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Using Floquet dynamical mean-field theory, we study the high-harmonic generation in the time-periodic
steady states of wide-gap Mott insulators under ac driving. In the strong-field regime, the harmonic
intensity exhibits multiple plateaus, whose cutoff energies €., = U + mE, scale with the Coulomb
interaction U and the maximum field strength E,. In this regime, the created doublons and holons are
localized because of the strong field and the mth plateau originates from the recombination of mth nearest-
neighbor doublon-holon pairs. In the weak-field regime, there is only a single plateau in the intensity, which

originates from the recombination of itinerant doublons and holons. Here, €., = Ay, + aFy, with A

aap the

band gap and a > 1. We demonstrate that the Mott insulator shows a stronger high-harmonic intensity than
a semiconductor model with the same dispersion as the Mott insulator, even if the semiconductor bands are
broadened by impurity scattering to mimic the incoherent scattering in the Mott insulator.
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Introduction.—The interaction between intense laser
fields and matter results in highly nonperturbative phe-
nomena. Among them, the high-harmonic generation
(HHG) is both interesting with regard to the underlying
physical processes and in view of potential applications
[I-4]. HHG in atomic and molecular gases has been
intensively studied for decades and is the basis of atto-
second science and new ultrafast imaging methods [3,4].
The recent observation of HHG in semiconductors has
renewed the interest in this field [5-14]. Originating from
the periodic arrangement of the atoms in solids, character-
istic features of the HHG spectra, different from those of
gases, have been observed. HHG in semiconductors can be
used to explore the electron band properties [5,7,11,12] and
the lattice structure [13], to probe electron dynamics on
ultrafast time scales [9,11], and to develop new high-
frequency laser light sources [11]. Theoretically, several
mechanisms for HHG in solids have been proposed
assuming weak correlations or an effective single-particle
picture [5-25], such as intraband electron dynamics,
interband contributions from electron-hole recombination
[9,18,19], and time-dependent diabatic processes [14,20].

A different class of insulators in solid state physics is the
Mott insulator (MI), which originates from strong elec-
tronic correlations, and the possibility of HHG in MIs has
recently been pointed out [26,27]. In MlIs, the excitation
creates doublons and holons instead of electrons and holes
in semiconductors, and their dynamics determines the
current and the HHG. However, in contrast to semicon-
ductors, excited charges cannot move freely in MIs because
of Pauli blocking and scattering. Therefore, the features of
the high-harmonic spectrum of MIs are not a priori clear,
and the current understanding of HHG in MlIs is very
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limited. Deeper insights into the underlying physics may
lead to applications of HHG in the ultrafast imaging of the
carrier dynamics in strongly correlated systems [26] and
open a new class of materials for use in light sources.

In this Letter, we shed light on the periodically driven MI
phase of the half-filled single-band Hubbard model. By
means of the nonequilibrium dynamical mean-field theory
(DMFT) [28], we reveal the general and fundamental
structure of the HHG spectrum and its relation to the
dynamics of the doublons and holons. Moreover, by
comparing the HHG in MIs and semiconductor models,
we find a different relation between the single particle
spectrum and the HHG spectrum in these insulators.

Formalism.—We consider the Hubbard model attached
to a thermal bath and driven by an ac field

H = —Z vi(t)el i+ UZ”WM + Hyan- (1)
i i

Here, CIG is the creation operator of an electron at site i with

spin o, v;; indicates the hopping parameter, (i, j) indicates
the nearest-neighbor sites, U is the interaction and g is the
charge. In the calculations, we use the gauge with pure
vector potential A () so that the effect of the electric field
E(r) appears in the phase of the hopping parameter
v;;(t) = v;; exp[—iq v/ drA(1)], where A(r) is related to
the electric field by E(7) = —0,A(¢). This is equivalent to a
pure scalar potential term ), ®(r;, t)c;c,-a = —E(1)-
(Ei’oric;cw) in the Hamiltonian. Hy,, represents a
thermal bath of noninteracting electrons (the Biittiker
model), which is introduced to describe the coupling of
the system to an environment [29-31]. When the system is
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FIG. 1.

(a) HHG spectra in the strong-field regime, (b) HHG spectra in the weak-field regime, and (c) HHG spectra as a function of the

field strength (E) and the harmonic energy (n€2). The arrows and the white circle markers show cutoff energies. White lines in panel
(c) indicate nQ2 = U 4+ mE, and the red line is the fit for the weak-field regime. The inset of panel (a) shows the current and electric field
during one period for Ey = 4.0. We use U = 8.0, f# = 2.0, ' = 0.06, Q = 0.5.

continuously excited by an external field with frequency €,
it reaches a time-periodic nonequilibrium steady state
(NESS) withaperiod 7 = (27/€), when the energy injected
by the field is balanced by the dissipation to the bath.

