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1 Introduction

Isometries play a crucial role in metric geometry. It is a challenging task to decide whether
two metric spaces (or subsets thereof) are isometric to each other. The task becomes more
manageable if one can exploit additional structure on the space to deduce a priori information
on the form of isometries. For instance, according to a classical result by Mazur and Ulam,
every isometry between normed vector spaces over R is affine, and this rigidity can be used
to study which �n

p spaces are isometric.
It turns out that an isometric embedding f : (X, ‖ · ‖X ) → (Y, ‖ · ‖Y ) between normed

spaces it is not necessarily affine. For example consider X = R, where ‖ · ‖X is the usual
norm given by the absolute value, and Y = R

2 with the maximum norm ‖(x, y)‖Y =
max{|x |, |y|}. One can easily check that the mapping f (x) = (x, sin(x)) is a non-affine
isometric embedding between these spaces. It is well known that adding the strict convexity
assumption on the norm ‖ · ‖Y of the target space implies that isometric embeddings f :
(X, ‖ · ‖X ) → (Y, ‖ · ‖Y ) must be affine.
In this paper we consider another class of metric spaces: Heisenberg groupsH

n endowed
with a homogeneous distance. By such a distance, wemean a left-invariant metric induced by
a gauge function which is homogeneous with respect to a one-parameter family of ‘Heisen-
berg dilations’ adapted to the stratification of the underlying Lie algebra. An example is
the Heisenberg group with its standard sub-Riemannian distance. It would go beyond the
scope of this introduction to list the many motives for studying this particular space, but the
interested reader can find more information for instance in the monograph [7]. Surjective
isometries between Heisenberg groups and more general sub-Riemannian manifolds have
received considerable attention in recent years [2,8,18,21,23].
A general group version of theMazur–Ulam theorem, stating that every isometry between

nilpotent connected metric Lie groups is ‘affine’, that is, the composition of a left translation
and a group isomorphism, has been recently established by Kivioja and Le Donne [22]. An
analogous result is known for isometries between open sets in nilpotentmetric Lie groupswith
additional structure: Le Donne and Ottazzi showed in [24] that every isometry between open
subsets of sub-Riemannian, or more generally sub-Finsler, Carnot groups is the restriction
of an affine map.
It is the purpose of the present paper to establish similar conclusions for isometric

embeddings into Heisenberg groups that are not necessarily surjective. A crucial tool in
our discussion are ‘infinite geodesics’ in Hn , by which we mean isometric embeddings of R
into H

n (see Definition 2.16 and the comment thereafter). Our main result is formulated as
follows:

Theorem 1.1 Let Hm and H
n, m ≤ n, be endowed with left-invariant homogeneous dis-

tances d and d ′, respectively. If every infinite geodesic in (Hn, d ′) is a line, then every
isometric embedding f : (Hm, d) → (Hn, d ′) is the composition of a left translation and a
homogeneous homomorphism.

For the precise—slightly more general—statement, see Theorem 4.1. The proof proceeds
by showing that an isometric embedding must map foliations given by certain vector fields
in the source to analogous foliations in the target. Ideas in this spirit have been used before
to study sub-Riemannian isometries that are surjective, for instance in [2,18]. Our proof of
Theorem 1.1 is self-contained and elementary. Unlike proofs in [22] and [24], it does not
proceed via first establishing smoothness of isometries. Moreover, it applies in particular also
to the situation where the homogeneous distance in the source space is not a length distance.
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Our result is natural in light of the fact that in normed spaces, the linearity of geodesics
is one of many equivalent ways to characterize strict convexity (see detailed discussion in
Sect. 3, especially Proposition 3.1). In Sect. 3 we investigate in the setting of the Heisenberg
group the relation between various notions of strict convexity of homogeneous left-invariant
metrics and the property that the associated geodesics are lines. Here we wish to highlight
in particular Propositions 3.13, 3.14, and Corollary 3.15 which relate the geodesic linearity
property of a homogeneous gauge N onHn to properties of the norm ‖ · ‖ which is obtained
by restricting N to the subspace R

