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1 Introduction

The majority of studies on treatment, policy, or impact evaluation confine themselves to assessing

the total effect of a treatment on an outcome of interest, such as the average treatment effect (ATE).

At the same time, however, a range of studies makes conjectures about potential mechanisms that

may underly soem total effect. It is thus not only the ‘effect of a cause’, i.e. the treatment effect,

that seems policy relevant in many problems, but also the ‘cause of the effect’, i.e. the mechanisms

through which the total effect materializes, see Gelman and Imbens (2013). As an example,

consider the employment or earnings effect of an active labor market program, such as a training.

On top of the overall effect, policy makers might want to know to which extent the program’s

impact stems from a change in search effort, human capital increase, or other intermediate variables

that are themselves influenced by training participation. In fact, a better understanding of the

mechanisms that drive the effect may help improving the design of such programs.

Causal mediation analysis aims at disentangling a total treatment effect into an indirect effect

operating through one or several intermediate variables – commonly referred to as mediators –

as well as the direct effect, which includes any causal mechanisms not operating through the

mediators of interest. Even under random treatment assignment, direct and indirect effects are

generally not identified by bluntly controlling for mediators without accounting for their possible

endogeneity, as this likely introduces selection bias, see Robins and Greenland (1992). Much of the

earlier work on mediation analysis (see for instance the seminal papers of Cochran (1957), Judd

and Kenny (1981), and Baron and Kenny (1986)) typically relied on linear models for the mediator

and outcome equations and often neglected endogeneity issues.

An example for how careless conditioning on a mediator might flaw identification is the evalu-

ation of the effect of mother’s smoking behavior during pregnancy on post-natal infant mortality,

see Wilcox (2001) and Hernandez-Diaz, Schisterman, and Hernan (2006). In general, the empir-

ical literature finds a positive relationship between smoking and infant mortality. However, sev-

eral studies point out that among those children with the lowest birth weight, smoking appears to

decrease mortality. As acknowledged by Hernandez-Diaz, Schisterman, and Hernan (2006), this

paradox is most likely due to not controlling for (important) confounders when conditioning on

low birth weight as mediator. In fact, if smoking is a less lethal cause of having a low birth weight

than other reasons like birth defects, then the mortality of children with a low birth weight due to

birth defects is higher than among those whose mothers smoked during pregnancy.
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More recent research in mediation analysis considers more general identification approaches

based on the potential outcome framework commonly used in treatment evaluation and aims

at tackling confounding. Examples include Robins and Greenland (1992), Pearl (2001), Robins

(2003), Petersen, Sinisi, and van der Laan (2006), VanderWeele (2009), Imai, Keele, and Yamamoto

(2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto (2013), Tchetgen Tchetgen

and Shpitser (2012), and Vansteelandt, Bekaert, and Lange (2012). The vast majority of the

literature obtains identification by assuming that the treatment and the mediator are conditionally

exogenous given observed characteristics.

Such or related assumptions have also been used in empirical economic research. See for

instance Simonsen and Skipper (2006), who evaluate the direct wage effect of motherhood,

and Flores and Flores-Lagunes (2009), who evaluate the direct earnings effect of Job Corps

when controlling for work experience as mediator. Heckman, Pinto, and Savelyev (2013) and

Keele, Tingley, and Yamamoto (2015) investigate cognitive and non-cognitive mechanisms of

the Perry Preschool Program. Conti, Heckman, and Pinto (2016) assess the effect of the Perry

Preschool Program and Carolina Abecedarian Project on health and healthy behaviour mediated

by personality traits. Bijwaard and Jones (2018) evaluate the effect of education on mortality,

considering cognitive ability as mediator. Bellani and Bia (2018) examine education as mediator

through which growing up poor affects economic outcomes in adulthood in the EU. Huber (2015)

applies the causal mediation framework to the context of wage gap decompositions using data

from the U.S. National Longitudinal Survey of Youth 1979. Huber, Lechner, and Mellace (2017)

investigate whether the employment effect of more rigorous caseworkers in the counselling

process of job seekers in Switzerland is mediated by placement into labor market programs.

Huber, Lechner, and Strittmatter (2018) evaluate the employment effect of awarding vouchers

for vocational training to unemployed individuals in Germany, and whether there exists a direct

effect net of actual redemption, which may for instance be driven by preference shaping or

learning about available programs.

For studies using instrumental variables for identification, see for instance Powdthavee, Lek-

fuangfu, and Wooden (2013), who estimate the indirect effect of education on life satisfaction run-

ning through the mediator income. Brunello, Fort, Schneeweis, and Winter-Ebmer (2016) investi-

gate the effect of education on health mediated by health behaviors. Chen, Chen, and Liu (2017)

assess the effect of family composition on the educational attainment of the first-born child.
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This paper reviews the methodological advancements in the causal mediation literature. Sec-

tion 2 defines the parameters of interest: (natural) direct and indirect effects, the controlled di-

rect effect, and principal strata-specific effects. Section 3 discusses identification and estimation

under sequential conditional exogeneity of the treatment and mediator given observed characteris-

tics. It distinguishes between the case that the same set of control variables can be used to satisfy

treatment and mediator exogeneity and the more challenging case of dynamic confounding, where

some control variables for the mediator are functions of the treatment. Section 4 provides further

evaluation strategies based on partial identification, randomization of the treatment and mediator,

instrumental variables for the treatment and/or mediator, and difference-in-differences. Section

5 discusses several extensions to the standard framework: multivalued rather than binary treat-

ments, target populations different to the total population, mismeasured mediators, and sample

selection/outcome attrition. Section 6 concludes.

2 Parameters of interest

This section introduces various effects that have been considered in causal mediation analysis:

Natural direct and indirect effects, controlled direct effects, and principal strata-specific effects.

2.1 Natural direct and indirect effect

Mediation analysis typically aims at decomposing the average treatment effect (ATE) of a binary

treatment indicator, which we denote by D, on an outcome variable, Y , into a direct effect and an

indirect effect operating through a mediator, M . The latter is assumed to have bounded support

and may be discrete or continuous, scalar or a vector of variables. To define natural direct and

indirect effects, we use the potential outcome framework, see for instance Rubin (1974), which

has been considered in the mediation framework for instance by Ten Have, Joffe, Lynch, Brown,

Maisto, and Beck (2007) and Albert (2008). Let Y (d) and M(d) denote the potential outcome and

the potential mediator state, respectively, under treatment value d ∈ {0, 1}.1 For each unit only

one of the two potential outcomes or mediator states is observed, because the realized outcomes

and mediators are Y = D · Y (1) + (1−D) · Y (0) and M = D ·M(1) + (1−D) ·M(0).

The ATE is given by ∆ = E[Y (1)− Y (0)]. For decomposing this total effect into a direct and

1In general, we will use capital letters for random variables and small letters for specific values of random variables
in the subsequent discussion.
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indirect impact (through M), we rewrite the potential outcome as a function of both the treatment

and the potential mediator: Y (d) = Y (d,M(d)). This allows writing the (average) direct effect as

θ(d) = E[Y (1,M(d))− Y (0,M(d))], d ∈ {0, 1}. (1)

θ(d) corresponds to the change in mean potential outcomes when exogenously varying the treat-

ment but keeping the mediator fixed at its potential value for D = d, which shuts down causal

mechanisms via M . Similarly, the (average) indirect effects is given by

δ(d) = E[Y (d,M(1))− Y (d,M(0))], d ∈ {0, 1}. (2)

δ(d) corresponds to the change in mean potential outcomes when exogenously shifting the mediator

to its potential values under treatment and non-treatment but keeping the treatment fixed at D = d

to shut down the direct effect. Robins and Greenland (1992) and Robins (2003) referred to these

parameters as pure/total direct and indirect effects and Pearl (2001) as natural direct and indirect

effects, which is the denomination used in this paper.

The ATE is the sum of the natural direct and indirect effects defined upon opposite treatment

states:

∆ = E[Y (1,M(1))− Y (0,M(0))]

= E[Y (1,M(1))− Y (0,M(1))] + E[Y (0,M(1))− Y (0,M(0))] = θ(1) + δ(0)

= E[Y (1,M(0))− Y (0,M(0))] + E[Y (1,M(1))− Y (1,M(0))] = θ(0) + δ(1). (3)

This follows from adding and subtracting E[Y (0,M(1))] after the first and E[Y (1,M(0))] after the

third equality in (3). Furthermore, the notation θ(1), θ(0) and δ(1), δ(0) points to potential effect

heterogeneity with respect to the treatment state, i.e., the presence of interaction effects between

the treatment and the mediator. For instance, the effectiveness of job search activities (M) for

finding employment (Y ) might depend on whether a job seeker has obtained a job application

training (D). Or put differently, the direct effect of the training might depend on the level of job

search activity (M).

Obviously, none of the effects are obtained without imposing some kind of identifying assump-

tions. First, only one of Y (1,M(1)) and Y (0,M(0)) is observed for any unit (i.e. both potential
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outcomes cannot be observed at the same time), which is known as fundamental problem of causal

inference. Second, Y (1,M(0)) and Y (0,M(1)) are never observed for any individual, as mediator

and outcome values can only be observed for the same, factual treatment, rather than for oppo-

site treatment states. Therefore, identification of direct and indirect effects hinges on exploiting

exogenous variation in the treatment and the mediator.

It appears instructive to discuss the effects of interest and identification issues in the context of

a simple structural model consisting of a system of linear equations for the outcome and a scalar

mediator:

Y = βDD + βMM + U, (4)

M = αDD + V. (5)

βD, βM denote the coefficients on D and M in the outcome equation, αD is the coefficient on D

in the mediator equation, and U and V are unobserved terms. Exogenously switching on and off

the treatment in the mediator equation identifies the potential mediators:

M(1) = αD + V, M(0) = V.

Switching on and off the treatment in the outcome equation and plugging in the potential mediators

yields all in all four potential outcomes:

Y (1,M(1)) = βD + βMM(1) + U, Y (0,M(0)) = βMM(0) + U,

Y (1,M(0)) = βD + βMM(0) + U, Y (0,M(1)) = βMM(1) + U.

