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We study the phase transition dynamics of a fluid system in which the particles diffuse anisotropically in

space. The motivation to study such a situation is provided by systems of interacting magnetic colloidal

particles subject to the Lorentz force. The Smoluchowski equation for the many-particle probability

distribution then acquires an anisotropic diffusion tensor. We show that in comparison to the isotropic

case, anisotropic diffusion results in qualitatively different dynamics of spinodal decomposition. Using

the method of dynamical density functional theory, we predict that the intermediate-stage

decomposition dynamics are slowed down significantly by anisotropy; the coupling between different

Fourier modes is strongly reduced. Numerical calculations are performed for a model (Yukawa) fluid that

exhibits gas–liquid phase separation.

On sufficiently long time scales, particles suspended in a solvent
exhibit random, Brownian motion. For interacting systems subject
to external force fields the Smoluchowski equation provides a
complete statistical description of the particle motion and serves
as a natural generalization of the Einstein diffusion equation.
In the absence of solvent hydrodynamics and when both the
interaction and external forces are conservative, the diffusion
coefficient entering the Smoluchowski equation is a scalar quan-
tity. A case of special interest, which has received only limited
attention,1 is that of magnetic colloids subject to the Lorentz force
arising from an external magnetic field. The application of a
magnetic field generates unusual nonequilibrium steady states
of a quite different character from those generated by other
nonconservative driving forces (e.g. shear), which input energy to
the system. Although the Lorentz force generates particle currents,
these are purely rotational and no work is done on the system. For
such magnetic systems the Smoluchowski equation picks up a
tensorial diffusion coefficient, which reflects the anisotropy of the
particle motion. The Smoluchowski equation for the positional
probability density P(-r,t) reads as1

@P

@t
¼ Dij

@2P

@xi@xj
; (1)

where xi stands for a Cartesian component of the position of the
particle and Dij denotes the ijth component of the diffusion tensor.
For a magnetic field

-

B = B
-
n, the diffusion tensor is given by

Dij ¼ kBT

mg
ninj þ g2

g2 þ o2
dij � ninj
� �� �

; (2)

where kB is the Boltzmann constant, T is the temperature,m is the
mass of the particle, g is the friction coefficient, q is the charge,
o = qB/m is the cyclotron frequency, and kBT/mg is the isotropic
diffusion rate in the absence of magnetic field. Only the diffusion
rate perpendicular to the direction of the magnetic field decreases
as the field strength increases. The diffusion along the direction of
magnetic field is unaffected. Although the structure of the diffu-
sion tensor is well known,1 the influence of this on the collective
behaviour of interacting systems, most notably the phase transi-
tion dynamics, remains to be fully investigated.

Classical density functional theory (DFT) is a powerful tool
for studying the equilibrium structure and thermodynamics of
interacting, inhomogeneous fluids in external fields.2 The
approximate extension of DFT to systems out of equilibrium,
dynamical density functional theory (DDFT), provides a frame-
work to study the dynamics of overdamped Brownian particles.3–6

The central quantity of interest in DDFT is the ensemble averaged
one-body number density, r(-r,t), of particles at spatial location -

r
and at time t. DDFT has been used to address the phase
transition dynamics which occur during the approach to equi-
librium from a nonequilibrium initial state. The dynamics of
(isotropic) spinodal decomposition at early and intermediate
times was studied in ref. 7 and the time evolution of solidifica-
tion fronts during crystallization was addressed in ref. 8.
Modifications of DDFT to incorporate external driving forces
have proven successful in describing the phenomenology of
some nonequilibrium steady-states; for example, the laning
transition in driven colloidal systems.9,10

In this paper, we use DDFT to study the dynamics of
spinodal decomposition in systems with anisotropic diffusion.
Following the approach of ref. 7 we obtain an equation to
describe the short- and intermediate-time dynamics of density
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fluctuations following a quench into the two-phase region.
At short times, Fourier components of density fluctuations
within a certain range of wavenumbers grow exponentially,
with the rate of growth in different spatial directions occurring
on different time scales. The intermediate-time dynamics are
impacted in a more subtle way that is qualitatively different
from the case of isotropic diffusion. Here the coupling of
different Fourier components allows even those fluctuations
to grow that correspond to wavenumbers outside the region of
linear instability. Anisotropic diffusion strongly reduces the
coupling between different Fourier components, even for small
anisotropy, leading to much slower growth of Fourier compo-
nents with wavenumbers outside the region of linear instability.

