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Abstract

In a changing climate, ice‐rich permafrost features such as rock glaciers will experience

drastic changes. Modeling the heat transport through the blocky surface layer with its

large interstitial pore spaces poses some challenges as various modes of non‐conductive

heat transport—advective forms in particular—can occur. Here, we show that the 1D

physics‐based model SNOWPACK can be used with a suitably adapted parameteriza-

tion of ventilation to represent heat transport with reasonable accuracy. To do so, only

one site‐specific parameter, which is linked to the size of the pores in the blocky layer, is

used. Inclusion of this ventilation parameterization is shown to be important for model-

ing the thermal regime at three experimental sites in the Swiss Alps. Furthermore, it

could be shown that (i) snow depth dynamics exert a strong control on the thermal

regime, (ii) the ice‐content stratigraphy needs to be known precisely and (iii) the aug-

mented heat flux through the blocky layer caused by ventilation in both snow and

blocks is important.
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1 | INTRODUCTION

With an ever evolving climate, mountain permafrost is undergoing

thermal changes. While glaciers are retreating fast (estimates suggest

that up to half the global glacial volume could be lost by the end of

the century1), rock glaciers are thought to be less sensitive to climate

change.2 The coarse rock layers, characteristic of rock glaciers, have

been found to allow permafrost to exist where the mean annual air

temperature is above 0°C in mountainous regions.3 Rock glaciers

occur in the periglacial belt in nearly all high mountain systems of

the world.4 As runoff from glaciers is projected to decrease in the long

term5 rock glaciers may gain in importance as a potential water source

in regions that rely heavily on glacial runoff, such as Central Asia.6 To

make projections about the potential future water availability and the

fate of rock glaciers themselves it is necessary to be able to model the

thermal regime of rock glaciers reliably.

The difficulty in modeling the thermal regime of rock glaciers lies

mostly with the blocky surface layer, ie, the uppermost layer consisting

of rocks, often large, and boulders. Apart from the rough, heterogeneous

surface which complicates the surface energy balance,7-10 large blocks

with large pore spaces allow not only for conductive and diffusive pro-

cesses but also for advective modes of heat transport. When considering

natural convection, the movement of air due to buoyancy forces, a dis-

tinction can be made between open pores and closed pores. Open pores

allow for the chimney effect, while closed pores allow for Rayleigh–

Bénard convection. The chimney effect describes a process by which

warmair is replaced by cold air through advective transport through open

pore spaces in the blocky layer.11,12 This type of convection has been

shown to have a significant cooling effect on the thermal regime of rock

glaciers.13,14 Rayleigh–Bénard convection describes the process bywhich

a temperature difference between floor and ceiling of a closed pore space

creates convective motion. This process can be extended to pore spaces

filledwith porousmedia inwhich case it is known as theHorton–Rogers–

Lapwood problem,15 which has been shown to have a cooling effect in

blocky layers.3 However, the exact processes cannot be modeled explic-

itly in a 1D model but need to be parameterized.
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Here, the SNOWPACK model16,17 is used to model the rock

glacier's thermal regime. This 1D physics‐based model contains a venti-

lation module,17 which is intended to provide a parameterization of the

vertical component of processes of forced convection or wind‐induced

airflow.18 In ice‐rich layers, by contrast, conductive heat transfer domi-

nates (in the absence of cracks or shafts in the ice), which is included in

the model in the form of the conduction‐diffusion equation. The model

also incorporates a soil module (cf. Methods), which allows its use to be

extended to the subsurface ground domain (here the rock glacier).

Model forcing is supplied in the form of the following meteorological

variables: at least one shortwave radiation component, air temperature,

incoming long‐wave radiation or (in case of a nonphase‐changing sur-

face) surface temperature, wind speed and direction, humidity, and

snow height.

For long‐term studies the thermal regime of the icy layer is of

most interest to determine any potential discharge from rock glaciers.

However, this requires knowledge of the heat transport through the

blocky layer. The focus of this study is then to model the heat trans-

port, determined by the meteorological forcing supplied to the model,

through the blocky layer to the icy layer. The model domain is thus

chosen to include the entire thickness of the blocky layer and part

of the underlying icy layer. Including the icy layer is important to

ensure that the heat transport through the blocky layer is simulated

correctly because this will determine the temperatures in the icy layer.

This paper investigates three ice‐rich rock glaciers at study sites in

the Swiss Alps (Murtèl‐Corvatsch, Ritigraben and Schafberg; see

Figure 1, and next section) for which extensive borehole temperature

and meteorological forcing data are available. The sites are simulated

using the SNOWPACKmodel with and without the ventilation module.

Additional runs were performed showing the effect of reduced ice con-

tent in the icy layer (Murtèl) and the effect of snow height (Ritigraben).

2 | SITE DESCRIPTIONS

2.1 | Murtèl

The Murtèl‐Corvatsch rock glacier is one of the most studied perma-

frost features and has the longest data series in mountain permafrost

worldwide.7,9,19-24 It is located in the Upper Engadine in the Swiss

Alps at an elevation of 2670 m a.s.l. and with a mean slope of 10°. It

is about 400 m long and 200 m wide (total area of 0.08 km2 as of

1994) with marked furrows and ridges on its surface.19 Temperature

data from two boreholes are available,25 one drilled in 1987 (labeled

2/87) and a second one drilled in 2000 (labeled 2/00). Details of the

measurements in borehole 2/87 are documented by Vonder Mühll

and Haeberli26 (depth down to 9.55 m is used to initialize the model).

