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Aim: The distribution and impact of aerosol-delivered gold nanoparticles (AuNPs) functionalized with a
mixture of aminated-polyvinyl alcohol and amino-PEG ([polyvinyl alcohol/PEG]-NH,) upon repeated ad-
ministration onto a 3D lung model were explored. Materials & methods: AuNPs were aerosolized and
uptake and epithelial translocation was assessed by inductively coupled plasma optical-emission spec-
troscopy, flow cytometry and electron microscopy. In addition, cytotoxicity, apoptosis and proinflamma-
tion were evaluated. Results: Repeated AuNP aerosolization resulted in NP accumulation in macrophages
and epithelial cells. Dendritic cells demonstrated substantial NP internalization after single administration
which was reduced in later time points. No cytotoxicity or proinflammation was observed but after 96 h
significant apoptosis was induced by the polymer coating. Conclusion: These results indicate the impor-
tance of repeated exposures in addressing potential effects of NPs.
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The respiratory tract with its large epithelial surface area of around 140 m* and a dense network of antigen-

presenting immune cells, that is, macrophages and dendritic cells [1-3], is a promising target for noninvasive

aerosolized drug and vaccine delivery [4,5]. Indeed, the lung is an ideal organ for drug administration, as it allows

fast action, lower drug metabolism and higher bioavailability of different-sized drug molecules for the treatment

of respiratory, that is, asthma and systemic diseases, that is, diabetes [4,6]. Therefore, the inhalatory route offers

several benefits over the classical oral or intravenous drug administration. In fact, pulmonary aerosol drug delivery

has been successfully employed for several years for the therapy of lung diseases such as asthma, emphysema and

chronic obstructive pulmonary disease (5. Moreover, various potential respiratory drugs and vaccines are under

development for the treatment and prevention of diabetes, cystic fibrosis, measles or even headache and pain

relief (7). However, despite these encouraging aspects, free antigen delivery directly to the pulmonary region often

fails to induce pivotal protective reactions due to rapid degradation (s]. For this reason the design and development

of novel drug carriers in the nanoscale is vital for the improvement of the performance of already existing as well

as future drugs. Consequently, the potential of engineered nanomaterials in biomedical applications has gained

significant scientific attention, over the recent years. In particular, engineered nanoparticles (NPs) are promising

drug-carriers systems for site-specific deposition and targeted delivery in novel therapeutic applications [9,10]. Hence, .
an increasing number of aerosolized NP-based drug and vaccine carriers are under intense research investigation. Future 7y
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NPs could provide new technological advances also in novel diagnostic approaches [11,12]. Depending on their size
and physico-chemical properties inhaled NPs may interact with the lung epithelium, the first defense barrier and
deposit either in the airway or the alveolar region. More specifically inhaled particles between 10 and 100 nm
predominately deposit in the lower respiratory tract and in particular the lung parenchyma [13]. Therefore, great
efforts have been made by both % vitro and in vive approaches to discover the biological impact of inhaled NPs
in the deep lung [14]. Moreover, NP interaction with the different lung cells types and the possibility to cross the
ultra-thin air-blood barrier (which can be as thin as 0.1-0.2 pum [21) and reach extra-pulmonary organs through
the bloodstream are also crucial parameters that require investigation, before their employment in nanomedical
applications [5].

Among the different types of engineered NPs, AuNPs hold particular promise in nanocarrier delivery systems
and medical imaging, due to their high stability and tunability (i.e., shape, size, charge control), straightforward
synthesis, high cell permeability, low apparent toxicity and their ability to target drug release (using appropriate
surface modifications and addition of ligands) [15,16].

Recently, a library of fully characterized homo- and hetero-functional fluorescence-encoded biomedical AuNPs
was established in our group using different polyvinyl alcohol (PVA) and PEG surface polymer probes for particle
coating and stabilization (17]. Using this NP library, Fytianos ez 2/. demonstrated that different surface modifications
can greatly modify the interaction of AuNPs with monocyte-derived dendritic cells (MDDCs) as well the cell
viability and proinflammatory response, while not affecting the immunological cellular properties, following 16-h
submerged exposure [18].

The potential use of modified AuNDPs as carriers of inhalative drugs or vaccines requires a better understanding
of their interaction with lung cells and in particular with cells of the alveolar lung region and clear assessment
of possible adverse effects that might occur upon single or repeated treatment. In fact, investigation of the
distribution and biological response after repeated AuNP inhalation is of importance as drugs may have to be
received repeatedly for an efficient disease treatment. Despite, the increasing literature proposing AuNPs for novel
biomedical applications only limited knowledge is available regarding the effect of repeated inhalation in both
in vitro and in vivo settings [19]. More specifically, iz vitro studies have been mainly performed under submerged
conditions and within relatively short incubation times (24-48 h). In the present study, the utdilization of the
air-liquid interface cell exposure system (ALICE), which realistically mimics 7 vizro the physiological conditions
of aerosol inhalation in the lungs [20] together with an advanced 3D model of the human lung epithelial tissue
barrier [21], offered an efficient platform to study the short-term repeated NP aerosol at air-liquid interface (ALI)
conditions as described for carbon-nanotubes aerosols [22]. Our aim was to explore the distribution and the biological
impact of aerosol-delivered biomedical AuNPs (luorescently labeled and surface modified with a positively charged
mixture of aminated PVA and PEG polymers ([PVA/PEG]-NH,), on a sophisticated 7 vitro lung co-culture, upon
a realistic short-term (up to 96 h) repeated scenario.

Materials & methods
Chemicals & reagents
All chemicals and reagents used were obtained from Sigma-Aldrich (Buchs, Switzerland), unless otherwise stated.