By subtracting potential outcomes appropriately, it follows from our simple model without

treatment-mediator interaction effects that direct effects are homogenous and equal to the

coefficient on D in the outcome equation: θ(1) = θ(0) = β1. Secondly, the indirect effect

corresponds to the effect of D on M times the effect of M on Y : δ(1) = δ(0) = β2 · α1.

Estimating equations (2.1) and (5) by OLS to compute the effects of interest is likely incon-

sistent in most empirical problems, as V may be correlated with the treatment and U with both

the treatment and the mediator. Furthermore, the model imposes strong functional assumptions:

Linearity in parameters and no interaction effects, neither between the mediator and the treat-
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ment, nor between observed variables and the unobservables. This rules out any form of effect

heterogeneity. To (at least) permit for heterogeneity of θ(d) and δ(d) with respect to d , equation

can be augmented by mediator-treatment interactions:

Y = βDD + βMM + βDMDM + U,

with β3 being the coefficient on the interaction term. This implies the following potential outcomes:

Y (1,M(1)) = βD + βMM(1) + βDMM(1) + U, Y (0,M(0)) = βMM(0) + U,

Y (1,M(0)) = βD + βMM(0) + βDMM(0) + U, Y (0,M(1)) = βMM(1) + U.

Also this model is, however, quite rigid as it still imposes additivity between the observed and

unobserved terms, implying that total, direct, and indirect treatment effects are constant across

individual characteristics.

A more general model is given by the nonparametric structural model

Y = ϕ(D,M,U), M = ζ(D,V ), (6)

where ϕ, ζ denote general functions such that arbitrary nonlinearities and interactions between

variables are permitted. The potential mediators and outcomes are given by

M(d) = ζ(d, V ), Y (d,M(d′)) = ϕ(d,M(d′), U),

for d, d′ ∈ {1, 0}. Obviously, natural direct and indirect effects cannot be conveniently represented

by (a combination of) coefficients as in the simple linear model considered before. On the other

hand, the nonparametric model is more flexible and thus more robust to misspecification. However,

identification is not straightforward if unobservables (U, V ) are not statistically independent of

(D,M). Different strategies to tackle such treatment and mediator endogeneity are discussed

further below.

2.2 Controlled direct effect

A further parameter considered in the mediation literature is the so-called controlled direct ef-

fect. It corresponds to the difference in mean potential outcomes when exogenously varying the
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treatment and setting the mediator to a specific value (say m) for everyone:

γ(m) = E[Y (1,m)− Y (0,m)], for m in the support of M. (7)

For the general structural model (6), the potential outcome is given by Y (d,m) = ϕ(d,m,U).

In contrast to the natural direct effect, which is conditional on the mediator value that would

‘naturally’ occur under a particular treatment state (and may be different for different individuals),

the controlled direct effect is based on enforcing the same mediator value for all individuals. The

two parameters are only equivalent if the effects of D and M on the outcome do not interact, see

the linear outcome model (2.1).

Whether the natural or controlled direct effect is of primary interest depends on the empirical

problem. Suppose one aims at assessing the effectiveness of the first program in a sequence of two

labor market programs (e.g., a job application training followed by a computer course) with respect

to finding employment. The natural direct effect evaluates the first program (D) conditional on

the value of the second one (M) that would in the current institutional context follow from (non-

)participation in the first program. This is suitable for assessing the first program under status quo

assignment rules for the second program. However, if such rules can be manipulated, evaluating

whether the first program is effective conditional on enforcing (non-)participation in the second one

appears interesting, too, for appropriately designing program sequences. Therefore, the controlled

direct effect may provide policy guidance if the mediator can be prescribed, while the natural

direct effect, which is defined on status quo mediator response to (non-)treatment, appears more

pertinent if prescription is infeasible. See Pearl (2001) for more discussion of the ‘descriptive’ and

‘prescriptive’ natures of natural and controlled effects.

It is worth noting that the controlled, but not the natural direct effect fits the dynamic treat-

ment effects framework for assessing sequences of prescribed treatments, see for instance Robins

(1986), Robins, Hernan, and Brumback (2000), and Lechner (2009). In fact, the controlled direct

effect relies on comparing sequences with different values in the first treatment, but with same

values in second treatment. It can therefore be regarded as a special case of dynamic treatment

evaluation. Finally, note that there is no indirect effect-pendant to the controlled direct effect.

Specifically, the difference between the total effect and the controlled direct effect does in general

not correspond to the indirect effect, unless there are no treatment-mediator interactions, see for

instance the discussion in Kaufman, MacLehose, and Kaufman (2004).
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2.3 Principal strata effects

Most mediation studies evaluate direct and indirect effects for the total population. A smaller

strand of the literature uses the principal stratification framework of Frangakis and Rubin (2002)

to assess effects in subpopulations defined upon potential mediator states under treatment

and non-treatment, see for instance Rubin (2004). Assuming a binary mediator, the total

population can be partitioned into four principal strata according to the individuals’ potential

mediator states. Among always mediated, the potential mediator is always one irrespective of the

treatment: M(1) = M(0) = 1. Among never mediated, the potential mediator is always zero:

M(1) = M(0) = 0. Within either group, the total treatment effect coincides with the direct

effect, because the mediator is unaffected by the treatment such that the indirect effect is zero by

the definition of the principal strata:

E[Y (1,M(1))− Y (0,M(0))|M(1) = M(0) = 1] = E[Y (1, 1)− Y (0, 1)|M(1) = M(0) = 1],

E[Y (1,M(1))− Y (0,M(0))|M(1) = M(0) = 0] = E[Y (1, 0)− Y (0, 0)|M(1) = M(0) = 0]. (8)

For the remaining principal strata, potential mediators are non-constant, but react on the

treatment. Among so-called mediator compliers, the mediator complies with the treatment in the

sense that it equals the treatment: M(1) = 1,M(0) = 0. Among mediator defiers, however, the

mediator opposes the treatment value: M(1) = 0,M(0) = 1.2 Due to the variation of the potential

mediator across treatment states, indirect effects cannot be ruled out a priori. For this reason,

the total effect on mediator compliers or defiers does generally neither coincide with direct nor

indirect effects. Principal stratification has therefore been criticized for typically not decomposing

direct and indirect effects among groups with non-constant potential mediators and for focussing

on subgroups rather than the total population, see VanderWeele (2008) and VanderWeele (2012a).

The policy relevance of specific subpopulations like the always and never mediated should therefore

be scrutinized in the empirical context at hand.

2The notation of compliers and defiers has been inspired by the local average treatment effect framework, see
Angrist, Imbens, and Rubin (1996), which fits the principal stratification context, too.
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3 Mediation based on sequential conditional independence

This section considers the evaluation of direct and indirect effects based on sequential conditional

independence of the treatment and mediator. It first discusses assumptions under which the same

set of observed confounders is sufficient for tackling both treatment and mediator endogeneity and

presents various approaches for identification and estimation. It then considers the case that some

observed confounders of the mediator are themselves functions of the treatment, which is more

challenging in terms of identification.

3.1 Assumptions with covariates not affected by treatment

A large part of the mediation literature invokes sequential conditional independence assumptions

with respect to the treatment and the mediator for identification. We subsequently consider

assumptions under which the same set of observed covariates, denoted by X, can be used to

tackle both treatment and mediator endogeneity. Specifically, X must not be a function of D

(notationally: X(d) = X), with the leading case being pre-treatment covariates evaluated prior

to treatment assignment. Figure 1 illustrates the framework based on a directed acyclic graph, in

which the arrows represent causal effects. It is worth noting that each of D, M , and Y might be

causally affected by distinct and statistically independent sets of unobservables not displayed in

Figure 1. However, what needs to be ruled out is that such unobservables jointly affect two or all

three variables in (D,M, Y ).

Figure 1: Causal paths under conditional exogeneity given pre-treatment covariates

The first assumption requires the treatment to be conditionally independent of any potential

post-treatment variables, namely the potential mediators and outcomes, given X. This assumption

is known as conditional independence, selection on observables, or exogeneity in the treatment

evaluation literature, see for instance Imbens (2004).
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Assumption 1 (conditional independence of the treatment):

{Y (d′,m),M(d)}⊥D|X for all d′, d ∈ {0, 1} and m in the support of M .

‘⊥’ denotes statistical independence. By Assumption 1, there are no unobserved confounders

jointly affecting the treatment on the one hand and the mediator and/or the outcome on the other

hand conditional on X. In non-experimental data, the plausibility of this assumption critically

hinges on the richness of X. In experimental data, the assumption holds if the treatment is either

randomized within strata defined on X or randomized unconditionally, i.e., independent of X, such

that even the stronger assumption {Y (d′,m),M(d), X}⊥D is satisfied.

The second assumption requires the mediator to be conditionally independent of the potential

outcomes given the treatment and the covariates:

Assumption 2 (conditional independence of the mediator):

Y (d′,m)⊥M |D = d,X = x for all d′, d ∈ {0, 1} and m,x in the support of M,X.

By Assumption 2, there are no unobserved confounders jointly affecting the mediator and the

outcome conditional on D and X. This generally rules out post-treatment confounders of the

mediator-outcome relation not captured by X. The strength of this assumption cannot be

overstated, in particular if the time window between the measurement of the treatment and the

mediator is large, which makes the absence of post-treatment confounding less plausible in a

world of time-varying variables.

The third assumption imposes common support on the conditional treatment probability across

treatment states. Assumption 3 (common support):

Pr(D = d|M = m,X = x) > 0 for all d ∈ {0, 1} and m,x in the support of M,X.

By Assumption 3, the conditional probability to receive or not receive the treatment given M,X,

henceforth referred to as propensity score, is larger than zero. It implies (but is stronger than)

the standard common support assumption in treatment evaluation that Pr(D = d|X = x) > 0.