It should be noted that at a depth of 52 m evidence of intrapermafrost

FIGURE 1 Location of borehole and meteorological stations: RIT = Ritigraben, COR = Murtèl‐Corvatsch, SBE = Schafberg. The boreholes are
located at (2′631′755, 1′113′775) Ritigraben B 1/02, (2′783′175, 1′144′692) Murtèl B 2/87 and (2′790′856, 1′152′745) Schafberg B 1/90.
All coordinates in CH1903+/LV95 standard Swiss coordinate system. Digital elevation model: SwissAlti3D (relief)
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groundwater flow was presented by Vonder Mühll.22 This has impor-

tant consequences for the temperature gradient within the rock gla-

cier and will influence the initialization of temperatures in the model.

Vonder Mühll and Klingerlé19 describe the structure of the

Murtèl‐Corvatsch rock glacier as consisting of four layers, with a 3–

5‐m‐thick active layer consisting of mainly granodiorite blocky rock

material or boulders, with block sizes of approximately 1 m2 and up

to several cubic metres according to Mittaz et al.8 Arenson21 describes

the second layer as consisting to a large extent of ice mixed with

sandy or silty material and with a thickness of 20 m. The third layer

extends down to 30 m and consists of ice, silt and sand, and the fourth

layer is described as a blocky one, saturated with ice.19

For this study only the top 10 m containing both the blocky layer

and part of the icy layer are considered. These layers need to be initial-

ized in SNOWPACK's soil module with the following parameters: vol-

ume fraction of water, ice, solid and air, thermal conductivity, density

and heat capacity of the solid component, grain size, and temperature.

When the soil consists of rock (as in the blocky layer) the grain size is

replaced by a flag indicating that the solid fraction consists of blocks.

Because the exact conditions and combination of materials at each

thermistor are not fully known, some simplifications need to be made,

both in the composition and in the extent of the layers. According to

borehole data from PERMOS,25 the amplitude of temperature changes

is largest above 2.55 m in borehole 2/87 and depths below 2.55 m

remain at temperatures below 0°C for most of the time series.

Because PERMOS25 data were used for validation of the model, pref-

erence was given to these values for the model initialization and thus

the blocky layer thickness is set to 2.55 m. Extending the blocky layer

deeper into the ground would result in modeled zero curtains differing

significantly from measured ones. The blocky layer was initialized with

an air volume fraction of 40%,24 with the remaining fraction made up

of the solid material. The water and ice fractions are set to 0 in the

blocky layer. The values for the properties of the solid fraction are

as follows: the density24 is ρ = 2000 kg/m3, the thermal conductivity27

is ksolid = 2.63 W/(mK) and the specific heat capacity28 is cp = 752 J/

(kg K). Directly beneath the blocky layer is the icy layer, which consists

almost entirely of ice. In the model initialization the volumetric ice

content is set to 99% following Mittaz et al.8 who give an estimate

of 90–100%. The water and air content is taken as 0 and the density

of the remaining fraction19 is 950 kg/m3, the thermal conductivity of

the solid soil component29 is 0.58 W/(m.K) and the specific heat

capacity29 is 800 J/(kg. K).

In this study data from borehole 2/87 are used as they provide a

longer time series and the meteorological station is closer to this bore-

hole (borehole 2/00 is upslope of borehole 2/87). The meteorological

station provides the following data: incoming and reflected shortwave

radiation, incoming and outgoing longwave radiation, air and surface

temperature, relative humidity, wind speed and direction, and snow

height at hourly intervals. Details of the instruments and the measure-

ments are given in Hoelzle et al.20

2.2 | Ritigraben

The Ritigraben rock glacier is situated on a west‐facing slope in the

Matter Valley in the Western Swiss Alps at an elevation of

2690 m a.s.l. with an areal extent of approximately 1.4 km2 (as of

2012) according to Zenklusen Mutter and Phillips.30 Thermal data

from a borehole drilled in 2002 are available through PERMOS25 with

details of the measurements given in Herz et al.31 Due to a seasonal

talik,30 with water fluxes through the permafrost32,33 at a depth of

12–13 m, the cut‐off depth for the model was chosen at 8 m.

The internal structure is roughly given by a blocky layer down to

around 2.5 m with block sizes of approximately 0.5 m and up to several

cubicmetres.31 Underneath this layer is amixed layerwith finermaterial

and ice lenses followed by a layer with rocks, fine‐grained material and

ice.30 The rocky material consists mainly of augen‐gneiss estimated

fromGeocover, product of the FederalOffice of Topography swisstopo,

which has a density of about 2400 kg/m3 and a thermal conductivity of

2.7 W/(m.K) according to Sharma.27 A specific heat capacity of 850 J/

(kg K) was used because no measured value was available.

The meteorological station at Ritigraben does not provide reliable

data, in particular for snow height, hence the intercantonal mea-

surement and information system (IMIS) meteorological station at

nearby Seetal was used (2.3 km east of Ritigraben, at 2480 m a.s.l.).

