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Abstract
We prove local Hölder continuity of quasi-n-harmonic mappings from Euclidean domains
into metric spaces with non-positive curvature in the sense of Alexandrov. We also obtain
global Hölder continuity of such mappings from bounded Lipschitz domains.
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1 Introduction andmain results

1.1 Background

Given a mapping u : M → N between two Riemannian manifolds with dim M = n and
1 < p < ∞, there is a natural concept of p-energy associated with u. Minimizers (or more
generally, critical points) of such energy functionals are referred to as p-harmonic mappings
and harmonic mappings in case p = 2. The research on harmonic mappings has a long
and distinguished history, making it one of the most central topics in geometric analysis on
manifolds [31,40]. In his pioneering work, Morrey [35] proved the Hölder continuity of an
energy minimizing map when n = 2 (and smooth if M and N smooth). The breakthrough
in higher-dimensional theory of harmonic mappings was made by Eells and Sampson [5],
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where they proved that every homotopy class of maps from a closed manifold M into N
has a smooth representative, with N having non-positive curvature. See more results in,
e.g., Hartman [16] and Hamilton [14]. The regularity theory for harmonic mappings into
general target Riemannian manifolds has later been developed by Schoen and Uhlenbeck
in the seminal paper [38], and which obtained extension by Hardt and Lin [15] to general
p-harmonic mappings (1 < p < ∞).

Inspired by the celebrated work of Gromov and Schoen [11], where the authors proposed a
variational approach for the theory of harmonic mappings to the setting of mappings into sin-
gular metric spaces and successfully applied to important rigidity problems for certain discrete
groups, and by the fundamental work [28], where the authors established existence, unique-
ness and local Lipschitz regularity theory for harmonic mappings from compact smooth
Riemannian manifolds to singular metric spaces, harmonic mappings into or between singu-
lar metric spaces have received considerable amount of growing interest during the last twenty
years, with a particular emphasis on metric spaces of non-positive curvature in the sense of
Alexandrov (NPC); see, for instance, [1–4,12,13,20,21,24,25,33,34,43–45,47]. In particular,
in the research monograph of Eells-Fuglede [4], the authors extended the theory of harmonic
mappings u : � → X to the setting where � is an admissible Riemannian polyhedron and X
an NPC space. Gregori [10] further extended the existence and uniqueness theory of harmonic
mappings to the setting where X is a Lipschitz Riemannian manifold. Capogna and Lin [1]
extended part of the harmonic mapping theories to the setting of mappings from Euclidean
spaces to the Heisenberg groups. Sturm [43–45] developed a theory of harmonic mappings
between singular metric spaces via a probabilistic theory and (generalized) Dirichlet forms.
In the recent remarkable work of Zhang and Zhu [47], the authors proved the important
interior Lipschitz regularity of harmonic mappings from certain Euclidean domains to NPC
spaces. Parallel to the mapping case, the theory of harmonic functions on singular metric
spaces also gained growing interest in the last twenty years; see, for instance, [23,27,29,42]
and the references therein.

Besides the harmonic case (p = 2) and the intermediate case (1 < p < n), the borderline
case p = n also received special attention as they often enjoy better property than general
p-harmonic mappings. For instance, among other results, Hardt and Lin [15] showed that
minimizing n-harmonic mappings from an n-dimensional compact Riemannian manifold
into a C2 Riemannian manifold are locally C1,α for some 0 < α < 1; Wang [46] proved
that n-harmonic mappings into Riemannian manifolds (without boundary) enjoy nice com-
pactness properties; Mou and Yang [36] obtained that n-harmonic mappings are everywhere
regular in the interior, continuous up to the boundary (of a bounded smooth domain), and
have removable isolated singularities; see also [37] for a recent improvement of this result.
When the target metric space is the real line R, n-harmonic functions play a particularly
important role in the theory of quasiconformal mappings and quasiregular mappings; see,
for instance, [17,22] and the various references therein.

1.2 Main results

We first recall the following definition of quasi-n-harmonic mappings.

Definition 1.1 (quasi-n-harmonic mappings) Let � ⊂ R
n be an open domain and X a metric

space. A mapping u ∈ W 1,n(�, X) is said to be Q-quasi-n-harmonic, Q ≥ 1, if

En(u|�′) ≤ Q · En(v|�′)
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for every relatively compact domain �′ ⊂ � and every v ∈ W 1,n(�, X) with u = v almost
everywhere in �\�′, where En(u) is the n-energy of u defined as in Sect. 2.1.

