypothetical outcomes are independent of the
treatment conditional on the propensity score:

Y 1, Y 0⊥D|p∗(X). (2)

Conditioning on the one-dimensional propensity score rather than on the multidimensional
vector of covariates circumvents the practical issues related to the curse of dimensionality, e.g.,
the occurrence of empty cells for particular combinations of covariates. For this reason, PSM is
frequently used in empirical applications. If Equation (2) is satisfied, average treatment effects
(ATEs) and quantile treatment effects (QTEs) can be consistently estimated, given that there
is sufficient common support with respect to p∗(X) among treated and non-treated units. The
balancing property of p∗(X) implies that

X⊥D|p∗(X). (3)

Note that Equation (3) is a mechanical result related to the balancing property and holds even
if the CIAs (1) and (2) do not (such that the effect of D on Y is confounded). In the real world,
the structural form of the true propensity score is usually unknown to the researcher. In empirical
applications it is most commonly modeled parametrically using probit or logit specifications. Let
p(X) denote the presumed specification of the true p∗(X). Whereas the balancing property of
p∗(X) follows from the proof in Rosenbaum and Rubin [33], it is a priori not clear whether p(X)

balances X in the pools of treated and non-treated units. However, the balancing property of p(X)

is testable by verifying whether

F(x|D = 1, p(X) = ρ) = F(x|D = 0, p(X) = ρ) ∀x ∈ X , ∀ρ ∈ (0, 1), (4)

where FX|D=d,p(X)(·|D = d, p(X)) denotes the conditional cdf of X given D = d and p(X).
If Equation (4) is satisfied, it holds that

X⊥D|p(X). (5)

Instead of building tests for equality of the conditional distribution functions3 given p(X) it
is equally valid to test for differences in the conditional quantile functions for D = 1, 0, as the
quantile function is simply the inverse of the distribution function. Let Qτ

A represent the τ th
quantile (τ ∈ (0, 1)) for some variable A, Qτ

A = inf{a : FA(a) ≥ τ }. Then, FA(a) = Qτ−1

A . For
Qτ

X(d, ρ)) denoting the τ th conditional quantile of X given D = d and p(X) = ρ, the balancing
property implies that

Qτ
X(1, ρ) = Qτ

X(0, ρ), ∀τ, ρ ∈ (0, 1), ∀x ∈ X . (6)

However, conventional balance tests merely capture differences in means by verifying whether

E[X|D = 1, p(X) = ρ] = E[X|D = 0, p(X) = ρ], ∀x ∈ X , ∀ρ ∈ (0, 1), (7)

which is necessary, but not sufficient for Equations (4) and (5). That is, these tests do not account
for distributional differences related to higher moments and ignore valuable information that
might point to the violation of covariate balance, see also the discussion in Sekhon [37]. Thus,
it appears more appropriate to use procedures that capture imbalances in the entire distributions
rather than in the means alone. For this reason, we propose quantile-based tests for continuously
distributed covariates in Section 3, which may be applied to both full and matched samples.
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2884 M. Huber

3. Testing

3.1 Full sample tests

Balance tests can be categorized into methods testing the balancing property (i) in the entire sample
(thereafter referred to as full sample tests) or, after having applied the matching algorithm, (ii)
in the sample of matched units alone (henceforth after-matching tests). Two commonly applied
tests of the former kind are the DW test used in Dehejia and Wahba [10,11], which is based on
a process originally proposed by Rosenbaum and Rubin [34] and Rubin [36], and the regression
test of Smith and Todd [40].

Smith and Todd [40] suggest regressing the covariate of interest on a quartic polynomial of
the estimated propensity score, the treatment state, and its interaction terms with the polyno-
mial. Using a Wald-statistic one tests whether the coefficients on the treatment dummy and the
interaction terms are jointly equal the zero. If the latter holds true, the conditional mean of the
covariate is independent of the treatment, which is necessary, albeit not sufficient for balancing.
However, one may extend this approach to higher moments. In the simulations and the application
further below, we therefore also consider a joint regression test for both the mean and the variance
in a GMM framework. The DW test is based on testing for mean differences in the covariates
across treated and non-treated units within strata defined upon the estimated propensity scores,
see Dehejia and Wahba [11] for further details. Lee [27] argues that the standard DW test has poor
size properties and suggests to estimate the distribution of the test statistic based on permutation
(see [32]) instead of asymptotic approximation. However, this permuted version is incapable to
account for differences in higher moments as the original test.

Due to this shortcoming of conventional methods, we propose a test procedure that captures
differences in the entire distribution of a continuous covariate. Our method is based on the results
of Chernozhukov and Fernandez-Val [9] who developed tests based on KS and CMS statistics
derived from quantile regression processes. As these statistics are non-pivotal, the authors propose
resampling methods to compute the critical values and p-values. Our balance test can be divided
into four steps. Prior to testing, we predict the propensity scores for the units in the sample based
on the presumed model p(X). Secondly, we estimate the covariate’s conditional quantiles given
the estimated propensity score. In the third step, KS and CMS statistics are computed based on
the differences in the conditional quantiles across treatment states. Finally, we use bootstrapping
to estimate the distributions of the test statistics required for inference.

Our approach differs from Chernozhukov and Fernandez-Val [9] with respect to one important
feature, namely that the regressors are known in their framework, whereas we need to estimate
the propensity score (which serves as the regressor in our test procedure). To the best of our
knowledge no analytical results for resampling methods of statistics on quantile regression pro-
cesses exist when the regressor is estimated. However, as the propensity scores are re-estimated
in each resampling step, the bootstrap procedure takes account of the uncertainty coming from
this estimation. Simulation results in Section 4 suggest that the test procedures perform well at
least when the propensity score is estimated parametrically.