That is, the treatment must not be a deterministic function of X, otherwise identification is

infeasible due to a lack of comparable units in terms of X across treatment states. By Bayes’

theorem, Assumption 3 also implies that Pr(M = m|D = d,X = x) > 0 if M is discrete or

that the conditional density of M given D,X is larger than zero if M is continuous. Conditional

on X, the mediator state must not be a deterministic function of the treatment, otherwise no

comparable units in terms of the mediator are available across treatment states. Assumptions 1

to 3 have been frequently imposed in causal mediation analyses, see for instance Imai, Keele, and
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Yamamoto (2010), Tchetgen Tchetgen and Shpitser (2012), and Huber (2014). For closely related

assumptions, see Pearl (2001), Petersen, Sinisi, and van der Laan (2006), and Hong (2010).

3.2 Identification with covariates not affected by treatment

Following Baron and Kenny (1986), many earlier mediation studies have evaluated direct and

indirect effects based on a system of linear equations. When allowing for observed confounders X

as in Assumptions 1 and 2, this amounts to assuming the following model:

Y = βDD + βMM +X ′βX + U, (9)

M = αDD +X ′βX + V, (10)

such that the conditional expectations of the outcome and the mediator are given by

E[Y |D,M,X] = β0 + βDD + βMM +X ′βX , (11)

E[M |D,X] = α0 + αDD +X ′αX . (12)

β0, βD, βM , βX denote the constant (i.e. E(U)) and the coefficients on D,M,X in the outcome

equation and α0, αD, αX the constant (i.e. E(V )) and the coefficients on D,X in the mediator

equation. As discussed in Section 2.1, natural direct and indirect effects are identified by βD and

αD · βM , respectively. This rather simplistic model, which does not allow for interactions of D

and M or X, D, and M , could be made more flexible by including such interaction terms, see

the discussion in Imai, Keele, and Yamamoto (2010) and Imai, Keele, and Tingley (2010). We

also note that due to the linearity restrictions, Assumptions 1 and 2 could be relaxed to mean

independence, while Assumption 3 is not required at all.

Nonparametric identification does not rely on functional form restrictions such as linearity, but

instead requires Assumptions 1 to 3. We subsequently show identification of the mean potential

outcome E[Y (d,M(d′))] for d, d′ ∈ {1, 0} by parameters observed in the population, implying that

natural direct and indirect effects are identified, too. To this end we introduce some notation. Let

fA=a and fA=a|B=b denote the probability density functions of some random variable A, either

unconditionally or conditional some random variable(s) B = b. We assume that M and X are

continuously distributed. If M and/or X are discrete, then the respective densities and integrals

below are to be replaced by probabilities and sums, so imposing continuity is only for ease of
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exposition without substantial importance.

E[Y (d,M(d′))]

=

∫ ∫
E[Y (d,m)|M(d′) = m,X = x]fM(d′)=m|X=xdmfX=xdx

=

∫ ∫
E[Y |D = d,M = m,X = x]fM=m|D=d′,X=xfX=xdmdx (13)

=

∫ ∫
E[Y |D = d,M = m,X = x] · Pr(D = d′|M = m,X = x)

Pr(D = d′|X = x)
fM=m|X=xdmfX=xdx

= E

[
E

[
E

[
Y · I{D = d}

Pr(D = d|M,X)

∣∣∣∣M,X

]
· Pr(D = d′|M,X)

Pr(D = d′|X)

∣∣∣∣X]]
= E

[
Y · I{D = d}

Pr(D = d|M,X)
· Pr(D = d′|M,X)

Pr(D = d′|X)

]
,

= E

[
Y · I{D = d}

Pr(D = d|M,X)
· Pr(D = d′|M,X)

Pr(D = d′|X)

]
, (14)

= E

[
Y · I{D = d}
Pr(D = d|X)

· f(M = m|D = d′, X)

f(M = m|D = d,X)

]
. (15)

The first equality follows from the law of iterated expectations and from replacing the outer

expectations by integrals, the second from Assumptions 1 and 2, the third from Bayes’ theorem,

the fourth from basic probability theory and from replacing the integrals by expectations, the fifth

and sixth from the law of iterated expectations. We also see that Assumption 3 is required for

guaranteeing that no expression goes to infinity due to division by zero.

(13) underlies the so-called mediation formula for identifying direct and indirect effects, see

for instance equations (8) and (26) in Pearl (2001) and Theorem 1 in Imai, Keele, and Yamamoto

(2010):

θ(d) =

∫ ∫
{E[Y |D = 1,M = m,X = x]− E[Y |D = 0,M = m,X = x]} fM=m|D=d,X=xdmfX=xdx,

δ(d) =

∫ ∫
E[Y |D = d,M = m,X = x]{fM=m|D=d,X=x − fM=m|D=0,X=x}dmfX=xdx. (16)

(14) is the base for identification using inverse probability weighting by the treatment propensity

score, see Huber (2014):

θ(d) = E

[(
Y ·D

Pr(D = 1|M,X)
− Y · (1−D)

1− Pr(D = 1|M,X)

)
· Pr(D = d|M,X)

Pr(D = d|X)

]
,

δ(d) = E

[
Y · I{D = d}

Pr(D = d|M,X)
·
(

Pr(D = 1|M,X)

Pr(D = 1|X)
− 1− Pr(D = 1|M,X)

1− Pr(D = 1|X)

)]
. (17)

Finally, (15) motivates inverse mediator density weighting, see Hong (2010) and Tchetgen Tchetgen
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and Shpitser (2012):

θ(d) = E

[(
Y ·D

Pr(D = 1|X)
− Y · (1−D)

1− Pr(D = 1|X)

)
·
fM=m|D=d,X

fM=m|D,X

]
,

δ(d) = E

[
Y · I{D = d}

fM=m|D=d,X · Pr(D = d|X)
·
(
fM=m|D=1,X − fM=m|D=0,X

)]
. (18)

As in the conventional treatment evaluation framework, the parameters of interest can be iden-

tified by various strategies relying on structural models for the outcome and the mediator, or on

reweighting outcomes based on conditional probabilities/densities, or on combinations thereof.

The controlled direct effect is obtained under somewhat weaker restrictions than natural effects,

as the distribution of potential mediators need not be identified. Therefore, Assumption 1 can be

relaxed because conditional independence between M(d) and D is not required, see for instance

the discussion in Petersen, Sinisi, and van der Laan (2006). Assuming that M is discrete, the

potential outcome E[Y (d,m)] is is identified in the following way:

E[Y (d,m)] = E[E[Y (d,m)|X]] = E[E[Y |D = d,M = m,X]]

= E

[
E

[
Y · I{D = d} · I{M = m}

Pr(D = d,M = m|X)

∣∣∣∣X]] = E

[
Y · I{D = d} · I{M = m}

Pr(D = d,M = m|X)

]
.(19)

The first equality follows from the law of iterated expectations, the second from Assumptions 1

(specifically, from the conditional independence of potential outcomes and treatment) and 2, the

third from basic probability theory and the fourth from iterated expectations. This implies that

the controlled direct effect is identified by both a regression representation or reweighting:

γ(m) = E[E[Y |D = 1,M = m,X]− E[Y |D = 0,M = m,X]]

= E

[
Y ·D · I{M = m}

Pr(D = 1,M = m|X)
− Y · (1−D) · I{M = m}

Pr(D = 0,M = m|X)

]
. (20)

3.3 Estimation with covariates not affected by treatment

This section presents various estimators of natural direct and indirect effects, some of them

directly using the identification results of Section 3.2. We to this end assume the availability of

an i.i.d. sample of size n in which i is the index of an observation (i ∈ {1, ..., n}) and denote by

(Yi,Mi, Di, Xi) the sample realizations of the respective random variables (Y,M,D,X).

Estimation based on the mediation formula (16) requires plug-in estimates for the conditional
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mean outcomes and the conditional mediator densities. One popular approach is g-computation

going back to Robins (1986), which obtains these parameters based on maximum likelihood esti-

mation (MLE). Let µ̂Y (d,m, x), f̂(m|d, x) denote the estimates of the conditional mean outcome

E[Y |D = d,M = m,X = x] and the conditional mediator density fM=m|D=d,X=x (or conditional

probability Pr(M = m|D = d,X = x) if the mediator is discrete). The g-computation estimators

of the direct and indirect effects are given by

θ̂(d) =
1

n

n∑
i=1

{
[µ̂Y (1,Mi, Xi)− µ̂Y (0,Mi, Xi)] f̂(Mi|d,Xi)

}
,

δ̂(d) =
1

n

n∑
i=1

{
µ̂Y (d,Mi, Xi)

[
f̂(Mi|1, Xi)− f̂(Mi|0, Xi)

]}
, (21)

where θ̂(d), δ̂(d) are estimates of the direct and indirect effects. In general, both parametric

models for E[Y |D = 1,M = m,X = x] and f(M = m|D = d,X = x) need to be correctly

specified for consistency. Alternatively and as discussed in Imai, Keele, and Yamamoto (2010), the

plug-in parameters µ̂Y (D,M,X) and f̂(M |D,X) can be estimated nonparametrically to safeguard

against misspecification. This might, however, be cumbersome in finite samples if X and/or M

are high dimensional, a problem known as curse of dimensionality.

Concerning weighting expressions (17), natural direct and indirect effects can be estimated

by their normalized sample analog, where normalization guarantees that the weights underlying

the estimators sum up to one in each treatment group. For instance, the direct effect under

non-treatment is given by

θ̂(0) =

∑n
i=1 YiDi(1− ρ̂(Mi, Xi))/[ρ̂(Mi, Xi)(1− p̂(Xi))]∑n
i=1Di(1− ρ̂(Mi, Xi))/[ρ̂(Mi, Xi)(1− p̂(Xi))]

−
∑n

i=1 Yi(1−Di)/(1− p̂(Xi))∑n
i=1(1−Di)/(1− p̂(Xi))

,(22)

where ρ̂(m,x) and p̂(x) denote the respective estimates of the propensity scores Pr(D = 1|M =

m,X = x) and Pr(D = 1|X = x). A practical advantage of this approach is that the estimation

of conditional mediator densities is not required, which is particularly relevant when M is multi-

dimensional and/or continuously distributed. Treatment propensity scores might be estimated by

probit or logit specifications, see for instance Huber (2014) and Tchetgen Tchetgen (2013), as im-

plemented in the ‘causalweight’ package for R by Bodory and Huber (2018). Hsu, Huber, and Lai

(2018) show that also for nonparametrically estimated propensity scores, effect estimation is root-

n-consistent under particular regularity conditions. In addition, this approach is asymptotically

semiparametrically efficient, i.e. it has the smallest possible asymptotic variance and thus attains
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the semiparametric efficiency bounds for causal mediation analysis derived in Tchetgen Tchetgen

and Shpitser (2012). In finite samples, however, the curse of dimensionality might kick in.