Note that 1-quasi-n-harmonic mappings are also called n-harmonic mappings in the liter-
ature (see, e.g., Hardt and Lin [15]). When n = 2, we recover the class of quasiharmonic or
harmonic mappings. When X is a proper metric space, the existence of n-harmonic mappings
u : � → X follows from the classical direct method in the calculus of variations by noticing
the compactness of Sobolev spaces and the lower semi-continuity of the energy En ; see, e.g.,
[33, Theorem 2.3]. When X is a (possibly infinite dimensional) NPC space, considered as in
this paper, the existence of n-harmonic mappings is a special case of [13, Theorem 1.4].

Another typical non-trivial example in higher dimensions is given by the class of quasireg-
ular mappings (see Giaquinta and Giusti [8, Theorem 2.4]) between higher-dimensional
Euclidean domains, i.e., a mapping u : � → R

n satisfying |Du|n ≤ K det(Du). In par-
ticular, when u is a homeomorphism, we recover the well-known class of quasiconformal
mappings. Quasiconformal mappings are natural higher-dimensional extensions of the clas-
sical planar conformal mappings, and they are closely related to the so-called Un-harmonic
morphism in the sense of Heinonen–Kilpeläinen–Martio [17, Chapters 13 and 14]. Recall
that a mapping u : � → �′ is an Un-harmonic morphism if v ◦ u is an A′-harmonic function
of order n on � = u−1(�′) whenever v is an A-harmonic function of order n on �′ (see
[17, Chapter 3] for the precise definition of A-harmonic functions). Quasiconformal map-
pings are precisely those homeomorphic Un-harmonic morphisms (see, e.g., [17, Section
14.35]). More generally, quasi-n-harmonic mappings are a special case of quasiminima that
was initially studied by Giaquinta and Giusti [8] in Euclidean spaces.

Based on the recent solution of Plateau’s problem in proper metric spaces [32], Lytchak
and Wenger [33] considered the interior regularity of quasiharmonic mappings from
two-dimensional Euclidean domains to proper metric spaces. They proved that each quasi-
harmonic mapping u : � → X from a planar Euclidean domain to a large class of proper
metric spaces has a locally Hölder continuous representative.

Motivated by the above work of Lytchak and Wenger [33] and also by the recent develop-
ment of harmonic mappings in singular metric spaces, in this short note, we study interior and
boundary regularity of quasi-n-harmonic mappings from Euclidean domains to NPC spaces.

Our first main result can be viewed as a natural partial extension of the interior regularity
result of Lytchak and Wenger [33] to higher dimensions.

Theorem 1.2 Let � ⊂ R
n be an open domain and X an NPC space. Then each Q-quasi-n-

harmonic mapping u : � → X has a locally α-Hölder continuous representative for some α

depending only on Q and n.

We would like to point out the Hölder continuity in Theorem 1.2 is best possible even
when X = R; see [27,42]. As a corollary of Theorem 1.2, we obtain that each quasiharmonic
mapping from planar Euclidean domains to NPC spaces has a locally Hölder continuous
representative.

Corollary 1.3 Let � ⊂ R
2 be an open domain and X an NPC space. Then each Q-

quasiharmonic mapping u : � → X has a locally α-Hölder continuous representative for
some α depending only on Q.

Corollary 1.3 is not really new, and in fact, it follows from the proof of [33, Theorem 1.3].
Indeed, the main ingredients in their arguments are solvability of Plateau problem in proper
metric spaces and an energy filling inequality (i.e., [33, Theorem 1.5]). The solvability of
Plateau problem is well known in the context of NPC spaces (see, e.g., [13]), and the authors
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also pointed out the energy filling inequality holds for general NPC spaces. Thus Corol-
lary 1.3 follows from the proof of Theorem 1.3 there. However, our proof of Corollary 1.3
is more elementary and simpler, comparing with the more general proof there. On the other
hand, our proof relies heavily on the special structure of NPC spaces and hence seems hard
to be extended to the more general setting as considered in [33]. As to quasiharmonic map-
pings on higher-dimensional Euclidean domains (n ≥ 3), there is no hope to derive Hölder
continuity in this respect, even for quasiharmonic mappings into Euclidean domains (in this
case, quasiharmonic mappings are also named quasiminima). As pointed out in Giaquinta [7,
p. 253], there exists a quasiminima for some Dirichlet integral which is singular in a dense
set.

