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Abstract

We prove sharpness of the phase transition for the random-cluster model with q ≥ 1

on graphs of the form S := G × S, where G is a planar lattice with mild symmetry
assumptions, and S a finite graph. That is, for any such graph and any q ≥ 1, there
exists some parameter pc = pc(S , q), below which the model exhibits exponential
decay and above which there exists a.s. an infinite cluster. The result is also valid
for the random-cluster model on planar graphs with long range, compactly supported
interaction. It extends to the Potts model via the Edwards-Sokal coupling.
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1 Introduction

In the last few years, a variety of results concerning the phase transition of the
random-cluster model (or FK-percolation) on planar lattices have emerged; see [3, 8, 5, 6].
The first are specific to the self-dual setting of the square lattice, while the third, still in
preparation, extends the results of the first two to isoradial graphs. Finally, the fourth
paper – a companion to the present paper – proves the sharpness of the phase transition
of random-cluster models on generic planar graphs with sufficient symmetry.

These recent advances offer an understanding of planar random-cluster models that
approaches that of Bernoulli percolation. However, contrary to the case of Bernoulli
percolation, for which exponential decay in the subcritical phase was proved for lattices
of any dimension (see [1, 15] and [10] for a recent short proof), the phase transition of
the random-cluster model in dimensions above two is still not known to be sharp. We
take a first step in this direction by proving the result for slabs, that is finite planar
“slices” of a d-dimensional lattice.

Percolation on slabs has already been considered in the literature, most notably
in the paper [13], where it was shown that the critical point of percolation on Z2 ×
{0, 1, 2, . . . , N}(d−2) tends decreasingly to that of Zd as N → ∞. There is work in
progress on the same type of result for the random-cluster model with integer q [9]. Let
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Random-cluster models on slabs

us also mention that Bernoulli percolation on slabs has recently been shown to exhibit a
continuous phase transition [7]; a result which is also long sought for lattices of general
dimension. Arguments similar to those of [9] also appear in [16] and [2].

The present paper blends the method of [6] with the techniques of [7]. It is intended
as a complement to [6], focusing essentially on the new elements needed to treat the
case of slabs.

Next we briefly introduce the model. For more details on the random-cluster model,
we refer the reader to the monograph [12].

Consider a finite graph G = (VG, EG). The random-cluster measure with edge-weight
p ∈ [0, 1] and cluster-weight q > 0 on G is a measure φp,q,G on configurations ω ∈ {0, 1}EG .
For such a configuration ω, an edge e is said to be open (in ω) if ω(e) = 1, otherwise it
is closed. The configuration ω can be seen as a subgraph of G with vertex set VG and
edge-set {e ∈ EG : ω(e) = 1}. A cluster is a connected component of the subgraph ω. Let
o(ω), c(ω) and k(ω) denote the number of open edges, closed edges and clusters in ω,
respectively. The probability of a configuration is then equal to

φp,q,G(ω) =
po(ω)(1− p)c(ω)qk(ω)

Z(p, q,G)
,

where Z(p, q,G) is a normalising constant called the partition function.
Fix for the rest of the paper a connected planar locally-finite graph G = (VG , EG ),

which is invariant under the action of some lattice Λ ' Z ⊕ Z, under reflection with
respect to the line {(0, y), y ∈ R} and rotation by some angle θ ∈ (0, π) around 0. For
simplicity we will assume in the present paper that θ = π/2 and that G is invariant under
translations by the vectors (1, 0) and (0, 1).

In addition let S = (VS , ES) be a finite graph and define the “slab” S = G × S. That
is S is the graph with vertices VS = VG × VS and edges ES connecting two vertices
(u, v) ∈ VS and (u′, v′) ∈ VS if either u = u′ and (v, v′) ∈ ES or (u, u′) ∈ EG and v = v′.
Maybe the most common such example is for G = Z2 and S = {1, . . . , n}, in which case
S is a slice of thickness n of the three dimensional lattice Z3.

For p ∈ [0, 1] and q ≥ 1, random-cluster measures with parameters p, q may be defined
on the infinite graph S by taking weak limits of measures on sequences of nested finite
graphs Gn tending to S (see [12, Ch. 4] or [4, Sec 4.5] for a detailed account). We call
such limits infinite-volume measures. For a pair of parameters p, q, more than one such
infinite-volume measure may exist; the two most notable infinite-volume measures are
the free and wired ones, denoted by φ0

p,q,S and φ1
p,q,S , respectively. These are ordered

in that, for p < p′ and q ≥ 1,

φ0
p,q,S ≤st φ

1
p,q,S ≤st φ

0
p′,q,S ,

where ≤st denotes stochastic domination. Moreover, φ0
p,q,S and φ1

p,q,S are the extremal
measures with parameters p and q, in the sense that, if φp,q,S is an infinite volume
measure with these parameters, then

φ0
p,q,S ≤st φp,q,S ≤st φ

1
p,q,S .

While it is possible to have values of p for which the infinite volume measure is not
unique, i.e. for which φ0

p,q,S 6= φ1
p,q,S , only at most countably many such values of p

exist for any fixed q ≥ 1. For p, q such that φ0
p,q,S = φ1

p,q,S , we will denote the unique
infinite-volume measure by φp,q,S .

Theorem 1.1. Fix q ≥ 1. There exists pc = pc(S ) ∈ [0, 1] such that
• for p < pc, there exists c = c(p,S ) > 0 such that for any x, y ∈ S ,

φ1
p,q,S [x and y are connected by a path of open edges] ≤ exp(−c|x− y|), (1.1)
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Random-cluster models on slabs

• for p > pc, there exists a.s. an infinite open cluster under φ0
p,q,S .

The equivalent of Theorem 1.1 is also valid for planar random-cluster models with
finite range interactions; we define these next. Let J : VG × VG → [0,+∞) be a function
with the property that there exists a constant M ≥ 1 such that, if dG (x, y) > M, then
J(x, y) = 0 (where dG is graph distance on G ). Moreover, suppose that J has the same
symmetries as G . Infinite-volume random-cluster measures φβ,q,G ,J with parameters
β > 0 and q ≥ 1 may be defined as before as weak limits of measures φβ,q,Gn,J on
sequences of finite subgraphs Gn tending toward G , where φβ,q,Gn,J is defined as

φβ,q,Gn,J(ω) =

(∏
x,y∈VGn

(eβJ(x,y) − 1)ω(e)
)
qk(ω)

Z(β, q,Gn, J)
,

Z(β, q,Gn, J) being a normalising constant. The same remarks about the different
infinite-volume measures as in the case of slabs apply here.

Theorem 1.2. Fix q ≥ 1. There exists βc = βc(G , J) ∈ [0, 1] such that
• for β < βc, there exists c = c(p,G , J) > 0 such that for any x, y ∈ G ,

φ1
p,q,G ,J [x and y are connected by a path of open edges] ≤ exp(−c|x− y|),

• for β > βc, there exists a.s. an infinite open cluster under φ0
p,q,G ,J .

The proof of Theorem 1.2 is a direct adaptation of that of Theorem 1.1. In what
follows we will only prove Theorem 1.1; we leave the details of the adaptation of the
proof to the second theorem to the interested reader.

Results for the Potts model. The above results have direct consequences for Potts
model. Consider an integer q ≥ 2 and introduce the polyhedron Ωq ⊂ Rq−1 with q

elements defined by the property that for any a, b ∈ Ωq

a · b =

{
1 if a = b,

− 1
q−1 otherwise,

where · denotes the scalar product on Rq−1.
Let G = (VG, EG) be a finite graph and β > 0. The q-state Potts model on G at

inverse-temperature β > 0 with free boundary conditions is defined as follows. The
energy of a configuration σ = (σx : x ∈ VG) ∈ ΩVG

q is given by the Hamiltonian

HG(σ) := −
∑

{x,y}∈EG

σx · σy. (1.2)

The probability µβ,q,G of a configuration σ is defined by

µβ,q,G(σ) :=
exp[−βHG(σ)]

Z(G, β, q)
, (1.3)

where Z(G, β, q) is defined in such a way that the sum of the weights over all possible
configurations equals 1.

As for the random-cluster model, the q-state Potts measure with free boundary
conditions µβ,q,S on the infinite graph S may be defined by taking the weak limit of
measures µβ,q,Gn

on sequences of nested finite graphs Gn converging to S .
The Edward-Sokal coupling between the measures φ0

p,q,S and µβ,q,S where p =

1− exp(− q
q−1β) yields the following relation for any two vertices x, y ∈ S

φ0
p,q,S [x and y are connected by a path of open edges] = µβ,q,S (σx · σy).

The above equation together with Theorem 1.1 imply the following corollary.
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Random-cluster models on slabs

Corollary 1.3. Fix q ≥ 2. There exists βc = βc(S ) ∈ [0,∞) such that
• for β < βc, there exists c = c(β,S ) > 0 such that for any x, y ∈ S ,

µβ,q,S (σx · σy) ≤ exp(−c|x− y|),

• for β > βc, there exists c′ = c′(β,S ) > 0 such that for any x, y ∈ S ,

µβ,q,S (σx · σy) ≥ c′.

Likewise, Theorem 1.2 may be translated for the Potts model. If J is a function as
before, define the Hamiltonian of the weighted Potts model on a finite sub-graph G of G
by

HG,J(σ) := −
∑

x,y∈VG

J(x, y) σx · σy,

and the associated measure µβ,q,G,J by (1.3). Infinite volume measures µβ,q,G ,J may also
be defined as above.