The paper is organized as follows. In Section 1, we briefly
describe the dynamical density theory. We use DDFT with an
anisotropic diffusion tensor in Section 2 to derive an equation
for the time evolution of density fluctuations. In Section 3 we
numerically solve the equation derived in Section 2 and study
the impact of small and large anisotropy on spinodal decom-
position. Finally we present conclusions and an outlook in
Section 4.

1 Dynamical density functional theory

The time evolution of the density distribution r(-r,t) in a fluid
system of particles is given by the continuity equation

@rð~r; tÞ
@t

¼ �r � ~J; (3)

where
-

J is the current of particles. This equation merely
expresses the fact that the number of particles is conserved in
the system. Although formal expression for the current can be
derived, it is often necessary to make approximations to find
solutions to this equation. Dynamical density functional theory

provides such an approximation for
-

J which has been found to

be rather accurate.5,6 DDFT approximates the current
-

J as

~J ¼ �bD � rð~r; tÞr dF ½r�
drð~r; tÞ; (4)

where b = 1/(kBT), D is an (arbitrary) diffusion tensor and F is
the equilibrium Helmholtz free energy functional. In the
absence of external potential, the Helmholtz free energy func-
tional is given as follows:

F ½rð~r; tÞ� ¼ kBT

ð
d~rrð~r; tÞ lnðrð~r; tÞL3Þ � 1

� �þ Fex½rð~r; tÞ�: (5)

The first term is the ideal gas free energy and L is the thermal
wavelength. Fex[r] is the excess free energy; that is, the con-
tribution due to the interactions between the particles.

The main assumption underlying DDFT is that the correla-
tions between the particles when the fluid is out of equilibrium
are the same as in an equilibrium fluid with the same one-body
density profile r(-r,t). This is a major assumption which cannot
be justified a priori. Nevertheless, DDFT has proven highly
successful in describing the approach of a system towards

equilibrium from a nonequilibrium initial state.8 It is remarkable
that DDFT can successfully describe the steady states of systems
that are continuously driven out of equilibrium, such as sheared
colloidal suspensions9,10 and active Brownian particles.11,12

The functional derivative in eqn (4) can be interpreted as the
chemical potential m(-r,t) acting on a particle located at (-r,t).
One can then calculate the net driving force on the particle as
the spatial gradient of the chemical potential, rm(-r,t), and

obtain the current ~J ¼ �bD � rð~r; tÞrmð~r; tÞ. The chemical
potential obtained from eqn (4) has two contributions

dF ½r�
dr ~rð Þ � m ~r; tð Þ ¼ mid þ mex; (6)

where

mid = kBT ln[r(
-
r)L3] (7)

is the ideal gas contribution to the chemical potential, and

mex ¼
dFex½r�
dr ~rð Þ � �kBTc

ð1Þ ~rð Þ; (8)

is the contribution to the chemical potential coming from the
interactions between the particles, where c(1)(-r) is the one-body
direct correlation function.3 The functional derivative of c(1)(-r)
with respect to r(-r) yields the Ornstein–Zernike pair direct
correlation function of the fluid13

kBTc
ð2Þð~r;~r 0Þ � � d2Fex½r�

drð~r Þdrð~r 0Þ; (9)

which is one of the key quantities of interest in liquid state
theories.13 Below we show how c(2)(-r,-r0) appears naturally in
description of the dynamics of spinodal decomposition.