Also for the weighting expression (18), a sample analog estimator can be constructed with

p̂(X) f̂(M |D,X) representing parametric or nonparametric plug-in estimates, see Hong, Deutsch,

and Hill (2015) for examples. Lange, Vansteelandt, and Bekaert (2012) combine weighting with

imputation-based estimation of potential outcomes. Finally, Chan, Imai, Yam, and Zhang (2016)

suggest a nonparametric weighting approach that does not require plug-in estimates of propensity

scores or conditional mediator densities, but applies an empirical calibration approach. That is, it

algorithmically derives the weights using specific moment conditions that reflect the true weights’

property to balance the distributions of X and M across treatment groups. The method is root-

n-consistent and asymptotically semiparametrically efficient.

Tchetgen Tchetgen and Shpitser (2012) estimate the effects based on the sample analogue of the

score or efficient influence function for computing potential outcomes, which relies on estimating

conditional mean outcomes, mediator densities, and treatment probabilities. The direct effect

under non-treatment, for instance, is obtained by

θ̂(0) =
1

n

n∑
i=1

{[
Dif̂(Mi|0, Xi)

p̂(Xi)f̂(Mi|1, Xi)
− 1−Di

1− p̂(Xi)

]
[Yi − µ̂Y (Di,Mi, Xi)]

+
1−Di

1− p̂(Xi)

[
µ̂Y (1,Mi, Xi)− µ̂Y (0,Mi, Xi)− θ̂(0, Xi)

]
+ θ̂(0, Xi)

}
. (23)

θ̂(d, x) denotes an estimate of

θ(d, x) = E [E[Y |D = 1,M = m,X = x]− E[Y |D = 0,M = m,X = x]|D = d,X = x] ,

which may for instance be obtained by regressing µ̂Y (1,M,X) − µ̂Y (0,M,X) on X among those

with D = d.

One attractive feature of this estimator is that it is ‘multiply robust’ in the sense that it remains

consistent if only particular subspecifications of the model are correct. Namely, it needs to hold that

at least either (i) E[Y |D,M,X] and fM |D,X (or, alternatively and somewhat weaker, E[Y |D,M,X]

and θ(D,X)), (ii) E[Y |D,M,X] and Pr(D = 1|X), or (iii) Pr(D = 1|X) and fM |D,X are correctly

specified, see Tchetgen Tchetgen and Shpitser (2012) and Zheng and van der Laan (2012). If all

three conditions hold, multiply robust estimation is asymptotically semiparametrically efficient.
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The same properties hold for the targeted maximum likelihood approach of Zheng and van der

Laan (2012) which iteratively optimizes maximum likelihood estimation of the target (direct or

indirect) effect based on initial plug-in estimates of E[Y |D,M,X], fM |D,X , and Pr(D = 1|X).

For this reason, both estimators improve upon the ‘doubly robust’ estimator of Van der Laan and

Petersen (2008), which allows for a misspecification of either the outcome or the treatment model,

while consistency requires the conditional mediator density to be correctly specified. Vansteelandt,

Bekaert, and Lange (2012) propose an estimator based on imputation of potential outcomes which

possesses a doubly robust property, too. It remains consistent under outcome misspecification,

provided that models for both the mediator and the treatment are correct.

A range of further (mostly parametric) estimators that allow for effect heterogenity across d

has been proposed in the literature. For linear models, VanderWeele and Vansteelandt (2009) and

Preacher, Rucker, and Hayes (2007) (among others) discuss which combinations of coefficients

yield the direct and indirect effects when including treatment-mediator interaction terms and

control variables. VanderWeele and Vansteelandt (2010) provide a related discussion in the

context of nonlinear binary outcome models. VanderWeele (2009) considers so-called marginal

structural models for modelling mean potential outcomes (rather than observed outcomes). The

approach combines regression with reweighting to estimate controlled direct effects and natural

effects. Van der Laan and Petersen (2008) directly model the direct effects of interest, rather

than potential outcomes.

Tingley, Yamamoto, Hirose, Imai, and Keele (2014) suggest a simulation approach based on

the linear or non-linear estimation of the mediator and outcome models and the simulation of po-

tential mediators and outcomes according to the imposed models for computing direct and indi-

rect effects. This method is available in the ‘mediation’ package for R by Tingley, Yamamoto, Hi-

rose, Imai, and Keele (2014). As an alternative, the ‘medflex’ package by Steen, Loeys, Moerkerke,

and Vansteelandt (2017b) implements potential outcome imputation as discussed in Vansteelandt,

Bekaert, and Lange (2012) and weighting as in Lange, Vansteelandt, and Bekaert (2012). We also

refer to Hong (2015) and VanderWeele (2016) for further reviews on estimation approaches. Fi-

nally, we note that Huber, Lechner, and Mellace (2016) investigate the finite sample performance

of a range of different estimators relying on sequential conditional independence.
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3.4 Effects under dynamic confounding and multiple mediators

In many empirical problems, it might seem unlikely that pre-treatment covariates suffice to control

for the endogeneity of the mediator M , as the latter is a post-treatment variable. Just as the

control variables of the treatment are typically measured shortly before treatment assignment, it

seems reasonable to control for possible confounders of the mediator-outcome relation just prior

to selection into the mediator. It then appears likely that at least some of these confounders are

influenced by the treatment (in particular if the time lag between D and M is non-negligible),

such that they are themselves mediators that affect the mediator M of interest. For this reason,

Robins (2003) suspects that Assumptions 1 and 2, which imply that mediator confounders are not

a function of D, are of limited practical relevance.

We subsequently consider the case that the treatment may influence observed post-treatment

confounders of the mediator-outcome relation, denoted by W . To account for this extension in our

notation, we rewrite the potential mediators and outcomes as functions of W : M(d) = M(d,W (d))

and Y (d,M(d)) = Y (d,M(d,W (d)),W (d)), where W (d) is a vector of potential post-treatment

covariates for D = d. The direct and indirect effect then correspond to

θM (d) = E[Y (1,M(d,W (d)),W (1))− Y (0,M(d,W (d)),W (0))],

δM (d) = E[Y (d,M(1,W (1)),W (d))− Y (d,M(0,W (0)),W (d))]. (24)

θM (d) contains any effect of D on Y not operating through M . In addition to the inherently direct

causal path from D to Y , it also includes the causal mechanism from D to W to Y . Therefore, the

term direct effect might appear ambiguous in this context. δM (d), on the other hand, consists of

any effect via M which either directly comes from D or ‘takes a devious route’ via W . This effect

takes into consideration that D may influence M either directly or indirectly through W .

Alternatively, one might consider the path-specific indirect effect directly going from D to M ,

but not operating through W :

δMp(d) = E[Y (d,M(1,W (d)),W (d))− Y (d,M(0,W (d)),W (d))]. (25)

δMp(d) represents a partial indirect effect when keeping W fixed at its level implied by d, such that

any effect from D to W to M is switched off. Arguably, δM (d) is more interesting than δMp(d), but
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unfortunately also more difficult to identify, as discussed below. Finally, one could be interested

in the joint indirect effects via M and/or W :

δM,W (d) = E[Y (d,M(1,W (1)),W (1))− Y (d,M(0,W (0)),W (0))]. (26)

δM,W (d) comprises any causal mechanism going from D to Y that operates through either M , or

W , or both. Accordingly, the direct effect θM,W (d) corresponds to the impact of D on Y operating

neither through M , nor through W , which distinguishes it from θM (d) that may include indirect

mechanisms via W (but not M):

θM,W (d) = E[Y (1,M(d,W (d)),W (d))− Y (0,M(d,W (d)),W (d))]. (27)

3.5 Identification under dynamic confounding and multiple mediators

It is easy to see that δM,W (d) and θM,W (d) are identified based on Assumptions 1 and 2 and the

results (13), (14), and (15) in Section 3.2 when replacing M by (M,W ) everywhere. Notably,

one could allow for unobserved confounders of the W -M relation, as Assumtpions 1 and 2 do

not rule out confounding within the set of mediators. The subsequent discussion focusses on

the identification of δMp(d), δM (d), and θM (d). The assumptions considered match with the

causal graph in Figure 2, which provides a framework where the treatment affects the observed

confounders W of the mediator M . Importantly, the use of W as controls for M implies that

Figure 2: Causal paths with pre-treatment and post-treatment confounders

there must not exist any unobserved confounders that jointly influence W on the one hand and M

and/or Y on the other hand. This conditional independence of W imposes strong requirements

concerning X. Not only must X contain all pre-treatment variables confounding the D-Y , D-M ,

or M -Y relationship, but also any factors confounding the W -M or W -Y relationship (apart from

D). Otherwise, conditioning on W would introduce an association between D and those factors
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affecting M or Y and thus, treatment endogeneity. As an example, suppose that Y is wealth, M is

employment, D is college education, and W includes the pre-mediator health state, which affects

Y and is a function of D and pre-treatment health. In this case, X must include pre-treatment

health if the latter affects Y also through other channels than pre-mediator health. This seems

plausible, as wealth is typically determined by previous income streams that may themselves be

influenced by previous health.

Assumptions 4, 5, and 6 provide formal conditions for identifying δMp(d) in the presence of

post-treatment confounders of the mediator.

Assumption 4 (conditional independence of the treatment):

{Y (d′′,m,w′),M(d′, w),W (d)}⊥D|X = x for all d′′, d′, d ∈ {0, 1} and m,w′, w, x in the support of

M,W,X.

Similar to Assumption 1, Assumption 4(a) requires D to be conditionally independent of potential

post-treatment variables, namely potential outcomes, mediators, and confounders of the mediator-

outcome relation.