As a further remark, note that our methods are not necessarily restricted to continuous covari-
ates. They may also be used for count variables, given that they are artificially smoothed. E.g.,
we can add uniformly distributed noise to the discrete covariate of interest in order to create
a continuous variable (with all the desired properties of smoothness). Machado and Silva [30]
show that under certain conditions, we may replace the original covariate by the new variable
when conducting inference based on quantile regression, because there exists a one-to-one rela-
tionship between the conditional quantiles of the latter and the former variable. This allows
circumventing the problems related to the non-smoothness of the objective function in quantile
regression when data are discrete. In the subsequent exposition we will, however, focus on the
continuous case.
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Journal of Applied Statistics 2885

To formally discuss the test procedure, we denote the (continuously distributed) covariate of
interest as Xk , indicating that it is the kth element in the covariate vector X. The null hypothesis is

H0 : Qτ
Xk

(1, ρ) = Qτ
Xk

(0, ρ), ∀τ, ρ ∈ (0, 1), (8)

i.e. that the conditional quantiles of Xk given p(X) are equal across treatment states D = 1, 0 at
all ranks and for all values of the propensity score. This would imply that Equation (5) holds.

We estimate Qτ
Xk

(1, ρ), Qτ
Xk

(0, ρ) by a quantile regression of X on a constant and a polynomial
of the propensity score estimate, e.g., on the score itself, its square and its cubic. Let p̂(Xi) denote
the propensity score estimate for unit i and specification p(X). For treatment state d = 1, 0, the
quantile coefficients βτ

d are estimated by solving the following minimization problem:

β̂τ
d = min

β

1

nd

n∑
i:D=d

ητ

(
Xk,i −

L∑
l=0

(p̂l(Xi))β

)
, (9)

where nd is the number of observations with D = d. ητ (v) = v(τ − I {v ≤ 0}) is the check
function, an asymmetric loss function, suggested by Koenker and Bassett [24] in their seminal
paper on quantile regression. By setting L = 3, we regress Xk on a constant and the third-order
polynomial of the propensity score estimate.We suspect this specification to be sufficiently flexible
for a univariate regression, but also try lower orders in our simulations presented in Section 4.
The conditional quantile of Xk given D = d at p(X) = ρ is predicted by

Q̂τ
Xk

(d, ρ) =
L∑

l=0

(ρl)β̂τ
d . (10)

We would like to infer whether the process Qτ
Xk

(1, ρ) − Qτ
Xk

(0, ρ), which is not observed, is
different from zero. However, we only observe the empirical inference process

Q̂τ
Xk

(1, ρ) − Q̂τ
Xk

(0, ρ), (11)

i.e. the difference between the conditional quantile estimates. We use these differences to compute
KS and CMS test statistics, denoted as Tn, which account for differences in the conditional quantile
estimates across different ranks of the covariate distribution and across propensity scores (ρ). Let
n, n1 and n0 denote the total sample size, the number of treated and the number of non-treated
observations, respectively. The KS statistic is based on the supremum of the difference across
ranks and scores, the CMS statistic on the integration over the squared differences:

T KS
n = sup

τ∈T ,p∈P

√
n1 · n0

n
||Q̂τ

Xk
(1, ρ) − Q̂τ

Xk
(0, ρ)||�̂,

T CMS
n = n1 · n0

n

∫
T

∫
P

||Q̂τ
Xk

(1, ρ) − Q̂τ
Xk

(0, ρ)||2
�̂

dτ dρ.

(12)

T and P denote the support of τ and p(X) and are naturally bounded between 0 and 1. ||a||�̂τ

denotes
√

a′�̂a and �̂ is a positive weighting matrix satisfying �̂ = � + op(1). � is positive
definite, continuous and symmetric.

T KS
n and T CMS

n are non-pivotal such that their distributions do not converge to any known
distribution. For linear quantile regression processes as considered in this paper, Chernozhukov
and Fernandez-Val [9] show in Theorem 1 that the distributions of T KS

n and T CMS
n can be con-

sistently estimated by resampling the recentered test statistics under their Assumptions A.1–A.3.

D
ow

nl
oa

de
d 

by
 [

B
C

U
/K

U
B

 F
ri

bo
ur

g 
- 

U
ni

ve
rs

ity
 o

f 
Fr

ib
ou

rg
] 

at
 0

2:
39

 1
1 

Fe
br

ua
ry

 2
01

6 



2886 M. Huber

These assumptions state that the data are stationary and strongly mixing (which is satisfied in i.i.d.
samples) and that the uniformly consistent parameters entering the null hypothesis, in our case the
quantile coefficient estimates, are asymptotically Gaussian under local and global alternatives.
Following their approach, we draw J samples of size n with replacement from the original sam-
ple. For each bootstrap sample, we estimate the propensity scores and the conditional quantiles
to compute the bootstrapped inference process

Q̂τ
Xk,j

(1, ρ) − Q̂τ
Xk,j

(0, ρ). (13)

Q̂τ
Xk,j

(1, ρ) and Q̂τ
Xk,j

(0, ρ) denote the conditional quantile estimates for sample draw j , where
(1 ≤ j ≤ J ). The corresponding KS and CMS statistics of the bootstrapped and recentered
inference processes are

T KS
n,j = sup

τ∈T ,p∈P

√
n1 · n0

n
||Q̂τ

Xk,j
(1, ρ) − Q̂τ

Xk,j
(0, ρ) − (Q̂τ

Xk
(1, ρ) − Q̂τ

Xk
(0, ρ))||�̂,

T CMS
n,j = n1 · n0

n

∫
T

∫
P

||Q̂τ
Xk,j

(1, ρ(x))) − Q̂τ
Xkj

(0, ρ)) − (Q̂τ
Xk

(1, ρ) − Q̂τ
Xk

(0, ρ))||2
�̂

dτ dρ.

(14)

Note that these statistics differ slightly to Chernozhukov and Fernandez-Val [9] in that n1 · n0/n is
used instead of n as we consider a two samples testing problem. Finally, we compute the p-values
by J−1 ∑J

j=1 I {Tn,j > Tn} which is a consistent estimator of Pr[T (Q̂τ
Xk

(1, ρ) − Q̂τ
Xk

(0, ρ) −
(Qτ

Xk
(1, ρ) − Qτ

Xk
(0, ρ))) > Tn].