2 Spinodal decomposition

In this section, we apply the DDFT in Section 1 to fluid
spinodal decomposition. When a colloidal fluid is quenched
to a state point inside the binodal, the fluid undergoes
phase separation into, for instance, a liquid and a gas phase.
There are two mechanisms of phase separation. The mecha-
nism, referred to as nucleation occurs when droplets of
one phase form in the other phase.14,15 Phase separation
proceeds by nucleation when the fluid is quenched to state
point that lies inside the binodal but close to it. This region
corresponds to the region lying within the spinodal and
binodal lines (see Fig. 1). The other mechanism of phase
separation is called spinodal decomposition and it occurs
when the state point lies well inside the binodal. Spinodal
decomposition is characterized by the exponential growth of
density fluctuations of certain wavelengths.14,15 Experimentally,
however, there is not a sharp distinction between regions where
phase separation occurs via nucleation and via spinodal
decomposition.7 Nevertheless, it is generally accepted that for a
deep quench into the coexistence region, the phase separation
occurs via spinodal decomposition. In a fluid undergoing spino-
dal decomposition three different regimes can be distinguished.
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For early times after the quench, the amplitude of the density
fluctuations are small and theories linear in the density fluctua-
tions, such as the well-known Cahn–Hilliard theory,16,17 provide
a good description of this early stage of spinodal decomposition.
At intermediate times the density fluctuations can be large,
but sharp interfaces between domains of gaslike and liquidlike
regions have still not formed.18 At long times sharp inter-
faces develop between domains of liquid and gas. The Allen–
Cahn theory explicitly takes into account the dynamics of the
interfaces, and successfully describes the dynamics of spinodal
decomposition in this regime.19 In this paper, we focus only
on the short- and intermediate-time dynamics of spinodal
decomposition.

The approach that we follow is the same as in ref. 7. We
consider a homogeneous fluid that has been rapidly quenched
to the region of the phase diagram inside the spinodal. We
consider small density fluctuations ~r(-r,t) = r(-r,t) � rb about the
bulk fluid density, rb, and obtain an equation for the growth of
these fluctuations. We perform a Functional Taylor expansion

of the excess free energy in eqn (5) about the bulk density
truncated at quadratic order:3,20

Fex½rð~rÞ� ¼ Fex rb½ � þ
ð
d~r

dFex½r�
drð~rÞ

����
rb

~rð~r; tÞ

þ 1

2

ð
d~r

ð
d~r 0

d2Fex½r�
drð~r Þdrð~r 0Þ

����
rb

~rð~r; tÞ~rð~r 0; tÞ:
(10)

Using eqn (8)–(10) can be rewritten as

Fex½rð~r Þ� ¼ Fex rb½ � þ mex

ð
d~r ~rð~r; tÞ

� kBT

2

ð
d~r

ð
d~r 0cð2Þ j~r�~r 0jð Þ~rð~r; tÞ~rð~r 0; tÞ;

(11)

where we have used that in a bulk homogeneous fluid
c(2)(-r,-r0)|rb = c(2)(|-r � -

r0|;rb). Using eqn (11) to calculate the flux
in eqn (4), we get from the continuity eqn (3) the following
equation for the time evolution of the density

@rð~r; tÞ
@t

¼ r � D � rð~r; tÞr ln rð~r; tÞL3
� ��h

�
ð
d~r 0cð2Þ j~r�~r 0jð Þ~r ~r 0; tð Þ

	�
;

(12)

where we have used that rmex = 0 in a bulk homogeneous fluid.
The equation for the density fluctuations ~r(-r,t) is obtained from
eqn (12) as

@~rð~r; tÞ
@t

¼ r �D � r~rð~r; tÞ � rbr �D � r
ð
d~r 0cð2Þ j~r�~r 0jð Þ~rð~r 0; tÞ

� r �D � ~rð~r; tÞr
ð
d~r 0cð2Þ j~r�~r 0jð Þ~r ~r 0; tð Þ:

(13)

To analyze the unstable modes of the density fluctuations
we consider eqn (13) in Fourier space. The Fourier trans-

formation of the density fluctuations is defined as r̂ð~k; tÞ ¼Ð
d~r~rð~r; tÞ expð�i~k �~rÞ and of the direct pair correlation function

as ĉð2Þð~kÞ ¼ Ð
d~rcð2Þð~rÞ expð�i~k �~rÞ. With these definitions, the

DDFT equation in Fourier space for the chosen quadratic
approximation to Fex[r(

-
r)] becomes

@r̂ð~k; tÞ
@t

¼ � ~k �D � ~k

 �

1� rbĉ
ð2Þ ~k

 �
 �

r̂ ~k; t

 �

þ 1

ð2pÞ3
ð
d~k 0 ~k �D � ~k0


 �
r̂ ~k� ~k 0; t

 �

ĉð2Þ ~k 0

 �

r̂ ~k 0; t

 �

:

(14)

The first term is linear in r̂(
-

k,t) and governs the short-time
evolution of the density fluctuations. The second term is non-

linear in r̂(
-

k,t) and captures the coupling between different
Fourier components of the density fluctuations. The corres-
ponding equation for a system with an isotropic diffusion rate
D0 can be obtained as a special case of eqn (14) by replacing
~k �D � ~k0 with D0

-

k�-k0. In this case, the diffusion rate D0 simply
appears as a scale on the right hand side of eqn (14) and can be

Fig. 1 (a) The phase diagram of the fluid system composed of particles
interacting via pair potential that is infinitely repulsive for r o s and is
attractive (Yukawa) for r 4 s. The packing fraction is denoted as Z = prbs

3/
6 where s is the hard-sphere diameter of a particle and rb is the bulk
number density. The parameter kBTs

3/a is the reduced temperature. The
parameter a governs the energy scale of the attractive interaction between
particles (eqn (16)). The arrow shows the quench from state point A to
state point B in the coexistence region. The state point B corresponds to
kBTs

3/a = 0.05 and Z = 0.2. All the results presented below correspond
to the dynamics of the phase separation evolving from this initial state
point. (b) The function �k2(1 � rbĉ

(2)(k)) is shown for the case of isotropic
diffusion. This function describes the rate of growth of the density
fluctuations in eqn (14) at short times. For k o kc E 0.8, where this
function is positive, the density fluctuations grow exponentially. For k4 kc,
any fluctuation is damped. The critical wavenumber kc depends on how far
the state point lies inside the coexistence region.
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removed by redefining the time variable; this simplification is
not possible in the case of an anisotropic diffusion tensor.

The short-time evolution of the density fluctuations is
obtained by neglecting the second term on the right hand side
of eqn (14). The resulting equation is a linear equation and can
be solved for r̂(

-

k,t) as

r̂ð~k; tÞ ¼ r̂ ~k; 0

 �

exp �
~k �D � ~k
SðkÞ t

" #
; (15)

where S(k) = (1 � rbĉ
(2)(k))�1 and k = |

-

k|. This linear theory
predicts that (a) different Fourier components r̂(

-

k,t) evolve
independently and (b) r̂(

-

k,t) grows exponentially in time. For
an equilibrium homogeneous fluid at a state point outside the
spinodal, S(k) is the well-known structure factor of the fluid.13

Since for an equilibrium fluid S(k) 4 0 for all
-

k, it follows that
for state point outside the spinodal all Fourier modes decay in
time implying that the fluid is stable to small perturbations.
However, the situation is different for a state point chosen
inside spinodal. For a chosen Fex, S(k) can become less than
zero for k o kc where the value of kc depends on how deep the
fluid is quenched inside the spinodal. This implies that the

Fourier components with k o kc will grow exponentially in
time. For a chosen Fex, one can determine the phase diagram
and chose the state point inside the spinodal. It is then
straightforward to determine the Fourier modes that will grow
exponentially. The growth of these modes results in a peak
centred at some model-dependent

-

k and is referred to as the
main peak.

