SUPPLEMENTAL MATERIAL:
Influencers identification in complex networks

through reaction-diffusion dynamics

I. SUPPLEMENTARY FIGURES AND TABLES
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FIG. S1. Contact-network spreading model: a comparison between nodes centrality and node spreading ability ¢ in the real
networks analyzed in the main text. Each panel shows the Pearson linear correlation r between nodes centrality and nodes
spreading ability ¢g. Differently from the main text (Fig. 3 and Fig. 4), the metrics considered in addition to ViralRank (v) are
PageRank (7), with dumping parameter ¢ = 0.85 and degree centrality (k). Results are for: (a) 9/11 terrorists, (b) email, (c)
jazz collaborations, (d) network scientists co-authorships, (e) protein interactions and (f) Facebook friendships. The PageRank
performance is qualitatively similar but always worse than that of the degree centrality.
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FIG. S2. Contact-network spreading model: a comparison between nodes centrality and nodes spreading ability ¢ in real
networks. Pearson linear correlation between nodes centrality and ¢ as a function of 3/8. for six additional datasets: (a) karate
club friendships, (b) dolphins interactions, (c¢) characters co-appearances in the novel 'Les Miserables’, (d) C.elegans neural
connections, (e) U.S. domestic flights and (f) U.S. powergrid supply lines. The structural properties of these networks, and of
all other datasets, are reported in Table S1.
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FIG. S3. Correlation in the full parameter space (8, ) for 9/11 terrorists network.
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FIG. S4. Correlation in the full parameter space (8, u) for jazz collaborations network.
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FIG. S5. Correlation in the full parameter space (8, u) for network scientists co-authorships network.



transmission probability (3

1.0 0.0

I 0 0.0

recovery proba bility 1

0.75
0.50
0.25 .
LR NBC

RWA

1.0

1.0
0.9

0.8

(- q)

FIG. S6. Correlation in the full parameter space (8, ) for protein interaction network.
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FIG. S7. Correlation in the full parameter space (8, u) for Facebook friendships network.

[ N[ LID[ C] B[ ]  Bc|Bu/B:|Ret]
Karate 34 78| 5(0.57] 4.59| 35.65(0.1477| 2.50| [1]
Terrorists 62| 152| 5/0.49| 4.90| 40.03]0.1396| 2.50| [2]
Dolphins 62| 159| 8|0.26| 5.13| 34.90|0.1723| 2.00| [3]
LesMiserables| 77| 254| 5|0.57| 6.60| 79.53|0.0905| 3.50| [4]
Email 167| 3250| 5|0.59|38.92(2508.78|0.0158| 6.50| [5]
Jazz 198| 2742| 6(0.62]27.70{1070.24|0.0266| 4.25| [6]
Celegans 297| 2148| 5[0.29|14.04| 365.70(0.0399| 5.75| [7]
NetSci 3791 914(17|0.74| 1.15 9.2210.1424| 2.00| [§]
U.S. Flights 500| 2980| 7|0.62|11.92| 641.12|0.0189| &.00 [9]
Protein 1458 | 1948(19|0.07| 2.08 14.8510.1632| 2.25 [10]
Facebook 4039|88234| 8|0.61]43.69|4656.14|0.0095| 4.75]| [11]
PowerGrid 4941| 6594|46|0.08| 2.67| 10.33]0.3483| 1.50| [7]

TABLE S1. Structural properties of all the datasets analyzed.

The different

columns are the number of nodes and links N
and L, the diameter D, the global clustering C, the first and second moment of the degree distribution (k) = 1/N >, k; and
(k:2> =1/NY, k2 and the epidemic threshold fS.; the last two columns are the upper-critical value 3, above which ViralRank
outperforms all the other metrics and the data source, respectively.
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