Having outlined our procedure we would like to point out that this is not the only possibility to
build balance tests based on quantile regression processes. E.g., equivalent to Smith and Todd [40],
one might regress the covariate on a function of the propensity score, the treatment state, and the
interaction terms, however, not at the mean, but at different quantiles. Based on this regression
and the goodness-of-fit measure for quantile regression introduced by Koenker and Machado [25]
the balancing property may be tested in the following way: Firstly, we estimate the full model and
a restricted model without the treatment state and the interaction terms. Secondly, we construct
LR statistics based on the differences in the model fits at each quantile as outlined in Koenker
and Machado [25]. Finally, we take the supremum of the LR statistics across quantiles and use
the critical values provided in Andrews [2] for such suprema to test the balancing property. We
include this approach in the simulations and the application presented further below.

3.2 After-matching tests

The most popular after-matching test among practitioners appears to be the two sample t-test for
mean differences in covariates across treated and non-treated matches.As for the DW test, Lee [27]
suggests us to use permutated t-tests to improve the finite sample properties. A further issue is
the test’s sensitivity to the sample size, see the discussion in Imai et al. [19]. I.e., the test statistic
can be distorted by randomly dropping observations, even though the balance is unaffected. In
contrast, the test of standardized differences suggested by Rosenbaum and Rubin [35] is robust
to variations in the sample size. It is based on normalizing the mean difference across treated and
non-treated matches by the square root of the variances in the full sample (but not by the sample
size). According to Rosenbaum and Rubin a standardized difference greater than 20 is ‘large’,
i.e., pointing to imbalance. Among all after-matching procedures, the only test also accounting
for imbalances in higher moments appears to be the permuted KS test for equality in distributions
advocated by Diamond and Sekhon [12].
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We will now propose an alternative to this approach based on quantiles. In contrast to the
full sample tests we need not condition on the propensity score as this task is performed by a
(hopefully accurate) matching algorithm prior to testing. Therefore, the after-matching KS and
CMS resampling procedures consist of three steps: The estimation of the unconditional quantiles
in the pools of treated and non-treated matched units, the computation of the test statistics, and the
resampling procedure to compute the p-values. Let Q̂τ

Xm
k
(d) denote the τ th unconditional quantile

in the sample of matched units with D = d , where the superscript m indicates ‘matched’. The KS
and CMS statistics for the empirical inference process Q̂τ

Xm
k
(1) − Q̂τ

Xm
k
(0) are

T KS
nm = sup

x∈X m

√
nm

1 · nm
0

nm
||Q̂τ

Xm
k
(1) − Q̂τ

Xm
k
(0)||�̂,

T CMS
nm = nm

1 · nm
0

nm

∫
X m

||Q̂τ
Xm

k
(1) − Q̂τ

Xm
k
(0)||2

�̂
dx.

(15)

We draw J bootstrap samples from the matched sample, estimate the quantiles Q̂τ
Xm

k ,j (1) and

Q̂τ
Xm

k ,j (0) an compute the statistics on the bootstrapped and recentered inference processes:

T KS
nm,j = sup

x∈X m

√
nm

1 · nm
0

nm
||Q̂τ

Xm
k ,j (1) − Q̂τ

Xm
k ,j (0) − (Q̂τ

Xm
k
(1) − Q̂τ

Xm
k
(0))||�̂,

T CMS
nm,j = nm

1 · nm
0

nm

∫
Xm

||Q̂τ
Xm

k ,j (1) − Q̂τ
Xm

k ,j (0) − (Q̂τ
Xm

k
(1) − Q̂τ

Xm
k
(0))||2

�̂
dx.

(16)

Finally, the p-values are obtained by J−1 ∑J
j=1 I {Tnm,j > Tnm}. Note that these p-values do not

bear the same interpretation as in classical hypothesis tests (e.g., when testing the balancing
property using the full sample tests). Firstly, they are asymptotically not valid for testing the
balancing property for the population, because the matched sample is a non-random draw that
depends on the matching algorithm. Therefore, judgments about balance strictly refer to the
matched sample. Secondly and as argued by Imai et al. [19] and Sekhon [37], the p-values are
not to be used as stopping rules for covariate balancing in matched samples, where the researcher
seeks to maximize balance without limit. I.e., one strives for identical covariate distributions in
the pools of treated and non-treated matches, implying a p-value of 1.

As an alternative to bootstrapping, one may estimate the distribution of the test statistics by
permutation, i.e., by randomly shuffling treatment and control labels among matched observations
without replacement. Permutation tests are valid when shuffling the labels does not affect the
results under the null hypothesis, see Good [13]. As this is satisfied in balance tests, where the
covariate distribution is independent of the treatment label under null, Diamond and Sekhon
[12] use a permuted KS distribution test to assess covariate balance. This test was proposed
by Abadie [1] in a different context, namely to test for distributional treatment effects in an IV
framework.Abadie shows that the procedure has correct asymptotic size under the weak condition
that the variable (in our case Xm

k ) has a non-degenerate distribution with bounded support. In the
simulations and the application both resampling- and permutation-based versions of the tests are
considered.

As a final remark, note that the proposed methods cannot be easily applied to matching algo-
rithms that do not create an explicit matched sample. E.g., kernel matching as discussed in
Heckman et al. [14,15] merely provides weights which balance the propensity scores of treated
and non-treated units and allow predicting the counterfactual outcomes. These weights do not
reveal the value of the counterfactual covariate, as there is no one-to-one correspondence between
the propensity score and the covariate. The same value of the propensity score can in principle be
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2888 M. Huber

obtained by many combinations of the covariates. For mean difference tests, it suffices that the
weights allow estimating the conditional mean of the counterfactual covariate given the propen-
sity score, as the tests average over the covariates in the matched sample. This is neither the case
for the proposed CMS and KS procedures, nor for the KS distribution test, which require the
knowledge of the distributions of the covariates in the matched sample. With this respect, full
sample tests appear to be more generally applicable than the after-matching tests considered in
this section.

4. Monte Carlo simulations

In this section, we present Monte Carlo evidence on the finite sample properties of KS and
CMS full sample and after-matching tests and run a horse race with other tests proposed in the
literature. Concerning the propensity score model, we consider three different scenarios: Correct
specification of the propensity score, misspecification of the propensity score but satisfaction of
the balancing property, and misspecification and violation of the balancing property. Accurate
balance tests should keep the null in the first and second scenario, but reject it in the third. It is the
aim of the scenarios to give an intuition about the strengths and weaknesses of alternative (classes
of) tests, but of course, they do not claim completeness, as many more data generating processes
could be considered.

