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Reduced reproduction is associated with increased fat storage and prolonged life span in multiple organ-
isms, but the underlying regulatorymechanisms remain poorly understood. Recent studies in several species
provide evidence that reproduction, fat metabolism, and longevity are directly coupled. For instance,
germline removal in the nematode Caenorhabditis elegans promotes longevity in part by modulating lipid
metabolism through effects on fatty acid desaturation, lipolysis, and autophagy. Here, we review these recent
studies and discuss the mechanisms by which reproduction modulates fat metabolism and life span. Eluci-
dating the relationship between these processes could contribute to our understanding of age-related
diseases including metabolic disorders.
Introduction
Reproduction is an energetically costly process that has

profound effects on the metabolism of fat, the major form of

energy storage in animals (Bronson, 1989). During reproduction,

animals mobilize their fat reserves; reduced or abolished repro-

duction can increase lipid storage and lead to weight gain in

many species (Corona et al., 2009; Judd et al., 2011; McElroy

and Wade, 1987). This inverse relationship between reproduc-

tion and fat storage seems to reflect an inevitable energetic

trade-off. In this so-called ‘‘cost of reproduction’’ scenario,

depletion of energy reserves to support reproduction is thought

to compromise the organism’s ability to support somatic mainte-

nance and survival (Kirkwood, 1977; Williams, 1966). Hence,

lipids apportioned to reproduction, for instance, would be

unavailable for other life-sustaining processes to support

somatic maintenance and survival (Shanley and Kirkwood,

2000). Indeed, in most animals, reproduction trades off with

maintenance and survival so that individuals with reduced or

curtailed reproduction survive better and live longer than those

with higher reproductive effort and vice versa (Bell and Koufopa-

nou, 1986; Partridge et al., 2005). Interestingly, in a variety of

organisms, increased life span is associated with reduced

reproduction but markedly increased lipid storage and thus

improved survival under starvation conditions (Gems et al.,

1998; Judd et al., 2011; Rion and Kawecki, 2007; Tatar et al.,

2001). Despite these observations, the mechanisms connect-

ing reproduction, fat metabolism, and life span remain poorly

understood.

Recent evidence suggests that the three processes might be

causally linked through a reproductive-endocrine signaling

axis. In the nematode C. elegans and the fruit fly Drosophila

melanogaster, for example, ablation of the germline increases

life span (Flatt et al., 2008; Hsin and Kenyon, 1999) and signifi-
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cantly alters lipid metabolism (O’Rourke et al., 2009; Parisi

et al., 2010). Moreover, studies in C. elegans have begun to

uncover the molecular mechanisms by which signals from the

reproductive system regulate lipid metabolism and life span

(Goudeau et al., 2011; Lapierre et al., 2011; McCormick et al.,

2012; Wang et al., 2008).

Here, we review these recent findings on the complex interplay

between reproduction, fat metabolism, and aging. We first

summarize seminal observations and recent findings that

suggest that the processes are physiologically linked in many

organisms (Figure 1). We then discuss recent insights into the

molecular mechanisms that may underlie these connections

(Figure 2). Finally, we highlight the implications of these findings

for our understanding of aging and age-related diseases,

includingmetabolic disorders, and summarize some of the future

challenges (Figure 3).

Reproduction, Fat Metabolism, and Life Span Are
Interconnected
Animal physiologists have long known that reproduction affects

the storage and mobilization of fat, and similarly, evolutionary

biologists have made numerous observations suggesting that

reproduction influences organismal life span and aging. It is

thus tempting to speculate that fat might be a causal, physiolog-

ical link coupling reproduction and life span. Indeed, several lines

of evidence indicate that reproduction, resistance to starvation

stress, and life span might be energetically linked through lipid

metabolism (Figure 1).

Effects of the Reproductive System on Fat Metabolism

Numerous studies in mice, rats, cats, monkeys, and other mam-

mals have reported that gonadectomy leads to weight gain and

increased fat mass (Crane, 1991; Fettman et al., 1997; McElroy

and Wade, 1987; Pallier et al., 1980; Salmeri et al., 1991;
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Figure 1. Reproduction, Fat Metabolism,
and Life Span are Intimately Interconnected
Although the mechanistic cause-and-effect rela-
tionships are not yet clear, multiple lines of
experimental evidence point to tight links between
reproduction, fat metabolism, and aging (see
bullet points in figure). For example, observations
in worms, insects, and rodents indicate that
reproduction (top center) can directly affect fat
storage and life span. Moreover, increased life
span (bottom right) is often negatively correlated
with reproduction and positively correlated with
increased fat storage, whereas fat metabolism
(bottom left) influences the energetic cost of
reproduction and may directly modulate life span.
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Stotsenburg, 1913, and references therein). In humans and other

mammals, hypogonadism, a deficiency in gonadal hormone

production and function (reviewed in Wilson and Roehrborn,

1999), is often associated with accumulation of excess fat

(obesity), insulin resistance (inability of cells to properly respond

to insulin), and metabolic syndrome (diabetes and other meta-

bolic disorders) (Corona et al., 2009). The link between hypogo-

nadism and excess fat seems to be bidirectional: while it is clear

that visceral obesity can cause hypogonadism, gonadectomy

experiments in animals and other data suggest that hypogonad-

ism can also cause fat accumulation and insulin resistance

(Corona et al., 2009).

