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Currents play a vital role in sustaining and developing deep water benthic habitats by mobilising food and
nutrients to otherwise relatively barren parts of the seabed. Where sediment supply is significant, it can have a
major influence on the development and morphology of these habitats. This study examines a segment of the
Belgica Mound Province, NE Atlantic to better constrain the processes affecting a small-sized cold water coral
(CWC) mound habitat and conversely, the hydrodynamic influence of CWC mounds on their own morphological
development and surroundings. Here, we utilise ROV-mounted multibeam, ROV-video data, and sediment
samples to investigate current processes, mound morphology, density and development. Detailed mapping
shows that the area may have the highest density of coral mounds recorded so far, with three distinct mound
types defined based on size, morphology and the presence and degree of distinct scour features. A residual
current of 36-40 cm s~ is estimated while large scour features suggest low-frequency, high-magnitude events.
These 3 mound types are i) smaller mounds with no scour; ii) mounds with scour in one to two distinct directions
and; iii) larger mounds with mound encircling scour. The differing mound types likely had a staggered initiation
where younger mounds preferentially developed near clusters of pre-existing mounds. Given the high density of
these small CWC mounds, we support the hypothesis that over time, this clustering may eventually lead to these

mounds coalescing into larger coral mound features.

. Introduction

Frame-building cold water corals (CWC) are sessile, filter-feeding
organisms that can produce large three dimensional calcium carbonate
skeletons and develop complex bioconstructions (Freiwald and Wilson,
1998; Zibrowius, 1980). Some species, such as Lophelia pertusa and
Madrepora oculata, occur worldwide and have the ability to exist in a
range of settings, from large submarine canyons to contourite drifts and
from the Indian Ocean to the Canadian Arctic (e.g. Davies and Guinotte,
2011; Edinger et al., 2011; Freiwald et al., 2004; Hargrave et al., 2004;
Huvenne et al., 2011; Roberts et al., 2009; van Rooij et al., 2003).
Frame-building CWC are typically found where a supply of food is
concentrated and transported to the corals via enhanced currents
(Davies et al., 2009). The three dimensional framework developed by
the coral skeleton creates frictional drag, slowing the current causing
the deposition of suspended particles (Wheeler et al., 2005). Continued
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deposition of sediments coupled with growth of CWC generates positive
topographic features on the seabed called CWC mounds (De Mol et al.,
2007; Victorero et al., 2016; Wheeler et al., 2008).

CWC mounds can range in height above the surrounding seabed
from 10 m to 350 m (Henriet et al., 2014; Huvenne et al., 2005). Al-
though development of CWC mounds tends to be episodic, dating of
sediment cores from CWC mounds shows that mound growth can be as
high as 120cm ka™! offshore Scotland (Douarin et al., 2013),
220 cmka ™! offshore Ireland and between 600 and 1500 cmka ™' off-
shore Norway (Wienberg and Titschack, 2017 and references therein).
The current interglacial, the Holocene, has been particularly well-stu-
died in terms of periods of CWC mound development (Frank et al.,
2009; Wienberg and Titschack, 2017). During this period, the mor-
phology of coral mounds is a result of the processes (e.g. currents) that
have influenced them through their development (Huvenne et al.,
2009a; Thierens et al., 2010; Wheeler et al.,, 2007; Wheeler et al.,
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2005). Early research showed that currents were among the main dri-
vers for faunal distribution across coral mounds (Messing et al., 1990).
More recently, direct measurements from current meters show that
currents vary in velocity and regime across a coral mound and are likely
to be the main control on coral distribution and therefore mound
growth (Dorschel et al., 2007). The influence of currents on mound
development and morphology can also be seen across a number of small
coral mounds where they elongate with prevailing current direction
and become larger with increasing current velocity (Lim, 2017;
Wheeler et al., 2008). Observations show that clusters of mounds de-
velop an elongate pattern, corresponding to the direction of the highest
currents speeds (Mienis et al., 2007). As such, CWCs are known to occur
where currents are particularly high (Mohn et al., 2014). In support of
this, long term measurements at coral mounds in the Rockall Trough,
NE Atlantic show that low currents are one of the factors that limit coral
growth on mound structures (Mienis et al., 2012).

More recently, Cyr et al. (2016) show that mound size has a direct
influence on local hydrodynamics where larger mounds have a greater
influence on hydrodynamics than smaller mounds. The same authors go
on to show that CWC mounds create hydrodynamic turbulence, fa-
vourable for coral growth, and suggest that at a certain size flow can
become blocked, detrimental to vertical growth of the mound.