2n × {0}. This provides methods to establish that the
assumptions of Theorem 1.1 are satisfied, but we also hope it to be of independent interest.
As an illustration of our main theorem, we shall now consider a family of norms Np,a

on H
n which are related to the �p-norms in Euclidean space. In order to introduce these

norms, let us recall that the n-th Heisenberg group H
n is the set R2n × R equipped with the

multiplication

(z, t) ∗ (z′, t ′) := (z + z′, t + t ′ + 2〈z, Jnz′〉),

where Jn is defined as stated in (2.1). Let p ∈ [1, ∞], and let ‖ · ‖p be the p-norm on R
2n

and a ∈ (0,∞). Then one can check (see Example 5.4) that the function

Np,a : H
n → R, (z, t) �→ max

{
‖z‖p, a

√|t |
}

,

defines a left-invariant norm on H
n , if either 1 ≤ p ≤ 2 and 0 < a ≤ 1 or if 2 < p ≤

∞ and 0 < a ≤ n1/p−1/2.
We shall prove (see Theorem 5.6) that Np,a has the geodesic linearity property if and only

if p ∈ (1,+∞). This yields the following corollary of the Theorem 1.1:

Theorem 1.2 Let H
m and H

n, m ≤ n, be endowed with left-invariant homogeneous dis-
tances d and d ′, respectively. Assume that d ′ is given by

d ′((z, t), (z′, t ′)) = Np,a((z, t)−1 ∗ (z′, t ′)), for all (z, t), (z′, t ′) ∈ H
n .

If p ∈ (1,+∞), then every isometric embedding f : (Hm, d) → (Hn, d ′) is the composition
of a left translation and a homogeneous homomorphism.

The distance associated to Np,a for p = ∞ admits infinite geodesics which are not lines,
and in fact there exist in this setting isometric embeddings which are non-linear. A specific
example of such a non-linear embedding is the mapping

f : (H1, dNa,∞) → (H2, dNa,∞), (x, y, t) �→ (x, sin(x), y, 0, t),

see Proposition 5.8.
Structure Section 2 contains preliminaries. Section 3 is devoted to notions of strict convexity;
after reviewing the definition in normed spaces, we introduce various notions of strict con-
vexity for left-invariant homogeneous distances on Heisenberg groups. As a first result, we
find sufficient conditions and one necessary condition to ensure that a homogeneous distance
on Hn has the ‘geodesic linearity property’, that is, all infinite geodesics are lines. In Sect.
4, we prove Theorem 1.1. We continue with examples of metrics and isometric embeddings
in Sect. 5. The paper is concluded with final comments in Sect. 6.
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2 Preliminaries

First we discuss in Sect. 2.1 the Heisenberg group and the homogeneous distances which
we will consider thereon. In Sects. 2.2 and 2.3 we collect facts about homogeneous norms,
sub-Finsler distances, and lengths of curves. This goes back to the work of Korányi for the
sub-Riemannian distance. The considered properties are folklore knowledge even for more
general homogeneous norms, and discussed in various places in the literature, for instance
in [12] or [10], and we do not claim novelty here. However, since we could not always find
references which stated the results in the desired generality and since we sometimes follow a
different approach, we decided to include the relevant results and proofs. This also serves the
purpose of introducing the concepts used later in Sect. 3.2, where we propose new definitions
of strict convexity in Heisenberg groups. Readers familiar with the present material may wish
to go directly to Sect. 3.

2.1 The Heisenberg group

The n-th Heisenberg group H
n is the set R2n × R equipped with the multiplication

(z, t) ∗ (z′, t ′) := (z + z′, t + t ′ + 2〈z, Jnz′〉), where Jn =
(
0 −En

En 0

)
∈ R

2n×2n,

(2.1)
and En denotes the (n × n) unit matrix. Sometimes it is convenient to write in coordinates

z = (x1, . . . , xn, y1, . . . , yn).

It can be easily verified that (Hn, ∗) satisfies all properties of a group with neutral element
e := (0, 0) and inverse (z, t)−1 := (−z,−t). Denoting the nonlinear term 〈z, Jnz′〉 by
ωn(z, z′), we remark that this expression defines a skew-symmetric bilinear form on R

2n ,
and that two elements (z, t) and (z′, t ′) in H

n commute if and only if the term ωn(z, z′) is
zero. Since this does not hold for all elements in H

n (for example ωn(e1, en+1) = −1 for
the first and (n + 1)-th standard unit vector in R

2n), it turns out that the Heisenberg group is
non-abelian.
We can also identify the Heiseberg group H

n with C
n × R, associating the element

z = (x1, . . . , xn, y1, . . . , yn) ∈ R
2n with ẑ(z) := (x1 + iy1, . . . , xn + iyn) ∈ C

n . Using this
notation, the expression ωn(z, z′) takes the form Im(〈ẑ(z), ẑ(z′)〉), where 〈·, ·〉 denotes the
standard inner product on C

n .