Corollary 1.4. Fix q ≥ 2. There exists βc = βc(G , J) ∈ [0,∞) such that
• for β < βc, there exists c = c(β,G , J) > 0 such that for any x, y ∈ G ,

µβ,q,G ,J(σx · σy) ≤ exp(−c|x− y|),

• for β > βc, there exists c′ = c′(β,G , J) > 0 such that for any x, y ∈ G ,

µβ,q,G ,J(σx · σy) ≥ c′.

We will not discuss further this adaptation to the Potts model. For background on
the Potts model and its coupling to the random-cluster model we direct the reader to
[12]. Deriving the two corollaries from Theorems 1.1 and 1.2 through the Edward-Sokal
coupling is straightforward.

2 Notation and preparatory remarks

Notation. In the rest of the paper q ≥ 1 will be fixed and we drop it from the notation.
We will only work with infinite volume measures on S , hence we will equally drop S
from the notation for φ.

Thus φp will denote any infinite volume measure on S with
edge-weight p and cluster-weight q.

It will be apparent in the proofs that we always allow ourselves to alter p in a small open
interval. We can therefore assume that all the values of p mentioned hereafter are such
that φp is the unique infinite-volume measure.

If A is a subgraph of G , then we define A = A × S and regard this as a subgraph
of S .

Let u, v ∈ S be two vertices, D ⊂ S be a subgraph and ω ∈ {0, 1}ES be a configura-

tion. We write u
ω,D←−→ v for the event that there exists an ω-open path, i.e. a self-avoiding

chain of adjacent ω-open edges, linking u and v and contained in D. For sets A,B of

vertices of S , write A
ω,D←−→ B if there exists u ∈ A and v ∈ B such that u

ω,D←−→ v holds.
When no confusion is possible, the configuration ω will be omitted from the notation. If
D is omitted, it is assumed equal to S .

For a < b and c < d, we identify [a, b]× [c, d] with the subgraph of G induced by the
vertices contained in [a, b] × [c, d]. We call a rectangle, a subgraph of S of the form
R = [a, b]× [c, d] (note that a rectangle is not planar, it has “thickness” S).
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For a rectangle R = [a, b] × [c, d], if we set A = {a} × [c, d] and B = {b} × [c, d]

(respectively A = [a, b]× {c} and B = [a, b]× {d}), the event A
ω,R←−→ B is denoted by

Ch([a, b]× [c, d]) (respectively Cv([a, b]× [c, d])) and if it occurs we say that R is crossed
horizontally (respectively vertically). An open path from A to B is called a horizontal
crossing (respectively vertical crossing). When a = 0 and c = 0, we simply write Ch(b, d)

and Cv(b, d) for the events above. When b − a > d − c, horizontal crossings are called
crossings in the hard direction, while vertical ones are crossings in the easy direction.
The terms are exchanged when b− a < d− c.

For γ = (γ1, . . . , γm) and χ = (χ1, . . . , χm) two paths of S , we say that γ and χ overlap
at some point g ∈ G if there exist i and j such that γi, χj ∈ {g}.

For g ∈ G , let BR(g) (and ∂BR(g)) be the set of vertices at distance less than or equal
to R (equal to R, respectively) from z. For a point z = (g, n) ∈ S define ΛR(z) = BR(g)

and ∂ΛR(z) = ∂BR(g). We call ΛR(z) the box of size R around z.

Strategy of the proof. Define

pc := inf
{
p ∈ (0, 1) : φp(x is in an infinite cluster) > 0

}
p̃c := sup

{
p ∈ (0, 1) : lim

n→∞
− 1

n log
[
φp(0↔ ∂Λn)

]
> 0
}
.

For p < p̃c we say that φp exhibits exponential decay since connection probabilities decay
exponentially with the distance; for p > pc, φp is supercritical, in that it contains a.s. an
infinite cluster. It is immediate that p̃c ≤ pc. We wish to prove that pc = p̃c (this is simply
another way of stating the main result), and we therefore focus on the inequality p̃c ≥ pc.

As mentioned before, we adapt the argument of [6], which consists of three steps:

• First it is proved that, for p > p̃c, the crossing probabilities under φp of 2n × n

rectangles in the easy direction are bounded away from 0 uniformly in n.
• Building on this, in the second step, it is showed that the φp-crossing probabilities
of 2n× n rectangles in the hard direction are also bounded away from 0 uniformly
in n.

• Finally, in the third step, assuming that p̃c < pc, it is showed that for p ∈ (p̃c, pc),
φp(Ch(2n, n)) → 1, as n → ∞. The first step then implies that the dual of φp′

exhibits exponential decay for any p′ ∈ (p, pc), and this contradicts the fact that
p < pc.

While the first step is not specific to planar lattices, the next two steps make use of
planarity, namely by “gluing” crossings and invoking duality. In Sections 4 and 5 of the
present paper, we adapt the arguments used in the last two steps to the setting of slabs.
An essential element is the “gluing” lemma discussed in Section 3. Loosely speaking,
the gluing lemma says that if open paths come close to each other, then they connect
with positive probability. Such a statement already appeared in [7] in the context of
percolation on slabs.

Adapting the final step requires particular attention, since there is no duality available
in the model. To overcome this difficulty, we deduce bounds on the speed of convergence
of φp(Ch(2n, n)) to 1 for p ∈ (p̃c, pc). These bounds are obtained by and fed into a
quantitative version of the gluing lemma. Roughly stated, this version guarantees that,
whenever overlapping paths occur with high probability, they also connect with high
probability.

The quantitative version of the gluing lemma is paramount for our approach: in order
to obtain a contradiction in the third step, we show that for any p > p̃c an infinite cluster
exists. We construct such a cluster by gluing together an infinite number of crossings of
rectangles, with increasingly high probability.
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Differential inequalities. For an event A and a configuration ω let HA(ω) be the
Hamming distance between ω and A, that is the minimal number of edges whose state
needs to be altered to obtain from ω a configuration ω′ ∈ A. Thus HA is a random
variable taking non-negative integer values. Moreover, If A is an increasing event, then
HA is a decreasing random variable.

The following lemma is the integrated form of the differential inequality of [14], as
written in [6, Rem. 2.4]. This is the cornerstone of our approach.

Lemma 2.1. Let A be an increasing event depending only on the state of finitely many
edges. Then, for 0 < p < p′ < 1,

φp′(A) ≥ φp(A) exp
[
4(p′ − p)φp′(HA)

]
, (2.1)

where φp′(HA) is the expectation of HA under φp′ . Similarly, if A is decreasing,

φp′(A) ≤ φp(A) exp
[
− 4(p′ − p)φp(HA)

]
. (2.2)

The following lemma taken from [12, Thm. 3.45] will also be useful.

Lemma 2.2. Let 0 < p < p′ < 1. For any non-empty increasing event A, and any
non-negative integer k,

φp(HA ≤ k) ≤ Ckφp′(A), (2.3)

where

C =
q2(1− p)

(p′ − p)[p′ + q(1− p)]
.

In both statements above, φp and φp′ denote any infinite volume measure on S with
edge-weights p and p′, respectively, and cluster-weight q. The first lemma is obtained by
integrating between p and p′ the differential inequality of [14] on finite subgraphs of S ,
then taking the limit as the subgraphs tend to S . We may perform this procedure for
values of p and p′ for which the infinite-volume measure is unique. Since these values
are dense in [0, 1] and by the monotonicity of φp, we obtain (2.1) and (2.2) for all values
0 < p < p′ < 1 and any infinite-volume measures. The same argument may be applied
to deduce the second lemma, for which the finite-volume version is ensured by [12,
Thm. 3.45].

3 Gluing Lemma

One of the main challenges in percolation in dimensions higher than 2 is that Jordan’s
theorem does not apply. As a consequence, it is difficult to connect open paths together.
Indeed, contrary to planar graphs, on non-planar graphs such as slabs, paths may overlap
without intersecting. The gluing lemma is a tool to overcome this obstacle for slabs or
for models with finite range interactions. Here we will only present it in the context of
slabs.

Lemma 3.1 (Gluing Lemma). Let D be a subset of G and A1, A2, B1, B2 ⊂ D. Suppose
that the following deterministic topological condition is satisfied:

Any two paths χ, γ ⊂ D connecting A1 to A2 and B1 to B2, respectively, intersect.
(3.1)

In addition let D′ be a subset of G containing D and A0 be a subset of D′. Define A
as the event that there exists an open cluster C ⊂ D′ intersecting A0 and that contains a
path χ ⊂ D connecting A1 and A2. Let B be the event that B1 is connected to B2 by an
open path contained in D. Finally let X be the event that there exists an open cluster
C ′ ⊂ D′ that intersects A0 and contains a path γ ⊂ D connecting B1 to B2. Then the two
following statements hold.
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A0

A1 A2

B1

γ
A0

A1 A2

B2

B1

γ

B2

Figure 1: The typical use of Lemma 3.1 seen from “above”. The grey area is D which
forms D′ with the additional white rectangle. The blue path ensures the occurrence of B;
the red cluster is the one in the definition of A . The two overlap but do not necessarily
connect. (In the figure any path from A0 to A2 inside D

′
intersects A1; this is simply an

artefact of the figure, not an assumption of the gluing lemma.)
Left: a configuration in Y (1) but not in Y (2). Right: a configuration in both Y (1) and
Y (2). The overlap points are marked.