At intermediate times, Fourier components outside the
k o kc region can also grow due to the nonlinear coupling
term in eqn (14). As we show below, the growth of these Fourier
modes can result in a secondary peak outside the k o kc region
which may be smaller or larger than the main peak depending
on the diffusion tensor.

3 Results and discussion

It is clear from eqn (14) that in order to study the dynamics of
spinodal decomposition one only needs to specify the direct
pair correlation function. At this point it becomes necessary to
assume an approximate functional for the excess Helmholtz
energy which we take the same as in ref. 7. The interested

Fig. 2 Colorplots of r̂(k
-
) shown in the kx–kz plane at time t̃ = s2t/Dzz = 69 with Dzz = 1 for different values of D r 1 (see legend). Note that the scale varies

withD. The top row of figures correspond to small anisotropy whereas the bottom row to large anisotropy. In the case of isotropic diffusion r̂(k
-
) = r̂(k). Fourier

components with wavenumbers k o kc have the largest magnitude. Fourier components outside the range k o kc also grow due to the nonlinear coupling
between different Fourier components. However, with increasing anisotropy, the growth of the Fourier components outside the k o kc region becomes
increasingly suppressed. When the anisotropy is large (D o 0.5) only the Fourier components along the (0,0,kz) direction show any significant growth.
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reader can find the details in ref. 7. This model system exhibits
fluid–fluid (gas–liquid) phase transition. Briefly, the system is
three dimensional and is composed of particles interacting via
pair potential which is infinitely repulsive for |-r| r s and
attractive for |-r| 4 s. The attractive part of the potential has a
Yukawa form

vatð~rÞ ¼ �a exp �~rj j=sð Þ
4ps2 ~rj j ; (16)

where a is a positive parameter that determines the strength of
the attraction. Treating the attractive interactions in a mean-
field fashion, the following expression is obtained for the direct
pair correlation function in Fourier space:

ĉð2ÞðkÞ ¼ ĉPYðkÞ þ ba
1þ ðksÞ2; (17)

where ĉPY(k) is the Percus–Yevick approximation for the hard-
sphere pair direct correlation function.13

The phase diagram of the fluid system under consideration
is shown in Fig. 1(a). All the results below are shown for the
quench corresponding to sudden cooling from state point A
outside the spinodal to the point B inside the spinodal.
In Fig. 1(b) we plot the function �k2/S(k) � �k2(1 �rbĉ

(2)(k)) which
is the argument of the exponential in eqn (15) corresponding to

the special case of isotropic diffusion with D ¼ 1. As can be seen
in Fig. 1(b), this function is positive for the wavenumbers k o kc
where kc is determined by the condition rbĉ

(2)(kc) = 1.
To model anisotropic diffusion, we consider the following

diagonal diffusion tensor:

D ¼
Dxx ¼ D 0 0

0 Dyy ¼ D 0

0 0 Dzz

0
BBB@

1
CCCA; (18)

where D and Dzz are parameters. Note that such tensor is
cylindrically symmetric.

We use the approximate form for ĉ(2)(k) as input to eqn (14)
and calculate the time evolution of density fluctuations for the
state point kBTs

3/a = 0.05 and Z = 0.2 (see Fig. 1). This state
point lies well inside the spinodal region. We assume that at

time t = 0 all the Fourier components have the value r̂(
-

k,0) =
10�8. In real space this corresponds to a single perturbation at
the origin in the otherwise uniform density profile. The cylind-
rical symmetry of the diffusion tensor together with the chosen

initial conditions imply that ~r(
-

k,t) is completely described by
~r({kx,0,kz},t). In Fig. 2, we show ~r({kx,0,kz}) at time t̃ = s2t/Dzz = 69
for different values of D. Diffusion along the z-direction is fixed
to Dzz = 1. The choice of t̃ = 69 corresponds to intermediate-time