Definition 2.1 Let λ > 0. The map δλ : H
n → H

n, (z, t) �→ (λz, λ2t) is called λ-dilation.

It can be easily verified that any λ-dilation defines a group isomorphism with inverse δλ−1 .
It plays an analogous role as the usual scalar multiplication in R

n . To unify the notation in
Euclidean spaces and Heisenberg groups, we will sometimes write δλ(x) := λx for such
scalar multiplication δλ : R

n → R
n .

Definition 2.2 Consider groups G1, G2 ∈ {(Rn,+), (Hn, ∗) : n ∈ N} and associated one-
parameter families of dilations δ1λ, δ

2
λ. A homogeneous homomorphism A : G1 → G2 is a

group homomorphism that commutes with dilations, that is

A(δ1λ(p)) = δ2λ(A(p)), ∀λ > 0,∀p ∈ G1.

Lemma 2.3 A map A : (Rm,+) → (Hn, ∗) is a homogeneous homomorphism if and only if
there exists a matrix T ∈ R

2n×m with T t JnT = 0, such that A(z) = (T z, 0), for all z ∈ R
m.
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A map A : (Hm, ∗) → (Hn, ∗) is a homogeneous homomorphism if and only if there exist
a ∈ R and a matrix T ∈ R

2n×2m with a Jm = T t JnT , such that A(z, t) = (T z, at), for all
(z, t) ∈ H

m.

Proof The automorphisms of H
n (as a topological group) are well known, see for instance

Theorem 1.22 in [13] for their classification. An analogous argument yields the expression
for homogeneous homomorphisms A : Rm → H

n or A : H
m → H

n for m < n. 
�
In this note we are particularly interested in homogeneous homomorphisms which are

injective. According to the formula in Lemma 2.3 a necessary condition for a homogeneous
homomorphism A : H

m → H
n to be injective is that a �= 0, m ≤ n and rank(T ) = 2m.

Taking the determinant on both sides of the identity a Jm = T t JnT determines the constant
a in terms of T . This yields the following characterization:

Lemma 2.4 A map A : H
m → H

n is an injective homogeneous homomorphism if and only
if m ≤ n, A(z, t) = (T z, at) for all (z, t) ∈ H

m with

T =
{√

aB, if a > 0,√−aBτm, if a < 0,

where B is a symplectic matrix in the sense that Bt Jn B = Jm, τm =
(
0 Em

Em 0

)
, and

a = 2m
√
det(T t JnT ) > 0 or a = − 2m

√
det(T t JnT ) < 0.

Definition 2.5 Let (G, ∗) be a group with neutral element e. We say that a norm on G is a
map N : G → R≥0 that satisfies

(i) N (g) = 0⇔ g = e, ∀g ∈ G,

(ii) N (g−1) = N (g), ∀g ∈ G,

(iii) N (g ∗ g′) ≤ N (g) + N (g′), ∀g, g′ ∈ G.

Definition 2.6 Let (G, ∗) be a group. A metric d : G × G → R≥0 is called left-invariant,
if for every go ∈ G, the map Lgo : (G, d) → (G, d), g �→ go ∗ g is an isometry, that is,
d(go ∗ g, go ∗ g′) = d(g, g′), for all g, g′ ∈ G.

Every norm N : G → R≥0 induces a left-invariant metric dN : G × G → R≥0, and vice
versa. More precisely, we can establish the following bijection

{N : G → R≥0 : N is a norm} → {d : G × G → R≥0 : d is a left-invariant metric}
N �→ dN : G × G → R≥0, (g, g′) �→ N (g−1 ∗ g′),

{d : G × G → R≥0 : d is a left-invariant metric} → {N : G → R≥0 : N is a norm}
d �→ Nd : G → R≥0, g �→ d(g, e).

Definition 2.7 A norm N : H
n → R≥0 on the Heisenberg group is called homogeneous if

N (δλ(p)) = λN (p), for all λ > 0, for all p ∈ H
n .