However, it should be noted that the Seetal station is in a very differ-

ent orographic setting than the borehole at Ritigraben. The rock gla-

cier is located on a west‐facing slope while the meteorological

station is located in a cirque with mountain ranges on the north, west

and south sides. The predominant wind direction recorded by the IMIS

wind station on the Platthorn is north‐northwest, which could lead to

a discrepancy between the snow heights measured at the Seetal sta-

tion and the borehole site. The meteorological station at Seetal pro-

vides the following data: reflected shortwave radiation, air and

surface temperature, relative humidity and snow height. Wind mea-

surements (direction and speed) are available from the wind station

on Platthorn at 3246 m a.s.l.

2.3 | Schafberg

The Schafberg rock glacier is located in the Upper Engadine, Eastern

Swiss Alps, at an elevation of 2732 m a.s.l. on a west‐facing slope.

Two boreholes were drilled in 1990 and thermal data are available

through PERMOS.25 For this study the borehole labeled 2/90 is used

because the other borehole has gaps in the data of several years.

Ground temperature measurements for borehole 2/90 are available at

0.0, 1.2, 3.2, 5.2, 7.2, 9.2, 13.2 17.2 m and down to a depth of 25.2 m.

The surface layer is described as being made up of rubble or

debris,34 and block sizes are smaller than at the other two rock glacier

sites (up to 0.5 m3). The volumetric ice content between 5 and 12 m

depth is estimated as about 45%.22

There are two meteorological stations which can be used for the

Schafberg site. These are the IMIS station Bernina 3 in an east‐facing

slope, which is closer to the borehole site (6.3 km south of Schafberg

at 2620 m a.s.l.), and the IMIS station Bernina 2, which is farther away

but has more comparable topography to the borehole site (11.6 km

south‐east of Schafberg at 2450 m a.s.l.). Distance from the borehole

site, elevation and topography can affect how representative the snow

height at the meteorological stations is for the borehole. The meteoro-

logical stations provide the following data: reflected shortwave
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radiation, air and surface temperature, relative humidity, snow height,

and wind speed and direction.

3 | METHODS

3.1 | Model

In SNOWPACK, soil and snow layers are computationally represented

by finite elements. Information about the stratigraphy of the rock gla-

cier and temperatures are registered in the soil module during the ini-

tialization. The soil domain is split into the blocky and icy layers; for

each layer the volume fractions of ice, water, solids and air need to

be supplied as discussed above. Additionally, the physical properties

(density, thermal conductivity and specific heat capacity) of the solids

fraction need to be provided. For finer grained solid material or ice a

grain size can be specified (for rock, ie, in the blocky layer, this is omit-

ted). The grain size will determine the field capacity and hence the

amount of water that can be retained in a specific layer. The surface

of the soil domain, while in reality not clearly defined due to the large

blocks and gaps in between, is taken to be located at the elevation

given for the borehole (see sections on site descriptions).

The focus of this paper is to investigate the role played by venti-

lation in modeling the thermal regime of rock glaciers. In SNOWPACK

the ventilation is included in a parameterized form, which acts to

increase the apparent thermal conductivity of the computational

ground (or snow) element. A detailed description of the ventilation

parameterization can be found in Lehning et al.,17 and only a short

summary is presented here. A standard logarithmic wind profile is

assumed requiring only one wind measurement at a reference height:

U zð Þ ¼ u*
k
ln

zþ d
z0

� �
(1)

where u* is the friction velocity, k = 0.4 is the von Karman constant, z0

is the roughness length and d is the displacement depth. Originally, the

displacement depth is calculated based on the density of each compu-

tational snow (soil) element. An amendment has been made for rock

glaciers for the snow‐free period only; here the displacement depth

is taken as a constant because the density of the rocks is constant.

For the snow cover the original method is preserved. The friction

velocity is computed iteratively from

u* ¼ kUref

ln
zref þ d

z0

� �
−Ψ

(2)

where an initial value for the roughness length z0 = 0.002 for snow

cover35 was supplied, Uref is the measured wind speed at the reference

height zref and Ψ is a stability correction based on the Monin‐Obukhov

theory36 and calculated following the method of Michlmayr et al.37

Further, it is assumed that the effect of the wind‐forced ventilation

decreases exponentially with depth, such that the velocity of the pore

air can be expressed as

Up zð Þ ¼ U0 exp −Cextρjzjð Þ (3)

where U0 is the wind speed at the surface calculated from Equation (1),

Cext is an extinction coefficient, which needs to be calibrated, and ρ is

the density of the computational soil element. Based on a mixing

length approach a diffusivity for the ventilation effect can be defined

as

Kp ¼ αL2p
dUp

dz
(4)

where Lp is the effective pore length and
dUp

dz
is the shear of the pore

air. While theoretically α can be understood as the ratio of tortuosity

to porosity, in practice it is used as a fitting parameter in the model.