The connection between impaired or reduced reproduction

and excess fat storage is not restricted to mammals. In a variety

of insects, including blow flies, bugs, migratory locusts, and

grasshoppers, ovariectomy causes hypertrophy of the fat

body, the insect equivalent of mammalian adipose and liver

tissue (Judd et al., 2011; Socha et al., 1991; Strong, 1967; Thom-

sen and Hamburger, 1955). Such fat-body hypertrophy is also

seen in two female sterile mutants of D. melanogaster, called

mama1 (Doane, 1961) and Rbp9 (Butterworth and Bodenstein,

1968). Remarkably, implantation of wild-type ovaries restores

the fat-body tissue to its normal size in both mutants. Consistent

with these findings, transgenic ablation of the germline by over-

expression of bag of marbles (bam), a protein involved in germ-

line differentiation and maintenance, increases fat storage and

starvation resistance in adult female flies (M. Galikova, H.A.,

and T.F., unpublished data). Similarly, germline-less C. elegans

glp-1 mutants, which carry a mutation in the GLP-1/Notch

receptor (Arantes-Oliveira et al., 2002), have greatly increased

fat stores (McCormick et al., 2012; O’Rourke et al., 2009; M.H.

and H.A., unpublished data).
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Effects of the Reproductive System

on Life Span

Surgical or genetic ablation of the repro-

ductive system significantly extends life

span in many animals (Drori and Folman,

1976; Flatt, 2011; Flatt et al., 2008; Hatle

et al., 2008; Hsin and Kenyon, 1999;

Leroi, 2001; Maynard Smith, 1958;

Partridge et al., 2005). Ovariectomized

grasshoppers, for example, live signifi-

cantly longer than sham-operated control

animals (Drewry et al., 2011; Judd et al.,
2011), and gonadectomy of Pacific salmon also increases their

life span (Robertson, 1961). Similarly, castration of male rats

extends their life span by a short but significant period (Drori

and Folman, 1976), and castrated men have been reported to

live significantly longer than fertile men (Hamilton and Mestler,

1969; Min et al., 2012).

The effect of interventions that abolish reproduction is partic-

ularly dramatic in C. elegans and Drosophila, where targeted

ablation of germline stem cells significantly extends life span

(Arantes-Oliveira et al., 2002; Flatt et al., 2008; Hsin and Kenyon,

1999; Maynard Smith, 1958). Notably, this effect is abrogated in

C. elegans when the somatic gonad is also removed (Hsin and

Kenyon, 1999), suggesting that life span extension is not simply

a result of sterility but is regulated by opposing signals produced

by the germline and the somatic gonad.

Together, these findings suggest that gonadal signals not only

affect fat metabolism in a number of species but also modulate

their rate of aging. Although these signals have not yet been

unambiguously identified, steroid hormones are promising

candidates (Gáliková et al., 2011; Gerisch et al., 2007; Tatar

et al., 2003). Thus, given that reproduction profoundly affects

both fat metabolism and life span, it is plausible to hypothesize

that the three physiological functions might be causally intercon-

nected.

The tripartite interconnection between reduced reproduction,

increased fat storage, and improved adult survival (see Figure 1)

is perhaps most clearly seen in experiments with C. elegans and

Drosophila, although similar observations have been made in

other animals (Reznick, 1985; Bell and Koufopanou, 1986). For

example, several independent studies have shown that wild-

type flies artificially selected for increased life span also exhibit

impaired early fecundity and enhanced starvation resistance
17, January 8, 2013 ª2013 Elsevier Inc. 11
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Figure 2. Model of Germline Signaling and
Its Impact on Fat Metabolism
Ablation of the germline increases life span in
C. elegans and D. melanogaster and profoundly
alters fat metabolism. To date, our understanding
of the underlying molecular mechanisms is mainly
based on findings in C. elegans; however,
Drosophila homologs are indicated where
possible. For functional parallels between steroid
signaling in C. elegans and D. melanogaster, see
Gáliková et al. (2011). Each of the four longevity-
promoting transcription factors (DAF-12/EcR,
DAF-16/FOXO, PHA-4/FOXA, and NHR-80/HNF4)
either target fat-remodeling enzymes or activate
cellular processes that can affect fat metabolism.
Life span extension through removal of the germ-
line therefore provides insights into the mecha-
nisms that link reproduction, fat metabolism, and
life span.
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due to increased fat storage (Chippindale et al., 1993; Djawdan