We consider a hypercubic lattice with lattice spacing a in
the limit of infinite spatial dimensions (v = [v*/(2v/d)]
with d — o0), which has a Gaussian density of states
ple) = [1/(y/mv*)] exp[—€*/v**]. The field is applied
along the body diagonal, A(f) = A(t)e, with e, =
(1,1,...,1) and gaA(t) = AysinQz, so that its strength
along a given axis is E(f) = —(Ay/qa)QcosQ =
—EjcosQt. For the thermal bath, we employ the
Biittiker model with a finite band width Wy,
—ImIR  (0) =T\/1 = (0/ Wy )?. In the following, we
setqg = 1,a = 1 and use v* as the unit of energy. In order to
clarify fundamental aspects of HHG in MIs, we focus on
systems where the Mott gap is large compared to the width
of the Hubbard bands, and the excitation frequency is much
smaller than the gap. We typically use U =8, f = 2.0,
I'=0.06, Wy, =5, Q =0.5.

To analyze the HHG spectrum, we focus on a NESS
calculated within Floquet dynamical mean-field theory
(FDMFT) [29-37]. We implement the FDMFT method
with the noncrossing approximation (NCA) as an impurity
solver [38,39]. NCA is the lowest order self-consistent
hybridization expansion and is expected to produce quali-
tatively correct results for large U.

Results.—In Figs. 1(a) and 1(b), we show the HHG
spectra in the strong field regime (E( 2 2) and the weak
field regime (Ey < 1). The HHG spectrum is evaluated
from the square of the Fourier transformation of the
dipole acceleration (d/dt)j(t) as I,,(nQ) = |nQj(nQ)*
[16,20,26] with n € Z, which is proportional to the power
radiated at the given frequency. Here, the current is defined
as j(t) = ig)_; ; ,vij(t)(eo - ri—j)<cia(t)cj,a(t)> = ey j(7)
and j(nQ) = (1/7T) | die™<j(7). In the inset of Fig. 1,
we show an example of the time evolution of the electric
field and the induced current during one period. Because of
the inversion symmetry, only odd frequency components
appear in the HHG spectrum.

When the field is strong, the HHG spectrum initially
increases with increasing order n and exhibits a wide
plateau, see Fig. 1(a). After this first plateau, the intensity
suddenly drops, but other plateau structures exist at higher
harmonic energies. On the other hand, when the field is
weak, the HHG spectrum first drops and then shows a
plateau, after which the intensity vanishes exponentially,
see Fig. 1(b). In both regimes, the cutoff energies mono-
tonically increase with increasing field strength.

In Fig. 1(c), we show the HHG spectra as a function of
E, and the harmonic energy (n€2). The cutoff energies of
the plateaus are indicated by white markers [40]. The HHG
spectra have nontrivial structures: (i) the intensity is strong
in the triangular region U — Ey < nQ < U + E, (ii) there
is an enhanced intensity around Ey = U/2 = 4, and (iii) the
intensity is suppressed for 5 < Ej < 6. In the strong-field
regime, the cutoff energy scales as €.y, = U + mE;. On
the other hand, in the weaker field regime, the cutoft energy
of the first plateau e, ; scales as €., ; = A + aFE,, where
A(# U) is an offset and a > 1 is not an integer. These
features are generic, as we confirmed by changing Q and
U [39].

We now discuss the origin of the HHG in MlIs. There are
two contributions to the current: the doublon or holon
hopping (jpep) and the doublon-holon recombination and/
or creation (j.) [39]. The former is analogous to the
intraband current in a semiconductor, while the latter
corresponds to the interband current, which represents
recombination and/or creation of electron-hole pairs.
One can approximately evaluate both contributions by
means of a generalized tunneling formula for NESSs
[35,39,41], which works quantitatively very well in the
parameter regime considered here. Such an analysis shows
that the contribution from the recombination of doublons
and holons (j,.) dominates the current and is responsible for
the plateaus both in the weak and strong field regimes [39].

In the strong field regime, this scenario of a dominant
recombination-creation current is further supported by the
fact that the cutoff energy is proportional to U (the
contribution from doublon or holon hopping should not
depend on this energy scale [42]). Thus, we can argue that
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FIG. 2. (a) Time-averaged local spectral function [A(a))] of the
nonequilibrium steady state as a function of E,. (b) Field-strength
dependence of the time-averaged doublon density (dy = (n4n,))
in the NESS. (c) Log-scale plot of the temporal HHG intensity
L (@3 tyrope) for Q= 0.5, Ey =4.0. The dashed lines are
@ = U £ mE(t). Vertical lines indicate 7, = 0,7 /2, 7. Here,
U=2380, p=2.0, I'=0.06, and Wy, = 5. (d) Field-strength
dependence of the cutoff energy in the weak-field regime for
various U. Dashed lines are linear fits and the arrows at Ey = 0
indicate the gaps estimated from the local spectral functions.