The effective or apparent thermal conductivity of the computational

soil element is then calculated as the sum of its effective physical heat

conductivity, ks (this takes into account the different constituents of

the soil element, ie, solid, water, ice and air contents) and the addi-

tional component arising from the ventilation, kp = ρaircp, airKp, where

ρair is the density of air and cp, air is the specific heat capacity of air

(cf. Equation (4)):

Keff ¼ ks þ kp (5)

The ventilation module in SNOWPACK has originally been developed

for snow. Ventilation in snow, however, is small18,38 and model param-

eters need to be chosen for the rocky layer. Therefore, the fitting

parameter α, the displacement depth d and extinction coefficient Cext,

which are considered site‐independent, have been calibrated using data

fromMurtèl. This site was chosen for calibration because (i) the meteo-

rological station is close to the borehole, thus providing reliable forcing

data, and (ii) the stratigraphy of the rock glacier is well known, thus lim-

iting the amount of uncertainty introduced. This leaves the pore length

Lp as the only parameter of the ventilation module that needs to be

adjusted for each site. The pore length is dependent on the block size,

which will vary between sites, with a larger pore length corresponding

to a larger block size. This method does not distinguish between differ-

ent mechanisms of heat transport, which might be active during sea-

sonal warming or cooling periods, and does not account for lateral

components such aswater or air fluxes. If lateral components are impor-

tant, they would need to be included explicitly by specifying an advec-

tive heat flux for each time step in the forcing data.14

The model was run in two different configurations: standard (ie,

no ventilation, achieved by setting α to zero for both snow‐free and

snow‐covered periods) and with added ventilation. Model runs show-

ing the effect of ice content have been performed for Murtèl and

model runs showing the effect of snow height have been performed

for Ritigraben and Schafberg.

3.2 | Forcing data

To run the SNOWPACK model, hourly meteorological forcing data are

required, so any gaps in the data need to be filled. Short gaps (up to

3 h) were filled by using linear interpolation between the previous

and subsequent time steps. For longer gaps this method would lead

to the loss of the diurnal cycle and a different method was used. An

average site‐specific daily cycle was computed for every month of

the year using all available data at the site. Data from this average

daily cycle were then used to fill the gaps. For Murtèl, Ritigraben,
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and Schafberg the above procedures were applied for 10–15, 1–13

and 1–12% of all data in the time series (depending on the meteoro-

logical variables), respectively. The longest gap in the data for Murtèl

was 110 days during the last year of the modeling period.

At Murtèl the meteorological station is located close to the bore-

hole and data can be considered representative for the local borehole

conditions. The meteorological stations used for the Ritigraben and

Schafberg sites are located several kilometers away from the bore-

holes and may not be fully representative. In particular, snow condi-

tions can vary considerably from one location to another even over

relatively short distances because snow cover not only depends on

the amount of precipitation but also on wind conditions. The latter

can lead to snow drift, particularly on rough surfaces such as rock gla-

ciers, and the snow height may thus be locally reduced or increased.

Snow height is a determining factor for the presence of permafrost7

and especially permafrost temperatures. Thus, care needs to be taken

when using snow height measurements taken from some distance

away. Furthermore, snow height measurements are notoriously diffi-

cult due to wind conditions causing snow drift and are here further

complicated due to an uneven surface. However, the error introduced

due to measuring angle and the slope of the surface is small (∼ 2%)

because the slope here is not very large (~10°).

Due to the differences in topography at the Ritigraben borehole

and at the Seetal meteorological station, the measured snow height

was not representative. A modeled borehole temperature that is

higher than the measured one could indicate that the snow height is

excessive and vice versa. The Ritigraben borehole has closely spaced

temperature measurements near the surface at 10, 20 and 40 cm

depth. Measurements at these depths were compared to the model

output, with the snow height being scaled by a constant factor for

each year, and the root mean square error (rmse) was minimized to

determine this constant factor. To determine each factor the model

was run for the corresponding year with a 1 year spin up period. In

general, the effect of this factor is to dampen the year‐to‐year variabil-

ity in snow heights.

For the Schafberg site the snow height between the stations Ber-

nina 2 and 3 differs significantly, so both stations have been used sep-

arately and using a weighted average of the snow heights. In the latter

case, higher weight was given to Bernina 2 due to the similarities in

topography with the borehole site.

3.3 | Boundary conditions

The upper boundary condition for all model runs is set to switch

between Dirichlet (measured temperature) and Neumann (heat flux).

Dirichlet and Neuman are used for temperatures below and above

−1.3°C, respectively, following Lehning et al.17 Turbulent heat fluxes

are calculated using the bulk transfer method (eg,39). At the surface,

specifically, the equations used by SNOWPACK17 are as follows:

Qs 0ð Þ ¼ −Cρacp T zrefð Þ−T 0ð Þð Þ; (6)

Ql 0ð Þ ¼ −C
0:622Lw=iρa

pa
ews T zrefð Þð ÞRH−eis T 0ð Þð Þ� �

; (7)

where ρa is the density of air, cp is the specific heat capacity of air,

T(zref) is the temperature measured at the reference height zref, T(0) is

temperature at the surface, Lw/i is the latent heat of vaporization or

sublimation, respectively, pa is air pressure, ews is the saturation vapor

pressure over water, eis is the saturation vapor pressure over ice, RH

is the relative humidity and the coefficient C is given by:

C ¼ ku*

ln
zref
z0

� �
−Ψ

; (8)

where k = 0.4 is the von Karman constant, u* is the friction velocity, z0

is the roughness length and Ψ is the stability correction.