4.1 Full sample tests

Starting with the full sample tests, we compare the performance of our procedures to another
quantile regression-based test using the results of Koenker and Machado [25] (see the bottom of
Section 3.1), the DW test4 (see [10,11]), the regression test of Smith and Todd [40] both in its
original version (for the mean only, henceforth denoted as ST1) and for the first and the second
moment jointly (henceforth ST2), and the specification test proposed by Shaikh et al. [39].5 The
first data generating process (DGP) considered is

Di = I {β0 + β1X1,i + β2X2,i + ε > 0},
Yi = γ1X

2
1,i + γ2X2,i + γ3Di + Ui

X1, X2 ∼ unif(0, 3), ε ∼ N(0, 2), U ∼ N(0, 1)

β0 = −1.5, β1 = β2 = 0.5, γ1 = γ2 = γ3 = 1.

Treatment effects are homogenous w.r.t. X and equal to 1. The constant in the treatment equation
(β0) is chosen such that the unconditional probability to receive the treatment is roughly 50%,
and the same applies to the other scenarios considered further below. In the first scenario, the
propensity score is correctly specified and characterized by the following probit model:

p(X) = Pr(D = 1|X) = 	(β0 + β1X1 + β2X2),

where 	(·) denotes the normal cdf. We test whether the continuous covariate X1 is balanced
conditional on the propensity score for two sample sizes, n = 1000, 4000. The latter are compa-
rable to many recent empirical studies using PSM estimators, e.g., Berger and Hill [4], Blundell
et al. [6], Jalan and Ravallion [22] and Loecker [29].

Table 1 reports the rejection frequencies of the null hypothesis at the 5% and 10% signifi-
cance levels, i.e., the share of p-values that lie at or below 0.05 and 0.10, respectively, for 1000
Monte Carlo replications. Inference for the KS and CMS balance tests is based on 499 bootstrap
draws. The conditional quantiles are evaluated at τ ∈ T[0.25,0.75] = {0.25, 0.30, 0.35, . . . , 0.75}.
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Table 1. Full sample tests: rejection frequencies under correct specification.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS (var) order 1∗ 0.000 0.000 0.000 0.000
CMS (var) order 2∗ 0.010 0.037 0.021 0.084
CMS (var) order 3∗ 0.000 0.001 0.000 0.000
CMS (dens) order 1∗ 0.000 0.002 0.000 0.000
CMS (dens) order 2∗ 0.009 0.032 0.020 0.078
CMS (dens) order 3∗ 0.000 0.000 0.000 0.000
KS (var) order 1∗ 0.011 0.034 0.033 0.061
KS (var) order 2∗ 0.033 0.076 0.044 0.109
KS (var) order 3∗ 0.009 0.025 0.013 0.036
KS (dens) order 1∗ 0.008 0.021 0.006 0.025
KS (dens) order 2∗ 0.037 0.090 0.064 0.132
KS (dens) order 3∗ 0.004 0.019 0.012 0.031
Koenker and Machado 0.000 0.000 0.000 0.000
DW 0.044 0.047 0.134 0.155
DW Bonferroni adj. 0.007 0.010 0.018 0.032
Smith and Todd 0.015 0.045 0.027 0.067
Smith and Todd mean + var. 0.008 0.017 0.135 0.235
Shaikh et al. spec. test∗∗ 0.006 0.009 0.006 0.011

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws per replication; ∗∗,
bandwidth for kernel density estimation according to ML cross validation.

The propensity score p(X) is evaluated on an equidistant grid consisting of 10 values between
the 0.25th and 0.75th quantile of the estimated propensity score, which ensures that boundary
regions with sparse data are not used in the test procedures. We consider different combinations of
smoothing and weighting schemes � for the KS and CMS balance tests: We weight differences in
conditional quantiles (i) by the inverse of their respective variance (CMS (var), KS (var)), which
gives more weight to differences that are precisely estimated, and (ii) by the densities of the
predicted propensity scores (CMS (dens), CMS (dens)), which gives more weight to differences
in areas with large densities of the propensity score. Furthermore, smoothing is varied by using
only the propensity score or 2nd and 3rd order polynomials of the propensity score in the quantile
regressions, respectively.

In the Koenker and Machado [25] test, the regression functions are evaluated at the same
conditional quantiles as in the CMS and KS procedures. Concerning the DW test, we present
the results for both the standard version and a modified DW test with an approximation of the
Bonferroni adjustment (DW Bonferroni adj.). The motivation for the latter is the simulation
evidence in Lee [27], which suggests that the standard DW test has very poor size properties and
rejects the null much too often. Testing for balance with respect to X1, the Bonferroni adjustment
implies that the significance level (i.e., 5 or 10%) is divided by the number of intervals such that
the chance of rejection for each t-test in a particular interval is adjusted downwards to keep the
overall probability of incorrect rejection constant as the number of intervals increases.

As expected, all tests correctly keep the null in most Monte Carlo replications. The CMS test
is very conservative and rejects the balancing hypothesis substantially less frequently than the
theoretical rates of 5% and 10% and even more so when using propensity score density weighting.
However, when using a second-order polynomial of the propensity score, the empirical size of the
test improves as the sample size increases. The rejection frequencies of the KS test are generally
closer to the theoretical size, again in particular when using a second-order polynomial. Note that
the rejection rates of either test are non-monotone in the order of the propensity score. The Koenker
and Machado [25] test is very conservative under any sample size. The Shaikh et al. specification
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2890 M. Huber

test, the DW test with Bonferroni adjustment and the ST1 test are conservative for both sample
sizes whereas the standard DW and the ST2 tests reject the null too often for n = 4000. With the
exception of the DW test without Bonferroni adjustment, the empirical size of which deteriorates
in the sample size, no class of tests seems to do strikingly better or worse than any other.