et al., 1996, 1998; Service et al., 1985; Zwaan et al., 1995). Simi-

larly, many long-lived single-gene mutants of C. elegans and

Drosophila (e.g., mutations in the insulin/IGF-1 and TOR [target

of rapamycin] signaling pathways) exhibit reduced fecundity,

increased lipid storage, and improved starvation stress resis-

tance (Broughton et al., 2005; Gems et al., 1998; Tatar et al.,

2001; Tissenbaum and Ruvkun, 1998). Conversely, artificial

selection for increased starvation resistance in Drosophila is

often correlated with increased lipid storage, reduced fecundity,

and prolonged life span (reviewed in Hoffmann and Harshman,

1999; Rion and Kawecki, 2007). In mice, most but not all long-

lived models exhibit increased fat levels (Wolf, 2010). While

enhanced fat storage in response to life span-promoting muta-

tions may be necessary to support somatic maintenance (Liao

et al., 2011), excessive fat is also an important risk factor for

metabolic syndrome, diabetes, and cardiovascular disease,

which can significantly curtail life span (Das et al., 2004). Thus,

the role of fat in long-lived mouse models remains unclear.

Although the association between reproduction, lipid storage,

and life span is not always observed, suggesting that these

processes can be dissociated (Flatt, 2011; Force et al., 1995;

Gems et al., 1998; Hoffmann and Harshman, 1999; Rion and

Kawecki, 2007; Vermeulen et al., 2006), it is clear that such an

association—be it correlative or causal—very often exists. In

the following sections, we discuss our current understanding

of the molecular underpinnings of the links between the three

processes.

Molecular Connections between Reproduction,
Fat Metabolism, and Life Span
The most direct molecular evidence for a causal connection

between reproduction, fat metabolism, and life span comes

from recent studies in C. elegans showing that germline removal

not only extends life span but also profoundly affects fat metab-

olism (Goudeau et al., 2011; Lapierre et al., 2011; Wang et al.,

2008). Moreover, several fat-remodeling enzymes were found

to be necessary, and sometimes sufficient, to promote longevity

through removal of the germline (Goudeau et al., 2011; Lapierre

et al., 2011; O’Rourke et al., 2009; Wang et al., 2008; Xie, 2008).

Much progress has been made in identifying genes involved in

both fat metabolism and life span determination that are acti-
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vated by germline ablation in C. elegans (Berman and Kenyon,

2006; Gerisch et al., 2007; Ghazi et al., 2009; Goudeau et al.,

2011; Hsin and Kenyon, 1999; Lapierre et al., 2011; McCormick

et al., 2012; Yamawaki et al., 2008, 2010). Together with work in

other systems, includingDrosophila, these studies provide a first

glimpse of the molecular mechanisms (Figure 2) that might form

the regulatory framework linking reproduction, fat metabolism,

and life span.

Insulin/IGF-1 and Steroid Signaling Pathways:

Common Regulators of Reproduction, Fat Metabolism,

and Life Span

The first genes found to affect life span and metabolism in germ-

line-less animals were identified in C. elegans and are examples

of genes that function through a process we refer to as germline

signaling. The impact of germline ablation on life span was first

shown to be mediated by two dauer formation (daf) genes:

daf-16, a FOXO transcription factor in the insulin/IGF-1 signaling

pathway, and daf-12, a nuclear hormone receptor that functions

in steroid hormone signaling (Hsin and Kenyon, 1999). These

pathways are described in detail below.