The lower boundary condition for the Murtèl and Ritigraben sites

was set to Neumann with a constant heat flux of 0.06 W/m2, which is

the standard value used in SNOWPACK and corresponds to an aver-

age geothermal heat flux. This low heat flux has only a minor influence

on the simulations. For Schafberg, Dirichlet boundary conditions were

specified. The lower boundary of the model domain is set to 9.55 m

for Murtèl, 8 m for Ritigraben and 17.2 m for Schafberg. At Ritigraben

and Murtèl the cut off was chosen to avoid the influence of taliks,

which are located at 12‐m depth at Ritigraben and 52 m at Murtèl.

At Schafberg the cut off reflects the depth of zero annual amplitude

with nearly constant ground temperature.

Note that the surface of the active layer, which consists of large

boulders, and also the base of the snow cover are set at the elevation

of the borehole location given by PERMOS.25 This simplification was

necessary because it is not possible to account for different surface

heights attributed to large boulders in the model.

3.4 | Error measure

The measured temperature ranges vary significantly at different

depths. To make it easier to compare the model performance at differ-

ent depths, the rmse (calculated from the difference between mea-

sured and modeled borehole temperatures) is normalized by the

temperature range measured for each depth. The normalized rmse

(nrmse = SqrtðΣ Tmodel−Tmeasð Þ2
n Þ= ΔTð Þ, where ΔT is the range of mea-

sured temperatures) can then be compared for different depths and

sites. This also ensures that the error measure is not dominated by

the highly variable surface temperature but adequately represents

temperature deviations at larger depths, which are smaller in magni-

tude but more persistent.

4 | RESULTS

4.1 | Murtèl

The Murtèl site was used to calibrate the ventilation parameters: α, d

(for the snow free blocky layer) and Cext. Values of 0.001, 0.1 and

0.002, respectively, were found to produce reliable model results.

Pore length is not included in the calibration as it was allowed to vary

between sites to account for differences in block size and thus pore

spaces between the blocks. For the Murtèl site best results were

obtained for Lp = 0.5.
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Figures 2a and 2b show the model runs with ventilation, without

ventilation and with reduced ice content in the icy layer. At 50 cm

depth (Figure 2a) the low winter temperatures are only achieved with

ventilation and high ice content. In contrast, the high summer temper-

atures seem to be less affected by ventilation or ice content. At

250 cm depth (Figure 2a) both high and low temperatures are more

extreme in the model than in the measured data. This depth is where

the model performs worst, and this is probably related to the presence

of the boundary between blocky and icy layers. This is of course a sim-

plistic set up and a more realistic one might include a transitional layer

between the blocky and icy layers accounting for the actual depth and

composition of the active layer. At 350 cm depth (Figure 2b) the case

with ventilation shows good agreement between modeled and mea-

sured temperatures, as well as good agreement between the timing

and duration of zero curtains during phase changes within the active

layer in spring and autumn. For the cases with reduced ice content

and no ventilation the modeled zero curtains extend into the period

where subzero temperatures were measured. Generally, the rate of

warming is better represented than the rate of cooling. The cooling

process occurs at a slightly slower rate than warming. Once tempera-

tures start to increase, they do so rapidly until they reach 0°C. At

750 cm (Figure 2b) modeled temperatures without ventilation are
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FIGURE 2 (a) Modeled temperatures at depths of 0.5 and 2.5 m (from top to bottom) for the Murtèl site with the following configurations:
ventilation switched on (blue) and ventilation switched off (red); ventilation switched on using a reduced ice content of 70% in the icy layer
(orange). Measured borehole temperatures are shown in purple. (b) Modeled temperatures at depths of 3.5 and 7.5 m (from top to bottom) for the
Murtèl site with the following configurations: ventilation switched on (blue) and ventilation switched off (red); ventilation switched on using a
reduced ice content of 70% in the icy layer (orange). Measured borehole temperatures are shown in purple
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consistently higher than measured ones by as much as 2°C. The case

with lower ice content is slightly better than the case without ventila-

tion but its agreement deteriorates over time. The ventilation case

produces the best results. Overall, the results show that both ventila-

tion and a high ice content are necessary to reproduce the low tem-

peratures measured in the icy layer. From 2010 onwards, modeled

temperatures without ventilation or with reduced ice content show

positive values instead of the measured zero curtains at 3.5 m depth.

Note that the effect of the lower ice content becomes more

apparent over longer model runs. As it allows for melting at the

boundary between blocky layer and icy layer, the effect becomes

cumulative and modeled temperatures increasingly deviate from mea-

sured ones the longer the model is run. This result is of particular

importance when running the model to make future projections of

permafrost evolution as an error in the initialized ice content can lead

to significant deviations in predicted ground temperatures. Reducing

the volumetric ice content from 99% to 70% increases the average

rate of warming relative to measured ground temperatures in the icy

layer (calculated over the whole model period at 7.5 m depth) from

0.08°C/decade to 0.50°C/decade. Note that the rate of warming

due to the reduced ice content is dampened by the extended zero cur-

tain in the modeled temperatures at this depth.

Apart from the ice content, the porosity (or void volume fraction)

and the grain size (which determines the field capacity) are of major

importance in the soil initialization. These properties determine how

much water can infiltrate and be retained in the system. The amount

of water in the system will greatly influence the ground thermal

regime due the latent heat involved in phase changes.

