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Abstract
Dynamic density functional theory calculations offluid–fluid demixing on spherical geometries are
characterized via their angular power spectrum aswell as via theMinkowski functionals (MFs) of their
binarizedfluid densityfields.MFs form a complete set of additive,motion invariant and continuous
morphologicalmeasures sensitive to nonlinear (spatial) correlations. The temporal evolution of the
fluid density fields is analyzed for different sphere sizes andmixing compositions. The demixing
process in the stages of early spinodal decomposition and consecutive domain growth can be
characterized by bothmethods and a power-law domain growth µ a( )L t t is evidenced for theMF
measures. The average domain size obtained by the structure factor only responds to the late stage
domain growth of the demixing process.MFs provide refined insights into the demixing process: they
allow the detection of distinct stages in the early spinodal decomposition, provide a precisemeasure of
the relative species composition of themixture and,most importantly: after a proper rescaling, they
allow the detection of a universal demixing behavior for awide range ofmixture fractions and for
different sphere sizes.

1. Introduction

If a binary fluidmixture is in the immiscible state it will start to dynamically demix in order to reach the
thermodynamically stable state of two coexisting phases. This phase separation can be split in two consecutive
regimes [1–3]: the spinodal decomposition in the early stage, followed by the domain growth stage. During
spinodal decomposition fluid density fluctuations increase exponentially and neighboring particles agglomerate
to formdisjoint domains. In the domain growth stage the size of these initial domains increases further and they
start to coalesce with neighboring domains in order to reduce the energy costs of the interface areas. As the
domainmorphology is preserved, this domain growth is self-similar in time. The self-similarity implies a time-
dependent characteristic length of themean domain size that can be described by a power-law
growth µ a( )L t t .

When the system is spatially confined, the phase separation kinetics are less well understood. Spatial
confinement can be imposed by obstacles and external fields [4, 5]. Another formof spatial confinement can be
achieved via the geometry of space itself [6]. Recently, the study of statistical physics processes on curved
surfaces, in particular on the sphere, has attracted growing interest and showed the richness of physical
phenomena that are influenced by their embedding on non-flat geometries. The crystallization of a colloidal
suspension on a spherewas explained via a icosahedrically symmetric order parameter that revealed the
long-range order of the crystal on the curved surface [7]. The projection of inhomogeneous crystals onto
homogeneous ones on curved surfaces enabled the prediction of defect distributions [8]. Also, unusual emergent
structures due to advectionwere demonstrated on a spherical geometry [9].
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Commonmethods for the characterization of demixing dynamics are based on linearmeasures: themean
domain size ismeasured via thefirst zero crossing of the radial correlation function or equivalently via the first
maximumof the power spectral structure factor [10–12]. However, thismethod is computationally expensive
[13]. Another drawback lies in the linearity of themethod. Themean domain size is not a sufficient descriptor of
the domainmorphology [3, 14, 15]. Thus, it is beneficial to extend the description of the demixing system to
morphologicalmeasures, which are sensitive to higher order correlations.

Morphologicalmeasures that capture the complete nonlinear structural information of a system are the
Minkowski functionals (MFs) [16]. They became a prominent tool formorphological data analysis since they
form a complete family of structural descriptors sensitive to nonlinear properties.MFs are well suited for the
investigation of demixing processes [3, 14, 15] and can readily be applied on spherical geometry [17–19]. In two-
dimensional flat and curved spaces theMFs are easily interpretablemeasures connected to concepts as area,
perimeter and the Euler characteristic. The Euler characteristic is ameasure for the connectivity of a spatial
structure.

In this workwe aim to systematically study the properties of dynamic density functional theory calculations
(DDFT) offluid demixing on a spherical geometrywith both linear and nonlinearmeasures. TheDDFT
calculations were already utilized as the basis for the studies in [6] and are reused here as a convenient starting
point for thefirst everMF analysis offluid–fluid demixing on spherical geometries. Initially we apply the
conventional linearmethod known in the flat space case to the spherical data: we calculate the angular power
spectral density and fit it to a general structure factor function in order to calculate the average domain size L.
These results are then comparedwith theMFmeasures.

This paper is structured as follows: in section 2we explain themethods and results for the calculation of the
phase separation dynamics on the spherical body. Section 3 describes themethod of the structure factor
calculation based on the angular power spectral density and the implementation of theMF calculation. The
results of power spectral density andMF analysis forDDFT calculationswith different sphere sizes andmixture
parameters are presented in section 4. Finally, in section 5 results are discussed and conclusions drawn.