Despite many studies carried out so far, the influence of environ-
mental factors on mound density, morphology and size (and vice versa)
is still poorly understood. This work focuses on the Moira Mounds re-
gion, a key study area characterised by densely-packed CWC mounds
and well-defined, current-generated bedforms. It aims to better under-
stand (1) the interactions between currents and CWC mound mor-
phology and size and (2) the mechanisms that regulate coral mound
development and coalescence.

1.1. Regional setting

The Belgica Mound Province (BMP) is located on the eastern margin
of the Porcupine Seabight: a large north-south embayment on the Irish
continental margin, NE Atlantic (see Fig. 1) (Beyer et al., 2003; van
Rooij et al., 2003). Part of the BMP exists within a Special Area of
Conservation (SAC) designated under the EU Habitats Directive
(https://www.npws.ie/). The main modern-day Porcupine Seabight
water mass, which affects coral mound growth, is the Mediterranean
Outflow Water (MOW) (De Mol et al., 2005; Rice et al., 1991; White
et al., 2005) characterised by a salinity maximum between 600 m and
1100 m water depth. At this depth, temperatures are approximately
10 °C with relatively high residual current speeds (White and Dorschel,
2010).

The BMP is known for its abundance of coral mounds (Wheeler
et al., 2005). Large coral mounds occur in 2 distinct chains oriented
parallel to the continental shelf (Fig. 1); the eastern chain is largely
moribund (with a mainly dead coral cover; Foubert et al., 2005) while
the western chain is mostly active with a profusion of live coral (De Mol
et al., 2007; Dorschel et al., 2007; Eisele et al., 2008). These large coral
mound morphologies range from conical to elongate, ridge-like forms
and are typically 1km across and 100m tall (Beyer et al., 2003;
Wheeler et al., 2005). Contourite drifts have accumulated between the
giant (~100 m in height) carbonate mounds and buried their upslope
flanks (van Rooij et al., 2003). Smaller CWC reefs, typically 30 m across
and 10 m tall, are found throughout the BMP and are referred to as the
“Moira Mounds” (Foubert et al., 2005; Kozachenko, 2005; Wheeler
et al.,, 2005; Wheeler et al., 2011). These are divided into 4 zones
(Fig. 1) based on their geographic distribution: upslope area, down-
slope area, mid-slope area and northern area (see Wheeler et al., 2011).
The Moira Mounds in the northern and upslope areas are dormant
(Wheeler et al., 2011) while the Moira Mounds in the mid-slope area
have been described as “sediment stressed”, where they are being
smothered by sediments (Foubert et al., 2011). A blind channel, re-
ferred to as “Arwen Channel” (Fig. 1) (Murphy and Wheeler, 2017; Van

Rooij, 2004), formerly connected to the shelf break, runs through the
province and now contains the westernmost Moira Mounds studied here
(referred from here on as downslope Moira Mounds).

Wheeler et al. (2011) hypothesise that the Moira Mounds may re-
present an early-stage “start-up” phase of the nearby, large Belgica
coral mounds, noting that the “footprints” of clusters of Moira Mounds
have a comparable size to the base of the giant cold-water coral mounds
which, as such, may have formed through a coalescing of smaller coral
mounds at early stages of their development (see also De Mol et al.,
2005; Huvenne et al., 2005).

2. Materials and methods
2.1. ROV-mounted high-resolution multibeam echosounder

ROV-mounted multibeam echosounder (MBES) data were collected
over the downslope Moira Mounds area during the QuERCi survey
(2015) on board RV Celtic Explorer with the Holland 1 ROV (cruise
number CE15009: Wheeler et al. (2015)). A high-resolution, dual-head
Kongsberg EM2040 MBES was integrated with a sound velocity probe
and mounted on the front-bottom of the ROV. Data were acquired at a
frequency of 300 kHz while the ROV maintained a height of approx.
150 m above the seabed with a survey speed of approximately 2 knots.
This achieved a swath width of approx. 400 m. Positioning and attitude
were obtained using a Kongsberg HAINS inertial navigation system,
ultra-short baseline (USBL) system (Sonardyne Ranger 2) and doppler
velocity log (DVL). Data acquisition was carried out using SIS software,
where calibration values, sensor offsets, real-time sound velocity, na-
vigation and attitude values were incorporated. Seven lines ranging
from 850m to 4.2km long were collected over the downslope Moira
Mound study site. It is worth noting that, although rare, the DVL mis-
triggered during data acquisition, affecting limited stretches of the raw
navigation data. The MBES data were stored as *.all and *.wcd files and
were processed using CARIS HIPS and SIPS v9.0.14 to apply tidal cor-
rections and clean anomalous data spikes. The cleaned data were saved
as a single *.xyz and gridded to a 0.5 m ArcView GRID.