4.2 | Ritigraben

The above described calibration for the ventilation module is used for

the Ritigraben site, with a pore length of 0.5 in the top layer and 0.3 in

the intermediate layer. In the top part of the blocky layer both Murtèl

and Ritigraben have comparable block sizes. The stratigraphy for

Ritigraben was less well known than for Murtèl and had to be inferred

from model results. It was found that using a 2‐m‐thick coarse blocky

layer with a 1.5‐m‐thick intermediate layer with smaller blocks and an

ice‐rich layer below worked well. The porosity was set to 0.3 in the

upper blocky layer and to 0.1 in the intermediate layer. The volumetric

ice content in the ice rich layer was set to 80%.

Model runs with the adjusted and unadjusted snow height and

ventilation switched on are presented in Figures 3a and 3b. It can be

seen that the snow height adjustments improve modeled tempera-

tures at all depths, strengthening the argument that the issue lies

indeed with the snow height and is not caused by an incorrect stratig-

raphy or parameterization in the model. Using the measured snow

height directly results in poor agreement between modeled and mea-

sured temperatures at all depths during the cold winter period. Gener-

ally, if the temperature is too low (high) near the surface, it is also too

low (high) at the other depths. Adjusting the snow height by a con-

stant factor for each year to minimize the rmse at the top three mea-

surements (10, 20 and 40 cm) results in an improved agreement

between measured and modeled ground temperatures at all modeled

depths. The timing of the warming period and the start of the zero‐

curtains are well represented by the model. In most years the onset

of the cooling period is also well captured by the model. However,

in some years the onset of cooling occurs later in the model than in

the measurements, most notably in 2013 and 2015. In both cases

the adjustment of snow height has improved the model results slightly

but the timing is not quite correct. This is probably due to the timing

of the snow cover at the borehole site differing from that observed

at the meteorological station. The timing of the snow cover has not

been taken into account when making adjustments to the snow

height. Staub and Delaloye40 have proposed a method to calculate

snow insulation and melt indices from near‐surface ground tempera-

ture data which could be used to adjust for the timing of the snow

cover in future work.

Modeled temperatures for model runs with andwithout ventilation

can be seen in Figures 3a and 3b. This clearly shows that without venti-

lation the modeled temperatures do not match the measured ones. In

particular, ventilation appears necessary to model the low tempera-

tures. Without ventilation effects the low winter temperatures mea-

sured cannot be reproduced by the model; throughout the modeled

period and at all depths modeled temperatures are too high by up to

several degrees compared to measured ones. Without ventilation a

delay in the onset of the cooling period can be observed in the modeled

temperatures, which increase as model time passes. From 2010/11

onwards the modeled temperatures remain constant at 6 m depth and

at 3.5 m depth winter temperatures remain constant at 0°C, while sum-

mer ground temperatures rise above zero without ventilation. Using

ventilation, a good agreement betweenmodeled andmeasured temper-

atures can be achieved. This shows that ventilation processes are crucial

in maintaining the low temperatures in the Ritigraben rock glacier.

It is interesting to note that the warm periods are less affected by

the lack of ventilation, indicating that it is the cooling which is most

affected by the presence of a blocky layer. This observation is in line

with the cooling effect of coarse rock layers noted by Guodong

et al.3 or Gruber and Hoelzle.41

4.3 | Schafberg

The same calibration of the ventilation parameters as for the previous

two sites is also used at Schafberg. Here, however, the pore length is

significantly reduced due to the smaller block size, with values of 0.2

in the top layer and 0.1 in the intermediate layer. Additionally, the

top layer in the model is very thin (10 cm) and only contains the upper-

most borehole temperature measurement. The intermediate layer is

set to a thickness of 3.1 m with an air fraction of 0.05. To reproduce

measured temperatures, it was also necessary to include a water vol-

ume fraction of 0.05. This is in contrast to the other two sites where

no water was included in the upper layers during the initialization. It

is assumed that the finer grained blocky layer here is able to retain

more water than the coarse blocky structure at the other sites. In

the icy layer the ice content was set to 50%, which is lower than at

the other two sites where lower borehole temperatures at or below

0°C indicated a higher ice content.

The model was run with different setups of forcing data: firstly

using both stations separately and then using a weighted average of

snow heights from both stations. Snow heights at Bernina 2 were
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generally lower than at Bernina 3, resulting in lower modeled ground

temperatures in the run using forcing data from Bernina 2. In particular,

modeled winter temperatures are significantly lower than measured

ones in this case. Using snow data from Bernina 3, by contrast, results

in higher modeled ground temperatures, with temperatures remaining

constant at 0°C at 7.2 m depth in the latter half of the modeled period.

Therefore, neither station gave a good agreement between modeled

and measured temperatures on its own. An adapted snow height

obtained by weighting the data of Bernina 2 and Bernina 2 with factors

of 0.9 and 0.1, respectively, resulted in an improved overall agreement

between modeled and measured ground temperatures.