Our second main result concerns boundary regularity of quasi-n-harmonic mappings from
bounded Lipschitz domain to NPC spaces, which can be viewed as a natural partial extension
of [33, Theorem 1.4]. There have been extensive contributions for boundary regularity on
harmonic mappings in the literature which is impossible to list completely. We only mention
a few that are most related to our work. For mappings from bounded smooth Euclidean
domain to Euclidean spaces, we refer to Jost and Meier [26] in which more general result was
obtained. That is, bounded minimum of certain quadratic functional is proven to be Hölder
continuous in a neighborhood of the boundary with sharp Hölder exponent. For mappings
from a compact Riemannian manifold with boundary or from bounded smooth domain of
Riemannian manifolds to smooth Riemannian manifolds, we refer to Schoen and Uhlenbeck
[39] for harmonic mappings and Hardt and Lin [15] for p-harmonic mappings, respectively.
As for boundary regularity results on harmonic mappings from compact Riemannian domains
to NPC, we would like to refer to the work of Serbinowski [41]. Our result is new in the
setting of quasi-n-harmonic mappings.

Theorem 1.4 Let � ⊂ Rn be a bounded open domain with a Lipschitz boundary ∂� and X an
NPC space. Let u : � → X be a Q-quasi-n-harmonic mapping whose trace coincides with
the trace of h ∈ W 1,p(�, X) with p > n. Then u is α-Hölder continuous in a neighborhood
of ∂� for some α depending only on Q, n and p.

Above, the trace of u ∈ W 1,n(�, X) coincides with the trace of g ∈ W 1,p(�, X) is
equivalent to the requirement that d(u, g) ∈ W 1,n

0 (�) (see, e.g., [28, Section 1.12]). We
would like to point out that in [33, Theorem 1.4], the trace of u was required to be Lipschitz
continuous, which is a little bit stronger than what we have assumed in Theorem 1.4.

1.3 Outline of proof

Our main tool to prove Theorems 1.2 and 1.4 is the reverse Hölder inequality, which was
discovered by Gehring [6] in his celebrated work on higher regularity of quasiconformal
mappings and was later developed by Giaquinta and Modica [9] (see also [7]) and many
others in the theory of elliptic partial differential equations. In this note, we will use the
following local-type reverse Hölder inequality; see Proposition 5.1 of [9] or Proposition 1.1
of Chapter V of [7].

Denote by Q R ⊂ R
n a cube with side length R and let q > 1. Let g ∈ Lq

loc(Q1) and
f ∈ Lr

loc(Q1) (r > q) be two nonnegative functions. Suppose there exist constants b > 1
and θ ∈ [0, 1), such that for every x0 ∈ Q1 and 2R < dist (x0, ∂ Q1) the following estimate
holds

−
∫

Q R(x0)

gqdx ≤ b

{(
−
∫

Q2R(x0)

gdx

)q

+ −
∫

Q2R(x0)

f qdx

}
+ θ−

∫
Q2R(x0)

gqdx, (1.1)
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where −
∫

A f dx := |A|−1
∫

A f dx . Then, there exist ε > 0 and C > 0, depending only on
θ, b, q, n, such that g ∈ L p

loc(Q) for p ∈ [q, q + ε) and

(
−
∫

Q1/2

g pdx

)1/p

≤ C

{(
−
∫

Q
gqdx

)1/q

+
(

−
∫

Q
f pdx

)1/p
}

. (1.2)

In our arguments, to derive estimates of type (1.1) with suitable choices g and f , we will
borrow the idea from [8]. More precisely, we will compare u with “uη = (1 − η)u + ηp0”
for 0 ≤ η ≤ 1, which is well defined in NPC spaces. The main new ingredient in our proof
is certain new estimates on pullback tensors.

Our notations are rather standard. We will use C or c to denote various constants that may
be different from line to line.

2 Preliminaries

2.1 Sobolevmappings with value inmetric spaces

Let � be a domain in R
n and (X , d) a metric space. We follow Korevaar and Schoen [28] to

define Sobolev mappings u : � → X . Given p > 1, ε > 0, we define

eu
p,ε(x) = −

∫
Bε (x)

d p(u(x), u(y))

ε p
dy

for all x ∈ �ε := {z ∈ � : d(z, ∂�) > ε} and eu
p,ε(x) = 0 for all x ∈ �\�ε . For each

u ∈ L p(�, X), we define the approximate energy

Eu
p,ε( f ) = c(n, p)

∫
�

f (x)eu
p,ε(x)dx, f ∈ Cc(�),

where Cc(�) consists of continuous functions in � with compact support and c(n, p) > 0 is
a normalization constant. Then, u is said to have finite p-energy, written as u ∈ W 1,p(�, X),
if

E p(u) ≡ sup
f ∈Cc(�),0≤ f ≤1

lim sup
ε→0

Eu
p,ε( f ) < ∞.