The 0.5 m MBES grid was imported into ArcMap 10.4 and projected
in UTM Zone 29 N. Slope (degrees) and aspect were derived from the
bathymetry using the Arc Toolbox Spatial Analyst tools.

The raw multibeam backscatter data were processed using the
Geocoder algorithm in IVS Fledermaus. This algorithm removes all the
gains used during acquisition and applies a series of radiometric and
geometrical corrections to the original acoustic observations in order to
obtain a correct value of backscatter strength (Fonseca et al., 2009).
The processed file was saved as a geotiff. Throughout this manuscript,
references to backscatter refer to relative backscatter strength.

2.2. Seabed morphometric analyses and mound density

To characterise the study area, distinguish between mound types
and associated bedforms, morphometric analyses were carried out.
Bathymetric grids, backscatter and slope of study area were plotted in
ArcMap 10.4. Using a combination of these datasets, three main geo-
morphological features were identified: positive mound features, ne-
gative scour features and positive ridge-form features. Each individual
feature was delineated manually within ArcMap and saved as a polygon
*.shp files. The mound and scour polygons were used to extract the
pixel values from the bathymetric (depth), backscatter (backscatter
strength) and slope (slope angle) rasters. Individual mound height and
scour depth were calculated by subtracting the minimum bathymetric
value from the maximum bathymetric value within each of these
mound and scour polygons using the Extract by Attributes tool.
Similarly, mound and scour polygon area, average backscatter,
minimum slope, maximum slope and average slope were calculated
using the same tool and added to the polygon attribute table.

Mound volumes were calculated by:
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where V is volume, A is area of base and H is height. This calculation
assumes that the mound is conical with an elliptic base. Calculated
mound volumes were added to the attribute table of the mound
polygon.
The scour features were individually inspected, which resulted in a
manual classification of the mounds into three distinct types; a) mounds
Qwith one or two scour directions, b) mounds with scour that encircles
e part or all of the mounds and c¢) mounds without scour. This scour
whmd (lassification was added to the mound polygon attribute table.
s Using the kernel density tool in ArcMap Toolbox, a mound density
distribution raster layer was created. This calculated the density of the
mound point features at each output raster cell neighbourhood (460 m)
and shows the number of mounds per square kilometre across the study
site. This was carried out for all the mounds within the area and se-
parately for mounds with one to two distinct scours and mounds with
encircling scour.
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2.3. ROV-mounted video

In this study, ROV video data are used to groundtruth bathymetry
and qualitatively assess mounds, scours and sediment types. ROV-video
data were collected over downslope Moira Mounds during the
VENTuURE survey (2011) (cruise number CE11009: Wheeler and ship-
board party (2011)) and QuERCi survey (2015) (cruise number
CE15009: Wheeler et al. (2015)) on board RV Celtic Explorer with the
Holland 1 ROV (Fig. 2a). Video data were recorded using an array of
HD and colour composite cameras including aft-facing, forward-facing
and downward-facing cameras mounted on the HOLLAND 1 ROV. The
ROV video survey speed was typically 0.3-0.4 kt. Positioning and na-
vigation were achieved using a USBL (Sonardyne Ranger 2) and
1200 kHz RDI Workhouse DVL. The ROV altimeter recorded and logged

Fig. 1. a) Locations of the Moira Mounds (star) and of Darwin Mounds (dot); 1b) TOBI 30 kHz sidescan sonar map (after Huvenne et al., 2005) of the Moira Mounds
area showing the Challenger Mound (green dot), chains of giant coral carbonate mounds (red lines), margins of blind channel (red dashed line), the 4 Moira Mound
areas after Wheeler et al. (2011) (yellow dashed lines), the study site (solid yellow box) and locations of box cores used for this study (red dots). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

the height of the ROV from the seabed. Parallel lasers set at 11 cm apart
were used to scale video imagery. The ROV's forward-facing (naviga-
tion) sonar guided the ROV over the summit of each mound feature.

2.4. Sediment sampling

Seven box cores from the downslope Moira Mounds are used in this
study to estimate current velocities (Fig. 1b). They were collected using
a NIOZ-type box corer during the Eurofleets Moira Mounds survey
(2012) on board RV Belgica (Cruise Number 2012/16) in 980-1100 m
of water, with pre-calibrated Global Acoustic Positioning System
(GAPS) Ultra Short Base Line (USBL) navigation to an accuracy of 0.5%
of the slant range. Sub-cores were taken from each retrieved box core,
and were stored at 4 °C.

For this study, only surface sediment samples from the box cores
were used. The carbonate and organic component of the surface sedi-
ment was removed using 10% HCl and 10% H0,. Details of this car-
bonate and organic dissolution procedure can be found in Pirlet et al.
(2011).