Synthesis & characterization of fluorescence-encoded hetero-(PVA/PEG)-NH2 AuNPs
Synthesis

Carbodiimide chemistry was used to conjugate the primary amines of vinylalcoho-vinylamine copolymer (PVA-
NH;; MW = 240,000 g/mol, Erkol S.A, Spain) and thiolated poly(ethylenglycol) amine (SH-PEG-NH,; MW
= 5000 g/mol, Creative PEG-Works, NC, USA) with the activated carboxyl groups of the ATTO590 NHS ester
(Sigma-Aldrich) as previously described in Rodriguez-Lorenzo ez al. (171. AuNPs (15 nm in diameter, [Au] = 0.5 mM)
were synthesized following the Turkevich procedure [23]. In order to prepare the (PVA/PEG)-NH, AuNDs,
phosphate-buffered solution (PBS; pH 7.4) containing 12 mg of dye-conjugated polymer mixture calculated
to provide a ratio of weight PEG:PVA 1:1 (mg) was prepared and sonicated for 20 min. Then, the polymer solution
was added drop wise at room temperature under shaking to AuNPs suspension (20 ml) at weight ratio PEG:PVA:Au
of 3:3:1 (mg). The mixture was incubated to reach the thermodynamic equilibrium at room temperature for 24 h
under dark conditions. Labeled polymer-coated NPs were centrifuged (10000 xg, 1 h) to remove excess polymer
and redispersed in 20 ml of 1 x PBS. A second coating with unlabeled PEG/PVA mixture was then further applied
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using same conditions. The final (PVA/PEG) — NH; AuNPs were centrifuged at 10,000 x g for 1 h and redispersed
in PBS.

Characterization methods

UV-visible (UV-Vis) spectra of the samples were recorded at 25°C using a Jasco V-670 spectrophotometer (Jasco
Europe S.R.L., Milano, Italy), using 10 mm path length quartz cuvettes. The hydrodynamic radius of the AuNDPs
was measured at a concentration of 50 pg/ml in 1 mM PBS at 25°C by dynamic light scattering (DLS) at 90°
using a commercial goniometer instrument (3D LS Spectrometer, LS Instruments AG, Fribourg, Switzerland). The
surface charge of AuNDPs samples was measured in suspension of 50 pg/ml in 1 mM PBS at 25°C using a phase
amplitude light scattering ¢-potential analyzer (Brookhaven ZetaPALS, Brookhaven Instruments Corporation, NY,
USA). The Smoluchowski approximation was fitted to 20 cycles of electrophoretic mobility measurements and ten
replicates were obtained for each sample to estimate the mean and the standard deviation. The average number of
ATTO590 molecules on the AuNPs was determined by using a PerkinElmer Victor Fluorescence Microplate Reader
with 560/615 filter set (Wallac 1420 VICTORS3 reader, PerkinElmer, MA, USA). Then, 10 pl of AuNPs samples
were dissolved with 10 pl of 40 mM KCN (Sigma-Aldrich) to avoid any interference during the fluorescence
measurements. All measurements were carried out in triplicate.

Endotoxin content
The endotoxin concentration in AuNP suspensions was measured using the Pierce™ LAL Chromogenic Endotoxin
Quantitation kit (Thermo Fisher Scientific, MA, USA), following the manufacturer’s instructions.

Lung cell cultures

Exposure experiments were performed, using a sophisticated 77 vitro co-culture model of the human lung ep-
ithelial tissue barrier [21). Briefly, the co-culture composed of a monolayer of A549 human (alveolar type II;
American Type Culture Collection, Middlesex, UK) epithelial cells, combined with human blood monocyte-
derived macrophages (MDMs) added on top of the epithelium and MDDCs, added underneath the membrane.
A549 cells were maintained in Rosewell Park Memorial Institute (RPMI) 1640 medium, supplemented with
1% L-glutamine (L-Glug; Life Technologies [MA, USA]/Thermo Fisher Scientific), 1% penicillin/streptomycin
(10,000 units/ml/10,000 pg/ml; Gibco [MA, USA]/Thermo Fisher Scientific) and 10% fetal calf serum (PAA
Laboratories, Chemie Brunschwig AG, Basel, Switzerland), at 37°C, 5% CO,. Cells were seeded at a density
of 0.5 x 10° cells/ml, in BD Falcon™ cell culture inserts for six-well plates (transparent PET membrane, 3 pm
diameter pore size and surface area of 4.2 cm?; BD Biosciences, Allschwil, Switzerland). Inserts were placed in 6-well
culture plates (BD Biosciences) and epithelial cells were grown under submerged conditions (2 ml medium in the
apical and 3 ml in the basolateral side of the insert) for 5 days. In parallel, peripheral human blood monocytes were
isolated from human blood buffy coats (Blood Donation Service, Bern University Hospital, Bern, Switzerland), as
described by Blank e a/. [24) and cultured for 6 days in supplemented RPMI medium. For the differentiation of
MDDC:s the growth factors GM-CSF and IL-4 (10 ng/ml) were added to the culture medium, whereas MDMs
were obtained with the addition of MCSF (10 ng/ml).

The triple co-cultures were achieved, as previously described by Blank ez /. (2007), resulting in a cell density of ap-
proximately 9714 epithelial cells/mm?, approximately 231 MDM/mm? and approximately 411 MDDC/mm? [25).
After 24 h under submerged conditions, the co-cultures were transferred to the ALL for additional 24 h, prior the
exposures, by completely removing the medium in the apical chamber of the insert and by replacing the medium
in the lower compartment with 1.2 ml of fresh medium.