the different HHG plateaus originate from the recombina-
tion of a doublon-holon pair which is separated by m sites:
When E| is comparable or larger than the width of the
Hubbard bands, doublons and holons remain almost
localized. Indeed, the spectral functions in the NESS show
clear Wannier-Stark peaks in the strong field regime
[35,43], see Fig. 2(a). The recombination of a doublon-
holon pair separated by m sites along the positive field
direction releases the energy U + m|E(t)| at a certain time
t. This scenario consistently explains the main character-
istic features of the HHG spectra in the strong-field regime.
Since E(t) oscillates between —E, and E, one expects that
the light emitted from the recombination of an mth nearest-
neighbor doublon-holon pair lies in the triangular region
U-mEy<nQ<U+mE,, which naturally explains the
prominent HHG in the dominant m = 1 sector, and the
weaker cutoffs at larger m. Second, when the doublon and
holon density is small (large), there are less (more)
doublons and holons to recombine, which leads to a low
(high) HHG intensity. Indeed, we find that in the NESS the
doublon (and holon) number is suppressed around
Ey~5.5, see Fig. 2(b), which explains the valley in the
HHG spectrum. The decrease of the double occupancy in
the energy range U/2 < E < U comes from the absence of
resonant tunneling processes. Similarly, the intense HHG
spectrum around Ey = U/2 =4 is explained by an
enhanced number of doublons. The peak in I, and in
the time-averaged doublon number is slightly shifted
upward relative to Ey = U/2. This can be explained by
the oscillation of the field, which implies that larger field

strengths are necessary for efficient tunneling to the next
nearest neighbor site.

The scenario of recombination of mth neighbor
doublon-holon pairs is also confirmed by investigating
the temporal structure of the HHG signal. We performed a
windowed Fourier transformation of (), j(®;fprobe) =
[ die™ j(E)W (T tyrone) and  evaluated Ty (@; forope) =
|0 (05 tyrobe) |*- Here, W(£; fyone) is the Blackman window
function with a half-window of length 2 centered at
I = Iprope- In Fig. 2(c), we show the result for £, = 4.0
on a logarithmic scale. The intensity peak at each 7.
essentially follows w = U £ E(¢), and we observe a
sudden drop of the intensity near w = U £ 2E(z). In
particular, the w = U + E and ® = U + 2E,, components
are strong around |E(¢)| = E,, as expected from the
scenario above.

In the weak-field regime (£, < 1), the cutoff scales as
€1 = A+ aE, with some noninteger constant «, see
Fig. 2(d). The offset A, determined from extrapolations
Ey — 0, essentially coincides with the gap size [see arrows
in Fig. 2(d)], which scales linearly with U. Again, this
leads to the scenario that the HHG around the cutoff
energy originates from doublon-holon recombination. In
the weak-field regime, the almost unrenormalized spec-
trum [Fig. 2(a)] shows that the excited doublons and
holons are not localized by the field and, thus, can move
around the lattice to gain kinetic energy (ponderomotive
energy Ey;,) and emit this energy in the recombination
process. This leads to emission at nQ2 = A,,, + Ey, in
analogy with the three-step model for HHG in atoms and
semiconductors [1,2,19]. Hence, the minimum emission
energy from this process is Ayyy.

These results indicate that similar charge dynamics, as in
semiconductors, also controls the HHG in MIs, despite the
very different nature of these systems. In semiconductors,
when the field is not too strong, the HHG is related to
the recombination of itinerant electrons and holes in the
valence and conduction bands [19], which yields a linear
field dependence of the cutoff energy with an offset. In the
strong-field regime, a quasistatic electric field analysis
shows that the HHG originates from transitions among
the localized Wannier-Stark states of the conduction and
valence electrons, which results in multiple plateaus in the
HHG spectrum [17].

In spite of these similarities, we now show that the
relation between the single particle spectrum and the HHG
intensity is very different in MIs and semiconductors. To
this end, we study a semiconductor model with a valence
band and a conduction band, corresponding to the upper
and lower Hubbard band, respectively. Since, in the
Hubbard model, the hopping of electrons in MIs leads
to the creation of a doublon-holon pair at neighboring sites,
we introduce the transfer integral between the different
semiconductor orbitals at the neighboring sites. The result-
ing Hamiltonian reads
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FIG. 3. (a) Schematic picture of the semiconductor model,
Eq. (2). (b)-(d) HHG spectra I, in the plane of E, and nQ.
(b) Type 1 semiconductor model. (c) Same model with additional
impurity scattering Vi, = 0.55. (d) Type 2 semiconductor
model. The color scale is the same as in Fig. 2 and Q = 0.5,
U=8, =20, =0.06.