(i) There exists a constant c > 0, only depending on p, G and S, such that

φp(X ) ≥ c φp(A )φp(B). (3.2)

(ii) There exists a constant β > 0, only depending on p, G and S, such that

φp(X ) ≥ φp(A )φp(B)− (1− φp(A ))
β
. (3.3)

The first statement may be understood as follows. If two open paths necessarily
overlap, then they have a positive probability of being connected to each other. The
second statement is a quantitative version of the first, useful in Section 5. It essentially
states that if A occurs with high probability, then the overlapping paths connect with
high probability. We believe that the second statement and the ideas of its proof are
interesting in their own right and may be useful in future works regarding statistical
mechanics on non-planar graphs.

The asymmetry between the events A and B is purely technical. Indeed, in our
applications of the gluing lemma, A0 will act as an “anchor” and the lemma will allow us
to extend the cluster of A0.

Initially a version of this lemma appeared in [7] in the context of Bernoulli percolation.
Its proof does not essentially use independence; it relies on the finite-energy property,
a property shared by the random-cluster model. The property states that for any
configuration ω0 and any edge e

p

p+ q(1− p)
≤ φp

[
ω(e) = 1

∣∣ ω(f) = ω0(f),∀f 6= e
]
≤ p. (3.4)

The second part of the lemma, although similar in spirit, requires additional work. We
give a full proof of the two parts below. To help legibility, we start with the simpler
statement (i), we then discuss the additional elements needed to obtain (ii).

Lemma 3.1(i). Set Y = (A ∩B) \X . In addition, for i = 1, 2, let Y (i) ⊂ Y be the event
that there exists an open cluster in D that contains a crossing from A1 to A2, does not
intersect Bi and is connected to A0 in D′. See Figure 1 for examples. Note that Y (1) and
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Y (2) are not necessarily disjoint, but Y (1) ∪Y (2) = Y . The rest of the proof is dedicated
to bounding the probability of Y (1).

Let � be an ordering of the oriented edges of D. This induces a lexicographical
ordering of the paths contained in D, which we will denote �lex.

For ω ∈ B, let γ = γ(ω) be the minimal open path (for �lex) contained in D, from
B1 to B2. We call a point z ∈ γ(ω) an overlap point if there exists a cluster as in the
definition of Y (1) that intersects {z}.

We now define a map Ψ : Y (1) → X as follows. For ω ∈ Y (1), because of the
topological condition (3.1), there exists at least one overlap point z ∈ D. We choose
arbitrarily one such overlap point z = z(ω).

We define Ψ(ω) by modifying the configuration ω inside the region Λ2(z) as follows.
Let γi and γj be the first and last points, respectively, of Λ1(z) visited by γ. Let a0 be a
point of ∂Λ1(z), connected to A0 by an open path (a0, . . . , am), with a1, . . . , am ∈ D′\Λ1(z).
The existence of such a point is guaranteed by the fact that z is an overlap point. In
Ψ(ω), edges with no endpoint in Λ1(z) have the same state as in ω. All edges with exactly
one endpoint in Λ1(z) are declared closed, with the exception of (γi−1, γi), (γj , γj+1)

and (a0, a1), which are open (note that since ω /∈ X , these three edges are distinct).
The edges with both endpoints in Λ1(z) are closed, with the exception of two open
edge-disjoint paths g = (g0, . . . , gk) ⊂ Λ1(z) and h = (h0, . . . h`) ⊂ Λ1(z) such that

• g0 = γi, gk = γj
• h0 = gt for some 1 ≤ t ≤ k − 1 and h` = a0
• (gt, gt+1) � (gt, h1) and gt ∈ {z} (where t is such that gt = h0).

The existence of such a modification may easily be checked and we do not give additional
details here. See Figure 2 for an illustration. It is immediate that Ψ(ω) is indeed in X .

In order to compare φp(X ) to φp(A ∩B), we will use the following simple relation

φp

(
Y (1)

)
=

∑
ω∈Y (1)

φp(Ψ(ω))
φp(ω)

φp(Ψ(ω))

≤ sup
ω∈Y (1)

φp(ω)

φp(Ψ(ω))
· sup
σ∈Im(Ψ)

|Ψ−1(σ)| ·
∑

σ∈Im(Ψ)

φp(σ). (3.5)

Since ω and Ψ(ω) only differ in Λ2(z), the finite energy property (3.4) implies

sup
ω∈Y (1)

φp(ω)

φp(Ψ(ω))
≤
(

q

min{p, 1− p}

)|Λ2|

,

where |Λ2| denotes the number of edges of Λ2. Moreover, since Ψ takes values in X , we
have

∑
σ∈Im(Ψ) φp(σ) ≤ φp(X ).

Let us now bound supσ∈Im(Ψ) |Ψ−1(σ)|. Fix σ ∈ Im(Ψ) and ω ∈ Ψ−1(σ). Recall that

γ(σ) is the minimal σ-open path contained in D, from B1 to B2. (Such a path necessarily
exists since σ ∈ X .) We claim that, due to the nature of the modification applied to ω

in order to obtain Ψ(ω) = σ and to the fact that �lex is lexicographical, γ(σ) coincides
with γ(ω) up to the first time it enters Λ1(z) and after the last time it exits Λ1(z). More
precisely, we claim that γ(σ) is the concatenation of γ[0,i](ω), (g0, . . . , gk) and γ[j,n](ω),
(where n is the length of γ(ω) and i, j and (g0, . . . , gk) are defined above). This fact is
essential, and we give a detailed explanation below.

Let χ be the concatenation of γ[0,i](ω), (g0, . . . , gk) and γ[j,n](ω) and suppose that
γ(σ) 6= χ. Since χ is open in σ, it must be that γ(σ) ≺lex χ. Let τ = inf{i ≥ 0 : χi 6= γi(σ)}.
There are three possible situations; we analyse them separately and show that each
leads to a contradiction.
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γi(ω)

γj(ω) = gk

hℓ

h1

gt

gt+1

B1

B2

A0

Figure 2: The local modification performed on ω in and around Λ1(z) to obtain Ψ(ω).
The blue path is g and the red is h. Note that (gt, gt+1) � (h0, h1). The central axis in the
image is z.

Suppose τ > i+ k, i.e. γ(σ) and χ differ after exiting Λ1(z). Then γ(σ) can not visit
Λ1(z) again, since the boundary of Λ1(z) has only three σ-open incoming edges, and
two of them have already been visited by γ(σ). Hence the latter part of γ(σ), namely
γ[τ,|γ(σ)|](σ), is open in ω as well as in σ. Moreover γ[τ,|γ(σ)|](σ) ≺lex χ[τ,|χ|] = γ[j,|γ(ω)|](ω),
which contradicts the minimality of γ(ω).

Suppose i < τ ≤ i + k, i.e. that γ(σ) and χ differ when in Λ1(z). Then the only
possibility is that γτ (σ) = h1 while χτ = gt+1. Since (gt, gt+1) � (h0, h1), this contradicts
the minimality of γ(σ).

Finally suppose τ < i. In particular

γ[0,τ+1](σ) ≺lex χ[0,τ+1] = γ[0,τ+1](ω).

The minimality of γ(ω) then implies that γ(σ) is not ω-open, hence it uses an edge with
at least one endpoint in Λ1(z). This occurs after time τ , since γ[0,τ ](σ) = γ[0,τ ](ω) does
not intersect Λ1(z).

Let τ ′ > τ be the first time γ(σ) visits the box Λ1(z). Then γτ ′(σ) ∈ {γi(ω), γj(ω), a0}
(these are the only points of ∂Λ1(z) accessible by σ-open edges from the outside). It is not
possible that γτ ′(σ) = a0, since a0 is not connected to B1 in D \Λ1(z) in the configuration
σ (we use the fact that σ = ω outside Λ1(z) and that ω ∈ Y (1)). Thus γτ ′(σ) ∈ γ(ω).
In other words, γ(σ) separates from γ(ω) at time τ , then later joins γ(ω) again before
visiting Λ1(z). Let us show that this is impossible.

Let τ ′′ be the first time after τ when γτ ′′(σ) ∈ γ(ω). The above discussion implies
that τ < τ ′′ ≤ τ ′ and γ[0,τ ′′](σ) ≺lex γ(ω). This contradicts the minimality of γ(ω), since
γ[0,τ ′′](σ) is open in ω and represents a more optimal first section for a connection from
B1 to B2 in D.

This concludes the proof of γ(σ) = χ. Let us return to the analysis of Ψ−1(σ).

Note that gt is the unique point x ∈ γ(σ) that is connected by a σ-open path to A0 in
D′ \ γ(σ). Thus gt is determined by σ, and so is z, the first coordinate of gt. Since ω and
σ differ only inside Λ2(z), we obtain the bound

|Ψ−1(σ)| ≤ 2|Λ2(z)| for all σ ∈ Im(Ψ).

It follows from (3.5) and the above bounds that

φp(Y
(1)) ≤

(
2q

min{p, 1− p}

)|Λ2|

φp(X ).
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The same bound applies to φp(Y (2)), and combining the two yields

φp(A )φp(B)− φp(X ) ≤ φp(Y ) ≤ φp(Y
(1)) + φp(Y

(2)) ≤ 2

(
2q

min{p, 1− p}

)|Λ2|

φp(X ),

which leads to (3.2).

The idea for the proof of the second statement is that, if A has high probability,
then typically there must be a large number of overlap points, otherwise the connection
between A0, A1 and A2 could easily be broken (this is proved in Lemma 3.3). Using
this fact, we may associate to a configuration ω ∈ (A ∩ B) \ X not one, but many
configurations σ ∈X . This in turn implies, using Lemma 3.2 below, that X has much
higher probability than (A ∩B) \X .

Several technical difficulties occur in this argument, and the proof requires some
new ingredients. In particular, the ordering of the edges used for defining the minimal
path γ(ω) needs to be random.