Air-liquid interface cell exposure system

AuNPs were aerosolized using the ALICE system as described by Brandenberger ez 4. [26) and Fytianos ez al. [27).
Briefly, the instrument consists of a nebulizer, an exposure and an incubation chamber connected to an air-flow
system to provide optimum conditions for cell cultivation (RH: 80-95% and T: 37°C) as well as a quartz crystal
microbalance (QCM) (operated at 5 MHz, lower detection limit: 0.09 pg/cm?; Stanford Research Systems, Renens,
Switzerland) for online measurements of the NP dose deposited on the cells surface. For each aerosolization, 1 ml
of AuNP suspension (at the working concentration of 120 pg/ml) with 0.9% NaCl (NAAPREP® physiological
saline, GlaxoSmithKline, Paris, France) was added to the nebulizer (eFlow nebulizer system, PARI Pharma GmbH,
Starnberg, Germany). The vibrating perforated membrane of the nebulizer then generates the aerosol, which is
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transferred into the exposure chamber where the cells are located. Inside this compartment, it gently deposits
the aerosolized AuNP suspension onto cell cultures maintained at the ALL The selected flow rate (5 I/min) is
optimal for the aerosol to get sufficiently mixed to all sides of the chamber, thus resulting in uniform single droplet
deposition.

Exposure scenario

To assess the biological impact and uptake efficiency of AuNDPs upon short-term repeated aerosol exposures into
the 3D in vitro lung model of the human epithelial tissue barrier, triple cell co-cultures were exposed repeatedly
to (PVA/PEG)-NH, AuNPs (120 pg/ml) using the ALICE system. Cultures were transferred to ALI conditions
at 0-h time point and exposures were performed at 24 h (first aerosolization), 48 h (second acrosolization) and
72-h time point (third administration) (Supplementary Figure 1). The cellular response was determined after a
post-incubation time of 24 h following each AuNP exposure. Thus, sample collection occurred at 48-, 72- and
96-h time points. Cell cultures exposed repeatedly to dH,O containing 0.9% NaCl were used as negative control.

Characterization of AuUNP deposition after the aerosolization
Transmission electron microscopy

In order to characterize the deposited AuNPs aerosols, transmission electron microscopy (TEM) copper grids were
exposed to aerosolized particles using the ALICE system. Representative images of the deposited AuNPs were
captured using a TEM (Fei Technai Spirit; OR, USA), operating at 120 kV, fitted with a Veleta CCD camera
(Olympus, Japan).

Quartz crystal microbalance

The deposition of acrosolized AuNPs was quantified by the incorporated QCM. In brief, the precise (PVA/PEG)-
NH,; AuNPs concentration deposited directly on the cells surface was determined by the linear decrease in the
resonance frequency of the vibrating piezoelectric crystal, due to the increasing deposited mass. The differences in
the frequency of the crystal, prior to and after aerosolization process were recorded and subsequently calculated to
determine the mass per surface area (Lg/cm?), as previously described 1201. The deposition of aerosolized dH,O
containing 0.9% NaCl (negative control) was below the instruments detection limit.

Interaction of AuNPs with the human epithelial tissue barrier model

Inductively coupled plasma atomic emission spectroscopy (ICP-OES)

Sample preparation of ICP-OES

Following each post-incubation time, the cells and the basolateral medium of three different inserts were collected
for ICP-OES analysis. More specifically, after the supernatant collection, cell de-attachment was achieved by apical
and basolateral treatment with 500 pl of Trypsin-EDTA for 5 min. The cell suspension and the collected medium
were then stored at -20°C until further analysis to quantify the distribution of Au in the system.

At 24 h before the measurements, samples were heated at 80°C and treated with 500 ul HNOj for 2 h. Then,
500 pl of aqua regia (HCI:HNOj3 = 3:1 volume ratio) were added and samples left overnight under the fume hood
to completely digest the organic material and dissolve the AuNPs. The digested samples were transferred to 15 ml
falcon tubes and diluted to 5 ml with water.

1CP-OES analysis

The treated samples were measured by ICP-OES (PerkinElmer Optimal 7000 DV, PerkinElmer, Schwerzenbach,
Switzerland). Measurements were performed at a wavelength of 242.795 nm (limit of detection = 16 g/l and limit
of quantification = 23 pg/l), at an axial plasma view. The plasma flow was 15 ml/min and the sample flow rate
1.5 ml/min. A washing step was performed between each measurement and each sample was measured three-times.
A standard curve of acidic aqueous Au solutions was recorded to quantify the amount of intracellular Au. Precision
was defined by the coefficient of variation (CV% = [standard deviation/mean]*100), which was <10% for all
the AuNP association studied. The accuracy was estimated by measuring the cellular uptake, the washing step
(culture wash with PBS) and the AuNPs remaining in the cell culture media. The sum of these values was compared
with the initial Au concentration. The recoveries were 100-120%. The spike recovery was estimated by spiking a
known AuNP concentration in water and subjected then to the acid digestion and measured by ICP-OES. Average
recoveries ranged from 99 to 103%.
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Flow cytometry

The interaction of aerosolized AuNPs within the individual cell types, that is, epithelial cells, MDM and MDDC,
and at the different tested time points was investigated as described previously by [27] and [28]. Briefly, at each
time point, inserts were treated for 2 min with trypsin-EDTA (0.5 ml in the apical and 1 ml in the basolateral
compartment). Then, the activity of trypsin was inhibited by the addition of 100 pl of FBS in each part.
Subsequently, cells were washed with PBS and collected in flow cytometry tubes at a density of 10° cells/ml.
Cell suspensions were stained with epithelial cell adhesion molecule EpCAM-APC (epithelial cell surface marker),
CDB80-FITC, CD40-Pacific Blue (both MDDC markers) and CD11a-PE-Cy7 (MDM surface marker) (dilution
1:50, all antibodies were purchased from Biolegend, CA, USA) at 4°C for 30 min. Flow cytometry analysis was
performed with an LSR Fortessa instrument (BD Biosciences). For every measurement, 30,000 gated events were
recorded. Gating and data analysis was performed with the FlowJo software (Tree Star, OR, USA) as described
1n [27].