Assumption 5 (conditional independence of the post-treatment variables):

(a) {Y (d′′,m,w′),M(d′, w)}⊥W |D = d,X = x for all d′′, d′, d ∈ {0, 1} and m,w′, w, x in the sup-

port of M,W,X,

(b) Y (d′,m,w′)⊥M |D = d,W = w,X = x for all d′, d ∈ {0, 1} and m,w′, w, x in the support of

M,W,X.

Assumption 5(a) states that W is conditionally independent of the potential mediators and out-

comes given X and D. This implies that all pre-treatment covariates affecting both W and M

or Y are included in X. Assumption 5(b) is somewhat weaker than Assumption 2, as it imposes

conditional independence of the mediator and the potential outcomes given X and W (rather than

X alone).

Assumption 6 (common support):

Pr(D = d|M = m,W = w,X = x) > 0 for all d ∈ {0, 1} and m,w, x in the support of M,W,X.

Finally, Assumption 6 is somewhat stronger than Assumption 3, as it requires the common sup-

port restriction on the treatment propensity to hold when conditioning on M and both W and X

(rather than X alone).

Under Assumptions 4-6, the partial indirect effect is identified, for instance, by the following
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weighting expression using three different treatment propensity scores, see Huber (2014) (where

Assumption 5(a) is, however, stated somewhat differently):

δMp(d) = E

[
Y · I{D = d}

Pr(D = d|M,W,X)
· Pr(D = d|W,X)

Pr(D = d|X)
·
(

Pr(D = 1|M,W,X)

Pr(D = 1|W,X)
− 1− Pr(D = 1|M,W,X)

1− Pr(D = 1|W,X)

)]
.

(28)

We refer to Steen, Loeys, Moerkerke, and Vansteelandt (2017a) for a more comprehensive

discussion on the identification and estimation of δMp(d) and further path-specific effects. δM (d)

and θM (d) are, however, not identified without further assumptions, see the impossibility result

in Avin, Shpitser, and Pearl (2005). Intuitively, identifying E[Y (d,M(1 − d,W (1 − d)),W (d))]

(and the natural effects requires that conditional on X, the distribution of M given D = d is

exogenously adjusted to match that of M given D = 1 − d, while keeping the distribution of W

fixed for D = d. Doing both at the same time is, however, impossible if W affects M . For this

reason, the identification of δM (d) and θM (d) necessarily requires parametric restrictions.

One restricting yielding identification is ruling out interactions between D and M , see Robins

and Greenland (1992) and Robins (2003). This strong condition even permits easing the previous

assumptions somewhat by avoiding conditional independence between potential outcomes and

potential mediators defined upon opposite treatment states. While Assumption 5(b), for instance,

imposes conditional independence between Y (d′,m,W (d′)) and M(d) also for d 6= d′, this is only

required for d = d′ under the no interactions condition. Economists might, however, find it hard

to come up with a realistic case in which conditional independence likely holds for d = d′, but not

for d 6= d′, even though hypothetical examples are provided in Robins and Richardson (2010). The

absence of treatment-mediator interactions, on the other hand, appears to be quite unattractive,

as it restricts effect heterogeneity.

As an improvement, Imai and Yamamoto (2013) allow for treatment-mediator interactions, but

require them to be homogeneous in the population. Huber (2014) presents a related assumption

that restricts the average treatment-mediator-interaction to be homogeneous conditional on X

and W and assumes the outcome to be linear in M . Alternatively, Tchetgen Tchetgen and

VanderWeele (2012) show that δM (d) and θM (d) are identified (under particular conditional

independence assumptions) if the average interaction effects of W and M on Y are zero or

all elements in W are binary and monotonic in D. Yet another restriction is that potential

confounders W (1) and W (0) are independent of each other or that their dependence follows

a known distribution, see Robins and Richardson (2010) and Albert and Nelson (2011), who
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consider general models with sequences of multiple mediators. For a discussion of identification

in parametric mediation models we refer to De Stavola, Daniel, Ploubidis, and Micali (2015),

who show that the assumption of no unobserved confounders of the W − Y relationship can be

relaxed under specific assumptions. While some of the discussed restrictions appear more or less

attractive than others, all of them share the caveat that they impose specific functional form

constraints that reduce model generality.

Finally, we note that if W is a function of D, does (in contrast to Figure 2) not affect M ,

but still influences Y , then the mediation model consists of two independent indirect mechanisms

operating through M and W , respectively. In this case, either natural indirect effect can be

identified by imposing Assumptions 1 to 3 of Section (3.1) for both M and W separately, see Imai

and Yamamoto (2013) and Lange, Rasmussen, and Thygesen (2014) for further details. We refer

to VanderWeele and Vansteelandt (2014) for a comprehensive discussion of different mediation

models involving multiple mediators, including the ones considered here.

We have so far focussed on natural effects. While δM (d) and θM (d) are not identified nonpara-

metrically in the presence of post-treatment confounders of the mediator-outcome relation that are

a function of the treatment, the controlled direct effect is obtained even under somewhat weaker

conditions than Assumptions 4 to 6. Specifically, Assumption 5(a) and the independence of D

and the potential mediators and post-treatment confounders postulated in Assumption 4 are not

required. Assuming that M is discrete, the potential outcome E[Y (d,m,W )] = E[Y (d,m)], which

assumes that one is interested in a particular mediator value M = m while being agnostic about

the values of confounders W , corresponds to:

E[Y (d,m)] = E[E[Y (d,m)|D = d,X]] =

∫ ∫
E[Y (d,m)|D = d,W,X]fW=w|D=d,X=xdwfX=xdx

=

∫ ∫
E[Y |D = d,M = m,W,X]fW=w|D=d,X=xdwfX=xdx

=

∫ ∫
E

[
Y · I{M = m}

Pr(M = m|D = d,W,X)

∣∣∣∣D = d,W,X

]
fW=w|D=d,X=xdwfX=xdx

= E

[
E

[
Y · I{M = m}

Pr(M = m|D = d,W,X)

∣∣∣∣D = d,X

]]
= E

[
E

[
Y · I{D = d} · I{M = m}

Pr(M = m|D = d,W,X) Pr(D = d|X)

∣∣∣∣X]]
= E

[
Y · I{D = d} · I{M = m}

Pr(M = m|D = d,W,X) Pr(D = d|X)

]
. (29)

The first equality follows from the law of iterated expectations and the conditional independence of
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D and the potential outcomes, see Assumption 4, the second from the law of iterated expectations

and replacing expectations by integrals, the third from Assumption 5(b), the fourth from basic

probability theory, the fifth from integrating out W and replacing the integral by an expectation,

the sixth from basic probability theory, and the last from the law of iterated expectations. This

proof is equivalent to those in the context of dynamic treatment evaluation, see for instance Lechner

(2009).

The controlled direct effect is therefore identified by

γ(m) =

∫ ∫
E[Y |D = 1,M = m,W = w,X = x]fW=w|D=1,X=xdwfX=xdx

−
∫ ∫

E[Y |D = 0,M = m,W = w,X = x]fW=w|D=0,X=xdwfX=xdx (30)

= E

[
Y ·D · I{M = m}

Pr(M = m|D = 1,W,X) · Pr(D = 1|X)
− Y · (1−D) · I{M = m}

Pr(M = m|D = 0,W,X) · Pr(D = 0|X)

]
.

The expression after the first equality in (30) might for instance be estimated by g-computation,

see Robins (1986) and Vansteelandt (2009), or matching, see Lechner and Miquel (2010), the one

after the second equality by weighting, see Robins, Hernan, and Brumback (2000).

4 Further identification approaches

This section reviews approaches that relax sequential conditional independence or rely on alterna-

tive assumptions. First, it discusses partial identification of effects based on sensitivity checks and

bounds under weaker conditions than imposed in Section 3.2. Second, it considers the identifying

power of randomizing both the treatment and the mediator. Third, it presents various instrumen-

tal variable methods for tackling the endogeneity of the mediator and/or treatment. Finally, it

briefly presents a difference-in-differences approach.

4.1 Partial identification based on sensitivity checks and bounds

As the sequential conditional independence assumptions outlined in Section 3.1 are quite strong,

several sensitivity checks have been suggested that permit assessing the robustness of direct and

indirect effects to deviations from these assumptions. This amounts to identifying intervals or

sets rather than point values of the parameters of interest. VanderWeele (2010), for instance,

provides a general formula for the bias (denoted by B) of the controlled direct effect as well as
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natural effects in the presence of an unobserved mediator-outcome confounder (denoted by U) that

violates Assumption 2:

B(θ(d)) =

∫ ∫ ∫ {
E[Y |D = 1− d,M = m,X = x, U = u]− E[Y |D = 1− d,M = m,X = x, U = u′]

}
[fU=u|D=1−d,M=m,X=x − fU=u|D=d,M=m,X=x]dufM=m|D=d,X=xdmfX=xdx,

B(δ(1− d)) = −B(θ(d)),

B(γ(m)) =

∫ ∫ {
E[Y |D = 1− d,M = m,X = x, U = u]− E[Y |D = 1− d,M = m,X = x, U = u′]

}
[fU=u|D=1−d,M=m,X=x − fU=u|D=1−d,X=x]dufX=xdx

−
∫ ∫ {

E[Y |D = d,M = m,X = x, U = u]− E[Y |D = d,M = m,X = x, U = u′]
}

[fU=u|D=d,M=m,X=x − fU=u|D=d,X=x]dufX=xdx. (31)

u 6= u′ are two values or sets of values in the support of the supposedly omitted U , that might be

scalar or a vector.