2.Dynamic density functional theory calculations

This section is intended to give a brief overview of themethods and results found about phase separation on a
large spherical particle [6]. The data for the evolution of the density distribution during spinodal decomposition
forms the basis for theMF analysis discussed in thismanuscript.

In order to avoid any confusionwith terminology, wewill henceforth refer to the large particle as the ‘meso-
particle’ and the smaller,mobile particles constituting the fluid on its surface as the ‘surface particles’.

2.1. TheGaussian coremodel (GCM)
To represent the surface particles, we consider amodel binarymixture, thus two particle species, inwhich the
particles interact via the soft repulsive pair potential

b b= -( ) { } ( )v r r Rexp . 1ij ij ij
2 2

Here the non-negative parameters òij,Rij and b = -( )k TB
1determine the strength and range, respectively, of the

interaction between species i and j. TheGCMwas introduced by Stillinger [20] to study phase separation in
binarymixtures and has since been studied intensively, both in bulk and at interfaces [21]. Themodel has the
advantage that a simplemean-field approximation to the free energy provides good agreementwith computer
simulation data [22] and is therefore straight forward to incorporate in a density functional theory.

2.2.Mean-field free energy functional
Todescribe the collective behavior of the surface particles we use an approximation to the two-dimensional
Helmholtz free energy functional
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where thefirst and second terms provide the ideal and excess (over ideal, describing the particle interactions)
contributions, respectively. The subscripts i and j are species labels and the notation r[{ ( )}]ri indicates a
functional dependence on the one-body density profiles of all species.We set the (physically irrelevant) thermal
wavelengthλ equal to unity. For a binarymixture the species indicies are restricted to the values i, j=1, 2.
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In bulk, the number density of species i is r = N Vi i , whereV is the area in the 2d case andNi the number of
particles of species i. The total density is of the surface particles ρ=ρ1+ρ2.

It is convenient to introduce a concentration variable, themixture parameter x=N2/N, with the total
number of particlesN. This enables the species labeled densities to be expressed as ρ1=(1−x)ρ and ρ2=xρ. In
these variables the bulk free energy per particle consists of a sumof two terms, º = +f F N f fid ex. The ideal
part is given by

b r= - + - - +( ) ( ) ( ) ( ) ( )f x x x xln 1 1 ln 1 ln , 3id

and the reduced bulk excess free energy per particle can bewritten as

b
r

r r r r r r= + +( ˆ ˆ ˆ ) ( )f v v v
1

2
2 . 4ex 1 1 11 1 2 12 2 2 22

where * p=v̂ Rij ij ij
2 and * b=ij ij. In [6] the parameters = = =R R R 111 22 12 , * * = = 211 22 and * * = 1.03512 11

where chosen and the phase diagram for an infinite planar systemhas been calculated. This phase diagram is
shown infigure 1 and indicates thefive states that will be analyzed in this study for a largeR=10R11, respectively
a smallR=2.5R11 sphere. Even though themeso-sphere represents afinite size system the phase diagram for
the bulk systemoffers a useful guide.When the total density ρ becomes sufficiently large theGCMdemixes.

2.3.Dynamical density functional theory and numerical implementation
To study phase separation on the surface of ameso-particle wewill focus on the dynamics of the one-body
density of the surface particles. This can be obtained usingDDFT [23, 24].Within this approach the time
evolution of the density of species i is given by a
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Here γ is themobility and it is related to the diffusion coefficientsD as γ=βD. TheDDFT equation ofmotion
(5) is a generalized diffusion equation. The one-body density is driven by gradients in the local chemical potential
which arise from the particle interaction described by the functional for the free energy (2). If we insert the
functional of the ideal gas, we recover thewell knowndiffusion equation for a non interacting gas.

To solve theDDFT equation ofmotion (5) on the surface of ameso-sphere we chose to parametrize the
sphere using the spherical polar angles θ andf.With this approachwe have an accurate finite-difference scheme
for calculating the gradient and divergence of scalar- and vector fields. In additionwemake use of the
convolution theoremon the unit-sphere [6, 25] to efficiently compute the convolution of two scalar fields in the
space of spherical harmonic functions. The numericalmethods for solving equation (5) on the surface of a
sphere are described inmore detail in [6].