A 0.05% of sodium tetraphosphate solution was added to the re-
maining (lithic) component of the samples. The samples were shaken by
hand and then sonicated for approximately 12's to minimize floccula-
tion of particles. Before particle-size analysis (PSA), the samples were
mixed to ensure accurate representation of each sample. Laser granu-
lometry was carried out at the Applied Geology Lab, University of
Milano-Bicocca using a Malvern Mastersizer 2000. Each sample was
added to the Malvern Mastersizer 2000 by means of liquid dispersion.
Before measurement, ultrasonic waves were passed through the liquid
to ensure full deflocculation of particles. Each sample was measured 5
times. The results were then averaged and stored as an excel file. Files
were opened in GRADISTAT (see Blott and Pye, 2001) where mean
grain sizes were automatically calculated using the Folk and Ward
method (Folk and Ward, 1957).
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Fig. 2. a) Multibeam echosounder bathymetric coverage with the ROV video groundtruthing line shown in black; 2b) seabed slope within the study area (degrees);
\ 2c¢) multibeam echosounder backscatter (high backscatter in lighter tones, lower in darker tones).
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QZ.S. Current velocity estimation 2o, - p)d. ( 03 0.055[1 — eXp(—0.0ZOD*)])
1+ 1.2D= (2.3.1)
‘l_'l ) To understand the hydrodynamic regime around the Moira Mounds,
erosional current thresholds were calculated after Soulsby (1997) (a _ density = 1027.4 ke/m?
! detailed mathematical explanation can be found in Huvenne et al. p = water density = 1027.4 kg/m (23.2)

(2009b)) to estimate current speeds where box-cores were retrieved.
The mean grain size of each of these samples was used to estimate the o, = grain density = 2650 kg/m?*(quartz) (2.3.3)
critical current velocity 1 m above the seabed that would be required to
allow grains to be transported in the water column. Grain sizes smaller L
than 10 um were excluded from critical current velocity calculations as glo, —p) ]5 d
these are subject to flocculation (McCave et al., 1995). ov?
Soulsby (1997) defines the formula to calculate the critical current v=kinematic viscosity of water (2.3.9)
velocity erosional threshold from particle size distributions as:

D, = dimensionless grain size = [

w The use of this approach assumes that particle size reflects the
W _ *er 1 2100 h R )
100 erosion = - |, where benthic current regime. For our area of study where currents are strong,
0.41 2o 2) . . o .
and sediment ripples are common, testifying to extensive bedload se-
Zioo = level above seabed (1m) 2.1) diment transport and sediment reworking, this assumption appears
valid.
Zo = roughness length, calculated = (i) In a second current estimation in support of the current strength
2.2) calculations above, current velocity estimation is applied via use of a
d = grain diameter = mean of sample grain size curve 2.2.1) bedform velocity matrix (see Stow et al., 2009). This utilises mean grain
size and bedform type to estimate current velocity, which can be read
u,, = critical shear velocity = %, = Lo , where directly from a graph therein.
P (2.3
7., = threshold bed shear stress (N/m?)= (2.3.1)
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3. Results
3.1. Bathymetry, slope and acoustic backscatter

An area of 4.6 km? was imaged with the multibeam echosounder.
The bathymetric coverage reveals a relatively flat seabed with mega-
ripples punctuated by 106 distinct mound-like features (the Moira
Mounds) with associated scour pits and ridges throughout the down-
slope Moira Mound study site. The bathymetric map (Fig. 2a) shows the
seabed gently sloping from the deeper south to the shallower north
(—1010m to —942m). The mounds are typically 4.9m in height on
average (a maximum height of 14.8 m) with a slightly elongated conical
morphology and relatively low backscatter. Distinct scour features
occur around the mound perimeters. These can occur as 1 or 2 smaller
linear scours that extend from the mound perimeter or encircle all or
part of the mound perimeter. Scour features range from 66 m? to
9093 m? (1635 m? on average) reaching a scour depth of 3.6 m. Ridge-
like features typically occur to the south of the mounds (Fig. 2) and
have an area from 70 m? to 6075 m? reaching a height of up to 3.4 m.
They typically occur in groups of 3 to 5, decreasing in size away from
the mounds, with an east-west orientated long-axis. Sinuous mega-
ripples (sediment waves) exist in the medium backscatter, off-mound
area (Fig. 2¢). These have a wavelength of approximately 10 m and a
wave height of 20 cm to 75 cm, with a steepened, north-facing lee slope.

Fig. 2b shows seabed slope angles relative to this data set with green
characterising relatively flat seabed slopes whereas red and yellow
characterises the steep seabed slopes. Features (mounds, scour, and
ridges) are most easily identified on the maps of relative slope (Fig. 2b),
acoustic backscatter (Fig. 2c) or bathymetry (Figs. 2a & 3). Acoustic
backscatter is relatively constant throughout the area (Fig. 2¢) with a
slightly higher backscatter to the north, reflecting changing seabed
properties (grainsize and roughness).