By [28, Theorem 1.5.1], if u ∈ W 1,p(�, X), then the measures eu
p,εdx converges weakly

as ε → 0 to an energy density measure deu
p with total measure E p(u). Remark that � was

assumed to be bounded in Korevaar and Schoen [28]. This assumption can be removed via
exhaustion by relatively compact smooth subdomains and then apply the argument of [28],
ensuring that no mass from the limit measure deu

p accumulates on the boundary. Moreover,
by [28, Theorem 1.10], deu

p is absolutely continuous with respect to the Lebesgue measure.
In particular, there exists |∇u|p ∈ L1(�, R) such that

deu
p = |∇u|pdx .

When p = 2, we write |∇u|2 instead of |∇u|2. Note that in general

|∇u|p �= (|∇u|2)p/2

but they are comparable up to a uniform constant.
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There are also many other equivalent definitions of metric-valued Sobolev spaces, and we
recommend the interested readers to [19] for more information. As a special consequence of
the equivalence with Newtonian–Sobolev spaces, we have the following Sobolev–Poincaré
inequality for Sobolev mappings:

Lemma 2.1 For 1 < p < n, there exists a positive constant c(n, q, p) such that for each
p < q < p∗ = np

n−p

inf
a∈X

(
−
∫

B
dq(u, a)dx

)1/q ≤ c(n, p, q) diam B
(
−
∫

B
|∇u|pdx

)1/p
(2.1)

holds for every u ∈ W 1,p(�, X) and every ball B with 4B ⊂⊂ �.

Proof The proof is essentially the same as [30, Proof of Theorem 3.6] (whereas the idea
dates back to [18]). For the convenience of the readers, we include the main steps here.
Embed X isometrically in the Banach space V = l∞(X) such that X ⊂ V = (V, ‖ · ‖).
Let 	 ∈ V ∗ be such that L := ‖	‖V ∗ ≤ 1. Then 	 : V → R is an L-Lipschitz map and
f := 	 ◦ u ∈ W 1,p(�). Moreover, the standard Sobolev–Poincaré inequality for f implies
that for each q < p∗,

−
∫

B
| f − fB |qdx ≤ c(n, p, q)Lq(

diam B
)q

(
−
∫

B
|∇u|pdx

)q/p
,

where we have also used the fact that

|∇ f |p ≤ (
Lip 	

)p · gu ≤ c(n, p)L p|∇u|p

holds almost everywhere on B, where gu is the minimal p-weak upper gradient of u (see [19]
for precise definition) (and the last inequality comes from the equivalence of Newtonian–
Sobolev spaces [19, Section 10.4]).

If x, y are Lebesgue points of f , then letting B0 = B(x, 2|x − y|), Bi = B(x, 2−i |x − y|),
B−i = B(y, 2−i |x−y|) and using the standard telescoping argument, we obtain the following
useful pointwise inequality for f :

|	 ◦ u(x) − 	 ◦ u(y)| ≤
∑
i∈Z

| fBi − fBi+1 |

≤ c(n, p)L|x − y|
(

M2|x−y||∇u|p(x)1/p + M2|x−y||∇u|p(y)1/p
)
,

where

MR |∇u|p(x) = sup
0<r<R

−
∫

B(x,r)

|∇u|p(z)dz

is the standard restricted maximal function of |∇u|p .
The next step is to show that for almost every x, y ∈ B we have

‖u(x) − u(y)‖ ≤ c(n, p)|x − y|
(

M2|x−y||∇u|p(x)1/p + M2|x−y||∇u|p(y)1/p
)
. (2.2)

In this step, one can follow the arguments used in [30, the last paragraph in the proof of
Theorem 3.6] word by word. In fact, only the previous pointwise inequality for f is needed.

The final step is to show that the pointwise inequality (2.2) implies the following Sobolev–
Poincaré inequality: for each q < p∗,

inf
a∈Y

−
∫

B
d(u(x), a)qdx ≤ c(n, p, q)

(
diam B

)q
(
−
∫

B
|∇u|pdx

)q/p
. (2.3)
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The proof of this is more or less well known (see [30, Proof of Proposition 3.12] or the
monograph [19, Section 9.1]), and we include a sketch here for the convenience of the
readers. First, note that (2.2) together with Hölder’s inequality implies that

−
∫

B
‖u(x) − u B‖dx ≤ c(n, p, q) diam B

(
−
∫

B
M2 diam B |∇u|pdx

)1/p
. (2.4)

Fix 0 < ε < 1 (to be determined later), and, for t > 0, let

At = {
x ∈ B : ‖u(x) − u B‖ > t

}
.