Transmission electron microscopy

The cellular internalization of AuNPs following short-term repeated exposures at 48, 72 and 96 h was also
investigated by TEM (Fei Technai Spirit) operated at 120 kV. Prior to the TEM analysis, sample preparation was
performed as described by [26]. Briefly, exposed cultures were fixed with 2.5% glutaraldehyde in HEPES buffer, and
then post fixed with 1% osmium tetroxide and stained with 0.5% uranyl acetate. Subsequently, the membranes were
dehydrated in a graded ethanol series and embedded in Epon. Embedded cultures were cut in ultra-thin sections

(50-80 nm), mounted on copper grids and stained with lead citrate and uranyl acetate. Images were captured with
a Veleta CCD camera.

Biochemical analysis

Cytotoxicity

The release of LDH in the medium, a well-known indicator of membrane damage, was assessed using the
commercially available LDH detection kit (Roche Applied Science, Mannheim, Germany), following the supplier’s
protocol. Each sample was tested in triplicate and LDH values were expressed relative to the negative control. The
enzyme activity was determined photometrically, by measuring the absorbance at 490 nm (reference wavelength at
630 nm). Co-cultures exposed apically to 0.2% Triton X-100 for 24 h were used as positive control.

Apoptosis

Caspase 3/ 7 activation assay

The activation of caspase 3 and 7 in the repeatedly exposed cell cultures was quantified using the CellEvent
Caspase-3/7 Green Flow Cytometry Assay Kit (Molecular Probes, Life Technologies) following the manufacturer’s
protocol. For the flow cytometry analysis 10,000 gated events were recorded, using the BD-LSR Fortessa. The gating
strategy is displayed in Supplementary Figure 2. Co-cultures exposed to aerosolized (PVA/PEG)-NH, polymer
only (40 pg/ml) were also assessed in order to investigate the impact of the surface modification in the observed
apoptotic activity.

Annexin V assay

Early and late stages of apoptosis in AuNP-exposed cultures at 96 h were measured with the Annexin V Fluos kit
(Roche Diagnostics, Zug, Switzerland) following the supplier’s instructions. Flow cytometry analysis (10,000 gated
events) was performed in the BD-LSR Fortessa and data were analyzed using FlowJo software (Tree Star). The
gating strategy is shown in Supplementary Figure 2. Co-cultures (digested from the insert membrane) treated with
camptothecin (2 pm; Sigma-Aldrich) for 30 min were used as positive apoptotic controls.

Proinﬂdmmatory 7€Sp0ﬂ56

IL-1B, TNF-a and IL-8 release were evaluated using the commercially available DuoSet ELISA Development
Kit (R&D Systems, Switzerland), according to manufacturer’s protocol. Triple cell co-cultures treated apically
with 1 pg/ml of lipopolysaccharide (from Pseudomonas aeruginosa; Sigma-Aldrich) for 24 h served as a positive
proinflammatory assay control.
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Epithelial membrane integrity tests & cell morphology

Permeability Dextran Blue assay

Following the different tested time points (48, 72 and 96 h) the medium in the basolateral side of the cultures
was replaced with 1 ml of supplemented RPMI medium (without phenol-red; Gibco). At the apical side 250 pl
of phenol-free medium and 250 pl of 1% Blue Dextran (in PBS; GE Healthcare, Dietikon, Switzerland) were
added. Cell cultures were then incubated for 2 h at 37°C in 5% CO, humidified atmosphere. Following the
recommended incubation time the translocation of Dextran Blue in basolateral medium was quantified by measuring
the absorbance at 600 nm. Cell cultures treated apically with 20 mM EDTA in phenol-free RPMI were used as
positive control, as EDTA exposure results in the detachment of cells from the insert membrane [29]. Data were
normalized to the translocation of Dextran Blue in an empty cell-free insert.

Laser scanning microscope

After the respective post-incubation periods, co-cultures were fixed for 15 min in 4% paraformaldehyde in PBS
and stored at 4°C in PBS unitil further usage. To remove remaining paraformaldehyde cells were treated with 0.1 M
glycine for 15 min and subsequently permeabilized in 0.2% Triton X-100 in PBS, for another 15 min. Samples were
stained with phalloidin rhodamine (R-415; Molecular Probes, Life Technologies Europe B.V., Zug, Switzerland;
dilution 1:50) and DAPI (Sigma-Aldrich; dilution 1:50) for F-actin cytoskeleton and nucleus, respectively. For
optical analysis, samples were embedded in Glycergel (DAKO Schweiz AG, Baar, Switzerland). Sample visualization
was performed using an inverted laser scanning confocal microscope 710 (Axio Observer.Z1, Carl Zeiss, Germany).
Image processing was achieved using the restoration software IMARIS (Bitplane AG, Zurich, Switzerland).

Statistical analysis

For each data point three independent experiments were performed and data are presented as the mean =+ standard
error of the mean. Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software Inc., CA,
USA). A parametric one-way analysis of variance followed by Bonferroni post hoc test was performed. Results were
considered significant if p < 0.05.