3.2. Geomorphological features and mound density

The three geomorphological features identified and measured are
positive mounds, negative scours and positive ridge-forms (Fig. 3).
Mounds are typically clustered across the study site. Scour and ridge
features occur only with mounds. Mounds can occur without scour
(Fig. 3a), with poorly-developed scour (Fig. 3b and c) or with well-
developed scour (Fig. 3d). Ridge-like features occur within the scour
pits (Fig. 3d). As summarised in Fig. 4, mound backscatter ranges from
—15dB to —23dB and scour backscatter ranges from —13dB to
— 20 dB. Mound slope ranges from 7 to 32° and scour slope ranges from
0.1 to 9°. Mound volume ranges from 8 to 14,872 m> while scour depth
ranges from 0.1 to 3.6 m.

The most obvious morphological distinction between mounds is
presence/absence and degree of scour (poorly developed to well-de-
veloped). As such, three types of Moira Mounds are defined based on
this morphological distinction (Fig. 5).

Type I mounds are defined based on their lack of scour (e.g. Fig. 3a).
They are typically the smallest in volume (305m?® average, 247 m®
median) (Fig. 5), predominantly occurring where other mounds are
most dense (Fig. 6b). They are the least common mound type in the
study area (22.6%). They have the lowest slope (average 17°) and
backscatter (average —19.1dB) of the three mound types (Fig. 4).
Ridge-like features rarely occur with these mounds (only 4 Type I
mounds occur with ridges) (Fig. 5c¢).

Type II mounds are defined based on their poorly-developed scour
that has formed along one sector of the mounds base (e.g. Fig. 3b and
¢). They are moderate in volume (1240 m® average, 748 m® median),
more than twice the volume of most Type I mounds. They exist clus-
tered throughout the study area (Fig. 6a) and are the most common
mound type (50%). The scour that develops around these mounds
covers an average area of 1038 m? with an average depth of 0.5m.
These mounds have an average slope of 21° and an average backscatter

of —18.5dB; 45% of these mounds exist with ridges.

Type Il mounds have well-developed scour, encircling all or most of
the mound base (e.g. Fig. 3d). They are the largest in volume (2064 m®
average, 1532m°® median), almost double the volume of Type II
mounds. They exist throughout the study area but their highest density
is to the immediate south of Type I and Type II mounds. They comprise
27.4% of the mounds in the study area. The scour that develops around
these mounds covers an average area of 2766 m? with an average depth
of 0.9 m. These mounds have an average slope of 21° and an average
backscatter of —18.8dB; 66% of these mounds typically exist with
ridge-like features within their scour pit (e.g. Fig. 4D).

Mounds exist throughout the surveyed study site. However, the
highest density of mounds, > 50 mounds/km?, occurs in the largest
cluster at the north of the study area (Fig. 6). The lowest density of
mounds (< 10 mounds/km?) typically exists outside these mound
clustering areas.

3.3. ROV-mounted video

ROV-mounted video data (Fig. 2a) covers a total transect length of
8.7 km, crossing 17 mounds, scour and ridge-like features. Video ob-
servations confirm that the mounds and ridge-like features are covered
by coral while the scour pits are not. The mounds are dominated by
coral framework: Lophelia pertusa predominantly with Madrepora ocu-
lata in places (Fig. 7a, b and c). The coral frameworks are typically
0.5m to 1 m in height, protruding from the mound surface. Live coral is
more common near the mound summit while dead coral frameworks
occur mainly near the mound flanks.

The scour pits are sandy with some exposed dropstones and no coral
present (Fig. 7d and f). Ridge-like features exist within some scour pits,
adjacent to the mounds (Fig. 7d). Coral grows at and near the summit of
all observed ridge-like features, here called “coral ridges”, while some
coral rubble exists in troughs between ridges.

The off-mound areas are dominated by rippled sands with occa-
sional gravel lags and dropstones (Fig. 7e). The asymmetrical ripple
crests are sinuous to lingoidal with a steepened north-facing slope in-
dicating a northerly-directed flow.

3.4. Current velocity

The average erosional current velocity threshold for transporting
the sand in the study area is 36 cm s~ (Table 1). Similarly, a current
velocity of 35-40 cms™ ! was obtained by using the bedform-velocity
matrix with high-sinuousity megaripples and lingoidal megaripples and
a mean grain size of 235 pm.