Fig. 3 Colorplots of ~r( r
-
,t) = r( r

-
,t) � rb shown in the x�z plane at time t̃ = s2t/Dzz = 69 with Dzz = 1 for different values of D r 1 (see legend). These

density distributions are the result of an inverse Fourier transformation of the results in Fig. 2. Note that the scale varies with D. The top row of figures
correspond to small anisotropy whereas the bottom row to large anisotropy. In the case of isotropic diffusion, ~r( r

-
,t) grows isotropically from the origin.

The radially symmetrical distribution becomes practically one dimensional in the z-direction, even for relatively small anisotropy as can be seen for
D = 0.8. Anisotropy significantly slows down the dynamics; the magnitude of the density fluctuations decreases strongly with increasing anisotropy.
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dynamics of spinodal decomposition in an isotropic system

D ¼ 1

 �

. In the case of isotropic diffusion ~r({kx,0,kz}) has

circular contours in the kx–kz plane. The Fourier components
with wavenumbers ko kc exhibit strong growth with the fastest
growing mode at ks E 0.5. Fourier components with wave-
numbers outside the instability region also grow due to the
nonlinear coupling of different Fourier components. It is clear
from Fig. 2 that anisotropy strongly impacts the nonlinear
coupling. The growth along the ‘slow’ directions is strongly
suppressed. The suppression seems to be significant even for
relatively small anisotropy (0.8 o D o 1). For large anisotropy
(D o 0.5), only the Fourier components along the (0,0,kz)
direction show any significant growth. In Fig. 3, we plot the
real-space density (fluctuation) distribution obtained from
inverting the Fourier transform of Fig. 2. The density distribu-
tion is spherical symmetrical for D ¼ 1. The radially symme-
trical distribution becomes practically one-dimensional in the
z-direction even for relatively small anisotropy as can be seen in
Fig. 2 for D = 0.8. What is more interesting is how anisotropy
slows down the dynamics; at a given instant of time, the
magnitude of the density fluctuations is much smaller than
that of the isotropic diffusion case.

In order to better understand the dynamics at different
times, we focus on the time evolution of Fourier components
~r(kz,t) along the (0,0,kz) direction, which we refer to as the
kz-direction. Although a complete description of the decomposition

dynamics can only be obtained by considering the full ~r(
-

k,t), by
selectively focusing on the dynamics along kz-direction, one can
clearly see the effect of anisotropy on the intermediate-time
dynamics of spinodal decomposition.

We first consider the case of small anisotropy. The diffusion
along the z-axis is fastest with Dzz = 1 and the diffusion in the
x�y plane is slightly slower with Dxx = Dyy = D. In Fig. 4 we plot
the Fourier components of the density fluctuation along the
kz-direction for different values of D. We also show the results
ignoring the nonlinear contribution. On neglecting the non-
linear contribution, only the kz-components which lie within
the range kz o kc E 0.8, for which S(kz) o 0, grow exponen-
tially. The growth of kz-components outside this range is due to
the coupling of Fourier components. For short times, only the
components inside the linear instability region grow. As these
modes lying within kz o kc grow, they couple to feed the growth
of kz modes lying outside the instability region. It is for the
growth of these kz modes lying outside the kz o kc region that
the effect of anisotropy is most pronounced. As can be seen in
Fig. 4, the nonlinear contribution to the density fluctuations is
significantly reduced in the case of anisotropic diffusion.
Surprisingly, even a relatively small anisotropy can significantly
reduce the coupling of different Fourier components.