Let O denote the set of total orderings of oriented edges of D′ and µ be the uniform
measure on O. Set ν = φp ⊗ µ to be the measure on {0, 1}E(S ) × O obtained as the
product of φp and µ.

Lemma 3.2. Suppose we have two event E ,F ⊆ {0, 1}E(S ) ×O, and a map Ψ from E to
2F . Suppose that the following statements are true:

1. If (ω,�) ∈ E and (ω′,�′) ∈ Ψ(ω,�), then �=�′.

2. There exists t > 0 such that for each (ω,�) ∈ E , we have |Ψ(ω,�)| ≥ t.

3. There exists s such that for each (ω′,�) ∈ F there exists a finite set S(ω′,�) of
edges with |S(ω′,�)| ≤ s, such that the configurations in Ψ−1(ω′,�) := {ω : (ω′,�
) ∈ Ψ(ω,�)} differ from ω′ only inside S(ω′,�).

Then the following statement is true:

ν(E ) ≤ 1

t

( 2q

min{p, 1− p}

)s
ν(F ). (3.6)

Proof. The lemma is a generalization of [7, Lem. 7], and the proof is similar. Due
to the finite energy property (3.4) and to the third condition, for all (ω,�) ∈ E and
(ω′,�) ∈ Ψ(ω,�), we have

ν(ω,�) = µ(�)φp(ω) ≤
(

q

min{p, 1− p}

)s

· µ(�)φp(ω
′) =

(
q

min{p, 1− p}

)s

· ν(ω′,�).

By summing over (ω,�) ∈ E and (ω′,�) ∈ Ψ(ω,�), we obtain:

ν(E ) ≤ 1

t

(
q

min{p, 1− p}

)s ∑
(ω,�)∈E

∑
(ω′,�)∈Ψ(ω,�)

ν(ω′,�)

=
1

t

(
q

min{p, 1− p}

)s ∑
(ω′,�)∈F

|Ψ−1(ω′,�)| · ν(ω′,�)

≤ 1

t

(
q

min{p, 1− p}

)s ∑
(ω′,�)∈F

2s ν(ω′,�) =
1

t

(
2q

min{p, 1− p}

)s

ν(F ).

Lemma 3.1(ii). Let ω ∈ B and � ∈ O. As before, let �lex be the lexicographical order
induced by � on oriented self-avoiding paths of D′. Set γ(1) = γ(1)(ω,�) to be the
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A0

A1

A2

B2

B1

γ(2)

γ(1)

Figure 3: The red cluster ensures the occurrence of the event A . The blue paths are γ(1)

and γ(2). Not all intersections between the blue and red paths are overlap points, only
the marked ones are. Out of these, only the doubly marked point is in W . The encircled
region contains a (2)-almost-overlap point.

�lex-minimal open path of D from B1 to B2, and γ(2)(ω,�) the �lex-minimal open path of
D from B2 to B1.

As in the previous proof, set Y = (A ∩B) \X and consider ω ∈ Y . In the previous
proof, we have defined overlap points. Since in the present proof we will need to work
with γ(1) and γ(2) simultaneously, we will define (1)-overlap points and (2)-overlap points.
For i = 1, 2, let W (i) = W (i)(ω,�) be the set of points z ∈ G , such that {z} intersects γ(i)

and also intersects an open cluster C of D with the following properties:

• C contains a path from A1 to A2,
• C does not intersect Bi,
• C is connected to A0 in D′.

Call the points of W (i) (i)-overlap points. Obviously a point can be simultaneously both a
(1) and (2)-overlap point. See Figure 3 for an illustration.

Since ω ∈ Y , any crossing in D between A1 and A2 as in the definition of A
necessarily contains at least one overlap point of each type.

We also introduce the following related notion. For i = 1, 2, we say a point z ∈ D is
an (i)-almost-overlap point if there exists z′ ∈ Λ1(z) and s, s′ ∈ S such that

• (z, s) ∈ γ(i),
• (z′, s′) is connected to A0 in D′ \ {z},
• (z′, s′) is not connected to Bi in D,
• (z, s′) /∈ γ(i).

Let U (i)(ω,�) denote the set of (i)-almost-overlap points. It will be useful to note that for
i = 1, 2,W (i)(ω,�) ⊂ U (i)(ω,�). To be precise, an (i)-almost-overlap point is a (i)-overlap
point if in addition to the conditions above, z = z′ and (z, s′) is connected to both A1 and
A2 in D.

Our aim is to bound φp(Y ) = ν(Y × O). To do this we will split Y in three events.
Since these will depend on the (random) order �, we will henceforth work with couples
(ω,�).

Fix a constant c > 0 that we will identify later in the proof (see the end of the proof of
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Lemma 3.3), and define α = −c log(φp(A c)). Define the following events:

Y≤α =
{
(ω,�) : ω ∈ Y , |U (1)(ω,�)| ≤ α and |U (2)(ω,�)| ≤ α

}
,

Y
(1)
>α =

{
(ω,�) : ω ∈ Y , |U (1)(ω,�)| > α

}
,

Y
(2)
>α =

{
(ω,�) : ω ∈ Y , |U (2)(ω,�)| > α

}
.

Note that indeed Y × O = Y≤α ∪ Y
(1)
>α ∪ Y

(2)
>α , but that the two latter events are not

necessarily disjoint. We start by bounding the probability of the first event.

Lemma 3.3. Provided that the constant c > 0 in the definition of α is small enough, we
have

ν
(
Y≤α

)
≤
√
φp(A c).

The idea behind this lemma is that, for (ω,�) ∈ Y≤α, the connection between A1 and
A2 in D is fragile, since it only has few overlap points with γ(1) and γ(2). Thus, it is easy
to break this connection, and this leads to an upper bound on ν(Y≤α) in terms of φp(A c).

Proof. Define a map Ψ : Y≤α → A c × O as follows. Take (ω,�) ∈ Y≤α. Let W (ω,�) be
the set of points z ∈ W (1) ∪W (2) such that {z} is connected to A0 without using other

points of W (1) ∪W (2). It is essential to remark that, since ω ∈ Y , W (ω,�) 6= ∅.
Let Ψ(ω,�) = (σ,�) with σ equal to ω for all edges with no end-point in W (ω,�). The

edges with at least one end-point in W (ω,�) are declared closed in σ, unless they are
part of γ(1) or γ(2), in which case they remain open.

Let us show that Ψ(ω,�) ∈ A c × O, that is σ /∈ A . Suppose that this is not the
case, and that σ ∈ A . We know that σ ∈ B (B1 and B2 being united by γ(1) and γ(2));
moreover σ ≤ ω so σ /∈X . We therefore conclude that σ ∈ Y . Then, by the topological
condition (3.1), in σ there exists at least one overlap point z0, which is connected to A0

in D′. Let χ be a σ-open path in D′ from z0 to A0. Denote (z1, s1) the last point on χ

such that z1 is an overlap point. Then z1 ∈ W (ω,�) and hence the edges emanating from
(z1, s1) should be closed in σ. This contradicts the fact that (z1, s1) is connected to A0 in
σ. We have therefore shown that σ /∈ A .

We now use Lemma 3.2 to bound the probability of the event under study. Condition
1 is satisfied by definition; condition 2 is satisfied with t = 1. We focus on the third
condition.

Let (σ,�) ∈ Im(Ψ) and ω ∈ Ψ−1(σ,�). Since any open edge of σ is also open in ω and
γ(1)(ω) and γ(2)(ω) are both open in σ, we have γ(i)(σ) = γ(i)(ω) for i = 1, 2. Moreover, in
going from ω to σ, we do not create new almost-overlap points, i.e. U (i)(σ,�) ⊂ U (i)(ω,�).
Finally we observe that, by definition of Ψ, all points where modifications were made
when going from ω to σ, are almost-overlap points of σ. In conclusion, ω and σ only differ
in the vicinity of points in U (1)(σ,�) ∪ U (2)(σ,�), and there are at most 2α of these. It
follows that the third condition of Lemma 3.2 is satisfied with s = 2αK, where K is the
number of edges of Λ1.

Using the definition of α and Lemma 3.2, we obtain

ν(Y≤α) ≤
(

2q

min{p, 1− p}

)2αK

ν(A c × O) = φp(A
c)

1−2cK log
(

2q
min{p,1−p}

)
,

which implies the lemma provided that c ≤
[
4K log

(
2q

min{p,1−p}

)]−1

.

Remark 3.4. Given a configuration σ in the image of Ψ, the almost-overlap points of σ,
rather than simply the overlap points, are the places where modifications may have been
performed when constructing σ from one of its pre-images. This explains the necessity
of introducing the additional notion of almost-overlap point.
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We will now focus on bounding the probabilities of Y
(i)
>α for i = 1, 2. More specifically

we will prove the following.

Lemma 3.5. There exists a constant β > 0 depending on p, G and S only, such that, for
φp(A c) small enough

ν
(
Y

(i)
≥α

)
≤ φp(A

c)β , (3.7)

for i = 1, 2.

By symmetry we can concentrate on bounding φp(Y
(1)
>α ). To simplify notation, we will

henceforth omit the index (1).
The idea behind this lemma is that, for (ω,�) ∈ Y>α, the multitude of almost-overlap

points gives many opportunities for γ to connect to A0. Thus, the probability of Y>α

should be much smaller than that of X , and this will ultimately yield the bound (3.7).
To make this heuristic rigorous, we will define a multi-valued map Ψ : Y>α → 2X ×O

and apply Lemma 3.2. As suggested above, the function Ψ will consist in connecting A0

to γ by modifying the configuration locally around certain almost-overlap points; we say
we will perform a connecting surgery at these points. Not all almost-overlap points are
suited to perform the connecting surgery, and we start by identifying those who are.