For each i ∈ N, set Bi = {z ∈ � : |x − z| < 2−i diam B}. It is clear that Bi ⊂ 2B. At each
Lebesgue point x ∈ At of the map u : X → Y ⊂ V, we have

C(ε)t
∑
i∈N

2−i(1−ε) = t < ‖u(x) − u B‖ ≤
∑
i∈N

‖u Bi+1 − u Bi ‖

≤ c(n, p, q)−
∫

Bi

‖u(z) − u Bi ‖dz

≤ c(n, p, q) diam B
∑
i∈N

2−i
(
−
∫

Bi

M2 diam Bi |∇u|pdx
)1/p

.

Hence, there exists a positive integer ix such that

C(ε)t2−ix (1−ε) ≤ c(n, p, q) diam B · 2−ix
(
−
∫

Bix

M2 diam Bix
|∇u|pdx

)1/p
,

or equivalently,

Ln(Bix ) ≤ c(n, p, q)s
(

diam B

t

)ps
(∫

Bix
M2 diam Bix

|∇u|pdx
)s

Ln(B)s−1 ,

where s = n
n−pε

> 1 and ε < 1 is a fixed small number. Using the (5B)-covering lemma,
we easily obtain that

Ln(At ) ≤ c(n, p, q)s
(

diam B

t

)ps

Ln(B)1−s
(∫

4B
M4 diam B |∇u|pdx

)s

.

Set

C0 := c(n, p, q)s( diam B
)ps

(∫
4B

M4 diam B |∇u|pdx

)s

.

Then Ln(At ) ≤ C0
Ln(B)1−s

t ps and an easy application of the Cavalier’s principle (see [30,
Proof of Lemma 3.23]) gives∫

B
‖u(x) − u B‖qdx ≤ C

q
ps

0

(
q

q − ps

)q/(ps)

Ln(B)
1− q

p ,

which reduces to the desired inequality (2.3) upon noticing the L p-boundedness of the max-
imal operator. ��
Remark 2.2 In the case 1 < p < n, Lemma (2.1) holds with q = p∗ as well. This can be
proved by a truncation argument due to Hajlasz and Koskela. Since this stronger case is not
needed for the current paper, we do not include the proof here.
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In the borderline case p = n, one can similarly prove that

−
∫

B
exp

(( d(u, u B)

c1(n) diam B(−
∫

B |∇u|ndx)1/n

)n/(n−1)) ≤ c2(n)

for u ∈ W 1,n(�, X).
In the case p > n, one can similarly prove that each u ∈ W 1,p(�, X) has a locally Hölder

continuous representative (see also [32, Proposition 3.3]).

2.2 Metric spaces with non-positive curvature in the sense of Alexandrov

Definition 2.3 (NPC spaces) A complete metric space (X , d) (possibly infinite dimensional)
is said to be non-positively curved in the sense of Alexandrov (NPC) if the following two
conditions are satisfied:

• (X , d) is a length space, that is, for any two points P, Q in X , the distance d(P, Q) is
realized as the length of a rectifiable curve connecting P to Q. (We call such distance-
realizing curves geodesics.)

• For any three points P, Q, R in X and choices of geodesics γP Q (of length r ), γQ R

(of length p), and γR P (of length q) connecting the respective points, the following
comparison property is to hold: For any 0 < λ < 1, write Qλ for the point on γQ R which
is a fraction λ of the distance from Q to R. That is,

d(Qλ, Q) = λp, d(Qλ, R) = (1 − λ)p.

On the (possibly degenerate) Euclidean triangle of side lengths p, q, r and opposite
vertices P̄ , Q̄, R̄, there is a corresponding point

Q̄λ = Q̄ + λ(R̄ − Q̄).

The NPC hypothesis is that the metric distance d(P, Qλ) (from Qλ to the opposite vertex
P) is bounded above by the Euclidean distance |P̄ − Q̄λ|. This inequality can be written
precisely as

d2(P, Qλ) ≤ (1 − λ)d2(P, Q) + λd2(P, R) − λ(1 − λ)d2(Q, R).

In an NPC space X , geodesics connecting each pair of points are unique and so one can
define the t-fraction mapping ut of two mapping u0, u1 : � → X as ut = “(1 − t)u0 + tu′′

1,
that is, for each x , ut (x) is the unique point P on the geodesic connecting u0(x) and u1(x)

such that d(P, u0(x)) = td(u0(x), u1(x)) and d(P, u1(x)) = (1 − t)d(u0(x), u1(x)). We
refer the interested readers to [28, Section 2.1] for more discussions on NPC spaces.