Under the restrictions that U is scalar and binary, E[Y |D = 1 − d,M = m,X = x, U =

1] − E[Y |D = 1 − d,M = m,X = x, U = 0] is homogeneous across values of D, M , and X, and

Pr(U = 1|D = 1 − d,M = m,X = x) − Pr(U = 1|D = d,M = m,X = x) is homogeneous across

values of M and X, the expressions in (31) simplify to

B(θ(d)) = B(γ(m)) = φω, B(δ(1− d)) = −φω, (32)

with E[Y |D = 1 − d,M = m,X = x, U = 1] − E[Y |D = 1 − d,M = m,X = x, U = 0] = φ

and Pr(U = 1|D = 1 − d,M = m,X = x) − Pr(U = 1|D = d,M = m,X = x) = ω. By

considering sensible values for the conditional difference in Y across values of U given by φ and

the conditional difference in U across treatment states given by ω, researches may correct their

estimates for the hypothetical bias. The use of the more general formulas in (31), on the other

hand, requires encoding such conditional differences for any combinations of D, M , and X or M

and X, respectively, which might be cumbersome.

Imai, Keele, and Yamamoto (2010) propose a sensitivity analysis that can be implemented in

parametric (both linear and nonlinear) mediation models by specifying the correlation of unob-

served terms in the mediation and outcome equations, e.g. U and V in (9) and (10). A non-zero

correlation of U and V , denoted by ρU,V , implies a violation of Assumption 2. Therefore, varying
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ρU,V between -1 and 1 and investigating how the regression-based estimates vary permits analyz-

ing sensitivity to mediator-outcome confounding and is implemented in the ‘mediation’ package by

Tingley, Yamamoto, Hirose, Imai, and Keele (2014). The sensitivity analysis, however, assumes

that mediator-outcome confounders are not a function of the treatment.

In contrast, Tchetgen Tchetgen and Shpitser (2012) suggest a procedure that allows for

confounders of the mediator-outcome relation which are affected by D, see Section 3.5. They

suggest a semiparametric method based on specifying and calibrating the selection bias function

E[Y (1,m)|D = d,M = m,X = x] − E[Y (1,m)|D = d,M 6= m,X = x], which is agnostic about

the dimension of unobserved confounders. See VanderWeele and Chiba (2014) and Vansteelandt

and VanderWeele (2012) for further methods based on alternative selection bias functions.

A conceptually different approach is offered in Albert and Nelson (2011), who consider the

correlation of counterfactual values of post-treatment variables as sensitivity parameter.

Hong, Qin, and Yang (2018) provide a method tailored to weighting estimators based on (15),

which is applicable under the omission of both pre- and post-treatment confounders. The idea is

that such confounders create a discrepancy between the correct weight an observation should obtain

and the one actually used. The resulting bias can be represented by the covariance between the

weight discrepancy and the outcome conditional on treatment, which serves as base for conducting

sensitivity analyses. Finally, Imai and Yamamoto (2013) propose a robustness check for violations

of the no-treatment-mediator interaction assumption for instance discussed in Robins (2003). It

relies on two sensitivity parameters: the correlation between the mediator and the individual-level

effect of the treatment–mediator interaction in the outcome equation and the standard deviation

of the individual-level effect of the treatment-mediator interaction.

All studies mentioned so far investigate the robustness of direct and indirect effects to prespec-

ified deviations from the identifying assumptions. Alternatively, worst case bounds on the effects

of interest may be derived, which are based on the possibly most extreme forms of violations of

specific assumptions. However, this generality typically comes at the cost of a rather wide range

of admissible effect values. We refer to Kaufman, Kaufman, MacLenose, Greenland, and Poole

(2005), Cai, Kuroki, Pearl, and Tian (2008), and Sjölander (2009) for methodological contribu-

tions in this field, as well as to Flores and Flores-Lagunes (2010), who investigate the employment

and earnings effects of the Job Corps program mediated by the achievement of a formal degree.

Typically, the treatment is assumed to be randomized in such studies, while either no or weaker
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assumptions than exogeneity are imposed on the mediator, e.g. monotonicity of the latter in the

treatment, to attain upper and lower bounds on direct and indirect effects.

4.2 Experimental randomization of treatment and mediator

This section discusses experimental designs for evaluating causal mechanisms based on double

randomization of both the treatment and the (scalar) mediator. Imai, Tingley, and Yamamoto

(2013) consider a so-called parallel design which is based on two experiments with distinct subjects.

In the first experiment, the treatment alone is randomized, implying that Assumption 1 holds

unconditionally, i.e. even without controlling for X. In the second experiment, the treatment

and the mediator are jointly randomized, such that both Assumptions 1 and 2 hold without

conditioning on X. Furthermore, it is assumed that the assignment to one or the other experiment

does itself not directly affect the outcomes, an assumption Imai, Tingley, and Yamamoto (2013)

call consistency. Then, the first experiment allows assessing the ATE by taking mean differences in

outcomes across treatment groups, because ∆ = E[Y |D = 1]− E[Y |D = 0] by the randomization

of D. The second experiment permits evaluating the controlled direct effect because γ(m) =

E[Y |D = 1,M = m]− E[Y |D = 0,M = m] by the randomization of D and M .

Natural direct and indirect effects are, however, not point identified without further assump-

tions (even though they can be bounded, see Imai, Tingley, and Yamamoto (2013)), as the coun-

terfactual E[Y (d,M(1−d)] is unknown even when combining information from both experiments.

For instance, for observations in the first experiment with actual treatment assignment D = d,

one cannot infer whether they would satisfy M(1 − d) = m, because their behavior under the al-

ternative assignment D = 1 − d is unknown. Therefore, information on Y (d,m) from the second

experiment can generally not be used to recover E[Y (d,M(1 − d))]. One restriction that yields

identification is ruling out treatment-mediator interactions, see for instance Robins (2003). This

implies that θ(d) = γ(m) = E[Y |D = 1,M = m] − E[Y |D = 0,M = m] for any d and m, such

that direct effects are constant: θ = γ. A testable implication of the latter is that the controlled

direct effect is the same across different choices of m. In this special case, the indirect effect is

identified by δ = ∆− γ.

As an alternative approach, Wunsch and Strobl (2018) assume homogeneous average effects

of a binary M on Y given D = d across principal strata defined on potential mediator states,

see Section 2.3. Formally, E[Y (d, 1) − Y (d, 0)|M(1) = m,M(0) = m′] = E[Y (d, 1) − Y (d, 0)] for
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m,m′ ∈ {1, 0}. The indirect effect then simplifies to δ(d) = E[Y (d, 1)−Y (d, 0)] ·E[M(1)−M(0)].

The first and second experiments identify E[M(1) − M(0)] and E[Y (d, 1) − Y (d, 0)] by

E[M |D = 1] − E[M |D = 0] and E[Y |D = d,M = 1] − E[Y |D = d,M = 0], respectively.

Furthermore, in the presence of observed covariates X, the homogeneity assumption can be

tested by verifying whether E[Y |D = d,M = 1, X = x] − E[Y |D = d,M = 0, X = x] is constant

across values x. Importantly, the availability of covariates also permits relaxing the assumption

to hold conditional on X:

Assumption 7 (conditional independence of the mediator):

E[Y (d, 1)−Y (d, 0)|M(1) = m,M(0) = m′, X = x] = E[Y (d, 1)−Y (d, 0)|X = x] for all x in the support of X

and m,m′ ∈ {1, 0}.

Combining Assumption 7 with consistency, the randomization of D and of D and M ,

respectively, in the two experiments identifies the indirect effect: δ(d) = E [A ·B|D = d], where

A = E[Y |D = d,M = 1, X] − E[Y |D = d,M = 0, X] comes from the second experiment and

B = E[M |D = 1, X] − E[M |D = 0, X] from the first. Wunsch and Strobl (2018) discuss

identification also for setups different to the parallel design, e.g. when only M (but not D) is

randomized in the second experiment. See also Pirlott and MacKinnon (2016) for a survey of

alternative approaches to randomization.

Imai, Tingley, and Yamamoto (2013) suggest yet another experimental method, the cross-over

design, which allows identifying natural effects based on involving the same subjects in either

experiment. In the first experiment, the treatment is randomized and the resulting mediator and

outcome values are measured. In the second experiment, all subjects obtain the treatment opposite

to their status in the first experiment, while the mediator is fixed to the same value as observed in

the first experiment. Under consistency and no carry-over effects from the first experiment that

contaminate the potential outcomes in the second experiment, natural effects are straightforwardly

identified. In fact, Y (d,M(d)) and Y (1−d,M(d)) are observed in the first and second experiment,

respectively.

4.3 Mediation based on separate instruments for treatment and mediator

For many empirical problems, experimental randomization is not feasible and sequential condi-

tional independence assumptions based on observational data do not appear plausible either, as

treatment/mediator endogeneity might be related to unobserved characteristics. In this case, in-
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strumental variables (IV) are an alternative potential source of identification, given that specific

conditions hold. To gain some intuition, consider the following system of linear equations for the

outcome, mediator, and treatment.

Y = βDD + βMM + U, (33)

M = αDD + αZ2Z2 + V, (34)

D = σZ1Z1 +Q. (35)

This scenario bears some similarity with the simple mediation model given by (2.1) and (5).

However, a notable difference is that D and M are now assumed to be functions of instruments Z1

and Z2, respectively, which satisfy an exclusion restriction in the sense that they do not directly

affect Y . Furthermore, the unobserved terms U , V , and Q are allowed to be arbitrarily associated,

which renders M and D endogenous.

Identification is obtained if Z1 and Z2 are independent of (or in the linear model at least un-

correlated with) the unobservables (U, V,Q). For ease of exposition, we also assume that they are

independent of each other. Similar to two stage least squares, replacing the original treatment

variable D by the exogenous prediction E(D|Z1) in the mediator and outcome equations and re-

placing M in the outcome equation by E(M |E(D|Z1), Z2) permits identifying αD, βD, and βM ,

respectively. The reason is that only the exogenous variation in the treatment and the media-

tor, which is unrelated to the unobservables, is exploited. Therefore, the probability limits of re-

gressions of M and Y on the respective predictions identifies the coefficients of interest required

for computing direct and indirect effects. If the IV exclusion restrictions and independence as-

sumptions appear plausible only conditional on observed covariates X, the regressions are to be

augmented by these control variables.