Figures 4a and 4b show the modeled ground temperatures for

model runs with and without ventilation. The model run without ven-

tilation cannot reproduce the low temperatures measured during the

snow‐covered period. This can be seen particularly well at 3.2 and

7.2 m depth. The low temperatures are much better represented in

the case with ventilation. However, modeled temperatures tend to

be slightly too high near the surface and too low at greater depth. This

could indicate that the stratigraphy is not realistic. However, due to

the wide spacing between thermistors it was not possible to infer a

more detailed stratigraphy. The rate and timing of the thawing process

in spring are generally better represented than the cooling process in
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FIGURE 3 (a) Modeled temperatures at depths of 0.4 and 2.5 m (from top to bottom) for the Ritigraben site with the following configurations:
ventilation switched on (blue) and ventilation switched off (red), both cases using the adjusted snow height; ventilation switched on using
unadjusted snow height (orange). Measured borehole temperatures are shown in purple. (b) Modeled temperatures at depths of 3.5 and 6.0 m
(from top to bottom) for the Ritigraben site with the following configurations: ventilation switched on (blue) and ventilation switched off (red),
both cases using the adjusted snow height; ventilation switched on using unadjusted snow height (orange). Measured borehole temperatures are
shown in purple
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autumn. The modeled cooling often occurs too early and is more rapid

than observed. This could indicate incorrect water content or grain

size values.

Table 1 shows the nrmse for each site for the model run with ven-

tilation at the depth shown in Figures 2–4. Generally, the error is

about 0.1, with the most notable exception being 2.55 m at Murtèl

where the nrmse is doubled. This exception could be caused by the

presence of the boundary between the blocky layer and the icy layer

at this depth. In the model the boundary is clearly defined, whereas

in nature a gradual transition—possibly varying in time—can be

expected. The other exception is Schafberg at 7.2 m with an nrmse

of 0.15, which may be due to the inadequate representation of the

stratigraphy in the model.

5 | DISCUSSION

The results showed sensitivity to several parameters in terms of both

forcing data and soil initialization. The most important variable in the

forcing data is snow height, which plays a major role due to the thermal
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FIGURE 4 (a) Modeled temperatures at depths of 0.1 and 1.2 m (from top to bottom) for the Schafberg site with the following configurations:
ventilation switched on (blue) and ventilation switched off (red), both cases using the adjusted snow height; ventilation switched on with snow
height data from station Bernina 2 (orange) and with snow height data from Bernina 3 (purple). Measured borehole temperatures are shown in
green. (b) Modeled temperatures at depths of 3.2 and 7.2 m (from top to bottom) for the Schafberg site with the following configurations:

ventilation switched on (blue) and ventilation switched off (red), both cases using the adjusted snow height; ventilation switched on with snow
height data from station Bernina 2 (orange) and with snow height data from Bernina 3 (purple). Measured borehole temperatures are shown in
green

9

ht
tp
://
do
c.
re
ro
.c
h



properties of snow. On the one hand, snow has a low thermal conduc-

tivity, which insulates the underlying ground at high snow depths. On

the other, its high emissivity and high albedo can lead to radiative

cooling. The latter effect dominates for snow depths below 60–80 cm

(see eg,16,42). The timing of the snow cover will also influence the

ground thermal regime. Both early thin snow cover in autumn43,44 and

long lasting snow cover in spring will contribute to cooling, the former

through radiative cooling and the latter by providing a heat sink during

snowmelt.45 This will have implications for climate change‐induced

shifts in the timing and amount of snow precipitation and could be of

particular interest when investigating rock glacier evolution. It may be

possible that future atmospheric warming could be offset by less snow

precipitation and changes in the timing of snow cover.

For the soil initialization, several parameters are important: blocky

surface layer thickness, porosity and ice content. The thickness and

thermal characteristics of the blocky layer affect the depth at which

the zero curtains occur in the model. In combination with the pore

length, the blocky layer thickness also determines the depth and effec-

tiveness of the ground ventilation. The porosity (and field capacity or

grain size) affects the water transport and amount of water that can

be retained in each layer. This is important as water content has a signif-

icant effect on the ground thermal regime due to large amounts of latent

heat required or released during phase changes. Water infiltration dur-

ing snowmelt increases thaw rate in spring while water retention

increases the length of zero‐curtains. Finally, the ice content of the icy

layer is a sensitive parameter because of its high enthalpy of fusion.

An underestimation of the ice content can result in a false indication

of permafrost thaw. More closely spaced borehole temperature mea-

surements make it easier to determine the stratigraphy. It is also useful

to have information from borehole cores about the ice content and the

grain size in the icy layer as the example atMurtèl has shown. It can take

upwards of 10 years for an incorrect ice content in the model to show

significant deviations from observations. Thus, if ice content is not

exactly known, long‐term temperature data series are needed for cali-

bration to prevent an incorrect ice content from causing the modeled

temperatures to drift artificially. However, long‐term borehole temper-

ature series may not always be available for calibration and longer term

drifting of modeled temperature may thus not be detected. This issue

becomes particularly important when considering future projections

that span over several decades or even centuries.

Ventilation was shown to be important in all three cases. It was

necessary to reproduce the low ground temperatures measured during

the snow‐covered period in winter. Thus, the ventilation in the snow

cover is particularly important. The large rocks or boulders on the sur-

face of rock glaciers prevent the formation of a smooth snow cover;

instead it is interspersed with these blocks. This allows for ventilation

to penetrate into the snow cover and into the blocky layer.

Three important limitations to the current study need to be con-

sidered. Firstly, only a limited number of test sites was addressed.