In case of strongly anisotropic diffusion (D o 0.5), the
nonlinear contribution to the growth of the density fluctuations
is highly suppressed. We show in Fig. 5 the Fourier components
of the density fluctuations along the kz-direction for small

Fig. 4 Fourier components of the density fluctuations ~r(kz,t) along the
kz-direction are shown for different times t̃ = s2t/Dzz with Dzz = 1. The
diffusion in the x–y plane is slightly slower than in the y-direction with
Dxx = Dyy = 0.95 in (a), 0.97 in (b), 0.99 in (c), and the isotropic case of
Dxx = Dyy = Dzz = 1 in (d). Even small anisotropy significantly reduces the
nonlinear contribution, i.e., the coupling of different Fourier components,
as can be seen in the slow growth of those k-components which lie inside
the stable region (k 4 kc E 0.8). The dashed lines show the exponential
growth predicted by the linear theory (eqn (15)).

Fig. 5 Same as in Fig. 4, but for longer times and larger anisotropy,
Dxx = Dyy = 0.1 in (a), 0.2 in (b), 0.3 in (c), and 0.4 in (d). Anisotropic
diffusion strongly reduces the growth of kz-modes in the kz 4 kc region.
This is apparent in the relatively smaller second peak located at kzs E 1.1.
The dashed lines show the exponential growth predicted by the linear
theory (eqn (15)). The agreement with the predictions of the linear theory is
nearly perfect implying that the nonlinear contribution to the growth of
density fluctuations is negligible.
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values of D. The diffusion along the z-axis remains the fastest.
As can be seen in Fig. 5, there is an additional small peak
outside the kz o kc region which grows slowly in time. The
height of the secondary peak remains negligible in comparison
to the main peak for the times considered. The growth of the
main peak is accurately described by the linear theory. It
follows that the nonlinear contribution to the growth of density
fluctuations within the kz o kc is negligible from the Fourier
components with kz 4 kc. Of course, if one considers the
density fluctuations on longer time scales than those shown
in Fig. 5, the second peak will grow larger. However, in this case
the density fluctuations (for instance in the main peak) will
become so large that the Taylor expansion of the Helmholtz
free energy functional in eqn (10) up to quadratic order is
insufficient to describe the spinodal decomposition at
intermediate times.

On considering the dynamics in the kx–ky plane, one finds
that the growth of the density fluctuations is predominantly
driven by the nonlinear contributions. In Fig. 6 we plot the
Fourier components of the density fluctuations along the kx
direction for same values of Dxx = Dyy as in Fig. 5. It is useful to
first consider the extreme case of Dxx = 0. In this case, the
density fluctuations of the Fourier component with a given
wave number kx can grow only due to the coupling of other
Fourier components. Not surprisingly, this implies a complete
absence of the linear regime. When Dxx is slightly greater than
zero, there will be linear regime which will persist on a time

scale governed by Dxx and kx, as can be seen in Fig. 6. For
Dxx = 0.1 there is no peak at the location kxs E 0.5 for the
times considered in Fig. 6(a), as predicted by the linear theory.
On increasing Dxx the peak becomes increasingly visible at the
location kxs E 0.5 (see Fig. 6(b–d)). For all Dxx there is an
additional peak that grows at the location kxs E 0.17. With
increasing time, the nonlinear contribution becomes domi-
nant and there remains a single peak at kxs E 0.17
(see Fig. 6(e–h)). We note that the location of this peak is
model-dependent.

Until now we have considered anisotropy of the form such
that the diffusion is fastest along the z-direction. With increas-
ing anisotropy, the system can be considered to becomes
effectively one dimensional. We now consider another scenario
in which we fix Dxx = Dyy = 1 and decrease the diffusion
coefficient along the z direction below 1. The extreme case in
this scenario of Dzz = 0 would then correspond to an effectively
two-dimensional system. We expect that in this scenario, the
anisotropic diffusion would have a weaker effect than the
previous scenario. In Fig. 7 we plot the Fourier components
of the density fluctuation along the z-direction for different
values of Dzz. As can be seen in this figure the anisotropy has a
much weaker effect than what was observed in Fig. 4. This can
be qualitatively understood considering that in Fig. 4, the
anisotropy reduces the contribution to the coupling from
kx–ky plane whereas in Fig. 7 only the contribution from
kz-direction is reduced.