Results

AuNPs synthesis & characterization before aerosolization

The monodispersed and citrate-stabilized AuNP core (average TEM diameter 15 nm) was synthesized following
the Turkevich approach [23]. A representative TEM image of the citrate AuNPs is shown in Figure 1A. AuNPs were
coated with a mixture of PVA and PEG polymers with positive (-NH3*) charge and were tagged to ATTO590
fluorescent molecules as recently described by Rodriguez-Lorenzo ez al. (17]. To avoid possible effect of fluorophore
on the cellular uptake, the Au core was initially coated with a dye-conjugated mixture of amine-PVA and PEG,
followed by the addition of the analogous unlabeled polymer mix (Figure 1). Before applying the particles in
cell aerosolization experiments, AuNPs were thoroughly characterized in terms of colloidal stability using UV-Vis,
hydrodynamic radius and polydispersity index using DLS, and surface charge through ¢-potential measurements
of NP suspensions in PBS. No signs of aggregation, that is, red shifting or band broadening, were observed in the
UV-Vis spectrum, confirming the stability of the employed AuNP suspension (Figure 1B). DLS analysis revealed
an average hydrodynamic diameter of 58 nm with 12% polydispersity index and a g-potential of -6.1 £ 2 mV
(Figure 1C). The slightly negative {-potential may be explained by the reduced number of protonated amino groups
(1.5-2 fold) at pH 7 as well as by the remaining citrate molecules on Au surface (citrate AuNPs showed negative
¢-potential: -28 mV) [17,30]. Furthermore, quantification of the number of dye molecules in (PVA/PEG)-NH,
AuNDs showed an average of 600 £ 10 fluorophore molecules per particle. Endotoxin levels were below 0.1
endotoxin unit/ml.

AuNP characterization after aerosolization

The ALICE is an efficient and well-established system for the aerosolization of spherical NPs [14,20,27,31,32] that
recently proved effective to investigate possible effects in lung cells iz vitro after short- and long-term repeated
exposures to fibrous nanomaterials [22,33]. For each exposure, 120 pg/ml of AuNPs suspension was aerosolized
using the ALICE system. Visualization of the deposited AuNPs on TEM grids following single and repeated
aerosolization by TEM revealed a reproducible, homogeneous and dose-dependent particle deposition, while the
particles remain monodispersed (Figure 2C & D). In addition, the deposited AuNP dose was determined online
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Figure 1. Characterization of Au nanoparticles suspension. (A) Transmission electron microscopy image of 15 nm
AuNPs core. (B) UV-visible spectra of the citrate and ATTO590 NH;-(polyvinyl alcohol/PEG) AuNPs. Inset: Schematic
design of the heterofunctionalized AuNPs. (C) Physico-chemical characteristics of the AuNPs.

NP: Nanoparticle; SD: Standard deviation.

by the integrated QCM at the different tested time points. As shown at Figure 2E, the deposited NP mass (AuNPs
mass and PVA/PEG mass) following single exposure was 7.24 %+ 0.66 pg/cm? while the deposited mass upon two
and three repeated aerosolization was 15.37 & 1.27 and 23.24 £ 1.86 pug/cm?, respectively. As expected the total
Au content applied to cells was much lower 0.51 % 0.07 (single exposure). No change was observed in the UV-Vis
spectra of acrosolized AuNPs compared with their spectrum before the acrosol exposure while their hydrodynamic
diameter (55 nm) was similar to the diameter of the stock suspension, indicating that the aerosolization process did
not affect neither the colloidal stability nor the polymer surface coating of the AuNDs.

Interaction of AuNPs with the human lung epithelial tissue barrier model

The distribution of AuNP was investigated regarding their cellular uptake and translocation at different time points,
that is, 24, 48 and 72 h, by measuring the mass of Au by ICP-OES in the individual compartments (i.e., cellular
fraction and in the basal medium). As shown by Figure 3A, AuNPs displayed a concentration-dependent increase
in the cellular fraction upon short-term repeated administration. In particular, single NP acrosolization (48 h)
resulted in 26.9% AuNP attached and/or in the cells which was elevated after the second AuNT exposure (36.6%;
72 h). Notably, a significant increase in interaction was observed after the third repeated AuNP administration
(43.1%; 96 h). The translocation of AuNPs across the human lung epithelial tissue barrier was also investigated.
Interestingly, a high translocation rate was measured upon single dose exposure at 48 h, while a significant decrease
in particles translocated in the basal medium was observed after repeated AuNP aerosolization at both 72 and 96 h
time points.

For a more detailed investigation about the interaction of AuNPs with the different cell types of the i vitro co-
culture system a flow cytometry approach was used which can detect the fluorophore incorporated in the polymer
shell. Cells were labeled with specific cell surface markers for multicolor flow cytometry detection as recently
described by [27,28). AuNP uptake was determined as the frequency (percentage) of ATTO590 positive cells from
the CD11a* (MDMs), EpCAM+ (epithelial cells) and CD80* (MDDCs) cell populations. In accordance with the
ICP-OES findings, high particle cellular uptake was observed at all tested time points. AuNPs were found interacting
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Figure 2. Characterization of aerosolized Au nanoparticles. (A) UV-visible spectra of the aerosolized ATTO590 NH,-(polyvinyl
alcohol/PEG)AuUNPs using air-liquid interface cell exposure system system. (B) Hydrodynamic diameter of the aerosolized AuNPs. (C)
Transmission electron microscopy images of deposited AuNPs following single or (D) three repeated aerosolization (scale bar for both
images: 500 nm). Total deposition (mass per surface area) of aerosolized AuNPs upon single or repeated administration as measured by
the quartz crystal microbalance and the inductively coupled plasma spectroscopy.

ICP: Inductively coupled plasma; NP: Nanoparticle; QCM: Quartz crystal microbalance.

with all the three cell types of the 77 vitro model (Figure 3B). Following single AuNP aerosolization (48 h), MDMs
showed the highest frequency of particle-positive cells (54.5%) compared with epithelial cells (13.9%) and MDDCs
(49.8%). Although the MDM-positive cells were significantly decreased (20.4% at 72 h and 24.5% at 96 h time
point) after repeated administration, NP uptake still remained in substantial levels in MDMs upon the short-term
exposure period. Low NP interaction was reported upon single NP exposure in epithelial cells, subsequently followed
by a significant increase at 72 and 96 h time point (40.8 and 53%, respectively). Interestingly, approximately 50%
of the MDDC population was ATTO590 positive, after one aerosolization, which could potentially explain the
enhanced translocation observed at this time point. Repeated AuNP administration resulted in a significant decrease
in MDDC-positive cells (20.2% at 72 h and 15.6% at 96 h). Notably, the MDDC NP uptake follows a similar
pattern with the AuNDP translocation data which were similarly decreased at the latter time points.