To check the accuracy of propensity score methods under the correct specification we apply
two nearest neighbors caliper matching and inverse probability weighting (IPW) estimators to
the simulated data. For matching we use the Match command by Sekhon [38] and set the caliper
to 0.1 standard deviations of the propensity score. The ATE estimate is 
̂ = 1.004 for n = 1000
and the mean squared error (MSE) is 0.008. For n = 4000, 
̂ = 1.002 and MSE= 0.002. The
IPW estimator, see, for instance, Horvitz and Thompson [17] and Hirano et al. [16], performs
similarly well. 
̂ = 0.998, 1.002 and MSE= 0.007, 0.002 for n = 1000, 4000.

We now turn to a more interesting scenario where the propensity score is misspecified, but yet
balancing. We investigate the performance of the tests when data are drawn from the following
DGP:

Di = I {β0 + β1X
3
1,i + β2X2,i + ε > 0},

Yi = γ1X
2
1,i + γ2X2,i + γ3Di + Ui

X1, X2 ∼ unif(0, 3), ε ∼ N(0, 5), U ∼ N(0, 1),

β0 = −3, β1 = 0.3, β2 = 0.5, γ1 = γ2 = γ3 = 1.

We incorrectly use the same propensity score model as before, p(X) = Pr(D = 1|X) =
	(β0 + β1X1 + β2X2), such that β1 is estimated with respect to X1 instead of X3

1. Thus, it is
assumed that the index model that underlies the treatment probability is linear in X1, whereas the
true relationship is cubic.Yet, the incorrect model satisfies the balancing property for variable X1,
as it is only a monotonous transformation of the true model such that the order of the propensity
scores is preserved under misspecification. Even though the propensity scores themselves are
poorly estimated, the treated are matched to non-treated units with similar p∗(X) when using
PSM.

To gain some intuition, Figure 1 displays 1000 simulated values of X1 along with propensity
score estimates (i) using the misspecified probit model (dark bubbles) and (ii) based on the correct
specification p∗(X) (light bubbles). As the rank of each observation on average remains the same
in either case such that observations with similar p∗(X) are matched even when using the wrong
specification, estimation is consistent.6

Table 2 reports the rejection frequencies under the misspecified, but balancing scenario where
the propensity score is estimated based on the misspecified probit model. All versions of the CMS
test are either on the conservative side or have rejection frequencies that are not too far from the
theoretical sizes. Note that there seems to be no clear relationship between the empirical size and
the order or the weighting scheme. Also the results for the KS test are quite satisfactory, with
the exception of the test versions using a third order polynomial under the larger sample size
which rejects the null too often. As in the first scenario, the Koenker and Machado [25] is very
conservative and, therefore, appears to have less favorable size properties than the CMS and KS
procedures.

The standard DW test is quite accurate for n = 1000, but its performance deteriorates in the
sample size. The Bonferroni adjustment considerably improves the size properties of the DW test
for n = 4000. The rejection frequencies of the ST1 test are already too high for n = 1000 and
severely increase in the sample size. This is somewhat surprising, as the ST1 procedure should
theoretically test for covariate balance, not for misspecification. Still, it seems to have power in
the wrong direction. In contrast, the empirical size of the ST2 test is decent under both sample
sizes. As expected, the rejection rates of the Shaikh et al. specification test increase in the sample
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Figure 1. Misspecified and balancing scenario. Propensity scores under misspecification (dark bubbles) and
correct specification (light).

Table 2. Full sample tests: rejection frequencies under misspecification and balance.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS (var) order 1∗ 0.007 0.013 0.001 0.004
CMS (var) order 2∗ 0.056 0.079 0.005 0.010
CMS (var) order 3∗ 0.009 0.038 0.039 0.105
CMS (dens) order 1∗ 0.008 0.015 0.000 0.003
CMS (dens) order 2∗ 0.049 0.080 0.005 0.008
CMS (dens) order 3∗ 0.011 0.030 0.037 0.107
KS (var) order 1∗ 0.019 0.037 0.003 0.011
KS (var) order 2∗ 0.073 0.123 0.063 0.103
KS (var) order 3∗ 0.047 0.115 0.121 0.227
KS (dens) order 1∗ 0.035 0.070 0.043 0.077
KS (dens) order 2∗ 0.047 0.081 0.026 0.062
KS (dens) order 3∗ 0.051 0.113 0.176 0.296
Koenker and Machado 0.000 0.000 0.000 0.000
DW 0.074 0.082 0.265 0.301
DW Bonferroni adj. 0.021 0.030 0.047 0.063
Smith and Todd 0.182 0.274 0.747 0.850
Smith and Todd mean + var. 0.029 0.044 0.091 0.137
Shaikh et al. spec. test∗∗ 0.508 0.588 1.000 1.000

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws per replication; ∗∗, bandwidth for kernel
density estimation according to ML cross validation.

size. It rejects the misspecified, but balancing model in all replications for n = 4000. We conclude
that only the quantile-based procedures as well as the ST2 test and the DW test with Bonferroni
adjustment yield satisfactory results under the misspecified, but balancing scenario.

Again, we investigate the finite sample properties of two nearest neighbors caliper matching
on the propensity score. 
̂ = 1.033 for n = 1000 and the MSE is equal to 0.008. For n = 4000,

̂ = 1.031 and MSE= 0.003. Similar to the results in Zhao [41], the misspecification of the
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2892 M. Huber

propensity score does not much affect PSM. This is, however, not true for IPW estimators, as
consistency of this class of estimators is contingent on the correctness of the propensity score
specification. Indeed, the IPW estimates are substantially biased (
̂ = 1.293, 1.295) and the
MSEs are large (0.096, 0.090) for 1000 and 4000 observations, respectively. Therefore, PSM
seems to be more robust to propensity score misspecification.

Thirdly, we consider a DGP under which the probit specification is misspecified and not
balancing:

Di = I {β0 + β1X
2
1,i + β2X2,i + ε > 0},

Yi = γ1X
2
1,i + γ2X2,i + γ3Di + Ui

X1, X2 ∼ unif(−3, 3), ε ∼ N(0, 5), U ∼ N(0, 1),

β0 = −3, β1 = 1, β2 = 0.5, γ1 = γ2 = γ3 = 1.