Fig. 6 Fourier components of the density fluctuations ~r(kx,t) along the (kx,0,0) direction is shown for times t̃ = s2t/Dzz with Dzz = 1. The diffusion in the
x�y plane is much slower with Dxx = Dyy = 0.1 in (a and e), 0.2 in (b and f), 0.3 in (c and g), and 0.4 in (d and h). Figures in the left column (a–d) show the
Fourier components for times t̃ = 49, 51, 53, and 55 whereas the figures in the right column (e–h) show the same for times t̃ = 68, 70, 72, and 74. Note
that the scale of r-axis in (a–d) is much smaller than in (e–h). According to the linear instability analysis the fastest growing Fourier mode is the one with
kxs E 0.5 which should grow exponentially at short times. The dashed lines show the predicted exponential growth from the linear theory (eqn (15)). In
(a), which corresponds to the smallest value of Dxx, there is no peak at kxs E 0.5. The peak becomes increasingly visible in going from (a) to (d). The
growth of density fluctuations in the x�y plane is predominantly driven by the nonlinear contributions coming from the coupling of different Fourier
components. This is evident in the figures (e–h), where after sufficiently long time, there is only a single peak located at kxs E 0.17.
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4 Conclusions

We studied spinodal decomposition in a colloidal system
composed of particles which diffuse anisotropically in space. We
used DDFT to model the dynamics of spinodal decomposition at
short and intermediate times. We found that spatial anisotropy
significantly alters the dynamics of spinodal decomposition. At
short times, the main effect of anisotropic diffusion is a trivial
modification of the growth rate of density fluctuations. For later
stages of decomposition, anisotropy can significantly reduce the
coupling of different Fourier components. As a consequence of
which the growth of density fluctuations at wave numbers that lie
inside the range of linear stability is significantly slowed down. We
found that the nonlinear contribution to the density fluctuations is
highly sensitive to the degree of anisotropy. The slow growth of
Fourier components outside the range ko kc is significant even for
relatively small anisotropy. In the case of strongly anisotropic
diffusion, the growth of Fourier components outside the range
k o kc is strongly suppressed.

The results presented in this paper show that the dynamics of
spinodal decomposition become quite rich when the diffusion is
assumed to be anisotropic. However, there are some aspects that we
have not addressed in this paper. For instance, consider the case of
strongly anisotropic diffusion (Fig. 5). The secondary peak that is
located at kzsE 1.1 is well separated from the main peak located at
kzs E 0.5. It is natural to ask why the kz components between the
two locations do not grow for the times considered in Fig. 5. Another
aspect that we have not addressed is the quantification of the

intermediate time. This is particularly relevant in the case of strongly
anisotropic diffusion because of the possibility of formation of sharp
interfaces. These aspects require more mathematical analysis than
presented in this paper and will be investigated in the future.

In this paper we focused on a fluid system that exhibits
fluid–fluid phase transition. There are other dynamical phe-
nomena which are sensitive to spatial anisotropy of diffusion.
For instance, a colloidal system that exhibits freezing transition.
In such a system anisotropic diffusion is expected to have
important consequences for dynamical pattern formation
during the freezing transition.8 Another interesting phenomenon
is the laning transition in a sheared colloidal system.9,10,21 It will
be very interesting to study these phenomena using DDFT
together with anisotropic diffusion. Anisotropic diffusion can be
obtained in practise in a system of interacting colloidal particles
subjected to Lorentz forces. It will be very interesting to perform
Brownian dynamics simulations of such systems and study the
above mentioned dynamical phenomena.
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Fig. 7 Fourier components of the density fluctuations r(kz,t) along the
kz-direction is shown for times t̃ = s2t/Dxx with Dxx = 1. The diffusion in the
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and 1 in (d). Though anisotropic diffusion reduces the growth of kz-modes
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