2.4.DDFT calculation results
For largermeso-sphere radii (R= 10R11)wefind standard spinodal decomposition dynamics for an equal
mixture, x=0.5, leading to a ‘half–half’ final state. As the value of x is reduced towards the spinodal, then the

Figure 1.Phase diagram for the planar system as a reference point. Binodal and spinodal curves, as well as the states analyzed in this
study are indicated. The states are Î { }x 0.1, 0.2, 0.3, 0.4, 0.5 for r =R 2511

2 . Parameters are = = =R R R 111 22 12 , * * = = 111 22 ,
* * = 1.03512 11. The critical point is found at r =R 9.094 56811

2 and x=0.5.
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phase separation dynamics are given by theOstwald ripening scenario [26], where islands of theminority phase
form,which then slowlymerge together (see figure 2). For the phase separation on the smallermeso-particle
(R= 2.5R11)finite-size effects becomemore important. In contrast to the behavior on the largermeso-sphere,
the density evolves here inmost cases into a ‘band’ state, where two islandswith species 1 form, separated by a
band of species 2 particles. This state is stable over a long time. The smaller we chose themixture parameter x the
longer themetastable band state lives. This enhanced stability of the band structure can be attributed to the fact
that the distance between the interfaces increases as the surface coverage of theminority phase is reduced
by reducing x. In the following analyses we only consider one of the species and call its density field

* *r rº( ) ( )t tr r, ,2 . Since their contributions aremirror images their information content is redundant.

t* is the dimensionless time given by * =t tD R11
2 , whereD is the bare diffusion coefficient.

Movies for all DDFT calculations are provided in the supplementalmaterial available online at stacks.iop.
org/NJP/21/013031/mmedia.

2.5. Equal area pixelisation
Using the python library healpy [27] forHEALPix the spherical coordinate grid (181×92=16652 pixel)
was interpolated on a equal area pixel gridwithNpix=12 288 pixel in order to apply theMF analysis
straightforwardly. TheHEALPix pixelisation scheme is a partition of a spherical surface into exactly equal area
quadrilateral pixels of varying shape [28] but uniform areaApix. The pixel size depends on theHEALPix
resolution parameter of the grid equal to = ¼N 1, 2, 4, 8,side corresponding to a total number of pixels of

= ´ = ¼N N12 12, 48, 192, 768,pix side
2 In this workwe use a resolution parameter ofNside=32, since this is

the closestmatch to the raw data in the spherical coordinate grid. In further studiesmuch higher resolutions can
be obtained. Infigure 2 the pixelization of the density fields *r ( )tr, is shown for both sphere sizes during the
evolution of time t*.

Figure 2.Mollweide projection of equal area pixelisation for theDDFT calculation data for x=0.3. Left column: (a), (c), (e), (g)
Evolution of the particle density *r ( )tr,2 of species two for the large sphereR=10R11. Right column: (b), (d), (f), (h)Evolution of
the particle density for the small sphereR=2.5R11.
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3. Spatial statistics

3.1. Angular power spectral density
Any scalar function r ( )n on a spherical geometry, where q f( )n , is a direction on the sphere, can be
decomposed into its spherical harmonics representation. The spherical harmonicsYlm form an orthonormal
base on the unit sphere. They are given by:

p
q=

+ -
+

f( )!
( )!

( ( )) ( )Y
l l m

l m
P

2 1

4
cos e . 6lm l

m mi

With indices Îl 0 and  -l m l .Pl
m are the Legendre polynomials. l is themultipole. The average solid

angleΩ corresponding to a specific l isΩ=4π/2l. Considering the division of the sphere in 2l equal slices, the
widest part of these slices corresponds to an angle γ=π/l. This translates into a length scale L=R·π/l, with
the sphere radiusR.

Then r ( )n can be expanded as:
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with harmonic coefficients alm given by the projection
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*◦ denotes the complex conjugate of ◦. The power spectrumCl of the scalar field ρ(n) can be defined as the
variance of the harmonic coefficients * d dá ñ =¢ ¢ ¢ ¢a a Clm l m ll mm l with
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TheCl are called the angular power spectral density. Since for any l there exist 2l+1modes ofm the total power
for themultipole l is given by +( ) ·l C2 1 l.