4. Discussion

4.1. Currents

The estimated sediment-derived current velocity of 36 cms™! and
the bedform-derived current velocity of 35-40cms™ ' are coincident
with each other as well as with direct current velocity measurements
close to our study area (34 cm s~ 1) (Dorschel et al., 2007). The bed-
forms observed here (megaripples/sandwaves) form over days to even
weeks (Stow et al., 2009) which, coupled with their persistence and
common occurrence, suggests they reflect a long-term, net effect of the
current in shaping the seabed. As such, the steepened lee slope of these
megaripples indicates that the prevailing current is from south to north.
This flow is typical within the Porcupine Seabight (Pingree and LeCann,
1990; White, 2007).

However, the large scour pits, predominantly developed around the
south-facing side of these mounds suggest a north-to-south flow direc-
tion. Given the prevailing current is south-to-north, the high energy
required to form the scour pits and similarity of our independent cur-
rent velocity estimates to nearby direct measurements, it is more likely
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Fig. 3. a) Bathymetric data showing a small Moira Mound approx. 3 m in height with no scouring, surrounded by a megarippled seabed; b) bathymetric data showing
2 small Moira Mounds with scour developing at 1 sector of the mound perimeter, surrounded by a megarippled seabed; c) bathymetric data showing a moderately-
sized Moira Mound where the mound base has been scoured; d) bathymetric data showing a large Moira Mound with well-developed scour encircling the mound base

with ridge-like features formed within the scour pit.

that these scour pits are the result of high-magnitude, low-frequency
current events. Furthermore, with the occurrence of dense water cas-
cades reported previously from the Irish Margin (Hill et al., 1998) and
the location of the study site within a south-north blind channel on the
shelf break, we suggest that the low-frequency, high-magnitude events
that form the scours may be dense water cascades flowing down the
blind channel. Dense water cascades have been noted elsewhere
reaching velocities up to 250 cms ™! (Wilber et al., 1993). White et al.
(2005) previously put forward the idea of dense water cascades in a
CWC habitat in the NE Atlantic. Hill et al. (1998) also suggest that these
dense water flows can be seasonal. Although no definitive explanation
can be put forward for the mound encircling nature of some of the scour
pits, this could be related to the pit becoming further shaped by the
strong residual current or tidal influences in the area.

4.2. Mound morphology

The downslope Moira Mounds show typically developed conical to
elongate downstream morphology. The three different morphological

types (I, II and III) we describe require further examination and may
reflect evolutionary development stages.

Type I mounds are relatively small, with an average volume of ap-
proximately 300m>® and do not have scour or ridge-like features,
whereas the much larger Type III mounds with an average volume of
approximately 2000 m® typically have well-developed scour and ridge-
like features. There is a developmental trend of scour and ridge-like
features with increasing mound volume from Type I to Type II through
to Type III mounds. Scour pits and ridge-like features are exclusively
found in association with the mounds suggesting that a) the scour and
ridges form under the influence of the mounds and b) that both features
develop progressively with the increasing size of the mounds. A similar
process has been observed and modelled around various other marine
obstacles such as shipwrecks (Quinn, 2006; Smyth and Quinn, 2014)
with the size of the obstacle influencing the hydrodynamic perturbation
and, therefore the size of scour and drifts. As such, the mounds have a
progressive influence on their local environment as they grow larger.
These stages of development and influence are summarised in Fig. 8.

Cold-water coral mounds with scoured bases are relatively common,
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egend, the reader is referred to the web version of this article.)

for example in the Straits of Florida (Correa et al., 2012) and the Hedge
Mounds, northwest Porcupine Bank, NE Atlantic (Dorschel et al., 2009).
Of particular note are the Magellan Mounds which are an order of
magnitude larger than the Moira Mounds but have moats that are en-
igmatically elongated and in some cases extended around the mounds
(Huvenne et al., 2007). However, unlike other coral mounds with scour,
coral ridges have developed in the scour pits of the Moira Mounds. This
relationship has not been reported elsewhere. Since the ridges exist only
within the main depressions of large, well-developed scour pits sur-
rounding the mounds (typically Type III mounds), it appears that they
develop after the scour formed and are potentially related to hydro-
dynamic effects as the mounds increase in size. While increased tur-
bulence occurs within the main body of a scour pit around marine
obstacles (Quinn and Smyth, 2017), Davies et al. (2009) show that
turbulence induced by mound topography may account for enhanced
delivery of food particles suspended in deeper waters. The increased
turbulence means there can be concentration of suspended material
which includes coral larvae can settle and grow given the availability of
suitable substrate. In addition, the concentration of coarser materials
(e.g. exposed dropstones) in the bottom of the scour may be this sui-
table substrate for the coral to settle and grow upon. Moira Mounds
further south of the study area have been previously described as

green = Type III). Density is expressed as number of mounds per km? over a neighbourhood of 460 m. (For interpretation of the references to colour in this figure

“substrate restricted”, where the environmental conditions and current
speeds are favourable but there is a lack of hard substrate (Lim, 2017).