It is easy to see that a norm N on H
n is homogeneous if and only its associated left-

invariant metric is homogeneous in the sense that dN (δλ(p), δλ(q)) = λdN (p, q). Every
left-invariant distance onH

n induced by a homogeneous norm is a homogeneous distance in
the sense of [11, Definition 2.20]. From now on, we will use the expression “homogeneous
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distance on H
n” to talk about the left-invariant metric induced by a homogeneous norm. It

follows from [11, Proposition 2.26] that the topology induced by any homogeneous distance
on H

n coincides with the Euclidean topology on R
2n+1, and from [11, Corollary 2.28] that

any homogeneous norm is continuous with respect to the Euclidean topologies of R
2n+1

and R. In particular, we note that any two homogeneous distances on H
n induce the same

topology. In fact, once the homogeneous distances are known to be continuous with respect to
the standard topology on R

2n+1 one can show by a standard argument the even stronger fact
that they are bi-Lipschitz equivalent. This is well known and can be found for instance in [15,
Lemma 1]. On the other hand, the metric structure induced by a homogeneous norm N onH

n

is very different from R
2n+1 endowed with the Euclidean distance deucl . The two distances

dN and deucl are not bi-Lipschitz equivalent for any choice of homogeneous norm N onH
n ,

however, one has that the identity map (Hn, dN ) → (R2n+1, deucl) is locally Lipschitz.

2.2 Restriction norms

Certain properties of a homogenous norm on H
n are encoded by its restriction to R

2n × {0}.
Our starting point is the following observation, which relates a homogeneous norm to a norm
(in the classical sense of the word) in Euclidean space.

Proposition 2.8 For every homogeneous norm N on H
n, the function

‖ · ‖ : R
2n → [0,+∞), ‖z‖ := N ((z, 0)).

defines a norm on R
2n.

Definition 2.9 We call a norm ‖ · ‖ on R
2n that is induced by a homogeneous norm N on

H
n as in Proposition 2.8 a restriction norm, or the restriction norm of N .

Proof of Proposition 2.8 Homogeneity and positive definiteness of ‖ · ‖ follow immediately
from the corresponding properties of N . (Recall that the Heisenberg dilation acts like the
usual scalar multiplication on points in R

2n × {0} ⊂ H
n .) The triangle inequality for ‖ · ‖ is

based on the fact that N ((z, 0)) ≤ N ((z, t)) for all (z, t) ∈ H
n , which we record in Lemma

2.10. Taking this for granted, we obtain

‖z + w‖ := N ((z + w, 0))

≤ N ((z + w, 2ωn(z, w))) = N ((z, 0) ∗ (w, 0)) ≤ N ((z, 0)) + N ((w, 0))

= ‖z‖ + ‖w‖,
for all z, w ∈ R

2n , which concludes the proof. 
�
Lemma 2.10 If N is a homogeneous norm on H

n, then

N ((z, 0)) ≤ N ((z, t)), for all (z, t) ∈ H
n .

Proof Consider an arbitrary point (z, t) in H
n\{(0, 0)}. We will show that

N

((
z,

t

2n

))
≤ N ((z, t)), for all n ∈ N. (2.2)

To see why this holds for n = 1, we rely on the homogeneity and triangle inequality, which
yield

2N
((

z, t
2

)) ≤ N ((2z, 2t)) = N ((z, t) ∗ (z, t)) ≤ 2N (z, t).
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Dividing both sides of the inequality by 2 yields (2.2) for n = 1. The estimate (2.2) follows
inductively. By continuity of N it then follows that

N ((z, 0)) = lim
n→∞ N

((
z,

t

2n

))
≤ N ((z, t)),

as desired. 
�
2.3 Length of curves

Different homogeneous norms on H
n can yield the same norm ‖ · ‖ on R

2n , defined as in
Proposition 2.8. The probably best known examples for this phenomenon are the Korányi
norm (Example 5.1) and the gauge function induced by the standard sub-Riemannian distance
on the Heisenberg group. Even though different norms N and N ′ induce different distance
functions dN and dN ′ , rectifiable curves have the same length with respect to either metric
provided that N and N ′ restrict to the same norm ‖ · ‖. In order to show this, let us recall that
the length Ld(γ ) = L(γ ) of a curve γ : [a, b] → (X, d) in a metric space is the supremum
of

∑k
i=1 d(γ (si−1), γ (si )) over all partitions a = s0 ≤ s1 ≤ . . . sk = b. To explain why the

length of curves in (Hn, dN ) is determined by ‖ · ‖, we first recall some theory from abstract
metric spaces, following the presentation in [5].