The internalization of AuNPs by the cells was qualitatively confirmed by TEM. Indeed, internalized AuNPs
were visualized in all the three cell types of the co-culture model and at all tested time points (48, 72 and 96 h) as
shown by the TEM images in Figure 3C and Supplementary Figure 3, hence further supporting the flow cytometry
findings. NPs are mainly present either as single particles or as small agglomerates (of few particles) mostly inside
intracellular vesicles. Of great interest is the observation of particles inside cellular protrusion in the membrane
pores of the insert, possibly captured while translocating from the apical to the basolateral compartment through
cell to cell interaction (Supplementary Figure 4). Moreover, several particles in the apical side were located close
to the membrane of the insert (data not shown), indicating a possible relocation to the basolateral side which
could explain the substantial uptake found in MDDCs by flow cytometry. Of note, internalized AuNPs were often
observed in cellular protrusions of MDDCs (Supplementary Figure 4C).
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Figure 3. Interaction of Au nanoparticles with the co-culture model of the human lung epithelial tissue barrier following short-term
repeated aerosol exposure. (A) Percentage of Au in the cellular and translocated fraction as measured by the inductively coupled plasma
atomic emission spectroscopy (ICP-OES). (B) Au nanoparticle association within the different cell types of the in vitro model (flow
cytometry analysis). (C) Transmission electron microscopy images show the presence of internalized Au nanoparticles at the different cell
types of the co-culture model, following single aerosol exposure (48 h). Black arrows point out the position of the particles.

*p < 0.05.
MDDC: Monocyte-derived dendritic cell; MDM: Monocyte-derived macrophage.

Integrity of the alveolar epithelial monolayer

The integrity of the alveolar epithelium in the triple cell co-culture, following repeated AuNPs acrosolization, was
evaluated by assessing the permeability of Dextran Blue. As shown in Supplementary Figure 5A, no effect was
observed for Dextran Blue translocation in AuNPs-exposed cells compared with untreated cultures at any of the
tested time points. Consistent with the latter observation, laser scanning confocal microscope images confirmed
that the cellular morphology and the epithelial monolayer structure were not impaired upon repeated exposure to
AuNPs (Supplementary Figure 5B). Those findings therefore support the hypothesis that the observed MDDC
uptake and translocation to the basolateral side can be attributed to the interaction within the cells and not to
decreased integrity of the epithelial monolayer.

Cellular response

Cytotoxicity| apoptosis

Assessment of the LDH activity in the supernatant of exposed cells did not show cytotoxic reactions in cultures
exposed repeatedly for up to 96 h to aerosolized AuNPs when compared with control (Figure 4A).
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To address the potential of surface-modified AuNPs to cause apoptotic effects upon repeated administration,
the activation of caspase 3 and 7 in the cellular system was assessed. Elevated caspase activation was observed
in the co-cultures, following single AuNP aerosolization at 48-h time point; however, this was not statistically
significant (p < 0.05). Notably, significant apoptosis was reported for the AuNPs-exposed cultures at 96-h time
point, compared with the negative control as shown from the caspase 3/7 activity (Figure 4B). Detailed investigation
of the observed apoptotic events using the Annexin V assay further confirmed the findings of the caspase response.
More specifically, cell cultures exposed repeatedly for three-times to acrosolized AuNPs (96 h) revealed a significant
reduction in the amount of healthy cells, followed by a significant increase of the early and late apoptotic cells
(Supplementary Figure 6A). Signs of apoptosis were also visualized by nuclear staining in AuNP-treated cells at
the 96-h time point (Supplementary Figure 6B). To examine if the surface modification itself is responsible for the
observed apoptotic effects, control cultures exposed to the (PVA/PEG)-NH,; polymer alone, were also analyzed.
No increase in apoptotic events were shown after single or two repeated polymer aerosolizations in the cultures;
however, the third administration did induce significant activation of caspase 3 and 7 as well as significant increase
in early apoptotic events at 96-h timeframe.

PVOZ'ﬂﬂLlWlmLZIOV_)/ VESPO}’!J?

Short-term exposure to acrosolized AuNPs did not cause any effect in the secretion of the critical proinflammatory
markers IL-18, TNF-o and IL-8, indicating that the tested AuNPs did not trigger proinflammatory responses in
the presented cellular system after repeated administration (Figure 5).
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Discussion

Recently, we have established a library of fluorescence-encoded AuNPs in order to investigate how surface modifi-
cation can modulate the NP—cell interaction and in particular the internalization by primary dendritic cells [17,18].
This particle library contained groups of differently charged homo- and hetero-functional labeled or unlabeled
AuNPs using PVA and PEG-based polymers for particle coating and stabilization. Heterofunctional fluorescently
labeled (PVA/PEG)-NH; AuNPs were selected for the present study, since these particles showed a high degree
of cellular internalization and substantial cell viability (even at high doses of 100 pg/ml) after 16 h submerged
exposure to MDDC:s [(17]. Therefore, this specific AuNDs type is ideal for studying the interaction within the
different cells types of an advanced lung model after short-term repeated administration. Moreover, the utilization
of fluorescently labeled NPs allows the detection of fluorescence positive cells by flow cytometry (34].