Fix in S an arbitrary system of geodesics uniting any pair of points s, s′ ∈ S; such a
system always exists since S is connected. We may then talk of the segment between
s and s′, which we denote by [s, s′]. As mentioned in the introduction, one may think
of S = {0, . . . , k}, in which case the segment between s and s′ > s is simply [s, s′] =

{s, s+ 1, . . . , s′}. For (ω,�) ∈ Y × O, we call a point z ∈ D a good almost-overlap point,
if it is an almost-overlap point (with z′, s and s′ as in the definition of (1)-almost-overlap
points) and in addition

• there is no t strictly between s and s′ such that (z, t) ∈ γ and
• if γj = (z, s) and if t ∈ S is the first point after s when going from s to s′ along [s, s′],
then (γj , γj+1) � ((z, s), (z, t)).

Let V (ω,�) be the set of good almost-overlap points. The following lemma states that
generally a positive proportion of almost-overlap points are good.

Lemma 3.6. For any configuration ω0 ∈ Y and path γ0,

ν
[
|V (ω0,�)| ≥ 1

4 |U(ω0,�)|
∣∣∣ ω = ω0; γ(ω0,�) = γ0

]
≥ 1

4
, (3.8)

whenever the conditioning is not void.

Remark 3.7. It is for the above lemma alone that the random ordering is necessary.
Indeed, for a fixed ordering, there is no guarantee that enough good almost-overlap
points exists.

Proof. Before we start the proof, let us mention that the set of almost-overlap points
U(ω,�) only depends on ω and γ(ω,�), not otherwise on �. The set of good almost-
overlap points does however depend further on �.

Fix ω0 ∈ Y and a path γ0. Let U0 be the set U(ω0,�) for an ordering � such that
γ(ω0,�) = γ0. (Such an ordering exists if the conditioning in (3.8) is not degenerate.)
We will prove that, for each z ∈ U0,

ν
[
z ∈ V (ω,�)

∣∣ ω = ω0, γ(ω,�) = γ0
]
= µ

[
z ∈ V (ω0,�)

∣∣ γ(ω0,�) = γ0
]
≥ 1

2
. (3.9)

In other words, when averaging over the choice of the order �, any almost-overlap points
is good with probability at least 1/2. This implies (3.8) through a direct application of
Markov’s inequality.
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Fix z ∈ U0 as above. Let z′ ∈ Λ1(z) and s, s′ ∈ S closest to each other, as in the
definition of almost-overlap point, i.e. with

• (z, s) ∈ γi,
• (z, s′) /∈ γ,
• (z′, s′) is connected to A0 in D′ \ {z},
• (z′, s′) is not connected to B1 in D.

Let t ∈ S be the first point after s when going from s to s′ along [s, s′] and let f =

((z, s), (z, t)). Let e = (γi, γi+1) and e1, . . . , ek be the oriented edges emanating from γi,
other than e, such that there exists an ω-open path in D \ γ[0,i] from (z, t) to B2 starting
with ei.

Under µ(. | γ(ω0,�) = γ0) the ordering of the oriented edges emanating from γi is
uniform among orderings such that e � ei for i = 1, . . . , k. With this in mind, we notice
that:

• if f ∈ {e1, . . . , ek}, then µ(e � f | γ(ω0,�) = γ0) = 1.
• if f /∈ {e1, . . . , ek}, then µ(e � f | γ(ω0,�) = γ0) =

k+1
k+2 .

Equation (3.9) follows from the above.

Lemma 3.5. Let Y ′
>α = Y>α ∩

{
|V (ω,�)| > α/4

}
. By Lemma 3.6 ν(Y ′

>α) ≥ 1
2ν(Y>α), and

we will focus on bounding ν(Y ′
>α). In order to do this we will define a map Ψ : Y ′

>α →
2X ×O and apply Lemma 3.2 to it.

Fix a real number c′ ∈ (0, 1/2) which we will identify later and let j = dc′αe. Consider
a pair (ω,�) ∈ Y ′

>α. For z1, . . . , zj ∈ V (ω,�), we define ωz1,...,zj as follows.
By definition of V , for each zk there exists a pair of distinct points sk, s

′
k ∈ S and a

point z′k such that

(a) (zk, sk) ∈ γ,

(b) (z′k, s
′
k) is connected to A0 in D′ \ {zk},

(c) γ does not intersect {zk} × (sk, s
′
k],

(d) Λ1(zk)× (sk, s
′
k) is not connected to A0 in D′ \ {zk},

(e) if γi = (zk, sk) and tk is the first point of S when going from sk to s′k along [sk, s
′
k],

then (γi, γi+1) � ((zk, s), (zk, t)).

Note that conditions (a),(b),(c) and (e) are exactly those of the definition of V . Condi-
tion (d) may be assumed by taking s′k as close to sk as possible.

We choose points sk, s′k and tk as above, following some deterministic ordering when
several choices are possible. Then ωz1,...,zj is identical to ω except for the following
edges, for each k:

• all edges of {zk} × [sk, s
′
k] are open,

• if zk 6= z′k, then ((zk, s
′
k), (z

′
k, s

′
k)) is open,

• all edges of the form ((zk, t), (z
′, t)) with t ∈ (sk, s

′
k) are closed.

We say we obtain ωz1,...,zj from ω by performing a connecting surgery at each point
zk. Observe that, for any choice of z1, . . . , zj ∈ V (ω,�), ωz1,...,zj ∈ X . Indeed the
connecting surgery does not close the path γ(ω,�), so ωz1,...,zj ∈ B, and in addition any

one connecting surgery ensures that γ(ω,�) D′

←→ A0. We set Ψ(ω,�) =
{
(ωz1,...,zj ,�) :

z1, . . . , zj ∈ V (ω,≺)
}
.

Let us now verify the conditions of Lemma 3.2. The first condition of the lemma
is satisfied by definition. Since |V (ω,�)| > α/4 for all (ω,≺) ∈ Y ′

>α, |Ψ(ω,≺)| >
(
α/4
j

)
.

Thus the second condition is satisfied with t =
(
α/4
j

)
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B1

B2

A0

B1

B2

A0

B1

B2

A0

Figure 4: Left diagram: the marked vertical line corresponds to an almost-overlap point,
but not an overlap point. The points (z, s) and (z′, s′) are marked in red and the point
(z, s′) is marked by a circle. Middle diagram: the red vertical line corresponds to an
overlap point. Right diagram: the red line does not correspond to an almost-overlap
point, since the two paths come close to each other at the same horizontal level.

Let us now study the third condition. The first thing to notice is that, for (ω,�) as
above and z1, . . . , zj ∈ V (ω,�), we have γ(ω,�) = γ(ωz1,...,zj ,�). The proof of this fact
follows the same line as the corresponding step in the proof of Lemma 3.1(i). Let us only
mention that the connection surgery used here is such that γ(ω,�) is open in ωz1,...,zj .
Moreover, z1, . . . , zj were chosen as good almost-overlap points, so that the path γ(ω,�)
is the minimal continuation of a crossing from B1 to B2 at every point zk. Indeed, if
γ(ω,�)j = (zk, sk), then there are only three ωz1,...,zj -open edges emanating from (zk, sk)

and (γ(ω,�)j , γ(ω,�)j+1) is preferable to the first edge in the link between (zk, sk) and
(z′k, s

′
k).

Fix now (σ,�) = (ωz1,...,zj ,�) ∈ Ψ(ω) for some (ω,�) ∈ Y>α and z1, . . . , zj ∈ V (ω,�).
Then ((z1, s1), . . . , (zj , sj)) are the only points (z, s) on γ(σ,�) that are connected to A0

by a σ-open path only intersecting γ(σ,�) at (z, s). Thus, ω and σ only differ on the set
S(σ) = ∪jk=1Λ1(zk). We insist that, since (z1, s1), . . . , (zj , sj) are determined by σ, so is
the set S(σ). Thus the third condition of Lemma 3.2 is satisfied, with s = j|Λ1|. The
lemma then implies

ν (Y ′
>α) ≤

1(
α/4
j

) ( 2q

min{p, 1− p}

)j|Λ1|

· ν (X × O) .

Let Q = ( 2q
min{p,1−p} )

|Λ1|. Note that Q is a constant depending on p,G and S only and

recall that j was chosen as j = dc′αe. Since ν(X ×O) ≤ 1, using Stirling’s formula we
obtain

ν (Y ′
>α) ≤

Qj(
α/4
dc′αe

) ≤ [Q · (2c′)c′]c′α · (1− 2c′)(
1
2−c′)α, (3.10)

for α large enough. By choosing c′ ∈ (0, 1/2) such that (2c′)c
′ ≤ Q−1 and setting

c1 = (1− 2c′)(
1
2−c′) ∈ (0, 1), we deduce

ν (Y ′
>α) ≤ cα1 ,

for α large enough. In order to obtain the conclusion of Lemma 3.5, recall that α =

−c log(φp(A c)) for some constant c depending on p,G and S only, and that α may be
considered large since we restrict ourselves to small values of φp(A c).

Let us now conclude the proof of Proposition 3.1(ii). Note that the sought bound is
only relevant when φp(A c) is small. We will therefore prove the bound assuming φp(A c)
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is small enough for Lemma 3.5 to hold. The result may be extended to any value of
φp(A c), with a possibly altered constant β.