Hsemi(t) =~ Z U?_’j(t)cj-acja - szc)v(l) (Cj-ccjv + ijc.fﬁ)
(i.j). (i)

+ ZDac:facia, (2)

i,a

with D, the band center for band a = {v, c}, see Fig. 3(a).
In order to mimic the Hubbard model, we choose D, =
—U/2 and D. = U/2. The effect of the electric field is
included via the Peierls substitution, and we consider the
NESS by attaching a Biittiker-type thermal bath. One
reasonable way to determine the hopping parameters is
to choose them such that the bands of the semiconductor
model show a similar dispersion as the Mott insulator. In
particular, when the Coulomb interaction is large compared
to the hopping, one may naively expect that the dispersion
is given by the Hubbard I (H1) approximation, which is
based on the atomic-limit self-energy X% (w) = (U?/4w)
[44]. Then, the dispersion of the upper and lower Hubbard
bands becomes €y . = (€, £ \/€ef + U?)/2, which is
reproduced by choosing v¢ = v” = v = 0.5v (we call
this the “type 17 model). The HHG spectrum of the type 1
semiconductor is shown in Fig. 3(b). The structure of the
HHG spectrum is qualitatively very similar to that from the
Hubbard I approximation [39], and one observes cutoff
energies that scale with U + Ey and U + 3E,,. However, the
model underestimates the HHG spectrum in the weak to
intermediate field regime, because electron-hole pairs are
not efficiently created.

One major difference between the semiconductor model
(or the H1 approximation) and the Hubbard model at finite
U is that it shows sharp peaks in A(k, w), see Fig. 4. In the
Hubbard model, even though the peak position of A(k, @)

0.5

0.8 0.4r
0.6 L
\3/0.3

02 T 0.2f

FIG. 4. (a) Momentum dependent spectral function A(k, w) of
the Mott insulator in equilibrium. The white lines show the peak
position predicted by the H1 approximation and the type 1
semiconductor, while the dashed orange lines show the dispersion
of the type 2 semiconductor. (b) Comparison between the local
spectrum Aj,.(w) and A(k, ) at e, = 0 [A ] obtained within
DMFT, HI, and for the type 1 semiconductor with V;,,, = 0.55
(S +D).

at each ¢; roughly follows the prediction of the HI1
approximation, there is a substantial width, comparable
to the free electron band width, see Fig. 4(b). The
incoherence originates from the charge dynamics in a
random spin background and does not vanish in the limit
U — o0 [39,45]. The broadening of the single-particle
spectrum can be reproduced in the type 1 semiconductor
model by adding impurity effects through the self-energy
Zimp(1, 1) = VipGiroc (1, 7'), as in Ref. [16], see Fig. 4(b).
However, as shown in Fig. 3(c), the resulting HHG
spectrum also does not reproduce the HHG spectrum of
the ML This implies that the strong high-harmonic signal of
MIs is not simply related to the broadening of the bands.

Finally, we mention an interesting observation. The
previously proposed three-step models and the strong-field
theory have been discussed for semiconductors with a
direct gap. By flipping the hopping of the valence band
v¢ = —v" = v’ = 0.5v (we call this the “type 2”” model),
we realize a direct gap in our semiconductor model. In this
case, the single particle dispersion is qualitatively different
from the dispersion of the MI [Fig. 4(a)]. However, as
shown in Fig. 3(d), the resulting HHG spectrum reproduces
the qualitative features of the HHG spectrum of the MI. In
the weaker field regime, the HHG spectrum has a unique
plateau and the cutoff energy grows as aE, with a > 1,
while in the stronger field regime, there emerge multiple
plateaus with cutoff €. ,, = U + mkE,. This model also
reproduces the characteristic structures (i) to (iii) observed
in the HHG spectrum of MIs.

Conclusions.—We revealed the general features of the
HHG in wide-gap MIs under continuous ac driving. In the
strong-field regime, the HHG spectra show multiple pla-
teaus, which is explained by the recombination of localized
doublons and holons at mth nearest neighbor sites. In the
weak-field regime, the HHG spectra show a single plateau,
which comes from the recombination of itinerant doublon-
holon pairs. The different nature of Mls and semiconduc-
tors is reflected in a very different relation between the
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high-harmonic spectrum and the single particle spectrum,
even though the HHG spectra become qualitatively similar
under some conditions.

Strongly correlated systems are known for their high
degree of tunability and exotic phases. In addition, they are
a playground for photoinduced phase transitions between
different phases. Therefore, they are an interesting platform
to search for new sources of HHG, and ultrafast imaging
based on HHG might be useful to understand the electron
dynamics involved [26]. Developing a detailed under-
standing of the HHG profile in different classes of
correlated materials is an interesting topic for future work.
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