In the followingwe analyze the position lmax and value Cl,max of themaximumof the power spectral density.
lmax is ameasure for the length scale of themost dominant pattern. This quantity is the standardmetric to
characterize the domain growth of demixing processes [2, 3, 12, 13, 29]. Herewe also introduce the power Cl,max

as ameasure for the domain growth. Cl,max is ameasure for the dominance of themost predominant pattern (in
terms of spherical harmonics) of the function on the sphere.

The position of themaximum is determined, using the standard procedure, via fitting the off-critical fitting
function p pµ +( ) ( · ( ) ) [ ( · ( ) ) ]S l t l L t l L t, 2 2 2PS

2
PS

6 [30] and the average domain size LPS is identified
as pR lmax.

3.2.Minkowski functionals
Since the early 20th century [16]MFshave been known in integral geometry [31, 32] and became a prominent
tool formorphological data analysis [33]. They are able to characterize the geometry and shape of structural data
aswell as their topology and connectedness.MFs are sensitive to any n-point correlation function and thus can
provide new insights into physical processes beyond the capability of linearmethods, e.g. power spectral density
measures.

On the two-dimensional sphere 2 with radiusR inD=2 dimensions theD+1MFs n În { }M , 0, 1, 2
for a set ÍK 2 are the areaM0, the perimeterM1 and the Euler characteristicM2. They are defined as:
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Here,κ (r) is the local Gaussian curvature.
MFs aremotion invariant, additive and conditionally continuous. They form a complete family of

morphologicalmeasures. Or vice versa: Anymotion invariant, conditionally continuous and additive functional
is a superposition of the countablymanyMFs [34]. They are nonlinearmeasures sensitive to any higher order
correlations. They are homogeneous functions of order n-D :

l l=n
n

n
-( ) ( ) ( )M K M K . 11D
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There is a broad range of applications ofMFs, e.g. curvature energy ofmembranes [35], order parameter in
Turing patterns [36], density functional theory forfluids (as hard balls or ellipsoids) [37, 38], testing point
distributions (find clusters, filaments, underlying point-process) or searching for non-Gaussian signatures in the
cosmicmicrowave background [17–19, 39, 40].

In order to study themorphology of the smooth, scalar density fields *r ( )tr, , theMFs of the excursion sets
Kth of the equal area pixelization of the simulation data are calculated.Kth is the set of all pixels with density
values *r ( )tr, that are higher or at least equal to a threshold value ρth: * r r= Î{ ∣ ( ) }K tr r,th

2
th . These

pixelsmark the regions r on 2 that have a density *r ( )tr, greater or equal to the threshold density rth, at the
time t*.

By running over 101 equidistant threshold steps r kth, (with Î ¼{ }k 0, , 100 ) the density fields are binarized
into an active and a non-active part. Thefirst threshold step rth,0 is chosen such that every pixel on 

2 is active.
The last step rth,100 is reachedwhen all pixels are excluded and inactive.

For the implementation of the explicit calculation the algorithmproposed in [41] is adapted to computeMFs
of pixelizedmaps: due to the additivity of theMFs the calculation can be performed by the summation of local
contributions. Individual pixels are considered to be composed of 4 vertices, 4 edges and their interior area. The
total number of active pixels ns, the number of edges ne and vertices nv at the interface of active and inactive
pixels is counted. Then the areaM0, the integralmean curvature (or perimeter)M1 and the Euler characteristic
M2 can be calculated as sums:

=
=- +
= - +

M n
M n n
M n n n

4 2
.

0 s

1 s e

2 s e v

In order to avoid any double counting of edges or vertices the originalfield is built up iteratively by adding
active pixels to the initially empty temporary field individually. Only if all neighboring pixels have already been
built into the temporary field the edges and vertices are added to the total sum. The number of arithmetic
operations required to compute theMFs scales linearly with the number of active pixels and the total number of
pixels of the image.

4. Results

4.1. Power spectral density
The angular power spectral densities obtained for theDDFT calculations on different sphere sizesR andwith
differentmixture parameters x are presented in the supplementarymaterial.