2.3 Pullback tensors

Let� ⊂ R
n be a domain and X an NPC space. For each u ∈ W 1,2(�, X) and for any Lipschitz

vector fields Z , W on �, u induces an integrable directional energy functional |u∗(Z)|2,
and moreover, Korevaar and Schoen [28, Lemma 2.3.1] proved the following important
parallelogram identity

|u∗(Z + W )|2 + |u∗(Z − W )|2 = 2|u∗(Z)|2 + 2|u∗(W )|2.

8
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This property induces a pullback tensor π = πu over the Lipschitz vector fields on � by
setting

π(Z , W ) = 1

4
|u∗(Z + W )|2 − 1

4
|u∗(Z − W )|2.

It was proved in [28, Theorem 2.3.2]) that π is continuous, symmetric, bilinear, nonnegative
and tensorial. The pullback tensor generalizes the classical pullback metric u∗h for mappings
into Riemannian manifolds (N , h) and plays a fundamental role in understanding the structure
of harmonic mappings to NPC spaces in [28].

3 Proof of main results

First, we derive the interior Hölder continuity for quasi-n-harmonic mappings.

Proof of Theorem 1.2 Let BR ⊂⊂ � be a ball of radius R and let R
2 < t < s < R. Let

η ∈ C∞
0 (BR) be such that 0 < η < 1 on Bs\B̄t , η ≡ 0 outside Bs , η ≡ 1 on B̄t ,

|Dη| ≤ c(s − t)−1, {η = 1
2 } has zero Lebesgue measure and

∫
BR

1
(1−2η(x))4 dx < ∞. We

will compare the n-energy of u with the function uη := “(1 − η(x))u(x) + η(x)p′′
0 , where

p0 is chosen such that(
−
∫

BR

dn(u(x), p0)dx
)1/n ≤ 2 inf

a∈X

(
−
∫

BR

dn(u(x), a)dx
)1/n

We now show that for any smooth function η ∈ C∞
0 (�) which satisfies either 0 ≤ η < 1

2
or 1

2 < η ≤ 1, it holds

πuη ≤ πu − C(u0, p0, η) − ∇η ⊗ ∇d2(u, p0) + Q(η,∇η) − πu1−η

≤ (1 − η)πu + C |∇η|d(u, p0)|∇u|1 − ∇η ⊗ ∇d2(u, p0) + Q(η,∇η),
(3.1)

where

C(u, p0, η) = πu − P(u, p0, η) − P(u, p0, 1 − η)

is the auxiliary tensor defined in (2.4xiv) of [28] and

Q(η,∇η) = C
|∇η(x)|2d2(u(x), p0)

(1 − 2η(x))2

is quadratic in terms of η and ∇η defined as in [28, Lemma 2.4.2], for some constant C which
may be different from line to line. For this, we first prove the following estimate:

πu1−η
≥ ηπu − C(u, p0, η) − C |∇η|d(u, p0)|∇u|1 − Q(η,∇η). (3.2)

We first consider the case 0 ≤ η < 1
2 . In this case, by [28, (2.4xvii)], on {η > 0} we have

πu1−η
≥ P(u, p0, 1 − η) − C |∇η|d(u, p0)|∇u|1 − Q(η,∇η),

where C > 0 depends on n and P(u, p0, 1 − η) is a symmetric bilinear integrable tensor
defined in [28, Lemma 2.4.4]. Moreover, by [28, (2.4xvi)], we have

ηπu − C(u, p0, η) ≤ P(u, p0, 1 − η),

from which (3.2) follows. The desired Eq. (3.1) follows by combining (3.2) with [28, (2.4xv)].
The case 1

2 < η ≤ 1 can be proved similarly. Indeed, the only difference in this case would

9

ht
tp
://
do
c.
re
ro
.c
h



be the equation (2.4vii) of [28], where one needs to replace the negative term 1 − 2η(y) by
the positive term 2η(y) − 1. Then the equations (2.4xv), (2.4xvi) and (2.4xvi) hold (with
the same proof as in [28, Lemma 2.4.5]). Consequently, (3.1) holds by the same arguments
as in the first case. Since u ∈ W 1,n(BR, X), we have d(u, p0) ∈ L2n(BR) (indeed, in
any L p with p < ∞), this together with our choice that 1

(1−2η)2 ∈ L2(BR), implies that

Q(η,∇η)
n
2 ∈ Ls(BR) for some s = s(n) > 1 (by the Hölder’s inequality and by the proof

of Lemma 2.4.2 in [28]).
Set μ = n/2. Taking trace on both sides of Eq. (3.1) (for simplicity and without any

confusion, we denote the trace of π by the same symbol), and then taking the μ-th power on
both sides, we get

πμ
uη

≤ c(n)
(
(1 − η)μπμ

u + |∇η|μdμ(u, p0)|∇u|μ − (∇η ⊗ ∇d2(u, p0))
μ + Q(η,∇η)μ

)
.