To clarify the issues of misspecification and imbalance, Figure 2 displays 1000 simulated real-
izations of X1 along with propensity score estimates under misspecification (dark bubbles) and
under the correct specification (light bubbles).

Imbalance is due to the fact that observations with high absolute values in X1 are more likely to
be treated than those with values close to zero. Only treated and non-treated with the same or similar
p∗(X) should be compared to each other. It is obvious that matching on estimates of p(X) fails to
do. The reason is that the incorrect model p(X) cannot handle the U-shaped non-monotonicity in
the relation between X1 and the true propensity score. p∗(X) is minimized at the mean of X1, which
is zero, and increases in either direction. Due to this symmetric relationship, the expected value
of the slope coefficient estimate β1 is zero. Therefore, the expected values of the propensity score
estimates are independent of X1, implying that E(X1|D = d, p(X)) = E(X1|D = d). Hence,
matching is random with respect to the true propensity score such that observations with fairly
different X1 are incorrectly compared to each other.

Table 3 reports the results under the misspecified, non-balancing scenario. Already for n =
1000, the CMS and KS tests are quite powerful and even more so when using inverse variance

-3 -2 -1 0 1 2 3
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Figure 2. Misspecified and non-balancing scenario. Propensity scores under misspecification (dark bubbles)
and correct specification (light).
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Table 3. Full sample tests: rejection frequencies under misspecification and imbalance.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS (var) order 1∗ 0.930 0.953 1.000 1.000
CMS (var) order 2∗ 0.975 0.991 1.000 1.000
CMS (var) order 3∗ 0.997 1.000 1.000 1.000
CMS (dens) order 1∗ 0.904 0.949 1.000 1.000
CMS (dens) order 2∗ 0.896 0.970 1.000 1.000
CMS (dens) order 3∗ 0.955 0.992 1.000 1.000
KS (var) order 1∗ 0.996 0.997 1.000 1.000
KS (var) order 2∗ 0.999 0.999 1.000 1.000
KS (var) order 3∗ 1.000 1.000 1.000 1.000
KS (dens) order 1∗ 0.982 0.995 1.000 1.000
KS (dens) order 2∗ 0.997 0.998 1.000 1.000
KS (dens) order 3∗ 0.997 1.000 1.000 1.000
Koenker and Machado 0.990 1.000 1.000 1.000
DW 0.062 0.070 0.173 0.184
DW Bonferroni adj. 0.009 0.013 0.033 0.046
Smith and Todd 0.037 0.088 0.137 0.219
Smith and Todd mean + var. 0.049 0.110 0.501 0.630
Shaikh et al. spec. test∗∗ 0.010 0.013 0.001 0.001

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws per replication; ∗∗, bandwidth for kernel
density estimation according to ML cross validation.

weighting. In the latter case, the null is always rejected in more than 90% of the simulations.
For n = 4000, the rejection rates amount to 100% for any test version, independent of the order
and the weighting scheme. The Koenker and Machado [25] is similarly powerful as the CMS
and KS procedures. In contrast, the power of balance tests based on mean differences is low.
Note that for the DGP considered, the expected value of X1 is zero for the treated and for the
non-treated. Hence, E(X|D = d, p(X)) = E(X|D = d) and E(X|D = 1) = E(X|D = 0) = 0
together imply that conventional balance tests have no power to reject the null. This explains
the poor performance of the DW test (with and without Bonferroni adjustment) and the ST1 test.
Interestingly, also the Shaik et al. test keeps the null most of the time. Under the larger sample size,
the ST2 test does better than the mean tests, as it also accounts for imbalances w.r.t. the second
moment. Nevertheless, it is considerably less powerful than the quantile-based procedures.

How is the PSM estimator affected by the imbalance? For n = 1000, the ATE estimate
is severely biased (
̂ = 3.038) and the MSE (4.191) is huge. For n = 4000, 
̂ = 3.071
and MSE = 4.297. The IPW estimator yields 
̂ = 3.094, 3.097 and MSE = 4.414, 4.404 for
n = 1000, 4000, respectively. Thus, the imbalance is not innocuous and entails severe biases and
inconsistency. In summary, the quantile-based procedures, i.e., the KS/CMS tests and the method
based on Koenker and Machado [25], appear to be superior to the balance tests conventionally
used by practitioners. While their rejection frequencies are low when the balancing property holds,
they are very powerful when it is violated, at least in the scenarios considered.

4.2 After-matching tests

This section presents simulations on the finite sample properties of after-matching tests and
considers the same DGPs as for the full sample tests. We compare our CMS and KS tests based on
resampling (in our case bootstrapping) and permutation to the permuted KS distribution test [12],
the permuted and classical (i.e., relying on asymptotic theory) two sample t-tests, and the test of
standardized differences of Rosenbaum and Rubin [35].
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2894 M. Huber

For the CMS and KS resampling tests, we again consider two different weighting schemes
�: We weight differences in quantiles (i) by the inverse of their respective variances (CMS
resampling (var), KS resampling (var)) and (ii) by the densities of the predicted propensity scores
(CMS resampling (dens), CMS resampling (dens)). To be precise, we weight the differences in
quantiles by the product of the densities at the respective quantiles in the samples of treated and
non-treated matches. The quantiles are evaluated at τ ∈ T[0.1,0.9] = {0.10, 0.11, 0.12, . . . , 0.90}
and inference relies on 499 bootstrap draws or permutations, respectively.

Table 4 displays the results for the correctly specified (and balancing) scenario. Even though
the balancing property holds, the rejection frequencies of the CMS and KS tests, including the KS
distribution test, are much higher than the theoretical sizes and increase with the sample size. The
tests seem to detect the slightest imbalances not eliminated by the matching algorithm. This is
unsatisfactory, as the caliper matching procedure yields estimates which are close to the true value
even without perfect balance. Note that the empirical sizes of the CMS and KS resampling tests
are more accurate when weighting by the propensity score densities, but are still far from being
acceptable. The KS distribution test used by Diamond and Sekhon [12] performs even worse.
In contrast, the rejection frequencies of permuted and standard t-tests are not too far from the
theoretical sizes, whereas the test of standardized differences is very conservative.