Among these Murtèl and Ritigraben have similar characteristics, while

Schafberg has smaller block sizes and thus a reduced pore length. In all

cases blocky layer thickness and rock glacier stratigraphy were compa-

rable. If these deviate significantly, calibration may need to be

adjusted, eg, the displacement depth or the extinction coefficient. Sec-

ondly, lateral effects such as air or water fluxes are not taken into

account by SNOWPACK. It is possible for ventilation and water fluxes

to occur laterally (as has been observed at 12 m depth in the

Ritigraben rock glacier14), and the process can be expected to be par-

ticularly important for either steep slopes due to elevation‐induced

temperature differences or for larger block sizes, which allow for

larger pore lengths. Thirdly, water sources other then melting of the

ice contained within the soil or the snow cover are not taken into

account. These could include summer precipitation because the model

is forced using snow height and water from springs or other lateral

inflow of water. Including springs or lateral inflow of water would

prove difficult as information on location and quantity are not readily

available. Additionally, including springs or lateral inflow is not cur-

rently supported in the model. Including summer precipitation may

lead to an over‐estimation of the water content in the system because

lateral outflow is not accounted for. Ground temperatures in the icy

layer are reasonably well represented in the current model setup dur-

ing summer months, and thus other processes might be compensating

for the lack of summer precipitation.

The main difficulties in the modeling process were encountered in

the boundary region between the blocky and icy layers, and due to a

limited number of measurements in the blocky layer. The boundary

region between blocky and icy layer showed the largest error in the

model with nrmse being considerably higher (typically around 0.2)

than in other layers (with typical values around 0.1). The transition

between the blocky layer and icy layer represents a discontinuity in

the physical characteristics supplied to the model, which could cause

computational difficulty. It could also be possible that the transition

between layers differs in reality to the setup in the model, although

it is not possible to know the exact conditions at any specific point.

Furthermore, it might be possible that the layer varies with time

because melting and freezing occurs at the upper level of the perma-

frost boundary24 and sediments may get flushed in or out. It is also

possible for meteoric water to influence the uppermost layer of the

permafrost.46,47

The highest temporal temperature variations and vertical temper-

ature gradients can be observed in the blocky layer. It is therefore use-

ful to have more closely spaced temperature sensors in this layer to

improve the soil initialization, resulting in a more representative stra-

tigraphy. The bias between modeled and measured temperatures

(not shown) was not consistently positive or negative at all depths at

a given site, which may be due to several reasons. Firstly, the stratig-

raphy is not exactly known and must be inferred from comparing

TABLE 1 Normalized root mean square error for each study sites at
four depths (near‐surface in the blocky layer, lower part of blocky
layer, upper part of icy layer, mid or lower part of icy layer), the depths
vary between sites as measurement depths and intervals are not
consistent across sites

Location

Depth at COR/RIT/
SBE

COR RIT SBE

Blocky layer, near surface 0.55 m/0.4 m/0.1 m 0.08 0.08 0.09

Blocky layer, lower part 2.55 m/2.5 m/1.2 m 0.21 0.14 0.09

Icy layer, upper part 3.55 m/3.5 m/3.2 m 0.10 0.09 0.08

Icy layer, mid or lower part 7.55 m/6.0 m/7.2 m 0.10 0.08 0.15

10

ht
tp
://
do
c.
re
ro
.c
h



model output to measured temperatures and larger distances between

measurements lead to more uncertainty in the stratigraphy. Secondly,

the real physical ventilation processes are not exactly modeled;

instead they are only represented in one dimension in a parameterized

form and thus lateral effects are not accounted for. Thirdly, lateral

effects could also differ between layers.

Some interesting consequences of the present results should be

noted. Due to the sensitivity of ground temperatures to the snow

height it may be possible to infer the snow height if all other forcing

data and ground stratigraphy are well known. A conceivable process

might involve solving iteratively for snow height. However, such a pro-

cess would become computationally expensive over longer modeling

periods. Where the stratigraphy is not well known but good quality

forcing data and closely spaced ground temperature measurements

are available, the stratigraphy can be inferred from the model:

inparticular, the approximate extent of the blocky layer and the depth

at which the icy layer begins.

6 | CONCLUSIONS AND OUTLOOK

The most important outcomes of this study can be summarized as

follows:

•For coarse blocky layers, such as found at the Murtèl and

Ritigraben sites and also for smaller block sizes as found on Schafberg,

ventilation proved to be pivotal for modeling the low temperatures in

the icy layer. Ventilation is of particular importance during the snow‐

covered period. Without ventilation, ground temperatures were

overestimated, especially over long time periods.

•The model setup can be used to study the future evolution of

rock glaciers under different climate change scenarios: results indicate

that a reduced snow cover in early winter might lead to a decrease in

ground temperatures in rock glaciers.

•Sites with lower ice content may be more susceptible to melt as

the results for Murtèl have shown: the case with reduced ice content

leads to ice melt and increased temperatures under the same meteo-

rological conditions, whereas the higher ice content remained at the

lower temperatures that have been measured.

•Long calibration periods are necessary if the physical character-

istics of the rock glacier at the start of the modeling period are not

exactly known. In particular, good estimates of ice content are essen-

tial to reliably model the thermal regime in the icy layer.

Future work will investigate the three sites presented in this paper

under different climate scenarios and aim to make projections of

future permafrost evolution in these areas. The results will be used

to study under which conditions the ice could be a potential source

of water.
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