The graphs for the average domain size,measured as the characteristic length scale p=L R lPS max, derived
from the positions ofmaximal power spectrum amplitudes lmax are presented infigure 3. In these graphs the
initial spinodal decomposition phase of nucleation cannot be observed. LPS is blind for the initial demixing
stage (exponential growth of density fluctuations)where yet no domain growth can be observed. However,
in the coalescence stage, an increase of LPS is found that can befitted to a power-law. The power law is better
reproduced in the large sphere graphs, since they allow formore individual domains,more coalescence events

Figure 3.Power spectrum analysis: The characteristic length scale p=L R lPS max is identified via the position of themaximumof the
angular power spectrum = =∣l l C Cmax l l,max . It is the standardmeasure for the average domain size. Different sphere radiiR andmixture
parameters x are color coded. Their values are indicated in the legend by 

/R R x,
2

11
2 . 2 denotes the two-dimensional sphere. As a guide

to the eye power-law fits are presented as green dashes lines. The signal for 2.5,0.1
2 is not shown. It is very small since no demixing

occurs during the calculation time.
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and therefore provide amore constant slope in the log–log plot. The small sphere graphs showplateaus between
power law growth. During plateau phases no coalescence of domains happens because of the lownumber of
individual domains on the small sphere. The onset of demixing ismuch later for the small sphere compared to
the large sphere. Also smallermixture parameters correlate with later times for the onset of demixing. In
particular for =R R2.5 11 and x=0.1 no demixing is observed during the complete DDFT calculation, ending
at * =t 105. The domain growth is faster for highermixture parameters, the exception being x=0.1: here the
demixing processes starts late but domain growth is fast.

4.2.Minkowski functionals
The dependence of theMFs on the threshold density ρth is presented in the supplementarymaterial.

The temporal evolution of theMFs is also presented in the supplementarymaterial. Here two plots are
shown representatively: figure 4 shows the area functionalM0 for themixing fractions x=0.3 in panel (a) and
x=0.5 in panel (b). The relative threshold value r rth th,100 is color coded. For early times there is a qualitative
difference for the regimes r r < xth th,100 and r r > xth th,100 forM0. (Also r( )M1 th and r( )M2 th have a higher
variance in the early time phase during spinodal decomposition. See supplementarymaterial.)The functional at
the crossover value r r  xth th,100 deviate significantly from the functional values at neighboring threshold
values. Any other threshold variations only show small changes in the shape of the curve. In the initialmixture
the density is r r  xth,100 , all relative threshold values below x result in almost no active pixels after
binarization, butmost pixels are active for higher thresholds. This leads to a sharp transition of theMFs from
detecting almost all pixels as active to detecting almost no active pixels at r r  xth th,100 . Thus it is easy to detect
the composition parameter x via the shape ofMF curves even only analyzing the initial phase of spinodal
decomposition.

After a certain point in time, however, the curves are essentially the same. This point can be identified as the
time *tc where the spinodal decomposition transitions from the early nucleation stage to the late stage
coalescence regime.With these curves *tc can easily be determined. In particular using non-morphological
measures like e.g. the correlation function the determination of *tc proves to bemore difficult and
computationally expensive [13].

TheMF graphs obtained on the sphere are in qualitative agreementwithMF calculated for spinodal
decomposition inflat two-dimensional geometry [14, 15].

4.3. Stages during spinodal decomposition
In the following analysis a specific threshold value rth is chosen for anyDDFT calculation. It is choosen such that
theminimal detected number of active pixels is close to 1. (This happens at r r  xth th,100 .)Then theMFs have
amaximal dynamic range. TheseMF graphs are presented, for the area functionalM0, infigure 5. In all
functional graphs both, the spinodal decomposition and the subsequent coalescence stage of demixing can be
evidenced. During spinodal decomposition theM0 area functional follows a power law. In the coalescence stage
it assumes a constant value since the individual domains only grow bymergingwith neighboring domains.M1

also grows fast during spinodal decomposition. However, during the coalescence stage it drops again, thus
providing ameans to easily determine the crossover time *tc . (Compare figure 6, or consult the supplementary
material.)Weobtain * ´t 2 10c

2 in the case ofR=10R11 and * ´t 2 10c
3 in the case ofR=2.5R11.

A difference in the shape of the graphs for the large and small sphere can be observed: in the large sphere
graphsM0 has a small, non-vanishing slope before themain growth phase evidences the initial nucleation. This

Figure 4.AreaMinkowski functionalM0, dependent on the relative threshold density r rth th,100, for large sphere =R R10 11.
Threshold values r rth th,100 are color coded. (a) x=0.3, (b) x=0.5.
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cannot be observed for the small sphere, where the slope changes rapidly from its zero value in the beginning to a
high value in the initial nucleation phase of the spinodal decomposition. (M1 shows the same behavior, shown in
the supplementarymaterial.)