In the misspecified but balancing scenario (see Table 5), the CMS and KS resampling tests with
propensity score density weighting have accurate sizes for n = 1000, but reject the null much
too often for n = 4000. Again, they perform better than the CMS and KS tests based on inverse
variance weighting. Also the KS distribution test rejects the null much too often whereas the
t-tests and the test of standardized differences are overly conservative for both sample sizes.

Under misspecification and imbalance all CMS and KS procedures are very powerful and reject
the null all the time (see Table 6). In contrast, mean difference tests fail to detect the imbalance
related to higher moments. The rejection frequencies of the t-tests are fairly low and the test of
standardized differences has no power at all. Summing up, simulation evidence on after-matching
tests is ambiguous about the relative performance of the proposed tests. Even though the CMS
and KS tests are very powerful under imbalance, they reject the null much too often when the
balancing property holds. This suggests that we should have more confidence in the CMS and KS
full sample tests than in the after-matching versions. Using the density of the propensity score
estimates as weights in the after-matching tests partly alleviates the problem of over-rejection.
Therefore, more research is required with regard to the optimal choice of the weighting matrix in
balance tests.

Table 4. After-matching tests: rejection frequencies under correct specification.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS resampling (var)∗ 0.239 0.371 0.624 0.783
CMS resampling (dens)∗ 0.150 0.274 0.560 0.721
KS resampling (var)∗ 0.366 0.490 0.788 0.871
KS resampling (dens)∗ 0.168 0.271 0.616 0.752
CMS permutation∗ 0.218 0.355 0.622 0.772
KS permutation∗ 0.385 0.531 0.807 0.885
KS distribution∗ 0.695 0.828 0.989 0.998
permuted t-test∗ 0.015 0.042 0.068 0.119
standard t-test 0.010 0.024 0.066 0.118
test of standardized differences∗∗ 0.000 0.000

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws/permutations per replication; ∗∗,
rejection if absolute standardized difference >20.
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Table 5. After-matching tests: rejection frequencies under misspecification and balance.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS resampling (var)∗ 0.082 0.160 0.410 0.573
CMS resampling (dens)∗ 0.047 0.097 0.335 0.481
KS resampling (var)∗ 0.160 0.234 0.603 0.722
KS resampling (dens)∗ 0.054 0.111 0.446 0.588
CMS permutation∗ 0.093 0.158 0.411 0.579
KS permutation∗ 0.184 0.251 0.653 0.749
KS distribution∗ 0.418 0.561 0.940 0.973
permuted t-test 0.000 0.000 0.000 0.001
standard t-test 0.000 0.000 0.000 0.000
test of standardized differences∗∗ 0.000 0.000

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws/permutations per replication; ∗∗,
rejection if absolute standardized difference >20.

Table 6. After-matching tests: rejection frequencies under misspec. and imbalance.

n = 1000 n = 4000

Rejection rates at 5% 10% 5% 10%

CMS resampling (var)∗ 1.000 1.000 1.000 1.000
CMS resampling (dens)∗ 1.000 1.000 1.000 1.000
KS resampling (var)∗ 1.000 1.000 1.000 1.000
KS resampling (dens)∗ 1.000 1.000 1.000 1.000
CMS permutation∗ 1.000 1.000 1.000 1.000
KS permutation∗ 1.000 1.000 1.000 1.000
KS distribution∗ 1.000 1.000 1.000 1.000
permuted t-test 0.050 0.110 0.115 0.167
standard t-test 0.064 0.106 0.144 0.213
test of standardized differences∗∗ 0.000 0.000

Notes: 1000 Monte Carlo replications. ∗, 499 bootstrap draws/permutations per replication; ∗∗,
rejection if absolute standardized difference >20.

5. Empirical application

In this section, we apply full sample and after-matching tests to labor market data previously
analyzed by Ichino et al. [18].

5.1 Full sample tests

Ichino et al. [18] use PSM to evaluate the effects of job placements by temporary work agencies
(TWAs) on the probability to find permanent employment later on in the two Italian regions of
Sicily and Tuscany. The data were collected by phone interviews. The treatment period (hav-
ing or not having a temporary job by TWA assignment) covers the first semester of 2001, the
outcome (permanent employment) was measured in November 2002. Pre-treatment covariates
X include detailed information about demographic characteristics, educational attainment, fam-
ily background and the recent employment history of treated and non-treated individuals. While
Ichino et al. [18] are interested in the robustness of the estimated effects with respect to omitted
unobserved factors that would violate the CIA, we use their data to investigate the balancing
property of their propensity score specification, which is based on a probit model.

We restrict our attention to the sample drawn in Tuscany, which consists of 281 treated and
628 non-treated individuals. We test the balancing property of the propensity score specification
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Table 7. Application of full sample tests.

Fraction unemployed (p-value)

CMS (var) order 1∗ 0.615
CMS (var) order 2∗ 0.724
CMS (var) order 3∗ 0.562
CMS (dens) order 1∗ 0.590
CMS (dens) order 2∗ 0.638
CMS (dens) order 3∗ 0.382
KS (var) order 1∗ 0.624
KS (var) order 2∗ 0.768
KS (var) order 3∗ 0.644
KS (dens) order 1∗ 0.676
KS (dens) order 2∗ 0.630
KS (dens) order 3∗ 0.704
Koenker and Machado >0.100
DW∗∗ 0.009
Smith and Todd 0.003
Smith and Todd mean + var. 0.260
Shaikh et al. spec. test† 0.189

Notes: ∗: 999 bootstrap draws. ∗∗, minimum p-value of all intervals; †,
bandwidth for kernel density estimation according to ML cross validation.

used in Ichino et al. [18] for the variable ‘fraction of the school-to-work period that the worker
spent as unemployed’ (in %), which characterizes the relative time spent in unemployment after
finishing eduction. Before matching, the fraction is 37.9% for the treated and 47.7% for the
non-treated individuals in the sample. We apply the CMS and KS full sample tests to the region
of common support in the predicted propensity scores p̂(Xi). Therefore, observations in any
treatment group with p̂(Xi) higher than the maximum and lower than the minimum in the other
treatment group are discarded from the sample. This leaves us with 255 treated and 519 non-
treated individuals. We test the null hypothesis at τ ∈ T[0.25,0.75] = {0.25, 0.25, 0.30, . . . , 0.75}
and p(x) ∈ P[0.20,0.80] = {0.20, 0.25, 0.30, . . . , 0.80} using 999 bootstrap replications.