Recall that Y ×O = Y≤α ∪ Y
(1)
>α ∪ Y

(2)
>α . Lemmas 3.3 and 3.5 bound the ν-probability

of the three events on the right hand side; we can combine them to obtain:

φp(Y ) = ν(Y ) ≤ ν(Y≤α) + ν(Y
(1)
>α ) + ν(Y

(2)
>α ) ≤ 3φp(A

c)max{β,1/2}.

The above yields (3.3) through basic algebra.

4 Bounds for crossing probabilities

As mentioned in the introduction, the first step in the argument of [6] applies to
non-planar graphs. We state it here without proof:

Proposition 4.1 ([6] Prop 3.1). For p > p̃c,

lim inf
n→∞

φp(Cv(2n, n)) > 0.

The object of this section is the following result, which corresponds to the second
step in [6]. It may be understood as a Russo-Seymour-Welsh type result, with the remark
that it requires increasing the value of the edge-weight.

Proposition 4.2. If p ∈ (0, 1) is such that

lim inf
n→∞

φp(Cv(2n, n)) > 0, (4.1)

then for any p′ > p,

lim inf
n→∞

φp′(Ch(2n, n)) > 0. (4.2)

An immediate consequence of the two above statements is the main result of this
section:

Corollary 4.3. For p > p̃c,

lim inf
n→∞

φp(Ch(2n, n)) > 0.

Let us now focus on the proof of Proposition 4.2, the core of which lies in the following
lemma.

Lemma 4.4. Let 0 < p1 < p2 < p3 < 1, and suppose that

inf
{
φp1

(Cv(2n, n)) : n ∈ N
}
> δ > 0.

There exist constants c0, c1 > 0, depending only on p1, p2 and p3, such that if n, I ∈ N are
such that 1 ≤ I ≤ n/400 and

I2
[
φp3(Ch(2n, n))

]c1/I ≤ c0δ,

then

φp2
(HCh(2n,n/2)) ≥

2I − 1

2
δ. (4.3)

In [6] it was shown that a similar statement implies Proposition 4.2 (with slightly
different formulations). This step adapts readily to the present context, and we do not
give more details here; the interested reader is referred to [6, Proof of Prop. 4.1]. The
rest of the section is dedicated to proving Lemma 4.4. We start with some notation.
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Let A1, . . . , AK be subsets of vertices of some rectangle R of S . For a configuration

ω ∈ {0, 1}S , we say that the subsets are separated in R if Ai
ω,R←−→ Aj fails for all

1 ≤ i < j ≤ K. That is, if they are contained in distinct clusters of the configuration
ω restricted to R. We say that the subsets A1, . . . , AK are strongly separated in R if
A1, . . . , AK are separated in R. Here we have abusively used the notation Ai for the set

Ai = {(u, v) ∈ VS : ∃v′ ∈ VS such that (u, v′) ∈ Ai}.

In other words, the sets are strongly separated if there is no open path in the rectangle
whose projection on G crosses the projection of two distinct sets.

It is easy to check that, if ω is a configuration containingK strongly separated vertical
crossings of some rectangle R, then

HCh(R)(ω) ≥ K − 1.

Indeed, let A1, . . . , AK be vertical crossings of R, strongly separated in R in the con-
figuration ω. In particular A1, . . . , AK are disjoint connected sets crossing R vertically.
Hence we may order them from left to right – we will assume this is already the case.
Fix a self-avoiding path γ contained in R and crossing it horizontally; orient it from left
to right. It intersects each set Ai at least once. But for each i, since Ai and Ai+1 are
strongly separated in R, γ must contain at least one ω-closed edge between any point of
intersection with Ai and the first following intersection with Ai+1. This implies that γ
contains at least one closed edge in the region between Ai and Ai+1 for every i, hence
at least K − 1 closed edges overall. This implies the desired bound.

Lemma 4.4. Fix n and I satisfying the assumptions of the lemma and set v = 1
100I (we

will specify the values of the constants c0 and c1 later in the proof; it will be apparent
that they do not depend on n and I).

In light of the above observation, to prove Lemma 4.4 we aim to show the existence
of 2I strongly separated vertical crossings of [0, 2n]× [0, n/2]. The proof follows the lines
of [6, Lemma 4.3] with the essential difference that the crossings need to be strongly
separated rather than simply separated.

We start of with series of claims for φp3 , similar to those in the proof of [6, Lemma
4.3]. In the present context, the proof of these claims will require the gluing lemma 3.1(i).
Once the claims established, we use them to show that, with positive φp3 -probability,
there exist 2I separated crossings of [0, 2n]× [0, n/2]. Finally, we deduce that there exist
2I strongly separated crossing with positive φp2

-probability, using Lemma 2.2.
In what follows, the constant c > 0 is that of (3.2); it only depends on p3 and S. Define

α = sup
{
φp3

(
Ch(d(2 + v)ke, 2k)

)
: k ∈ [n8 ,

n
2 ]
}
. (4.4)

Claim 4.5. For α defined as above, we have

α ≤ 1

c

[
φp3(Ch(2n, n))

]v/28
≤ 1

c

[
φp3(Ch(2n, n))

]2c1/I
, (4.5)

where and c1 = 1/5600 (this is constant c1 that appears in Lemma 4.4).

Proof of Claim 4.5. Choose k ∈ [n8 ,
n
2 ] achieving the maximum in (4.4). We will show by

induction on j ≥ 1 that

φp3

[
Ch((2 + jv)k, 2k)

]
≥ (cα)2j .

Applying this to j = 14/v, we obtain

φp3

(
Ch(2n, n)

)
≥ φp3

(
Ch(16k, 2k)

)
≥ (cα)28/v = (cα)2800I ,
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(2 + v)k (2 + v)k

(2 + (j + 1)v)k

2k

(2 + v)k

DD′

A0
A1

A2

B1

B2

D D′

A0
B2

B1

A2

A1

Figure 5: Left: The first application of the gluing lemma allows us to obtain the event H.
Middle: The event H; the vertical crossing is contained in the square to the left. Right:
The second application of the gluing lemma allows us to combine H with a horizontal
crossing of [0, (2+ jv)k]× [0, 2k] to generate a horizontal crossing of the longer rectangle
[0, (2 + (j + 1)v)k]× [0, 2k].

which implies (4.5) readily.

For j = 1 the statement is a direct consequence of the definition of α. Suppose the
statement holds for some j ≥ 1. Let H be the event that there exists an open cluster
in [jvk, (2 + (j + 1)v)k] ×[0, 2k] which intersects {(2 + (j + 1)v)k}×[0, 2k] and contains a
vertical crossing of the rectangle [jvk, (2 + jv)k]× [0, 2k].

Apply the gluing lemma 3.1(i) with domains D ′ = [jvk, (2 + (j + 1)v)k]× [0, 2k] and
D = [jvk, (2 +jv)k]× [0, 2k] for the two events Ch([jvk, (2 + (j + 1)v)k] × [0, 2k]) and
Cv([jvk, (2+jv)k]×[0, 2k]) (i.e. for A0 = {(2+(j+1)v)k}×[0, 2k], A1 = {(2+jv)k}×[0, 2k],
A2 = {jvk} × [0, 2k] and B1 = [jvk, (2 + jv)k] × {0}, B2 = [jvk, (2 + jv)k] × {2k}). We
obtain that

φp3
(H) ≥ cφp3

[
Ch([jvk, (2 + (j + 1)v)k]× [0, 2k])

]
φp3

[
Cv([jvk, (2 + jv)k]× [0, 2k])

]
≥ cα2.

where the first inequality is the conclusion of the gluing lemma and the second is due to
the invariance under translation and rotation.

Apply now the gluing lemma with the domains D ′ = [0, (2 + (j + 1)v)k]× [0, 2k] and
D = [jvk, (2+ jv)k]× [0, 2k] for the events H and Ch

(
(2 + (j + 1)v)k, 2k

)
(i.e. for A0 =

{(2 + (j + 1)v)k} × [0, 2k], A1 = [jvk, (2 + jv)k] × {0} A2 = [jvk, (2 + jv)k] × {2k} and
B1 = {0} × [0, 2k], B2 = {(2 + jv)k} × [0, 2k]). The conclusion of the gluing lemma,
together with the bound on φp3(H) and the induction hypothesis, yield

φp3

[
Ch((2 + (j + 1)v)k, 2k)

]
≥ cφp3

[H]φp3

[
Ch([0, (2 + jv)k]× [0, 2k])

]
≥ (cα)2(j+1).

which is the desired conclusion. �

Fix an integer k ∈ [n4 ,
n
2 ] and u ∈ [v, 1/12] such that ku ∈ Z. The following three

claims are concerned with crossings of the rectangle R(k) = [−(1 + u)k, (1 + u)k]× [0, 2k].
Claims 4.6-4.9 are equivalent to those used in [6, Proof of lemma 4.3]; Claim 4.10 however
is specific to the case of slabs and requires special attention. We give the proof of all
claims for completeness.

Claim 4.6. Let E (k) be the event that there exists a vertical open crossing of R(k),
with the lower endpoint not contained in [−3uk, 3uk]× {0}, or the higher endpoint not
contained in [−3uk, 3uk]× {2k}. Then

φp3
(E (k)) ≤ 4(α+

√
α/c).
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Proof of Claim 4.6. Let β be the φp3
-probability that there exists a vertical open

crossing of R(k), with the lower endpoint in [−(1 + u)k,−3uk]× {0}. By the defini-
tion of α, the probability of crossing [−(1 + u)k, (1− 2u)k]× [0, 2k] vertically is at most
α. Thus, with probability β − α, there exists a vertical crossing of R(k) with an end-
point in [−(1 + u)k,−3uk]× {0} which intersects the vertical line {(1− 2u)k} × [0, 2k].
By reflection with respect to {−3uk} × [0, 2k], with probability β − α, there exists
an open path in [−(1 + 4u)k, (1− 5u)k]× [0, 2k], between [−3uk, (1− 5u)k]× {0} and
{−(1 + 4u)k} × [0, 2k].