In terms of dimension, Type II and III mounds are typical of those
described for the Moira Mounds in the mid-slope, up-slope and northern
areas (Wheeler et al., 2011). Both of these mound types are large en-
ough to be imaged in pre-existing map coverage (mapped using deep-
towed 30 kHz TOBI side scan sonar; see Huvenne et al. (2005)). How-
ever, the Type I mounds are too small to be imaged by lower resolution
pre-existing map coverage and do not fit previous morphological de-
scriptions of the other Moira-type Mounds (Huvenne et al., 2005; Lim
et al., 2017; Wheeler et al., 2005; Wheeler et al., 2011). Interestingly,
Type I Moira Mounds are similar in dimension (near circular, ~5m in
height) to the nearby Macnas Mounds, which also occur on the eastern
flank of the Porcupine Seabight but further up-slope at water depths of
300 to 500 m (Wilson et al., 2007). Like the Type I Moira Mounds, the
Macnas Mounds occur within an eastern Porcupine Seabight channel,
are notably small, have gentle slopes and appear to be devoid of scour.
Although speculative, their similarities and proximity could suggest
that the Macnas Mounds and the Type I Moira Mounds may have some
similarities in terms of their initiation and development.
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Fig. 7. a) Surface of a Moira Mound; b) close up image of large and densely-packed coral colonies, mostly Lophelia pertusa; c) a small (Type I) Moira Mound showing

sparse coral colonies; d) coral ridge within a scour pit; e) off-mound sinuously rippled sands; f) scouring around perimeter of mound.

4.3. Mound density

The overall density of the downslope mounds in the study site is
22.9 mounds/km ~2 (106 mounds in 4.64 km?). The Moira Mounds and
the Darwin Mounds in the northern Rockall Trough, UK waters were
thought to be comparable in size and distribution (Huvenne et al.,
2016; Huvenne et al., 2009a; Lim, 2017; Wheeler et al., 2011) although
in our study area spatial density shows over an order of magnitude in
difference. The NE Darwin Mounds have a spatial density of
1.28 mounds/km ™2 (150 mounds per 117 km?) and the NW Darwin
mounds have a spatial density of 1.44 mounds/km~2 (75 mounds per
52km?) (http://jncc.defra.gov.uk). In comparison with other provinces
of small mounds, the Atlantic-Moroccan margin has a low mound

spatial density of 0.43 mounds/km~2 (781 mounds in 1800 km~?)
(Vandorpe et al., 2017), the Santa Maria di Leuca (SML) mound pro-
vince in the northern Ionian Sea has 9.7 mounds/km ~2 (5820 mounds
in 600km~2) (Savini et al., 2014), the interfluves between the Dan-
geard and Explorer Canyons, NE Atlantic, which also has “minimounds”
has 7.2mounds/km~2 (400 mounds in approx. 55km~2) (Stewart
et al., 2014) and coral mounds in the Straits of Florida on the Great
Bahama Bank slope have 14 mounds/km ™2, which was subsequently
described as a major mound region (Correa et al., 2012). As such, the
downslope Moira Mounds may be described as a major and unique
coral mound habitat given the high-spatial density of coral mounds of
small sizes (~10 m in height), and even potentially the highest recorded
density of coral mounds to date. It is worth noting that the coral

Table 1

showing sediment sample grain size characteristics and erosional velocities after Soulsby, 1997.
Sample ID BC_23 BC_28 BC_21 BC_33 BC_31 BC_25 BC_26
Mean grain size (um) 267.8 441.3 215.4 111.8 209.5 225 176
Textural group Muddy sand Sand Sand Muddy sand Sand Sand Sand
Erosional Velocity cms™ 1 (Soulsby, 1997) 36 39 36 34 36 36 36
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mounds compared here vary in size and geographic range and therefore dense CWC frameworks. The initial settlement of coral larvae on sui-
the total number of mounds occurring across the total geographic range table hard substrates generates new colonies that, growing on each
of occurrence are compared. other, tend to develop both vertically and laterally forming colonial

aggregations. In turn, their neighbouring colonial aggregations can
increase in size and, when in contact, merge to create dense and large
coral frameworks. Similarly, younger type I mounds seem to occur at
the periphery of larger ones supporting the idea of mound coalescence
as a mechanism to propagate the development of giant mounds. The
mound clusters studied herein have a comparable diameter and elon-
gation as the surrounding “giant” Belgica coral mounds (Wheeler et al.,
2011). Huvenne et al. (2009b) outline a model which can be applied for
clusters of small mounds to grow into large mound bases where a
limitation of sedimentation is required to not bury potential substrate,
coral growth can keep up with sedimentation and, once they grow
develop high enough, they escape continuous burial in the benthic
boundary layer. As such, given their notably high spatial density,
continued development of Moira Mounds could lead to them coalescing