Definition 2.11 Let (X, d) be a metric space and consider a curve γ : I → X . The speed of
γ at s is defined as

vγ (s) := lim
ε→0

d(γ (s), γ (s + ε))

|ε| ,

provided that this limit exists.

For a proof of the subsequent result, see Proposition 1.16 in [20] (or Theorem 2.7.6
in [5] for the special case of Lipschitz curves). Recall that a curve γ : [a, b] → (X, d) is
absolutely continuous if for every ε > 0 there exists δ > 0 such that for every finite collection
{(ai , bi ) : 1 ≤ i ≤ k} of disjoint intervals (ai , bi ) ⊂ [a, b] with∑k

i=1 bi − ai < δ one has∑k
i=1 d(γ (ai ), γ (bi )) < ε.

Theorem 2.12 For every absolutely continuous curve γ : [a, b] → (X, d) in a metric space
the speed vγ (s) exists for almost every s ∈ [a, b], and the length of γ is given by the Lebesgue
integral of the speed, that is

L(γ ) =
∫ b

a
vγ (s) ds.

From this general result one recovers the well-known formula for the length of curves in
a normed space.

Example 2.13 Let (X, d) be (Rk, ‖ · ‖) for some choice of norm ‖ · ‖. Every absolutely
continuous curve γ : [a, b] → (Rk, ‖ · ‖) is absolutely continuous with respect to the
Euclidean distance on R

k and hence differentiable almost everywhere. If s ∈ [a, b] is such
a point where γ̇ (s) exists, then

vγ (s) = lim
ε→0

∥∥∥∥γ (s + ε) − γ (s)

ε

∥∥∥∥ = ‖γ̇ (s)‖
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exists by the homogeneity and continuity of the norm. Hence

L(γ ) =
∫ b

a
‖γ̇ (s)‖ ds. (2.3)

As a second application of Theorem 2.12, we compute the length of curves inH
n equipped

with a homogeneous distance. This result is folklore;we shall include a proof for convenience.

Proposition 2.14 Assume that N is a homogeneous norm on H
n, and let γ : [a, b] →

(Hn, dN ) be a Lipschitz curve. We denote γ = (γI , γ2n+1), so that γI : [a, b] → R
2n is the

projection of γ to R
2n × {0} ⊂ H

n. Then the length of γ with respect to dN is given by

L(γ ) =
∫ b

a
‖γ̇I (s)‖ ds,

where ‖ · ‖ is the norm on R
2n induced by N as in Proposition 2.8.

The proof of this proposition is a rather immediate corollary of Theorem 2.12 if onemakes
use of the theory of horizontal curves. A horizontal curve in H

n is an absolutely continuous
curve γ : [a, b] → R

2n+1 with the property that

γ̇ (s) ∈ Hγ (s), for almost every s ∈ [a, b],
where for p ∈ H

n , we set

Hp := span {
X1,p, . . . , Xn,p, Y1,p . . . , Yn,p

}
.

Here Xi andYi , i = 1, . . . , n, are the left-invariant vector fields (with respect to∗)which at the
origin agree with the standard basis vectors: Xi,0 = ei and Yi,0 = en+i . Denoting the (2n+1)
components of an absolutely continuous curve γ : [a, b] → H

n by γi , i = 1, . . . , 2n + 1, it
follows that γ is horizontal if and only if

γ̇2n+1(s) = 2
n∑

i=1
γ̇i (s)γn+i (s) − γ̇n+i (s)γi (s), for almost every s ∈ [a, b]. (2.4)

It is well known that a horizontal curve γ : [a, b] → H
n is rectifiable and admits a Lipschitz

parametrization (see for instance [17, Proposition 1.1] for a proof and note that this statement
holds for any homogeneous normonHn). In converse direction, every rectifiable curve admits
a 1-Lipschitz parametrization and this parametrization is horizontal, see [29].
Curves in Hn which are Lipschitz with respect to a homogeneous distance can be dif-

ferentiated almost everywhere not only in the usual, Euclidean, sense, but also in the sense
of Pansu [29], as a consequence of a far more general result concerning mappings between
Carnot groups. If it exists, the Pansu differential of a curve γ : [a, b] → Hn at a point
s ∈ [a, b] is a homogeneous homomorphism Dγ (s) : R → H

n , given by

Dγ (s)r = lim
ε→0 δ 1ε

(
γ (s)−1 ∗ γ (s + ε)

)
r.