Such parametric IV approaches to mediation have been used in the context of Mendelian

randomization, which uses genetic variants as IVs (see for instance Burgess, Daniel, Butterworth,

and Thompson (2015)), and in comparably few economic studies. Considering Australian HILDA

survey data, Powdthavee, Lekfuangfu, and Wooden (2013) estimate a positive indirect effect of

education on life satisfaction running via the mediator income, using regional differences in changes

of schooling laws as IV for education and income shocks (inheritance, severance pay, lottery wins)

as IVs for income. Chen, Hsu, and Wang (2018) apply the IV mediation framework to stochastic

frontier modelling, in order to disentangle the total effect of a government policy for enhancing
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productivity (e.g. dam construction to increase agricultural output) into technology and efficiency

components based on topographic instruments.

In contrast to parametric mediation models, the following nonparametric model allows for

arbitrary effect heterogeneity through interactions of D, M , X, and/or the unobservables:

Y = ϕ(D,M,X,U), (36)

M = ζ(D,Z2, X, V ), (37)

D = χ(Z1, X,Q). (38)

ϕ, ζ, χ are unknown functions. As in , M is assumed to be scalar, while extensions to vector valued

mediators would require additional instrumental variables for identification. We subsequently

assume both Z1 and D to be binary, which matches the case of a randomized experiment with

imperfect compliance, where random treatment assignment is the instrument and actual take up

is the treatment. The potential mediators and outcomes are defined as M(d) = ζ(d, Z2, X, V )

and Y (d,M(d′) = ϕ(d,M(d′), X, U) = ϕ(d, ζ(d′, Z2, X, V ), X, U), respectively, for d, d′ ∈ {1, 0}.

Similarly, we consider the potential treatment state as a function of the instrument, denoted as

D(z1). Based on (38), the latter corresponds to D(z1) = χ(z1, X,Q) for z1 ∈ {0, 1}.

Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) discuss IV-based identifi-

cation of the total average effect on the subpopulation complying with treatment assignment in

terms of treatment take up, i.e. satisfying D(1) = 1 and D(0) = 0. This effect is known as local

average treatment effect (LATE) or complier average causal effect (CACE) and formally defined

as follows:

∆c = E[Y (1)− Y (0)|D(1) = 1, D(0) = 1] = E[Y (1,M(1))− Y (0,M(0))|D(1) = 1, D(0) = 0].

In analogy to Sections 2.1 and 2.2, the natural direct and indirect effects as well as the controlled

effect on treatment compliers (rather than the total population) are defined as

θc(d) = E[Y (1,M(d))− Y (0,M(d))|D(1) = 1, D(0) = 0],

δc(d) = E[Y (d,M(1))− Y (d,M(0))|D(1) = 1, D(0) = 0],

γc(m) = E[Y (1,m)− Y (0,m)|D(1) = 1, D(0) = 0]. (39)
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Frölich and Huber (2017) discuss nonparametric identification of θc(d), δc(d), and γc(m) when

IVs are conditionally valid given observables. While Z1 and D are assumed to be binary, the

authors consider scenarios in which (i) both M and Z2 are continuous, (ii) M is discrete and Z2

is continuous, and (iii) M is continuous and Z2 is discrete. The required assumptions vary across

these scenarios and we subsequently briefly explain the conditions yielding identification when both

M and Z2 are continuous. Firstly, instruments (Z1, Z2) must be independent of unobservables

(U, V,W ) conditional on covariates X and satisfy the exclusion restrictions as postulated in the

nonparametric model above. Secondly, Z1 must be independent of Z2 given X. Both assumptions

are satisfied under a separate (i.e. independent) randomization of the instruments. Furthermore

and in analogy to Imbens and Angrist (1994), Z1 must weakly increase D for everyone (a condition

known as monotonicity) and strictly increase D in a subpopulation, implying that compliers exist

(known as first stage relevance). A further condition is the strict monotonicity of the mediator in

V , which is assumed to be a continuously distributed scalar unobservable or index of unobservables.

Finally, the common support restriction that Pr(Z1 = z1|M,V,X,D(1) = 1, D(0) = 0) is larger

than zero for z1 ∈ {1, 0} must hold, too.

Under these conditions, mean potential outcomes among compliers are identified. For instance,

E [Y (0,M(1))|D(1) = 1, D(0) = 0] =
E
[
Y · (D − 1) · 1

Ω · (Z1/π(X)− (1− Z1)/(1− π(X)))
]

E [D · (Z1/π(X)− (1− Z1)/(1− π(X)))]
. (40)

Ω = E[(D−1)·{Z1−Pr(Z1=1)}|M,C]
E[D·{Z1−Pr(Z1=1)}|M,C] is a weighting function and π(X) = Pr(Z1 = 1|X) is the instrument

propensity score. C is a nonparametric control function, see for instance Imbens and Newey (2009),

which identifies the distribution of V and thus controls for mediator endogeneity. This approach

as well as fully parametric IV-based estimation is implemented in the ‘causalweight’ package by

Bodory and Huber (2018).

Finally, Miquel (2002) considers a nonparametric framework with binary instruments Z1, Z2

and endogenous variables D,M . She discusses the identification of controlled direct effects (and

dynamic treatment effects in general) for subpopulations defined upon the compliance in either

endogenous variable.
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4.4 Single instrument approaches

Several identification strategies suggested in the mediation literature rely on a single instrument.

They therefore consider less general problems or methods than the double IV approach discussed

Section (4.3), but might be more feasible in practice, because credible instruments are typically

rare in empirical data. One strand of the literature assumes treatment take up to be exogenous

such that it need not be instrumented, as under randomized treatment assignment with perfect

compliance, and focusses on mediator endogeneity only. In this context, Robins and Greenland

(1992) assume a ‘perfect’ instrument Z2 for M that is strong enough to force the latter to take

any desired value, just as direct exogenous manipulation of M . Such perfect instruments appear,

however, hard to find in economic applications.

Imai, Tingley, and Yamamoto (2013) consider experiments with a randomized treatment (and

perfect treatment compliance) and an ‘imperfect’ and discrete instrument Z2. The latter induces

a subset of subjects to change the assumably binary mediator M , the so-called mediator compliers

(now defined with respect to the instrument rather than the treatment as it was the case in

Section 2.3). In spite of the random assignment of Z2 and D, natural direct and indirect effects

are (in contrast to the controlled direct effect) not identified nonparametrically. While treatment

randomization identifies the distributions of M(d) and Y (d,M(d)) in the total population, making

use of Z2 to exogenously vary M identifies the distribution of Y (d,m) for mediator compliers

in either treatment group. However, the distribution of Y (d,M(1 − d)) is not identified in any

population, for the same reasons as discussed for the experimental parallel design in Section 4.2:

For the group with D = d, it remains unknown which individuals satisfy M(1− d) = m, such that

information on Y (d,m) among mediator compliers can not be used for learning the distribution of

Y (d,M(1− d)).

One might therefore turn to interval rather than point identification, see Imai, Tingley, and

Yamamoto (2013) and Mattei and Mealli (2011) for bounding natural and principal strata direct

effects, respectively, under a random D and a discrete instrument Z2 for a binary M . A second

approach is invoking functional form restrictions about the mediation model, for instance the

absence of treatment-mediator interactions in (33) or assuming a continuous and powerful Z2 as in

Frölich and Huber (2017), see Section 4.3. An example for a fully parametric IV mediation model

is provided in Chen, Chen, and Liu (2017). They investigate the direct effect of the supposedly

random gender of second siblings (D) on first siblings’ education (Y ), as well as the indirect effect
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via family size (M), which is instrumented by twin births (Z2). Ten Have, Joffe, Lynch, Brown,

Maisto, and Beck (2007) use (arguably strong) parametric restrictions directly as instruments for

the mediator. Specifically, treatment-covariate interactions serve as IVs for M while imposing the

absence of treatment-mediator, mediator-covariate, and treatment-covariate interactions in the

outcome model. See Dunn and Bentall (2007) and Albert (2008) for related approaches as well as

Small (2012), who in contrast to the previous studies allows for some forms of effect heterogeneity.

A nonparametric approach to identification is the experimental cross-over design of Imai, Tin-

gley, and Yamamoto (2013) already discusses in Section 4.2. In the first experiment, the treatment

is randomized and the resulting mediator and outcome values are measured. In the second ex-

periment, all subjects obtain the treatment opposite to their first period status and are randomly

selected to have M encouraged by instrument Z2 to equal the observed mediator value in the first

period. Under specific IV assumptions and the absence of carry-over effects from the first experi-

ment that contaminate potential outcomes in the second experiment, natural effects are identified

for the mediator compliers.

A further strand of the literature assumes that both D and M are endogenous, but only uses

one instrument for solving both issues. Yamamoto (2013) considers nonparametric identification

when the treatment is endogenous and an instrument Z1 is available for D, as in the standard

LATE framework. To control for mediator endogeneity despite the absence of a second instrument,

a latent ignorability assumption similar to Frangakis and Rubin (1999) is invoked with respect

to the mediator. Conditional on the treatment compliance type (and observed covariates), the

mediator is assumed to be exogenous, implying that the compliance type is a sufficient statistic

to tackle unobserved confounders of the mediator. Brunello, Fort, Schneeweis, and Winter-Ebmer

(2016) assume an instrument Z1 for the treatment, while they combine a selection on observables

assumption with specific structural restrictions to control for mediator endogeneity. Joffe, Small,

Have, Brunelli, and Feldman (2008) assumes a single instrument that jointly affects the treatment

and the mediator and show identification under arguably strong parametric restrictions. Dippel,

Gold, Heblich, and Pinto (2017) identify direct and indirect effects by a single instrument based on

the assumption that the unobserved confounders of the treatment-mediator and mediator-outcome

relations are independent of each other. They apply this approach to investigate whether the effect

of import exposure on voting in Germany is mediated by labor market adjustments.
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4.5 Mediation based on difference-in-differences

In contrast to standard treatment evaluation, approaches based on so-called natural experiments

have rarely been considered in causal mediation analysis. One exception is Deuchert, Huber,

and Schelker (2017), who use a difference-in-differences strategy to identify direct and indirect

effects within principal strata, see Section2.3. They to this end assume a randomized treatment,

monotonicity of the (binary) mediator in the treatment, and particular common trend assumptions

on mean potential outcomes across principal strata. The latter imply that mean potential outcomes

under specific treatment and mediator states evolve in the same way over time across specific

subpopulations. It is for instance imposed that the mean potential outcomes without treatment

and mediator across the strata (i) of the never mediated and (ii) of those whose mediator complies

with the treatment assignment follow a common trend over time (while outcome levels might

differ):

E[Yt=1(0, 0)− Yt=0(0, 0)|M(1) = M(0) = 0] = E[Yt=1(0, 0)− Yt=0(0, 0)|M(1) = 1,M(0) = 0], (41)

where t = 0 denotes a pre-treatment period, i.e. prior to the measurement of D and M , and t = 1

the post-mediator period in which the effects on the outcome are to be estimated. Under this

assumption, the direct principal strata effect on the never mediated is obtained by

E[Yt=1(1, 0)− Yt=1(0, 0)|M(1) = M(0) = 0] (42)

= E[Yt=1|D = 1,M = 0]− E[Yt=0|D = 1,M = 0]− E[Yt=1|D = 0,M = 0]− E[Yt=0|D = 0,M = 0].