4.4. The influence of mound density on mound development

In terms of distribution, Type III mounds exist throughout the study
area (Fig. 6). Assuming Type III mounds developed before Type II
mounds, based on their size (approx. twice the volume of Type II
mounds; Fig. 8), it appears that Type II mounds occur where Type III
mounds are most densely distributed (Fig. 6). Similarly, assuming Type
I mounds are younger than Type II and III, it appears that Type I
mounds typically occur in the areas of highest mound density, as evi-
dent in the northern sector of the studied region (Fig. 6). This mound
distribution can be compared with the distribution, at a smaller scale, of
CWC isolated colonies and colonial aggregations in relation to dense
and large CWC frameworks. Isolated colonies and coral aggregations ;
(up to 2-3 m in extension) are typically observed in the basal part of the into larger mounds (Beyer et al., 2003; Huvenne et al., 2005; Wheeler

flanks of some Mediterranean and North Atlantic mounds (Rosso et al., et al.,.2005). o . .
2010; Vertino et al., 2010; Wienberg et al., 2008) around larger and It is thought that the distribution of the Moira Mounds is related to
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pre-existing topographic features and suitable substrates such as cur-
rent-aligned furrows and ridges as well as dropstones (Foubert et al.,
2011; Kozachenko, 2005; Wheeler et al., 2005). Presumably, larvae of
coral colonies have originally settled on these seafloor features gen-
erating isolated colonies that, in favourable conditions, have evolved
into loosely-packed coral aggregations and then into dense frameworks.
The lateral and vertical accretion of a CWC framework is highly influ-
enced by combined biological and sedimentological factors, such as the
colony growth rate, the generation of new corals through asexual and
sexual reproduction (Brooke and Jarnegren, 2013; Dahl et al., 2012; Le
Goff-Vitry, 2004; Waller and Tyler, 2005) and the stabilising action of
the sediment that accumulates at the coral base (Hebbeln et al., 2016).
Though recent studies on CWC larvae have highlighted the longevity
and high dispersal potential of Lophelia planulae (Stromberg and
Larsson, 2017), it seems that there is a significant retention of coral
larvae within natal CWC sites (Le Goff-Vitry, 2004; Morrison et al.,
2011; Ross et al., 2017). The preferential coral larval settlement on
suitable substrates (such as tissue-barren skeletons of pre-existing co-
lonies, coral rubble or other biogenic and lithic surfaces) within natal
reefs and/or in the surrounding areas may increase the potential ac-
cretion of a single mound and favour the formation of densely packed
mound clusters.

The dense mound distribution of the northern sector of the studied
area could be linked to favourable environmental conditions that lead
coral larvae to preferentially settle in the vicinity of the natal sites.
However this observation must be corroborated by genetic studies on
coral colonies from the three different mound types. The preferential
nucleation of coral mounds in the surroundings of older ones, could also
be favoured by the effects generated by mound clustering. As suggested
by Vandorpe et al. (2017), mound clustering can intensify local bottom
currents, thus improving food and sediment supply to mounds.

5. Conclusions

We conclude from estimations that a northerly-directed prevailing
current of between 36 and 40 cms™! exists at the Moira Mounds, a
current similar to direct current measurements obtained nearby. On the
other hand, distinct scour features that have developed around the
larger Moira Mounds suggest an opposing flow direction and may be
the result of sporadic dense water cascades, common on continental
slopes and previously observed on the Irish-Atlantic margin. Based on
he presence/absence and degree of development of the scours, the
downslope Moira Mounds can be classed into three types: Type I (small
mounds with no scour); Type II (medium-sized mounds with poorly-
developed scour) and; Type II (large mounds with well-developed
scour and coral-ridges). Given their proximity and based on their size, it
is likely that these mound types represent different ages where the
smallest are the youngest. Ridge-like features occur within the large
scour pits of the oldest (Type III) mounds. Unlike other mounds which
form sediment tails (often called “comet marks”), this is the first case
where such features are observed.

In addition, the downslope Moira Mounds represent the highest
density of small-sized coral mounds recorded (22.9 per km?). Previous
studies have suggested that mound clustering has resulted in higher
particle delivery to mounds (e.g. food and sediment) as a result of in-
creased turbulence. Coincidently, the suggested younger Moira Mounds
appear to preferentially develop within areas of highest mound density,
supporting the idea that these mounds may eventually coalesce, de-
veloping into the surrounding giant coral carbonate mounds in the
Belgica Mound Province.
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