In comparison to the power spectrummeasure presented infigure 3, theMF graphs are not as smooth since
they aremore sensitive to dynamical changes in the structure of density profiles. This allows theMFs to detect
features of the demixing process that is not accessible via power spectrum analysis. TheMFs resolve three
distinct phases in the early stage of spinodal decompositionwith different domain growth rates: (1) prior to the
spinodal decomposition, (2) initial spinodal decompostion, (3)main spinodal decomposition. None of these
stages can be detectedwith the standard demixingmetric L(t) obtained by the position of themaximumof the
power spectral density as can be seen infigure 3.When plotting themaximumof the angular power spectrum
Cl,max phases (1) and (2) can also be detected. (Shown in the supplementarymaterial.)Thus, themaximumof the
power spectral density is, in contrast tomeasures obtained by its position, able to detect the density fluctuation
growth characteristic to the spinodal decomposition in the early stage of demixing.

The dynamical range of theMFs depends only on the resolution of the data, since one can alwaysfind a
threshold value, such that theminimal number of active pixels is close to one. The upper limit is determined
by the number of active pixels after spinodal decompositionwhich scales with the resolution of the data. The
power spectrum analysis does not show such a resolution dependence that provides a higher dynamical range
proportional to the resolution. For the power spectral density a higher resolution only provides furthermodes l.

4.4. Characteristic length scale L
Since theMF n ( )M K are homogeneous function of order n-D (equation (11)) one can expect a scaling
behavior of theMFs for the scaling length L:

Figure 5.AreaMinkowski functionalM0 for threshold values r r  xth th,100 . Exact threshold values are r r Î [0.134, 0.212,th th,100

]0.316, 0.416, 0.515 4 . Different sphere radiiR andmixture parameters x are color coded. Their values are indicated in the legend by

/R R x,

2

11
2 . 2 denotes the two-dimensional sphere.

Figure 6. Scaling behavior of µM L1 1 reveal power law domain growth *µ aL t after spinodal decomposition. Different sphere
radiiR andmixture parameters x are color coded. Their values are indicated in the legend by 

/R R x,
2

11
2 . 2 denotes the two-dimensional

sphere. As a guide to the eye power-law fits are presented as green dashes lines. They are shifted in a parallel fashion (bymultiplication
with the factor 0.8) to enhance visibility.
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1

2
2

L can be interpreted as the characteristic size of demixed domains. Note that L can of be defined via different
methods, e.g. as the first zero crossing of the correlation function or as thefirstmoment of thewavelength
distribution [10, 11]. Thesewidely usedmethods are, however, computationally expensive [13]. The scaling
behavior of µM L1 1 is presented infigure 6. (For the plot of µM L1 2 consult the supplementarymaterial.)
It evidences the power law growth of domain size *µ aL t during the coalescence phase after spinodal
decomposition. The transition from spinodal decomposition to coalescence happens at about * ´t 2 10c

2 in
the case of =R R10 11 and * ´t 2 10c

3 in the case of =R R2.5 11.
For the small sphere only few disjoint domains exist and thus only few coalescence events happenwhere L

changes rapidly. The power law can however still be detected via themean slope in M1 1. For M1 2 the few
coalescence events result in non-smooth graphs resulting in poor linearfits.

Power-law exponentsα obtained by linearfits to the domain growth stages ( * *>t tc ) infigures 3 and 6 are
presented in table 1 for the large sphere and respectively in table 2 for the small sphere. Also the fit values for the
power spectrummeasures, the total power +( )l C2 1 l,max and the average domain size LPS are presented.
Uncertainties are given by the fit routine. Statistics generally are better for theMFs, in particular 1/M1 gives the
smallest statistical errors and provides themost comparable curves to a power-law. The angular power spectral
density basedmeasures have high uncertainties and in particular for the small sphere they only provide few
curves that allow for a power-law fit.

The power-law exponents are found to be close toα; 0.2. This is close to the predicted value in [42]. It is
smaller than the value of 1/3 that is predicted in the diffusive domain growth regime of the Lifshitz–Slyozov
growth law [29, 43]. Only in the case of themixture parameter x=0.5 the power-law exponent gets close to the
prediction in the diffusive regime.