Insulin/IGF-1 Signaling. Insulin/IGF-1 signaling is well known

to affect both life span and fat metabolism in fertile animals (Ken-

yon et al., 1993; Perez and VanGilst, 2008;Wolf, 2010). The posi-

tive impact of reduced insulin/IGF-1 signaling on life span and fat

storage has been observed in worms, flies, andmice, suggesting

an evolutionarily conserved association (Clancy et al., 2001; Hol-

zenberger et al., 2003; Kenyon et al., 1993; Wolf, 2010; Wang

et al., 2008); however, the role of insulin/IGF-1 signaling in germ-

line-ablated animals has only recently been uncovered. In

C. elegans, several components of the insulin/IGF-1 signaling

pathway, such as daf-16/FOXO and daf-18/PTEN, are required

for life span extension upon germline loss (Hsin and Kenyon,

1999; Larsen et al., 1995). Despite this connection, it should be

noted that germline-mediated life span extension is influenced

by many factors that are not components of the insulin/IGF-1

signaling pathway. For instance, genes such as kri-1, an an-

kyrin-repeat protein orthologous to the human gene KRIT1,

and tcer-1, a transcription elongation factor related to TCERG1,

promote life span extension in germline-less animals by interact-

ing with daf-16/FOXO but are not involved in canonical insulin

signaling (Ghazi et al., 2009). Other observations support the

existence of a noncanonical insulin/IGF-1 signaling pathway in



Figure 3. Outstanding Questions and Future Perspectives
The links between fat metabolism, reproduction, and life span are only starting to be uncovered. The figure summarizes some of the key questions that are likely to
significantly improve our understanding of these links at the molecular level and highlights current technical challenges such as engineering germline-less mice.

Cell Metabolism

Perspective
germline-less C. elegans. For example, many daf-16/FOXO

target genes are nonoverlapping in insulin/IGF-1 signaling-defi-

cient versus germline-less mutants (McCormick et al., 2012;

Murphy et al., 2003). Furthermore, kri-1 mediates DAF-16/

FOXO translocation into intestinal nuclei upon germline abla-

tion, but not under conditions of reduced insulin signaling in

daf-2 (insulin/IGF-1-like receptor, InR) mutants (Berman and

Kenyon, 2006). Similarly, intestinal DAF-16/FOXO is activated

(Lin et al., 2001; Libina et al., 2003) cell nonautonomously by

microRNAs such as mir-71 that are produced in the neurons of

germline-less animals, but not of daf-2/InR mutants (Boulias

and Horvitz, 2012). Some of these regulatory connections may

be evolutionarily conserved because long-lived germline-

ablated Drosophila also exhibit altered insulin/IGF-1 signaling

(Flatt et al., 2008).

Intriguingly, three independent studies have found that DAF-

16/FOXO activates fat-processing enzymes in response to

germline ablation in worms (Goudeau et al., 2011; McCormick

et al., 2012; Wang et al., 2008). Indeed, genes involved in fat

metabolism are overrepresented among daf-16/FOXO targets

in germline-less animals (McCormick et al., 2012). In this study,

daf-16/FOXO was found to regulate the transcription of genes

involved in fat catabolism (e.g., lipases) and anabolism (e.g.,

diacylglyceride transferases, desaturases). As discussed below,

at least two of these daf-16/FOXO targets, the lipases lipl-4 and
lips-17, have been directly linked to the long life span of germ-

line-less animals (Wang et al., 2008; McCormick et al., 2012).

Thus, alterations in fat mobilization may represent one mecha-

nism by which longevity and fat content are linked, perhaps as

a means to optimize sustained energy consumption. Finally,

daf-16/FOXO also regulates many genes involved in steroid

hormone metabolism (e.g., steroid hormone dehydrogenases,

cytochrome P450s), suggesting the possibility of crosstalk

between the insulin and steroid hormone signaling pathways.

The production of hydrophobic signaling molecules such as

hormones would be an efficient way to trigger systemic

responses. Thus, it is possible that changes in fat metabolism

occurring in response to altered reproductive status may induce

hormonal signaling that in turn elicits life span extension.

Steroid Signaling. The second pathway known to be rele-

vant for life span extension in response to germline loss, at least

inC. elegans, is a steroid hormone pathway that includes daf-12,

a nuclear hormone receptor (NHR) related to the vitamin D, preg-

nane X, and liver X receptors. This pathway also includes daf-36,

a Rieske-like oxygenase; daf-9, a cytochrome P450 similar to

CYP27A1; and dhs-16, a 3-hydroxysteroid dehydrogenase, all

of which are involved in the production of dafachronic acids,

the bile acid-like steroid hormone ligands of DAF-12/NHR

(Hsin and Kenyon, 1999; Jia et al., 2002; Rottiers et al., 2006;

Motola et al., 2006; Wollam et al., 2012). Of note, other genes
Cell Metabolism 17, January 8, 2013 ª2013 Elsevier Inc. 13
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involved in steroid signaling have not been reported to be

required for germline-mediated life span extension in

C. elegans. The longevity-promoting effects of daf-9/CYP27

and daf-12/NHR are specific to germline signaling because

loss-of-function mutations in daf-9/CYP27 extend the life span

of fertile animals (Jia et al., 2002), and some daf-12/NHR alleles

increase the life span of males and mutants that exhibit reduced

insulin/IGF-1 signaling (Gems et al., 1998; Hochbaum et al.,

2011). The detailed mechanisms by which these genes govern

germline-mediated longevity remain to be clarified. Interestingly,

a recent study has suggested that dafachronic acid might be

produced in the somatic gonad (Yamawaki et al., 2010), which

could explain the requirement for these tissues in life span

extension upon germline ablation (Hsin and Kenyon, 1999). The

somatic gonad requirement is alleviated in animals carrying

reduction-of-function alleles of daf-2/InR that result in markedly

reduced insulin/IGF-1 signaling (Hsin and Kenyon, 1999; Yama-

waki et al., 2008). One potential explanation for this observation

is that low insulin/IGF-1 signaling might induce ectopic produc-

tion of longevity-promoting steroid hormones in tissues other

than the somatic gonad.