When combining the two events above using the first part of the gluing lemma, we
obtain

φp3

(
Ch[−(1 + 4u)k, (1− 2u)k]× [0, 2k]

)
≥ c(β − α)2.

The above event has probability less than α (by definition of α), hence β ≤ (α+
√
α/c).

By considering the other possibilities for the lower and higher endpoints, the claim
follows. �

Claim 4.7. Let F (k) be the event that there exists a vertical open crossing of R(k) that
does not intersect the vertical line {(1− 2u)k} × [0, 2k]. Then

φp3
(F (k)) ≤ 2α.

Proof of Claim 4.7. Any vertical crossing of R(k) not intersecting {(1− 2u)k} × [0, 2k]

is either contained in [−(1 + u)k, (1− 2u)k]× [0, 2k] or in [(1− 2u)k, (1 + u)k]× [0, 2k].
Both these rectangles are crossed vertically with probability less than α, and the claim
follows. �

Claim 4.8. Let G (k) be the event that there exists an open path in R× [0, (2− 11u)k]

between [−3uk, 3uk]× {0} and the vertical segment {(1− 2u)k} × [0, (2− 11u)k]. Then

φp3(G (k)) ≤ α+
√

α/c.

Proof of Claim 4.8. Let β = φp3
(G (k)). Suppose G (k) occurs and let γ be an open path

in R× [0, (2− 11u)k] between [−3uk, 3uk]× {0} and {(1− 2u)k} × [0, (2− 11u)k]. There
are two possibilities for γ. Either γ crosses the line {−(1− 8u)k} × [0, (2− 11u)k], or it
does not.

The first situation arises with probability at most α since it induces a horizontal
crossing of the rectangle [−(1− 8u)k, (1− 2u)k]× [0, (2− 11u)k].

Thus the second situation arises with probability at least β − α. Then, by symmetry
with respect to {3uk} × R, with probability at least β − α there exists an open path
connecting [3uk, 9uk]× {0} to {−(1− 8u)k} × [0, (2− 11u)k]. Hence, by the first part of
the gluing lemma, [−(1− 8u)k, (1− 2u)k]× [0 , (2− 11u)k] is crossed horizontally with
probability no less than c (β − α)2. This is less than or equal to α by its definition, and
the claim follows. �

In the claims above we have introduced the events E (k), F (k) and G (k). In addi-
tion, define G̃ (k) as the symmetric of G (k) with respect to the line R × {k}, i.e. the
event that there exists an open path in R× [11uk, 2k] between [−3uk, 3uk]× {2k} and
{(1− 2u)k} × [11uk, 2k]. The bound of Claim 4.8 applies to G̃ (k) as well.

All four events revolve around the rectangle R(k). In the following, we will use
translates of these events (by z ∈ G ), and we will say for instance that E (k) occurs in
some rectangle R(k) + z if E (k) occurs for the translate of the configuration by −z.
Claim 4.9. Except on an event H (k), with φp3

(H (k)) ≤ 96
u

√
α/c, any open vertical

crossing of S(k) = [0, 2n]× [−k, k], contains two separated vertical crossings of S((1 −
11u)k) = [0, 2n]× [−(1− 11u)k, (1 −11u)k].
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Proof of Claim 4.9. The rectangle [0, 2n]× [−k, k] is the union of Rj = [juk, (2 + (j + 2)u)k]

×[−k, k], for 0 ≤ j ≤ J , where

J :=
⌊
1
u (

n
k − 2)

⌋
− 2 ≤ 6/u.

Let H (k) be the union of the following events for 0 ≤ j ≤ J :
• the rectangle [juk, (2 + (j + 1)u)k]× [−k, k] contains a horizontal open crossing,
• E (k) occurs in the rectangle Rj ,
• F (k) occurs in the rectangle Rj ,
• at least one of G (k) and G̃ (k) occurs in the rectangle Rj .

Using a simple union bound and the estimates of Claims 4.6-4.8, we obtain

φp3(H (k)) ≤
96
√

α/c

u
. (4.6)

Consider a configuration not in H (k) containing a vertical open crossing γ of S(k).
We are now going to explain why such a crossing necessarily contains two separated
crossings of S((1− 11u)k).

Since none of the rectangles [juk, (2 + (j + 1)u)k]× [−k, k] is crossed horizontally, γ
is contained in one of the rectangles Rj . Fix the corresponding index j. Parametrize γ by
[0, 1], with γ0 being the lower endpoint.

Since E (k) does not occur in Rj , γ0 and γ1, are contained in [(1 + (j − 2)u)k, (1+

(j + 4)u)k]× {−k} and [(1 + (j − 2)u)k, (1 + (j + 4)u)k]× {k}, respectively. Moreover,
since F (k) does not occur in Rj , γ crosses the vertical line {(2 + (j − 1)u)k} × [−k, k].
Let t and s be the first and last times that γ intersects this vertical line.

Since G (k) does not occur in Rj , γ intersects the line [0, 2n]× {(1− 11u)k} before
time t. Likewise, since G̃ (k) does not occur, γ intersects the line [0, 2n]× {−(1− 11u)k}
after time s. This implies that γ contains at least two disjoint crossings of S((1− 11u)k).
Call γ1 the first one (in the order given by γ) and γ2 the last one.

The above holds for any vertical crossing γ of S(k), hence the crossings γ1 and
γ2 are necessarily separated in S((1− 11u)k). Indeed, if they were connected inside
S((1− 11u)k), then F (k) would occur. �

Claim 4.10. Let I (k) be the event that there exists an open vertical crossing of S(k),
which does not contain two strongly separated vertical crossings of S((1− 11u)k). Then

φp2(I (k)) ≤ C ′

u

√
α,

where C ′ > 0 is a constant depending only on p2 and p3.

Proof of Claim 4.10. Let ω ∈ I (k) \ H (k) and γ be an ω-open vertical crossing of
S(k) which does not contain two strongly separated vertical crossings of S((1− 11u)k).
Let γ1 be the first subpath of γ crossing S((1 − 11u)k) vertically, and let γ2 be the last
(when γ is oriented from bottom to top). By choice of ω in I (k) \H (k), γ1 and γ2 are
separated in S((1− 11u)k), but not strongly separated. Hence there exists a third open
path χ in S((1− 11u)k) that overlaps with both γ1 and γ2. Fix such a path χ and overlap
points u, v ∈ G between χ and γ1 and γ2, respectively. Then, if ω′ is the configuration
obtained form ω by opening all the edges in {u} and {v}, we have ω′ ∈ H (k). Indeed,
the ω′-open path obtained by following γ1 up to u, then χ to v and finally γ2 from v to the
top of S((1− 11u)k) crosses S((1− 11u)k) vertically, but does not contain two sub-paths
separated in S((1− 11u)k). Thus

ω ∈
{
HH (k) ≤ 2|ES |

}
,
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and consequently I (k) ⊂ {HH (k) ≤ 2|ES |}. Lemma 2.2 implies that

φp2

(
I (k)

)
≤ φp2

(
HH (k) ≤ 2|ES |

)
≤ C2|ES |φp3

(
H (k)

)
,

where C = q2(1−p2)
(p3−p2)[p2+q(1−p2)]

. By inserting the bound (4.6) on φp3
(H (k)) into the above,

we obtain the desired result with C ′ = 96C2|ES |
√
c

. �

Getting back to the proof of the lemma. Let ki = b(1 − 22vi)n/2c for 0 ≤ i ≤ I. We
will investigate vertical crossings of the nested strips S(ki) = [0, 2n]× [−ki, ki]. Note that
S(k0) is contained in a translation of the rectangle [0, 2n]× [0, n], and that S(kI) contains
a translation of the rectangle [0, 2n]× [0, n/2].

Fix a sequence (ui)i, with ui ∈ [v, 2v] and kiui ∈ Z for 0 ≤ i < I. The existence of ui

is due to the fact that v ≥ 4
n (since I ≤ n/400). Define the events I (ki) of Claim 4.10

for these values of ui. Except on the event
⋃I−1

i=0 I (ki), any configuration with a vertical
crossing of S(k0) has 2I strongly separated vertical open crossings of S(kI).

By the union bound, claims 4.5 and 4.10 and the definitions of u and v, we obtain

φp2

(
I−1⋃
i=0

I (ki)

)
≤ C ′√α

u
I ≤ 100C ′I2√

c

[
φp3(Ch(2n, n))

]c1/I ≤ 100C ′c0√
c

δ,

where the last inequality is due to the choice of I. We may choose c0 =
√
c/(200C ′) > 0,

so that the right-hand side is smaller than δ/2. But S(k0) is crossed vertically with
φp2 -probability at least δ, hence, with φp2 -probability at least δ/2, S(kI) contains 2I

strongly separated vertical crossings. By the observations made before the proof, we
have

φp2

[
HCh(2n,n/2) ≥ 2I − 1

]
≥ φp2

[
HCh(S(kI)) ≥ 2I − 1

]
≥ δ

2
,

which directly implies the desired result.

5 Proof of Theorem 1.1

The previous section showed that for p > p̃c, crossing probabilities in the hard
direction for 2n× n rectangles are bounded away from 0, uniformly in n. The following
two results show us that these probabilities actually tend rapidly to 1 as n→∞, for any
p > p̃c.