The synthesized AuNPs were fully characterized before and after the acrosolization process using various methods,
that is, UV-Vis, DLS, ¢-potential and TEM. The stability of the AuNPs was confirmed by UV-Vis analysis as no
signs of aggregation or shifting of the spectra were observed neither before nor after the acrosolization experiments.
Although AuNPs were functionalized with positive functional groups, a slightly negative ¢-potential was observed
which can be connected with the reduced number of protonated amino groups at neutral pH or the remaining
strongly negative citrate ions [17,30]. Notably, the hydrodynamic diameter of the acrosolized particles remains similar
to the hydrodynamic diameter of the stock suspension, therefore, confirming that the aerosolization process did
not impair the surface polymer coating. Thorough NP characterization prior to as well as following the aerosol
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exposures is crucial to verify that NPs maintain their characteristics and to obtain reliable data, which truly reflects
their properties when they come in contact with biological systems.

Evaluation of the AuNP uptake and possible translocation across the epithelial barrier using ICP-OES, demon-
strated a significant enhanced internalization of particles in the co-culture model following repeated AuNP admin-
istration from 48 (single exposure) to 96 h (three repeated exposures), thus particle accumulation in the cells was
reinforced through repeated NP treatment. On the other hand, NP translocation showed a contradictory pattern.
Single AuNP administration resulted in the highest translocation levels which were then significantly reduced at
latter time points.

To ensure that the obtained translocation findings truly reflect the fate of internalized NP when cross the
alveolar epithelium in the co-culture system and do not originate from alterations of its integrity, the integrity of
the epithelial barrier was also examined by evaluating the permeability to dextran, a common approach to assess
the permeability of epithelial barriers (35,36]. The epithelium of AuNP repeatedly exposed cultures formed a tight
and confluent monolayer conformation at all tested time points, which can be further verified by the illustrated
morphological images. It is therefore evident that the observed NP translocation cannot occur from the impairment
of the epithelial structure.

Contrary to our findings, Durantie ¢# a/. have observed lower rates (3—10%) of PVA/polyallyl amine-coated
AuNPs translocated in the basolateral side after single/acute NPs administration using the Vitrocell® (Vitrocell
Systems, Waldkirch, Germany) Cloud system in the same multicellular lung model [37. The difference in the
translocated fraction can be attributed to the different NP coating, exposure system as well as deposited doses
applied.

In a recent 77 vivo study, a size- and surface charge-dependent translocation of radiolabeled AuNPs was shown
after single intratracheal instillation. In particular, it has been observed that particle translocation inversely depends
on particle size and that negatively charged AuNPs show higher degree of translocation compared with their
positive-charged counterparts. The percentage of translocated particles following post exposure 24 h was in the
range of 0.5-10%, depending on the Au core size, that is, increasing with decreasing core size [38]. In a related study,
the percentage of translocated AuNPs in the blood in just 2 h after single-dose inhalation was approximately 1.2%
which was claimed as relative high, considering the complexity of the respiratory tract and the early timeframe
tested [39].

While our translocation rates are significantly higher than that obtained in these animal studies it should be
noted that our 77 vitro model although highly advanced and closer to the human lung physiology compared with
other existing cellular models, is not as complex as the real 7z vivo air-blood barrier. Under 77 vivo conditions,
particles translocated through the alveolar epithelial layer, also need to pass over the interstitium and subsequently
cross the vascular endothelial layer to reach the bloodstream [40). It has been demonstrated that a significant amount
of translocated NPs might be isolated in the interstitium or be transported by phagocytic cells to the lymph
nodes through the lymphatic drainage system [41]. Therefore, the absence of this clearance mechanism in our
model might have a significant influence in the fraction of translocated particles. /z vivo particle translocation to
the bloodstream was also reported following exposure to different NP types, that is, polystyrene, fullerene (42,43].
Increased translocation of potential biomedical NPs is an important feature that can be further applied for
nanocarrier-based drug delivery to the systemic circulation. Inhaled insulin particles have been already developed
for diabetes treatment and their effective delivery is based on efficient pulmonary translocation [44].

To investigate the distribution of AuNPs within the different cell types of the co-culture model upon repeated
administration a novel flow cytometry-based approach was applied [28]. By using cell markers specific for the cell
types present in the co-culture, we could determine information on the NP interaction with the three cell types. An
important defense feature of the respiratory tract is the phagocytic activity of macrophages which prevents potential
proinflammatory effects by sufficient clearance of inhaled pathogens, particles and cellular debris, thus preserving
the regular homeostasis of the epithelial tissue and the vital functionality of the alveolar gas exchange [45]. The
presented flow cytometry data indicated that the majority of AuNDPs were internalized by macrophages. The key
role of macrophages in both pro- and anti-inflammatory events in response to different signals has been highlighted
in several reports [46]. In addition, Brandenberger ¢t al. first demonstrated the capacity of A549 epithelial cells to
internalize citrate-stabilized AuNPs after single ALICE exposure in the same in vitro system [26]. In the present
study repeated AuNPs aerosol exposures resulted in increased particle accumulation over the days of exposure in
epithelial cells, possibly due to macrophage saturation. The interaction of AuNPs with the MDMs and epithelial
cells was further confirmed by TEM images captured at the different tested time points.
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Of note, flow cytometry analysis revealed that the MDDC:s located on the basal side showed a high degree of
interaction with the AuNDs after single acrosolization (48 h). However, this increased uptake was followed by a
significant reduction at later tested time points (72 and 96 h). Most importantly, the uptake pattern of dendritic cells
matched exactly the obtained translocation pattern, hence confirmed the translocation results. The translocation
through the transwell membrane was additionally confirmed by TEM imaging. More specifically, AuNPs were
identified in MDDC:s at all tested time points. It has been hypothesized that NPs can cross the epithelial layer in
the co-culture model by two mechanisms: either MDMs can directly deliver internalized NPs to MDDCs located
in basal side; or the MDDCs can collect the particles by extending processes to the epithelial side through the
insert pores and the tight junctions [25]. Indeed, we were able to visualize AuNPs while translocating via the insert
pores to the basolateral MDDC:s side through cell to cell interactions. Moreover, in the basolateral side particles
were captured in cellular protrusions. Therefore, the obtained TEM images further support the ICP-OES and flow
cytometry results.