The impact of steroid signaling on fat metabolism has been

demonstrated most clearly in mammals. Gonadectomy in mam-

mals (mice, rats, and humans) causes a significant redistribution

of fat to the periabdominal area and a gross increase in fat mass

(Colombel and Charbonnel, 1997; Hausberger and Hausberger,

1966; McElroy and Wade, 1987; O’Rourke et al., 2009). Con-

versely, steroid hormone treatment restores normal fat metabo-

lism in mice with reproductive deficits (Björntorp, 1997; Wohlers

and Spangenburg, 2010). Worms also exhibit increased fat

storage upon germline ablation (O’Rourke et al., 2009), although

the impact of steroid hormones on fat storage has not yet been

directly assessed. In fact, microarray studies show that fat-

remodeling enzymes are not overrepresented among DAF-12/

NHR targets (McCormick et al., 2012). However, at least one

DAF-12/NHR target, predicted to be the fatty acyl reductase

fard-1, is essential for life span extension in germline-depleted

animals (McCormick et al., 2012).

Although our limited understanding of the role of steroid

signaling in fat metabolism makes it difficult to identify parallels

among the molecularly tractable models, some noteworthy simi-

larities do exist. For example, DAF-12/NHR interacts with

another nuclear hormone receptor, NHR-80, to promote fatty

acid desaturation in response to germline ablation (Goudeau

et al., 2011). Fatty acid desaturation is also upregulated in ovari-

ectomized mice and requires the presence of the nuclear recep-

tors liver X receptor (LXR) and peroxisome proliferator-activated

receptor (PPAR)a (Chu et al., 2006; Paquette et al., 2008). Thus, it

will be interesting to explore the functional parallels between

PPARa/LXR and NHR-80/DAF-12.

Steroid hormones also affect fat metabolism in mammals

through the estrogen receptor (ERa). Indeed, the importance of

this receptor in regulating fat metabolism is clearly demonstrated

by ERa-deficient mice, which are prone to obesity (Heine et al.,

2000). Moreover, it was recently shown that hypothalamic

neurons are important sites of action for the regulation of fat

metabolism by the ERa (Xu et al., 2011). The Drosophila ER

homolog, dERR, has been found to regulate energy and carbo-

hydrate metabolism (Tennessen et al., 2011), whereas the role
14 Cell Metabolism 17, January 8, 2013 ª2013 Elsevier Inc.
of nhr-14—the closest worm ER homolog—remains unknown

(Mimoto et al., 2007). Hence, it is not yet clear whether the rela-

tionship between estrogen signaling, fat metabolism, and repro-

duction can be easily modeled in simpler genetic systems.

Several reports suggest that insulin/IGF-1 and steroid

hormone/NHR signaling interact to promote life span extension

of germline-ablated animals. For instance, DAF-16/FOXO trans-

location into intestinal nuclei following germline removal is

impaired in the absence of daf-12/NHR (Berman and Kenyon,

2006), suggesting that DAF-12/NHR signaling promotes

longevity, at least in part, by promoting insulin/IGF-1 signaling.

Collectively, the available evidence suggests that the insulin/

IGF and steroid hormone signaling pathways play pivotal roles

in modulating the effects of germline ablation on life span exten-

sion and lipid metabolism in C. elegans. The precise role played

by each pathway in regulating fat metabolism in nematodes

clearly requires further investigation, as does their contribution

to life span and fat metabolism in other model systems. Prelim-

inary work in Drosophila suggests that the effect of germline

ablation on life span and fat metabolism might be conserved

between worms and flies (Flatt et al., 2008; Gáliková et al.,

2011; M. Galikova, H.A., and T.F., unpublished data). Moreover,

insulin/IGF-1 and steroid hormone (ecdysone) signaling also

appear to regulate fat metabolism in Drosophila and other

insects (DiAngelo and Birnbaum, 2009), and it is noteworthy

that these hormonal signaling pathways also control germline

stem cell proliferation and maintenance (Ables and Drum-

mond-Barbosa, 2010; LaFever and Drummond-Barbosa,

2005). The greatest challenge, however, will be to determine if

a mammalian model with curtailed reproduction has increased

life span (see Figure 3 for outstanding questions and future

perspectives; also see, for example, Drori and Folman, 1976).