If γ is at the same time differentiable at s in the usual sense, then

Dγ (s)r =

⎛⎜⎜⎜⎝
γ̇1(s)

...

γ̇2n(s)
0

⎞⎟⎟⎟⎠ r. (2.5)

With this information at hand, we can proceed to the proof of Proposition 2.14.
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Proof of Proposition 2.14 Since γ is Lipschitz, it is a horizontal curve. Let s ∈ [a, b] be a
point in which γ is differentiable in the usual sense and in the sense of Pansu (according to
the discussion above, almost every point in [a, b] is such a point). From these assumptions,
the homogeneity of the norm N , and the formula (2.5) it follows that the speed of γ exists at
s in the sense of Definition 2.11 and is given by

vγ (s) := N

(
lim
ε→0

(
δ 1

ε
(γ (s)−1 ∗ γ (s + ε))

))
= N ((γ̇I (s), 0)) .

Here,γI := (γ1, . . . , γ2n). Inserting this expression into the formula for the length inTheorem
2.12 completes the proof of the proposition. 
�
Proposition 2.14 shows that in order to study the length of curves with respect to a homo-

geneous distance dN , it suffices to consider the curves with respect to the sub-Finsler distance
induced by the restriction norm ‖ · ‖ of N as in Proposition 2.8. This has been observed in
[10] for the first Heisenberg group (see the remark below Proposition 6.2 in [10], where this
is formulated in terms of the projection of the unit ball to the (x, y)-plane).

Definition 2.15 Given a norm ‖ · ‖ on R2n , the sub-Finsler distance associated to ‖ · ‖ on
H

n is the distance given by

dSF (p, q) := inf
γ

∫ b

a
‖γ̇I (s)‖ ds,

where the infimum is taken over all horizontal curves γ = (γI , γ2n+1) : [a, b] → H
n with

γ (a) = p and γ (b) = q.
If the norm ‖ · ‖ is induced by a scalar product, the associated sub-Finsler distance is also

called sub-Riemannian.

Since ‖ · ‖, as a norm on R
2n is comparable to the Euclidean norm, it follows that dSF

is comparable to the standard sub-Riemannian distance on H
n , in particular, it is finite and

positive. Clearly, dSF also satisfies the triangle inequality. Since left-translation is a bijection
which sends horizontal curves to horizontal curves, preserving ‖γ̇I ‖, it follows further that
dSF is left-invariant. Finally, it is homogeneous since ‖ · ‖ is homogeneous with respect to
scalar multiplication, and Heisenberg dilations preserve horizontality of curves.
A particular role will be played in the following by geodesics with respect to dSF .

Definition 2.16 By a geodesic γ : I → (X, d) in a metric space, we mean an isometric
embedding of I = [a, b] or I = R into (X, d), that is,

d(γ (s), γ (s′)) = |s − s′|, for all s, s′ ∈ I.

If we have I = R in the above definition, we say that γ is an infinite geodesic.

We stress that in Riemannian or sub-Riemannian geometry the word “geodesic” is also
used with a different meaning, see for instance the discussion in [26, Remark 1]. In particular,
not every local sub-Riemannian geodesic is a geodesic in the sense of Definition 2.16.

Lemma 2.17 Let ‖ · ‖ be a norm on R
2n and define dSF to be the associated sub-Finsler

distance. Then

dSF ((z, 0), (0, 0)) = ‖z‖, for all z ∈ R
2n .
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Proof Let λ : [0, ‖z‖] → (R2n, ‖ · ‖) be the geodesic which parametrizes the line segment
that joins 0 and z inR

2n , and note that γ := (λ, 0) : [0, ‖z‖] → H
n is a Lipschitz continuous

horizontal curve with γI = λ. Thus we find

dSF ((z, 0), (0, 0)) ≤
∫ ‖z‖

0
‖γ̇I (s)‖ ds = L‖·‖(λ) = ‖z‖.