Antigen-presenting cells and more specifically MDDCs have been proposed as an ideal target for novel
nanocarrier-based drug delivery approaches [47,48]. In our recent publication, we have provided evidence that
DC-SIGN conjugation to AuNPs resulted in elevated MDDC targeting and activation in the same co-culture
model [27]. Therefore, considering the high degree of particles taken up by the MDDC:s in the present study, the
applied AuNPs could have the potential for biomedical-specific cell targeting applications following conjugation
with the appropriate antigen.

Repeated AuNP exposure did not show any signs of cytotoxicity; however, significant cell apoptosis was observed
at the 96-h time point as shown from the caspase 3/7 activity. Activation of caspase 3 and 7 is a clear sign of
early apoptotic events, which eventually leads to protein cleavage and subsequently cell disassembly (49]. Caspase
activation is a fundamental process for the development of a complete apoptotic phenotype; however, as apoptosis
is a complex mechanism that cannot be defined by a single parameter we also evaluated Annexin V, another
well-known apoptotic marker. Annexin V cell analysis confirmed the findings reported by caspase evaluation,
resulting in a significant increase in the percentage of early and late apoptotic cells after repeated AuND exposures
at 96-h time point. In a recent publication, significant late apoptosis was induced in the same co-culture model
after single aerosol administration to PVA-NH, AuNPs [27], suggesting a possible role of the surface polymer in
the induction of apoptosis. Therefore, we also exposed the cells to the (PVA/PEG)-NH,; polymer only, in order
to determine if the polymer is responsible for the enhanced apoptotic levels observed. Indeed, significant elevated
apoptosis was demonstrated in both end points in polymer-only exposed cultures after repeated aerosolization at
96 h. Ruenraroengsak et al. also reported substantial apoptosis accompanied by severe cell damage and holes on
the cell membrane on alveolar type I immortalized cells following 24-h suspension exposure to amine-modified
polystyrene NPs which were attributed to the surface modification [50]. Biological effects caused by aminated surface
were also shown in another recent study where iron-oxide and silicon-oxide NPs caused substantial cell death and
IL-8 response in A549 monocultures [51]. On the contrary, Strehl ez al. although reported a dose-dependent
cytokine release in blood-derived monocytes and MDMs following exposure to aminated-PVA superparamagnetic
iron-oxide NDPs, the cell survival and proliferation was increased [52]. However, the absence of cytotoxic reactions
or morphological alterations and the intact membrane integrity confirmed by the permeability tests, indicates that
the observed apoptosis in the present study have a relative minor influence on the overall viability and functionality
of the co-culture model at the tested conditions.

The proinflammatory response upon repeated AuNPs exposures was addressed by measuring the secretion of
the crucial proinflammatory mediators IL1-B, TNF-a and IL-8, involved in the pathogenesis and exacerbation
of lung diseases, through the inflammasome activation pathway and various proinflammatory pathways [53-55].
Therefore, their evaluation clearly signifies the inflammatory response of the 77z vitro system under the presented
test conditions. Our findings demonstrated that short-term-repeated AuNPs exposures did not elicit any effect in
the cytokine secretion, suggesting that repeated AuNPs aerosolization did not induce proinflammatory activity. In
line with our observations no proinflammatory reactions were reported after single aerosolization of either negative
or positive surface-charged PVA-AuNPs at the same cellular model [27]. Similarly, Brandenberger ez al. showed
that 15 nm citrate AuNDPs did not upregulate TNF-ot and IL-8 expression in the triple cell co-culture upon single
exposure [26].
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Conclusion

By applying an innovative flow cytometry approach combined with TEM visualization and ICP-OES analysis
it was possible to determine the biological impact, interaction and translocation of AuNPs functionalized with
a (PVA/PEG)-NH,; polymer within the different cell types of a complex in vitro human lung epithelial tissue
barrier model at realistic conditions resembling their inhalation upon single and repeated acrosol administration.
Our results revealed increased particle accumulation in both macrophages and epithelial cells following repeated
short-term exposure. Most importantly, MDDCs showed elevated levels of particle internalization making them
an interesting target for potential future biomedical applications. Although repeated NP administration over 3
days did not have any effect in cytotoxicity, morphology or cytokine release, increased apoptosis was observed with
only mild effect in overall cellular response, the response could; however, be attributed to the (PVA/PEG)-NH,
polymer. In conclusion, our results suggest that repeated exposures of biomedical AuNPs have to be studied in
more details in both in vitro and in vive systems.

Summary points

e The distribution and impact of aerosol-delivered functionalized AuNPs upon repeated administration were
explored in a complex in vitro human lung epithelial tissue barrier model applying an air-liquid interface
exposure approach.

e By applying an innovative flow cytometry approach combined with transmission electron microscopy
visualization and ICP-OES analysis the interaction and translocation of (polyvinyl alcohol/PEG)-NH2 Au
nanoparticles (NPs) were determined within the different cell types of the 3D lung model upon single and
short-term-repeated aerosol administration.

e Repeated AuNP aerosolization resulted in NP accumulation in macrophages and epithelial cells.

e Dendritic cells demonstrated substantial NP internalization after single administration which was reduced at later
time points.

e Repeated AuNP administration over 3 days did not have any effect in cytotoxicity, morphology or cytokine
release.

e Increased apoptosis was observed at 96 h with only mild effect in overall cellular response.
e Apoptosis was attributed to the (polyvinyl alcohol/PEG)-NH; polymer.
e These results indicate the importance of repeated exposures in addressing potential effects of biomedical NPs.
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