Role of Lipolysis in Germline-Mediated Longevity

The first identified target gene of the DAF-16/FOXO transcription

factor in germline-ablated animals was the predicted triacylgly-

cerol lipase and cholesterol esterase LIPL-4 (Wang et al.,

2008). lipl-4 is induced in germline-less glp-1 mutants in a daf-

16/FOXO-dependent fashion. Interestingly, the induction of

lipl-4 requires kri-1/KRIT but is independent of daf-12/NHR, sug-

gesting the existence of a steroid hormone signaling-indepen-

dent pathway for lipl-4 expression induced by germline ablation.

In turn, inactivation of lipl-4 shortens the long life span of germ-

line-less glp-1/Notch animals (Wang et al., 2008), supporting

a crucial role for LIPL-4 activity in life span extension in these

animals. Consistent with this notion, overexpression of LIPL-4

is sufficient to extend life span when expressed in wild-type

animals from a ubiquitous promoter (Lapierre et al., 2011) or an

intestinal promoter (Wang et al., 2008); the latter finding provided

one of the first direct links between lipid metabolism and

longevity.

LIPL-4 has lipase activity in vitro (Lapierre et al., 2011) and is

most prominently expressed in the gut and hypodermal seam

cells (Wang et al., 2008; Lapierre et al., 2011); notably, these

tissues are fat storage sites in C. elegans (Mak, 2012). The

cellular substrate(s) and the subcellular localization of LIPL-4

are not yet known, but it is interesting to note that LIPL-4 has

the highest homology to human lysosomal acid lipase (LAL), an

enzyme involved in cholesterol ester processing and trafficking

from autophagic and endocytic vesicles (Ouimet et al., 2011).
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Other lipases are also upregulated in germline-less animals,

including lips-17, which is required for germline-less glp-1/Notch

mutants to live long (McCormick et al., 2012). Similarly, germline-

less Drosophila tudor mutants exhibit increased expression

of four triacylglycerol lipases (CG8093, CG6277, CG6271,

CG2772) and one lipid storage gene (lipid storage droplet protein

1), suggesting that lipid metabolism might be enhanced in germ-

line-less flies (Parisi et al., 2010). Despite these effects, little

difference was observed between the lipid profiles of germline-

less and fertile control flies in this study (Parisi et al., 2010). It

will be interesting to determine whether lipolysis also plays

a role in germline-mediated longevity and reproduction in other

organisms and whether changes in lipolysis and expression of

longevity-relevant lipases are observed during normal aging.

Role of Autophagy in Germline-Mediated Longevity

The cellular recycling process of autophagy has recently been

linked to the longevity of germline-less animals. Autophagy

sequesters and degrades cytosolic components and is typically

induced under stress conditions such as nutrient deprivation.

One type of autophagy called macroautophagy (referred to

here as autophagy) has been directly linked to aging (Rubinsztein

et al., 2011). Specifically, pharmacological and genetic manipu-

lations that increase life span in model organisms, including

C. elegans and Drosophila, often stimulate autophagy. Con-

versely, inhibition of autophagy compromises the longevity-

promoting effects of multiple paradigms, suggesting that

increased autophagymight function as a potent antiaging mech-

anism. Consistent with this notion, germline-less C. elegans

show increased rates of autophagy (Lapierre et al., 2011), and

the expression of multiple autophagy genes is induced, at least

in part, by the FOXA transcription factor PHA-4, another fork-

head transcription factor. This suggests that autophagy is likely

to be transcriptionally regulated in germline-less animals. Finally,

pha-4, as well as multiple genes with autophagy-related func-

tions, is required for germline-less animals to live long (Lapierre

et al., 2011). These findings imply that longevity of germline-

less animals is regulated by at least two transcription factors,

PHA-4/FOXA and DAF-16/FOXO, through induction of auto-

phagy and metabolic genes, respectively.

The nutrient sensor TOR, a major conserved regulator of auto-

phagy (Kapahi et al., 2010), may serve as a common upstream

regulator of lipid metabolism and autophagy in germline-less

nematodes. Lapierre et al. (2011) found that germline-less

animals have lower intrinsic TOR levels (Lapierre et al., 2011),

which is consistent with the possibility that reduced TOR levels

constitutively induce autophagy in these animals. Moreover,

TOR inactivation upregulates lipl-4 expression in a daf-16/

FOXO-dependent fashion (Lapierre et al., 2011). Future work

examining TOR pathway components will shed light on the

dual regulatory role of TOR signaling in germline-less animals.