We start with a lemma taken from [6, Cor. 5.2] and which is valid in all dimensions. It
is an integrated form of the result of [11]. We do not give the proof here, as it is identical
to the one in [6].

Lemma 5.1. For any 0 < p < p′ < 1, there exists c = c(p) > 0 such that, for n ≥ 1,

φp(Ch(2n, n))
(
1− φp′(Ch(2n, n))

)
≤
(
φp′(0↔ ∂Λn)

)c(p′−p)
. (5.1)

The above lemma, along with Proposition 4.2, imply that, for p ∈ (p̃c, pc) (if such a p

exists), limn φp(Ch(2n, n)) = 1. The following proposition tells us that, for such a value of
p, φp(Ch(2n, n)) actually converges to 1 faster than any polynomial.

Proposition 5.2. Fix p < p′ and ∆ > 0. Suppose that limn→∞φp(Ch(2n, n)) = 1. Then,
for n sufficiently large,

φp′(Ch(2n, n)) ≥ 1− n−∆.

The proof of Proposition 5.2 is based on the following lemma.
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Lemma 5.3. There exists β > 0 such that, for any p < p′ and N > n,

1− φp′(Ch(2N,N))

1− φp(Ch(2N,N))

≤ exp

(
−2(p′ − p)

N

n

[
φp(Ch(2n, n))

2N/n − 2

⌈
N

n

⌉(
1− φp(Ch(2n, n))

)β])
.

Lemma 5.3. We prove this lemma by bounding the expected (under φp) Hamming dis-
tance to the decreasing event Ch(2N,N)c and applying (2.2).

The Hamming distance to Ch(2N,N)c is clearly larger or equal to the number of
edge-disjoint horizontal crossings of [0, 2N ]× [0, N ]. Thus

φp(HCh(2N,N)c) = φp

(
number of disjoint horizontal crossing of [0, 2N ]× [0, N ]

)
≥
⌊
N

n

⌋
φp(Ch(2N,n)).

The second inequality is due to the fact that the horizontal crossings of rectangles [0, 2N ]

×[in, (i+ 1) n] for 0 ≤ i < bN/nc are disjoint and to the invariance of the measure under
translation.

Let us now bound φp(Ch(2N,n)) from below. By the same induction as in Claim 4.5,
using the quantitative gluing lemma 3.1(ii) 2dNn e times, we obtain

φp

(
Ch(2N,n)

)
≥ φp

(
Ch(2n, n)

)2N/n − 2

⌈
N

n

⌉ (
1− φp(Ch(2n, n))

)β
, (5.2)

Where β > 0 is given by Lemma 3.1(ii). Using (2.2) and the fact that dNn e ≤
N
2n , the

lemma follows.

Proposition 5.2. Fix p < p′ and ∆ > 0 as in the proposition. Fix ε > 0 such that p+ ε < p′.
We first introduce two increasing sequences (nk)k≥k0

∈ N and (pk)k≥k0
∈ [p, p′] such that

φpk
(Ch(2nk, nk)) > 1− e−ε2k ,

(The indices start from k0 only for a mater of a more clear notation.)
For k ≥ 1, set v(k) = (1− e−ε2k)2·4

k − 2 · 4ke−βε2k . The sequence v(k) tends to 1 as k
tends to infinity, so we may fix an index k0 such that v(k) > 1/2 for all k ≥ k0. Set pk0

= p

and choose nk0
∈ N such that φp(Ch(2n, n)) > 1− e−ε2k0 for all n ≥ nk0

(the choice of nk0

is possible by hypothesis). Now define, for k ≥ k0,

nk+1 = nk4
k,

pk+1 = pk +
ε

2k−1
.

We will now prove by induction that φpk
(Ch(2nk, nk)) ≥ 1 − e−ε2k for all k ≥ k0. The

statement is true for k0 by choice of n0. Suppose it is true for some k ≥ k0. Then, based
on the Lemma 5.3,

1− φpk+1
(Ch(2nk+1, nk+1))

≤ exp

(
−2(pk+1 − pk)

nk+1

nk

[
φpk

(Ch(2nk, nk))
2

nk+1
nk − 2

⌈
nk+1

nk

⌉(
1− φpk

(Ch(2nk, nk))
)β])

≤ exp
[
− 2

ε

2k−1
4k v(k)

]
≤ e−ε2k+1

,

and the induction is complete.
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By monotonicity of p 7→ φp, we deduce that 1− φp′(Ch(2nk, nk)) ≤ e−ε2k for all k ≥ k0.

Since nk = nk04
k0+···+(k−1) ≤ nk04

k2

, it follows that for all k ≥ k0 sufficiently large

n∆
k ≤ eε2

k

, hence 1− φp′(Ch(2nk, nk)) ≤ n−∆
k , which is the desired statement for n = nk.

It remains to prove the statement for values of n in between the scales (nk)k≥k0
. Fix

n such that nk < n < nk+1 for some k ≥ k0. Based on (5.2), we have

φp′(Ch(2n, n)) ≥ φp′(Ch(2nk+1, nk)) ≥ v(k).

In order to obtain the desired result, it suffices to show that v(k) > 1−n−∆
k+1 > 1−n−∆ for

k sufficiently large. Recall that nk ≤ nk04
k2

. As a consequence 2 ·4ke−βε2k ≤ 1
2 (nk0 4

k2

)−∆

for sufficiently large k. Moreover, we have

(
1− e−ε2k

)2·4k ≥ exp
(
− 2 · 4k

eε2k

)
≥ exp

(
− 1

2

(
nk0

4k
2)−∆

)
≥ 1− 1

2

(
nk0

4k
2)−∆

for sufficiently large k. The first and last inequality are due to the fact that, for sufficiently
small x, we have e−x ≥ 1−x ≥ e−2x; the second inequality comes from direct asymptotic
estimates. Hence v(k) > 1− (nk0

4k
2

)−∆ > 1− n−∆
k+1 > 1− n−∆ for k large enough.

We are finally ready to put the different elements together to prove our main result.

Theorem 1.1 . Recall the definitions of pc and p̃c and that we are aiming to prove pc ≤ p̃c.
We proceed by contradiction and assume pc > p̃c. Then there exist parameters p̃c < p0 <

p1 < p2 < pc. Corollary 4.3 implies that {φp0
(Ch(2n, n)) : n ≥ 1} is bounded away from 0.

Since p1 < pc, φp1
(0↔ ∂Λn)→ 0 as n→∞, and Lemma 5.1 yields

φp1

(
Ch(2n, n)

)
−−−−→
n→∞

1.

Proposition 5.2 with ∆ = 1 implies that there exists n0 such that for all n > n0 we have

φp2

(
Ch(2n, n)

)
≥ 1− 1

n
. (5.3)

Recall the exponent β appearing in the second part of the gluing lemma (β may be taken
small with no loss of generality; will assume β < 1 for computational purposes). Now
choose n1 > n0 such that

2−n1 + 4
∑
k≥n1

2−β2k < 1.

For n ≥ n1, let Hn be the event that [0, 2n1 ]× {0} is connected to [0, 2n]× {2n} inside
the domain [0, 2n]2. That is

Hn = [0, 2n1 ]× {0} [0,2n]2←−−−→ [0, 2n]× {2n}.

Let us estimate the difference between φp2
(Hn+1) and φp2

(Hn) for some n ≥ n1.
Fix such a value n and let A be the event that there exists an open crossing in
[0, 2n+1]× [0, 2n] between {0} × [0, 2n] and {2n+1} × [0, 2n] that is connected in [0, 2n+1]2

to [0, 2n+1]× {2n+1}. (See the left of Figure 6 for an illustration.) The second part of the
gluing lemma and the estimate (5.3) imply that

φp2(A ) ≥ (1− 2−(n+1))2 − 2−β(n+1) ≥ 1− 2−n − 2−β(n+1) ≥ 1− 2 · 2−βn.

We may now apply the gluing lemma using the events A and Hn. That is, apply it
with D = [0, 2n+1]× [0, 2n], D ′ = [0, 2n+1]2, A0 = [0, 2n+1]× {2n+1}, A1 = {0} × [0, 2n],
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2
n+1

Figure 6: Left: the event A . Right: the gluing of A et Hn to obtain Hn+1.

A2 = {2n+1} × [0, 2n], B1 = [0, 2n1 ]× {0} and B2 = [0, 2n]× {2n}. Then we obtain

φp2

(
Hn+1

)
= φp2

(
B1

D′

←→ A0

)
≥ φp2(Hn)φp2(A )−

(
1− φp2(A )

)β
≥ φp2

(Hn)− 2 ·
(
1− φp2

(A )
)β

≥ φp2
(Hn)− 4 · 2−β2n.

Finally, as a consequence of (5.3), φp2
(Hn1

) > 1− 2−n1 . We may therefore deduce that,
for all n ≥ n1,

φp2(Hn) ≥ φp2(Hn1)− 4
∑

n1≤k<n

2−β2k ≥ 1− 2−n1 − 4
∑
k≥n1

2−β2k > 0,

due to our choice of n1. Observe now that this implies

φp2

(
[0, 2n1 ]× {0} ↔ ∞

)
= lim

n→∞
φp2

(
[0, 2n1 ]× {0} ↔ ∂Λ2n

)
≥ lim

n→∞
φp2(Hn) > 0. (5.4)

By finite energy property and the FKG inequality, we deduce that the origin belongs to
an infinite open cluster with positive φp2

-probability. This contradicts the choice of p2,
and the theorem is proved.
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