Table 7 presents the test results. All CMS and KS balance tests keep the null at the 5% level,
irrespective of the order of the propensity score and the weighting scheme. Also the test based
on Koenker and Machado [25] does not reject the test at the 10% level of significance.7 Ichino
et al. [18] use the DW test algorithm for Stata provided by Becker and Ichino [3] and do not reject
the balancing property either. Note, however, that the significance level chosen by the authors is
0.1%. Setting the significance level to just 1% would reject the null, but one has to bear in mind
that this result comes without the Bonferroni adjustment. This example highlights the arbitrariness
of the standard DW test with respect to the significance level to be chosen when there are many
propensity score intervals.

The ST1 test, which uses a quartic of the propensity score in the regression, rejects the null
at the 1% level. However, the test is very sensitive to the choice of the order. Versions based on
squared and cubic expansions of the propensity score yield p-values larger than 5%, which is in
line with the insignificant p-value of the ST2 test. Whereas the tests based on quantile regression
unanimously keep the null under various propensity score polynomials, the conclusions drawn
from the ST1 and DW tests depend on the choice of the functional form and the level of significance
that is considered to be appropriate in the light of stratification, respectively.

5.2 After-matching tests

We apply the CMS and KS after-matching tests based on resampling and permutation, the
permuted KS distribution test, the standard and permuted t-tests, and the test of standardized
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Figure 3. Fraction in unemployment (in %) of treated (left) and non-treated (right) matches.

Table 8. Application of after-matching tests.

Fraction unemployed (p-value)

CMS resampling (var)∗ 0.270
CMS resampling (dens)∗ 0.303
KS resampling (var)∗ 0.348
KS resampling (dens)∗ 0.553
CMS permutation∗ 0.075
KS permutation∗ 0.046
KS distribution∗ 0.000
permuted t-test∗ 0.664
standard t-test 0.675
test of standardized differences∗∗ −1.434

Notes: ∗, 999 bootstrap draws/permutations per replication; ∗∗, rejection if
absolute standardized difference >20.

differences to the same variable after the application the two nearest neighbors caliper matching
algorithm.8 Figure 3 presents the distributions of the variables ‘fraction of the school-to-work
period that the worker spent as unemployed’ for treated and non-treated matches. The distribu-
tions appear to be similar and also the sample means are quite close, namely 43.072% for the
treated and 43.626% for the non-treated individuals.

Table 8 reports the results of the CMS and KS tests, which evaluate the quantiles at τ ∈
T[0.1,0.9] = {0.1, 0.11, 0.12, . . . , 0.9} and are based on 999 bootstrap samples. Most of the CMS
and KS tests yield p-values larger than 5% for balance of the variable ‘fraction of period in
unemployment’, which is in line with the CMS and KS full sample tests. Only the KS distribution
test is highly significant, whereas the t-tests and the test of standardized difference suggest that
the variable is well balanced. Summing up, neither the full sample nor the after-matching tests
based on quantile regressions suggest that the balancing property fails for the variable considered.

6. Conclusion

The balancing property of the propensity score is key to the consistency of PSM estimators.
Thus, the attractiveness of this class of estimators over parametric alternatives in terms of model
flexibility is lost when using a propensity score specification that is incapable to balance the dis-
tributions of the covariates in the groups of treated and non-treated units. In this paper, we propose
a new class of balance tests for continuous covariates based on quantile regression and bootstrap-
ping Kolmogorov–Smirnov and Cramer–von-Mises–Smirnov-type test statistics. As these tests
account for differences in the entire distributions of the covariates, they are most likely more
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powerful than conventional balance tests like the DW test used in Dehejia and Wahba [10,11], the
regression test by Smith and Todd [40], and the two sample t-test for matched samples, which
merely check for differences in means.

The proposed tests may either be applied in full or in matched samples. Implemented as full
sample tests, they test covariate balance conditional on the propensity score. Similar to the DW
test, a rejection of the null implies the use of a different, typically more flexible propensity score
specification. Monte Carlo results suggest that the power and size properties are satisfactory
in scenarios where conventional balance tests fail to detect imbalances and specification tests
incorrectly reject a misspecified, but balancing propensity score model. Implemented as after-
matching tests, they apply to the unconditional quantiles in the pools of treated and non-treated
units, as the matching algorithm (hopefully) eliminates differences in the common support of the
propensity score prior to testing. The suggested methods are very powerful when the matched
sample is not balanced, but reject the null too often when the balancing property holds. This
suggests that we should have more confidence in the CMS and KS full sample tests than in the
after-matching versions.

Notes

1. Note that these tests may also be applied to count data if they are artificially smoothed as outlined in Machado and
Silva [30].

2. In contrast, Imbens [20] and Lechner [26] discuss effect evaluation for multiple treatments. The discussion in this
paper could be easily extended to their framework.

3. Testing for equality of conditional distributions is discussed in Li et al. [28], although for discrete conditioning
variables, whereas we need to condition on a continuous p(X).

4. We test for equality in mean propensity scores among treated and non-treated units within a stratum at the 10%
level of significance.

5. Shaikh et al. [39] show that fp(X)|D=1(ρ|D = 1) = Pr(D = 1)/Pr(D = 0)ρ/1 − ρfp(X)|D=0(ρ|D = 0) ∀ρ ∈
(0, 1), with fp(X)|D=d (·|D = d) being the pdf of p(X) conditional on D = d, is a testable implication of a correctly
specified propensity score and propose a specification test based on kernel density estimation.

6. It is, however, less efficient than estimation based on the true propensity score model.
7. Note that we do not know the exact p-value of the Koenker and Machado [25] test statistic because Andrews [2]

only provides us with the critical values up to the 10% level, but not across the entire distribution.
8. The caliper is set to 0.1 standard deviations of the propensity score and 59 observations (6.5%) are dropped due to

a lack of common support.
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