Multiple types of autophagy have been described that are

cargo specific, including one that mediates lipid breakdown

and has been termed ‘‘lipophagy.’’ Evidence for this pathway

comes from observations with cultured hepatocytes and mouse

liver in which inhibition of autophagy increases triglyceride

storage in lipid droplets (Singh et al., 2009). Interestingly, overex-

pression of LIPL-4 alone is sufficient to induce autophagy in

C. elegans, probably via downregulation of TOR (Lapierre

et al., 2011), and reciprocally, autophagy activity is required for
the lipase activity of LIPL-4. Likewise, autophagy genes are

required for LIPL-4-overexpressing animals to live long (Lapierre

et al., 2011). Taken together, these data suggest that autophagy

is intimately linked to lipid hydrolysis in the adult animal,

possibly through a mechanism similar to lipophagy (Singh

et al., 2009). Indeed, autophagosomes can be observed close

to lipid droplets in germline-less animals (Lapierre et al., 2011).

Alternatively, autophagy could be triggered by a substrate

produced by LIPL-4. Regardless of the exact mechanism, these

findings suggest for the first time that autophagy engages lipid

metabolism as a mechanism to extend life span in response to

germline removal. Future experiments are needed to clarify the

nature of this link and to determine whether it is conserved in

higher organisms.

Autophagy is not always associated with increased lipid

hydrolysis because inhibition of autophagy in adipocytes results

in decreased lipid accumulation as a result of impaired differen-

tiation of white adipocytes (Singh et al., 2009). Taken together,

these observations suggest that autophagy not only mediates

breakdown of triacylglycerol droplets (i.e., through the catabolic

process of lipophagy) but may also facilitate fat storage. The

relationship between autophagy and fat storage needs more

thorough investigation, especially in germline-less C. elegans.

NHR Signaling and Fatty Acid Desaturation in

Germline-Mediated Longevity

Germline ablation in C. elegans was recently shown to induce

transcription of the nuclear hormone receptor NHR-80. In turn,

NHR-80 triggers the induction of fat-6/scd1, a gene encoding

a stearoyl coenzyme A desaturase (Goudeau et al., 2011).

FAT-6/SCD1 converts saturated C16 or C18 fatty acids into

their corresponding monodesaturated forms. This induction is

physiologically relevant because it results in increased levels of

desaturated fatty acids. Remarkably, obstructing the induction

of nhr-80 or fat-6 abolishes life span extension through germline

ablation (Goudeau et al., 2011). Although the effect of fat-6/scd1

upregulation on fat content has not yet been determined in the

worm, SCD1 deficiency in mice protects against lipid accumula-

tion (Kim et al., 2011). These findings suggest that signals from

the germline impinge on longevity in C. elegans and fat content

in mice by inhibiting fatty acid desaturation through SCD1.

In mice and rats, ovariectomy causes a strong induction of

SCD1 levels and an associated increase in fatty acid desatura-

tion (Jackson et al., 2011; Paquette et al., 2008). Although the

mechanism by which this occurs is not yet well understood,

the finding indicates that increased fatty acid monodesaturation

might be a conserved response to impaired reproduction. The

observation that germline ablation inC. elegans and ovariectomy

in mammals cause increased fat content (McElroy and Wade,

1987; O’Rourke et al., 2009) is consistent with the observations

that the desaturation of stearic acid leads to the production of

oleic acid, a prime substrate for triacylglycerol synthesis and

that SCD1 activity correlates with overall adiposity (Chu et al.,

2006; Mauvoisin et al., 2007). However, whether scd1(�) ovari-

ectomized mice or fat-6(�)/fat-7(�) germline-less worms are

resistant to weight gain has not yet been tested.

Studies of the regulation of SCD1 in mammals provide addi-

tional interesting insights. SCD1 responds to many stimuli,

including hormones and nutrients, and it is striking that many

important SCD regulators are known to affect longevity and/or
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fat content (Mauvoisin et al., 2007). For example, SCD1 activity is

strongly affected by the insulin/IGF-1 pathway and by numerous

NHRs (Lundholm et al., 2004; Mauvoisin et al., 2007; Paquette

et al., 2008; Waters and Ntambi, 1994). Interestingly, the

increased life span observed in C. elegans daf-2/InR mutants

has been partly attributed to the upregulation of fat-7/SCD1

(Murphy et al., 2003), suggesting that fatty acid desaturation

may also promote the life span of fertile animals. It will be inter-

esting to discover why fatty acid desaturation is required to

support extended longevity when the germline is ablated and

when insulin signaling is low in other systems such asDrosophila.