4.5.Hints towards universal behavior
Motivated byfindings in [3] universal features in the demixing behavior on spherical geometries are
investigated.We hypothesize that the temporal development of the structure parameters becomes independent
of themixture parameter and sphere size by a suitable rescaling of axis. The rescaled time *tr is a function
* *= ( )t f t x R, ,r and the rescaledmeasuresmr are transformed via = ( )m g M x R, ,r for differentmeasuresM.
The specific scalings are obtained by empirically testing simple functions f and g. In order to remove possible
scaling effects due to themixture parameter x and the sphere sizeR, that influence the otherwise universal
dynamics,the simplest rescaling functions are products of the form * *= w W( ) ( )f t x R t x R R, , 11 and

= s S( ) ( )g M x R Mx R R, , 11 with real exponents w sW S Î, , , .Wefind universal behavior for theMFsM0

andM1. This is presented infigure 7where, after rescaling, the graphs forM0 andM1 coincide well for all sphere
sizes andmixture parameters >x 0.1. The time axis was scaled by * * -· · ( )t t x R R2 3

11
3 2.M0 was scaled

by themixture parameter as M M x0 0 infigure 7(b).M1 was scaled by themixture parameter and the sphere
Radius as  ( )M M x R R1 1 11

0.8 infigure 7(c). This hints towards a universal demixing behavior for these
systems.Only the graphs for x=0.1 show a different behavior due to their very late start of the demixing process

Table 1.Power-law exponentα during domain growth phase for the large sphereR=10R11.
Values are obtained via linearfits in the log–log plots infigures 3 and 6 for * *>t tc .

10000·α forR=10R11

+( )l C2 1 l,max LPS M1 1 M1 2

x=0.1 — 6221±23 — —

x=0.2 2240±24 2155±24 2245±13 2178±13
x=0.3 2304±23 2321±27 1921±12 1651±19
x=0.4 2676±28 2531±28 2351±14 2069±26
x=0.5 2190±57 2897±38 3052±21 946±47

Table 2.Power-law exponentα during domain growth phase for the small sphereR=2.5R11. Values
are obtained via linear fits in the log–log plots in figures 3 and 6 for * *>t tc .

10000·α for =R R2.5 11

+( )l C2 1 l,max LPS 1/M1 M1 2

x=0.1 — — — —

x=0.2 — 1320±160 792±29 1200±210
x=0.3 — — 1330±30 1000±200
x=0.4 — 1500±30 1894±32 2230±210
x=0.5 3254±38 4511±19 3052±21 —
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and thusmay have qualitatively different demixing behavior. The specific scaling of axis is obtained by empirical
testing of simple functions.

For the power spectralmeasures no rescaling of the axis could be found that leads to uniform graphs, see
figure 7(a). Since this could easily be achieved viaMFmeasures this suggests that nonlinear properties play a role
in the demixing process and that hence nonlinearmeasures, such as theMFs, are amore suitablemeans for the
analysis of demixing processes.

5. Conclusion and outlook

An angular power spectrum analysis forDDFT calculations of the demixing processes on a sphere is able to
detect different stages in the demixing process: the onset of spinodal decomposition, themain spinodal
decomposition stage and the coalescence stage after spinodal decomposition. A scale-free power law growth
µ aL t could be found for the domain size of demixed domains in the coalescence stage. The onset of themain

Figure 7.After a rescaling of axis hints of universal behavior are found in panel (b) forM0 and in panel (c) forM1. However, in panel
(a), no universal behavior is found for power spectral density +( ) ·l C2 1 l,max. Different sphere radiiR andmixture parameters x are
color coded. Their values are indicated in the legend by 

/R R x,
2

11
2 . 2 denotes the two-dimensional sphere.
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spinodal decomposition phase ismuch later on the small spherewith =R R2.5 11 compared to the large sphere
with =R R10 11. The same behavior is found for the crossover time between spinodal decomposition and
coalescence. Also themixture parameter x influences these times: smaller x shifts the onset of the spinodal
decomposition and also the crossover time to coalescence to later times. In the large sphere casemany nucleation
sites in the spinodal decomposition phase provide a large number of initially demixed domains. Thus during the
growth and coalescence phase the domain size power law yields a smooth function.However, in the small sphere
case only few nucleation sites exist and therefore also only few initially demixed domains exist after spinodal
decomposition and prior to coalescence. This leads to aworse statistic in detecting the domain growth power law
in the case of the small sphere.