Invoking further common trend and effect homogeneity assumptions eventually permits identifying

direct and indirect effects on mediator compliers and (if identification is obtained in all strata) on

the total population, see Deuchert, Huber, and Schelker (2017).

5 Extensions

We subsequently discuss some extensions of the standard framework with sequential conditional

independence in Section (3.1) to adapt the analysis to target groups different than the total popu-

lation, functions of outcomes, and multivalued (rather than binary) treatments. We also consider

issues of measurement error in the mediator and sample selection due to missing outcomes.

32



5.1 Different populations and outcome functions

While most mediation studies evaluate effects on the total population, alternative target groups

as for instance the treated population might be of policy interest, too. In analogy to the concept

of weighted treatment effects in Hirano, Imbens, and Ridder (2003), direct and indirect effects

are identified for a particular target group under Assumptions 1 to 3 by reweighing observations

according to the distribution of observables X in the target group. To this end, we define ω(X)

to be a well-behaved weighting function depending on X. Including ω(X)
E[ω(X)] in the expectation

operators of (17) identifies the direct and indirect effects on the target group:

θω(X)(d) = E

[
ω(X)

E[ω(X)]
·
(

Y ·D
Pr(D = 1|M,X)

− Y · (1−D)

1− Pr(D = 1|M,X)

)
· Pr(D = d|M,X)

Pr(D = d|X)

]
,

δω(X)(d) = E

[
ω(X)

E[ω(X)]
· Y · I{D = d}

Pr(D = d|M,X)
·
(

Pr(D = 1|M,X)

Pr(D = 1|X)
− 1− Pr(D = 1|M,X)

1− Pr(D = 1|X)

)]
.(43)

The subscript ω(X) highlights that the effects refer to a specific target group defined by a function

of X. Important examples are ω(X) = Pr(D = 1|X) and ω(X) = 1 − Pr(D = 1|X), yielding the

direct and indirect effects on the treated and non-treated, respectively. The identifying assumptions

might be weakened somewhat when considering these groups, see the discussion in Vansteelandt

and VanderWeele (2012).

Furthermore, the identification results can be extended to well-behaved functions of the

outcome, rather than Y itself. For instance, replacing Y by the indicator function that Y

is not larger than some value a, I{Y ≤ a} , in (13), (14), or (15) yields the cumulative

distribution function of potential outcomes. The inversion of the latter allows identifying direct

and indirect quantile treatment effects at specific quantiles of the (unconditional) potential

outcome distribution. See also Schmidpeter (2018), who identifies direct and indirect quantile

treatment effects on the treated based on a weighted version of the so-called check function, a

loss function for quantile regression originally suggested by Koenker and Bassett (1978). He

applies the method to decompose wage losses after displacement into an indirect effect operating

via interim jobs and a direct channel accounting for any other factors. Further contributions

in the context of quantile mediation analysis assess direct and indirect effects at conditional

(rather than unconditional) quantiles of the outcome and/or the mediator, see Dominici, Zeger,

Parmigiani, Katz, and Christian (2006), Imai, Keele, and Tingley (2010), Shen, Chou, Pentz, and

Berhane (2014), Bind, VanderWeele, Schwartz, and Coull (2017), and Geraci and Mattei (2017).
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Conditional direct and indirect quantile effects do, however, not necessarily add up to the total

effect at some unconditional quantile of potential outcomes in the population.

5.2 Multivalued treatments

Most contributions to causal mediation analysis that rely on the potential outcome framework

assume a binary treatment. In empirical applications, treatments might, however, also be

multivalued discrete, representing e.g. alternative labor market programs (e.g. no training, job

application training, language course, computer course), or continuous, for instance time spent

in training. For a discussion on multivalued discrete treatments in linear models, see Hayes and

Preacher (2014). In nonparametric models, the evaluation of multivalued discrete treatments can

be straightforwardly implemented based on the results of Section 3.2, be they categorical or

ordered. For any pair of values d 6= d′ in the discrete support of D, the expressions for potential

outcomes provided in (13), (14), and (15) directly apply, given that Assumptions 1 to 3 are

satisfied with respect to non-binary d and d′. Direct and indirect effects based on pairwise

comparisons of appropriately defined potential outcomes (using, for instance, d = 1, d′ = 0, or

d = 2, d′ = 0, or d = 2, d′ = 1 if d, d′ ∈ {0, 1, 2}) are then identified analogously to the binary

treatment case.

If D is continuous, identification remains unchanged when compared to a binary treatment

for the case of a linear model as described by equations (9) to (12). For the nonparametric case,

however, the results of Section (3.2) need to be modified to account for the fact that continuous

treatments do (in contrast to discrete ones) not have mass points. Hsu, Huber, Lee, and Pipoz

(2018) adapt weighting-based identification of potential outcomes as given by (14) to a continu-

ously distributed treatment, assuming that Assumptions 1 to 3 hold with respect to the latter.

Specifically, any indicator functions for treatment values are replaced by kernel functions. Treat-

ment propensity scores are substituted by conditional density functions, also known as generalized

propensity score, see Hirano and Imbens (2005) and Imai and van Dyk (2004). For any pair of

treatment values d 6= d′, the expression for the mean potential outcome becomes

E[Y (d,M(d′))] = lim
h→0

E

[
Y ω(D; d, h)

E[ω(D; d, h)|M,X]
· E[ω(D; d′, h)|M,X]

E[ω(D; d′, h)|X]

]
. (44)

The weighting function ω(D; d, h) = K ((D − d)/h) /h, where K is a symmetric second order

kernel function assigning more weight to observations closer to d, and h is a bandwidth operator.
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For h going to zero, i.e. limh→0, the conditional means E[ω(D; d′, h)|X] and E[ω(D; d′, h)|M,X]

correspond to the generalized propensity scores f(D = d|X) and f(D = d|M,X), respectively.

We refer to Hsu, Huber, Lee, and Pipoz (2018) for a discussion of weighting-based estimation

using either parametric or nonparametrically estimated generalized propensity scores, with

the former approach being available in ‘causalweight’ package by Bodory and Huber (2018).

Alternatively to weighting, imputation-based estimation of potential outcomes as suggested

by Vansteelandt, Bekaert, and Lange (2012) can be applied to both multivalued discrete and

continuous treatments. This has been implemented in the ‘medflex’ package by Steen, Loeys,

Moerkerke, and Vansteelandt (2017b). Finally, also the regression-based ‘mediation’ package by

Tingley, Yamamoto, Hirose, Imai, and Keele (2014) allows for non-binary treatments in both

linear and nonlinear models.

5.3 Mismeasured mediators and missing outcomes

VanderWeele (2012b) points to a subtle but important issue concerning a too ‘coarse’ measurement

of the mediator, as it likely occurs in many empirical problems. For illustration, we consider

employment as mediator of interest. We further assume that the data provide a binary indicator

for employment at the extensive margin, i.e. whether an individual provides zero or positive hours

of work, while no information at the intensive margin is available, i.e. on the hours actually

supplied by the working. This is an issue if the effect of the treatment on the mediator does

not exclusively operate through the extensive margin, i.e. inducing a switch from not working to

working or vice versa, but also at the intensive margin, i.e. inducing some working individuals to

change the hours worked. In the latter case, the measured indirect effect only accounts for impacts

related to treatment-induced mediator changes at the extensive margin. In contrast, any changes

at the intensive margin that occur without switches at the extensive margin are credited to the

direct effect. This issue should be taken into account when interpreting the effects in the presence

of a coarse measure of the mediator. In general, any form of mediator mismeasurement entails

problems for properly assessing direct and indirect effects. Heckman and Pinto (2015) provide a

procedure to correct for measurement error in the mediator under specific structural assumptions,

requiring for instance that the mediation model is parametric and that the measurement error is

independent of potential mediators.

A further complication arises when outcomes are only observed for a subpopulation due to

35



sample selection or outcome attrition. Such issues frequently occur in empirical applications,

as for instance wage gap decompositions, where wages are only observed for those employed, or

whenever individuals refuse to participate in follow up surveys measuring the outcome. Huber and

Solovyeva (2018) discuss the identification of natural effects as well as the direct controlled effect

when combining sequential conditional independence for the treatment and the mediator with

either selection on observables or IV assumptions with respect to the outcome attrition process.

The authors provide weighting-based expressions for the parameters of interest that make use of

specific treatment, mediator, and/or selection propensity scores.

6 Conclusion

This paper provided a survey on methodological developments in causal mediation analysis, with

a specific focus on applications in economics. After defining the direct and indirect effects of

interest, we discussed identification and estimation based on conditional independence assumptions

with respect to treatment and the mediator selection. We considered both static and dynamic

confounding, i.e. when at least some of the confounders of the mediator-outcome relationship are a

function of the treatment. We reviewed further evaluation strategies based on partial identification,

randomization of the treatment and the mediator, instrumental variables for the treatment and/or

mediator, and difference-in-differences. Finally, we sketched several extensions to the standard

framework, like multivalued rather than binary treatments, target populations that differ from the

total population, mismeasured mediators, and sample selection/outcome attrition.
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