SCD1 also appears to be regulated by NHRs in mice and

worms. In mice, PPARa and LXR regulate SCD1 (Mauvoisin

et al., 2007), and genes encoding for SCD1 homologs in worms

are under the control of NHR-49 and NHR-80 (Goudeau et al.,

2011). Moreover, although the sequences of NHR-49 and

PPARa are clearly divergent, they are both involved in the regu-

lation of fat metabolism and have been proposed to be functional

analogs (Van Gilst et al., 2005). Interestingly, nhr-80 and PPARa

are upregulated in response to germline ablation in worms and

ovariectomy in mice, respectively (Goudeau et al., 2011;

Paquette et al., 2008).

Thus, both SCD1 and PPARa are upregulated upon ovariec-

tomy and SCD1 and LXR are downregulated upon treatment

with sex steroid hormones in mammals (Lundholm et al., 2004;

Paquette et al., 2008). Together, these data suggest that SCD1

activity is regulated by reproduction through nuclear hormone

receptors. Notably, fertile nhr-80 mutants and SCD-deficient

worms exhibit altered fatty acid desaturation (Brock et al.,

2007) but have normal life spans (Goudeau et al., 2011).

In summary, the induction of SCD1 seems to be an evolution-

arily conserved response to reduced or curtailed reproduction.

Although SCD1 has been shown in the nematode system to be

required for life span extension upon germline ablation, its effect

on fat content in germline-less animals remains unknown. Ovari-

ectomy in mice also induces SCD1 and increases fat content but

fails to extend life span. While it is not yet clear whether SCD1

directly affects fat content in ovariectomized mice, one might

expect that loss of function of SCD1 would prevent the associ-

ated weight gain. Therefore, the data gathered thus far suggest

that the role of SCD1 may be conserved across species, but

its effects on fat metabolism and life span require further study.

One key point will be to determine whether SCD1 activity regu-

lates fat metabolism and longevity separately or ifone process

is required for the induction of the other.

Summary and Future Perspectives
The work discussed here clearly supports the existence of

multiple links between reproduction, lipid metabolism, and aging

(Figures 1 and 2) but also raises many intriguing questions to be

addressed in future work (see Figure 3 for outstanding questions

and future perspectives).

Aging is often accompanied by metabolic disorders that pre-

dispose one to diabetes, cardiovascular disease, and numerous

complications. Such disorders affect lipid turnover and are

accompanied by an accumulation of visceral fat as well as

decreased insulin sensitivity (Arner et al., 2011). Interestingly,

while removal of visceral fat improves insulin sensitivity and

increases longevity in rats (Barzilai et al., 1998; Gabriely et al.,
16 Cell Metabolism 17, January 8, 2013 ª2013 Elsevier Inc.
2002), wild-typemice, whomobilize fat less efficiently, live longer

in response to dietary restriction (Liao et al., 2011). However,

long-lived genetic mouse models often have increased fat

stores, suggesting that increased fat levels might also have

a positive impact on longevity (Wolf, 2010). It seems likely that

the absolute quantity of stored fat could influence whether it

has a beneficial or detrimental effect on the life span of these

models. It will therefore be of great interest to investigate

whether the fat levels of such animals are correlated with their

reproductive profiles.

Because data from genetic models show that the vast majority

of longevity-promoting interventions alter fat metabolism, it is

legitimate to ask whether specifically targeting fat-processing

enzymes will increase longevity. The clearest evidence that this

might be possible was reported byWang et al. (2008), who found

that overexpression of the lipase LIPL-4 is sufficient to extend

the life span of wild-type worms. Similarly, the desaturases

FAT-5 and FAT-6 are required for both insulin- and germline-

mediated life span extension, suggesting that fatty acid

desaturation might play an important role in regulating longevity

(Goudeau et al., 2011;Murphy et al., 2003). Autophagy is another

effector of fat metabolism that might be critical for longevity

(Lapierre et al., 2011). Although the mechanism through which

autophagy modulates life span is not yet clear, the notion

that it may do so in part by affecting fat metabolism is appealing

(Lapierre et al., 2011; McCormick et al., 2012).

Other aspects of fat metabolism and their roles in aging remain

underexplored. For example, understanding whether and how

fat composition and localization (Ackerman and Gems, 2012)

canmodulate life span is an exciting challenge for future studies.

Likewise, it will be interesting to determine whether modification

of fat metabolism could be a strategy for more efficient energy

consumption under stressful conditions. It may also contribute

to the production of lipids that act as signaling molecules (such

as hormones). Finally, it is possible that alteration of fat content

and/or composition contributes to life span extension by

affecting the overall metabolism of animals with impaired repro-

duction. To address these fascinating but largely unresolved

questions, the use of powerful genetic models such as

C. elegans and Drosophila will be essential.
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