Write g = Q(η,∇η)μ. Then, g ∈ Ls(BR) for some s > 1. Since u is Q-quasi-n-harmonic,
we obtain from the above inequality that

1

c(n)

∫
Bs

(|∇u|2)μdx ≤
∫

Bs

|∇u|ndx ≤ Q
∫

Bs

|∇uη|ndx ≤ C
∫

Bs

(|∇uη|2
)μdx

≤ C

(∫
Bs

(1 − η)μ(|∇u|2)μdx +
∫

Bs

|∇η|μ (
dμ(u, p0)|∇u|μ

+|∇d2(u, p0)|μ
)

dx +
∫

Bs

gdx

)

≤ C

(∫
Bs−Bt

(|∇u|2)μdx + 1

(s − t)μ

∫
BR

(
dμ(u, p0)|∇u|μ

+|∇d2(u, p0)|μ
)

dx +
∫

BR

gdx

)

≤ C

(∫
Bs−Bt

(|∇u|2)μdx + 1

(s − t)μ

∫
BR

dμ(u, p0)|∇u|μdx +
∫

BR

gdx

)

for some constant C > 0. By Hölder’s inequality and Young’s inequality, we have for any
ε > 0

1

(s − t)μ

∫
BR

dμ(u, p0)|∇u|μdx ≤ Cε

(s − t)n

∫
Bs

dn(u, p0)dx + ε

∫
Bs

(|∇u|2)μdx .

Thus, by taking ε suitably small, we derive from the above that∫
Bs

(|∇u|2)μdx ≤ C0

∫
Bs−Bt

(|∇u|2)μdx + C0

{
1

(s − t)n

∫
Bs

dn(u, p0)dx +
∫

BR

gdx

}

holds for some C0 > 0. Adding C0
∫

Bt
(|∇u|2)μdx on both sides of the above inequality and

then dividing by 1 + C0, we deduce∫
Bt

(|∇u|2)μdx ≤ θ

∫
Bs

(|∇u|2)μdx + C

{
1

(s − t)n

∫
Bs

dn(u, p0)dx +
∫

BR

gdx

}

for some C > 0, where θ = C0/(1 + C0) < 1.
Applying Lemma 3.2 of [8], we obtain∫

BR/2

(|∇u|2)μdx ≤ C
(

R−n
∫

BR

dn(u, p0)dx +
∫

BR

gdx
)
. (3.3)

10

ht
tp
://
do
c.
re
ro
.c
h



By the Sobolev–Poincaré inequality (Lemma 2.1), for n
2 < q < n, we get

R−n
∫

BR

dn(u(x), p0)dx ≤ C
( ∫

BR

(|∇u|2) q
2 dx

)n/q |BR |1− n
q .

Combining the above estimate and (3.3), we infer that∫
BR/2

(|∇u|2)μdx ≤ C
{( ∫

BR

(|∇u|2) q
2 dx

)n/q |BR |(q−n)/q +
∫

BR

gdx
}
.

Now, set w = (
(|∇u|2)μ)q/n , n

2 < q < n. It follows, for any BR ⊂⊂ �, that

−
∫

BR/2

w
n
q dx ≤ C

((
−
∫

BR

wdx

) n
q + −

∫
BR

gdx

)
. (3.4)

As commented in Sect. 1.3, the conclusion of Theorem 1.2 follows from the local-type reverse
Hölder inequality (1.2). The proof is complete. ��

Next we derive the boundary regularity for quasi-n-harmonic mappings. In [26, Lemma 1],
using boundary-type reverse Hölder’s inequality, Jost and Meier improved the integrability
of gradients of local minima for certain quadratic functionals f : � × R

N × R
nN close to

the boundary. We will generalize the arguments in our setting.

Proof of Theorem 1.4 Let x0 ∈ ∂� and V an open neighborhood of x0. Since � is Lips-
chitz and quasi-n-harmonic mappings are stable under bi-Lipschitz transformations, we may
perform a local bi-Lipschitz coordinate transformation such that x0, V ∩ � and V ∩ ∂�

get mapped onto 0, B+
1 , and 1, respectively. Here we denote by B+

R the open half ball
{x = (x1, · · · , xn) ∈ R

n : |x | < R, xn > 0} and R = {x = (x1, · · · , xn) ∈ R
n : |x | <

R, xn = 0}. It suffices to show that u ∈ W 1,q(B+
1/2, X) for some n < q = q(Q, n, p) ≤ p.