Themain spinodal decomposition stage cannot be detectedwith the standardmethod of analyzing the
average domain size LPS provided by the structure factor ( )S l t, . Thismeasure is only responsive to the domain
coalescence in the late stage of demixing. Using themaximumof the structure factor, the power +( )l C2 1 l,max,
one can observe the spinodal decomposition stage prior to the coalescence of domains. TheMFs provide even
further insight: they reveal that themain spinodal decomposition stage actually is composed of two parts: at first
the functionalmeasuresM0 andM1 show a slow growth and after a specific value start to grow faster until the
beginning of the coalescence stage.MFs are able to resolve a further level of detail in the spinodal decomposition
process. A systematic evaluation of theMFs on further demixing systemsmight shed new light on the early stage
spinodal decompostion dynamics.

Another advantage ofMFs is their scaling behavior during the coalescence stage: The domain growth power-
laws are reproducedwith higher precision than using the angular power spectrummethod. TheMFs seem to be
a convenientmeasure to efficiently determine domain growth power-law exponents and shed light on a possible
connection between the growth rate and the domainmorphology.

TheMFs allow the precisemeasurement of themixture parameter x only observing the early stage spinodal
decompositionwithout knowledge of the demixed end state. Since the density in the initialmixture is
r r  xth,100 , all relative threshold values below x result in almost no pixels being active after binarization, but
almost all pixels are active for higher thresholds. This leads to a sharp transition of the value of theMFs
at r r  xth th,100 .

Themost interesting new insight gained by amorphologicalMF analysis is their universal behavior. By
applying a suitable rescaling, allMFs collapse onto a singlemaster curve. The only exception being the curve for
the smallestmixture parameter x=0.1, suggesting a qualitatively different demixing scenariowith amuch later
onset of phase separation. For highermixture parameters this shows that the analyzed demixing process has a
universal, parameter independent domain evolution. For the angular power spectrummeasures no suitable
rescaling of the axis could be found. This suggests that nonlinear properties play an important role in the
demixing process and thus that the inherently nonlinearMFs are a suitable tool for the characterization of this
process. In further studies wewill use surrogates [17–19] in order to disentangle the linear and nonlinear effects
of the demixing process and their impact on the behavior of theMFs.

This result immediately suggest further analysis of the binary demixing systemon spherical geometry:What
are the differences between the low and highmixture parameter classes and how is the transition between these
classes?Other questions worth of further examination are: Is this behavior influenced by the interaction
potential, and is there a connection to the flat three-dimensional case?

Hints towards universal behavior in demixing systems viaMF (and tensor) analysis were already discovered
in previous studies [3]. Here simulations of a three-dimensional systemwith a binary complex plasmawere
analyzed. A universal behaviorwas found for different screening length rations of a double Yukawa interaction
potential. There, also an exception of the universal behavior was found for a single screening length interaction
potential. Further investigation of the universal behavior of demixing processes on various geometries,
boundary conditions andwith various interaction potentials are vital in order to obtain a thorough
understanding of the fundamental properties of demixing systems. The preliminary analyses in this work and in
[3] suggest that further investigationwill lead to deeper insight into the physicalmechanisms of the demixing of
binary systems.

Applying higher ranked (tensor)Minkowski valuations to demixingDDFT calculations on spherical
geometries in further studiesmay shed further light on the features of the universal properties of the demixing
process. TensorMFon the two-sphere 2 were introduced and applied in [44, 45]. Higher rankedMinkowski
tensormeasures already proved to be useful in characterizing the solid–liquid phase transition in a two-
dimensional flat complex plasma [46]. Also the resolution of theDDFT calculations can be significantly
improved in further studies.

This study gives further evidence thatMFmethods are a powerful tool formorphological characterization of
physical processes. They are superior to conventional analysismethods in various respects: they directly provide
information on themorphology of structures, are inherently nonlinear, and are fast and easy to compute
(by only counting pixels) compared to correlation functionmeasures. They allow themeasurement of the

11

New J. Phys. 21 (2019) 013031 ABöbel et al



characteristic length scale Lwith high statistical reliability even for low resolution data.MF analysis is able to
quickly reveal new aspects of interest in particular in nonlinear (non-Gaussian) data. It is founded on a solid
mathematical framework, however it still provides easily interpretable results.
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