Fix any R < 1. We will show that if x ∈ B+
R ∪ R and r < 1 − R, then(

−
∫

Br/2(x)∩B+
R

|∇u| p̃dx

)1/ p̃

≤ c

(
−
∫

Br (x)∩B+
R

|∇u|ndx

)1/n

+ c

(
−
∫

Br (x)∩B+
R

(|∇h|p + g)dx

)
(3.5)

for some p̃ with p > p̃ > n.
The argument is quite similar with that of Theorem 1.2 and so we only point out the

differences. Fix x0 ∈ BR and s, t, r with 0 < t < s ≤ r < 1 − R. Let η ∈ C∞
0 (�)

be such that 0 < η < 1 on Bs(x0)\B̄t (x0), η ≡ 0 outside Bs(x0), η ≡ 1 on B̄t (x0),
|Dη| ≤ c(s − t)−1, {η = 1

2 } has zero Lebesgue measure and
∫

B1

1
(1−2η(x))4 dx < ∞. The

only difference with the proof of Theorem 1.2 is that we will compare the mapping u with
the mapping uη = (1 − η(x))u(x) + η(x)h(x).

By similar computation, we obtain that for any smooth function η ∈ C∞
0 (�) which

satisfies either 0 ≤ η < 1
2 or 1

2 < η ≤ 1, it holds

πuη ≤ (1−η)πu+ηπh+C |∇η|d(u, h)(|∇u|1+|∇h|1)−∇η⊗∇d2(u, h)+Q(η,∇η). (3.6)

Still set μ = n/2. Taking the trace on both sides of (3.6) and then the μ-th power on both
sides, we get

πμ
uη

≤ c(n)
(
(1 − η)μπμ

u + ημ|∇h|μ + |∇η|μdμ(u, h)(∇u|μ + |∇h|μ)

− (∇η ⊗ ∇d2(u, h))μ + Q(η,∇η)μ
)
.
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Using the Q-quasi-n-harmonic condition as in the previous proof, we obtain∫
Bs (x0)

(|∇u|2)μdx ≤ C

(∫
Bs (x0)−Bt (x0)

(|∇u|2)μdx +
∫

Bs (x0)

|∇h|ndx

+ 1

(s − t)μ

∫
Bs (x0)

dμ(u, h)(|∇u|μ + |∇h|μ)dx +
∫

Bs (x0)

gdx

)
.

Applying the Young’s inequality as before, we deduce∫
Bt (x0)

(|∇u|2)μdx ≤ θ

∫
Bs (x0)

(|∇u|2)μdx + C
∫

Bs (x0)

|∇h|ndx

+ C

{
1

(s − t)n

∫
Bs (x0)

dn(u, h)dx +
∫

Bs (x0)

gdx

}

for some C > 1 and θ < 1. Then it follows that∫
Br/2(x0)∩B+

R

(|∇u|2)μdx ≤ C

(
r−n

∫
Br (x0)∩B+

R

dn(u, h)dx +
∫

Br (x0)∩B+
R

(g + |∇h|n)dx

)
.

(3.7)
We first assume that the n-th component of x0 is no bigger than 3r/4. In this case,

d(u, h) = 0 in Br (x0)\B+
R and Ln

(
Br (x0)\B+

R

) ≥ cLn
(
Br (x0)

)
for some c = c(n) > 0. By

the Sobolev–Poincaré inequality and Hölder’s inequality, for n/2 < q̂ < n, we have

−
∫

Br (x0)∩B+
R

dn(u, h)dx ≤ Crn
(

−
∫

Br (x0)

(
(|∇u|2) q̂

2 + (|∇h|2) q̂
2

)
dx

) n
q̂

≤ Crn

{(
−
∫

Br (x0)

(|∇u|2) q̂
2 dx

) n
q̂ + −

∫
Br (x0)

|∇h|ndx

}
.

From now on, the remaining proof for this case has no much difference from that of Theorem
1.2 and so we omit the details.

If the n-th component of x0 is no less than 3r/4, we directly apply the proof of Theorem 1.2
to obtain interior regularity estimate of type (3.4) in which the balls BR/2 and BR are replaced
by Br/2(x0) and B3r/4(x0), respectively. This again implies (3.5). The proof is complete. ��
Acknowledgements The authors would like to thank Prof. Stefan Wenger for his interest in this work and for
his useful comments. They also wish to thank the referees for their valuable comments that greatly improve
the exposition.
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