On the other hand, by definition of dSF and Example 2.13, we find that

dSF ((z, 0), (0, 0)) ≥ inf
σ

∫ b

a
‖σ̇ (s)‖ ds ≥ ‖z − 0‖ = ‖z‖,

where the infimum is taken over all absolutely continuous curves σ : [a, b] → R
2n connect-

ing 0 and z. 
�
We wish to compare geodesics in (Hn, dSF ) with geodesics for any homogeneous norm

N that induces ‖ · ‖. To do so, the subsequent characterization is useful.
Lemma 2.18 Let (X, d) be a metric space. For a curve γ : [a, b] → X the following
conditions are equivalent:

(1) γ is a geodesic with respect to d, that is, d(γ (s), γ (s′)) = |s − s′| for all s, s′ ∈ [a, b],
(2) L(γ ) = d(γ (a), γ (b)) and γ is parameterized by arc-length.

This is well known; see for instance [4, Remark 1.22].

Proposition 2.19 Assume that N is a homogeneous distance on H
n and let ‖z‖ := N ((z, 0)).

Denote by dSF the sub-Finsler distance associated to ‖ · ‖. Let J = [a, b] or J = R. If
γ : J → H

n is a geodesic with respect to dN , then it is also geodesic with respect to dSF .

Proof Let γ : [s, s′] → (Hn, dN ) be geodesic. We claim that

dSF (γ (s), γ (s′)) =
∫ s′

s
‖γ̇I (ξ)‖ dξ. (2.6)

If this is shown then it follows by Proposition 2.14, Lemma 2.18 and the geodesic assumption
on γ that

dSF (γ (s), γ (s′)) =
∫ s′

s
‖γ̇I (ξ)‖ dξ = LdN (γ |[s,s′]) = dN (γ (s), γ (s′)) = |s − s′|.

Since this holds for arbitrary s < s′ in J , it then follows that γ is a geodesic with respect
to dSF . It remains to establish (2.6). Assume towards a contradiction that there exists a
horizontal curve λ : [t, t ′] → H

n , connecting γ (s) and γ (s′) such that∫ t ′

t
‖λ̇I (ξ)‖ dξ <

∫ s′

s
‖γ̇I (ξ)‖ dξ.

The curve λ is a priori only horizontal and thus absolutely continuous as a map toR
2n+1, but

the horizontality ensures that it admits a Lipschitz reparametrization λ̃ : [̃t, t̃ ′] → (Hn, dN );
see for instance [17, Proposition 1.1]. Hence

dN (γ (s), γ (s′)) ≤ LdN (λ) =
∫ t̃ ′

t̃
‖ ˙̃λI (ξ)‖ dξ = LdSF (̃λ) ≤

∫ t ′

t
‖λ̇I (ξ)‖ dξ,
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where we have used in the last step that λ is admissible in the definition of dSF . Hence we
conclude

dN (γ (s), γ (s′)) ≤
∫ t ′

t
‖λ̇I (ξ)‖ dξ <

∫ s′

s
‖γ̇I (ξ)‖ dξ = dN (γ (s), γ (s′)),

which is a contradiction. 
�

3 Notions of strict convexity

We begin this section by reviewing the notion of strict convexity in normed vector spaces.
Strictly convex norms can be characterized in many different ways, for instance through
the shape of spheres or of geodesics in the space. There exist natural counterparts of these
properties for Heisenberg groups with a homogeneous left-invariant distance, which we
introduce in Sect. 3.2. We show later in Sect. 5.1 that in this setting the properties cease to
be all equivalent.

3.1 Strictly convex norms on vector spaces

Strictly convex normed vector spaces play an important role as a class of spaces which
are more flexible than inner product spaces, and still have better properties than arbitrary
normed spaces. Various equivalent definitions of strict convexity for normed spaces are used
concurrently in the literature. Proposition 7.2.1 in [30], for instance, lists as many as nine
different characterizations. We put our focus here on those three properties for which we will
later formulate counterparts in the Heisenberg group.

Proposition 3.1 The following properties of a normed vector space (V, ‖·‖) are equivalent:

(1) Strict convexity of the norm: if v,w ∈ V \{0} are such that ‖v +w‖ = ‖v‖+‖w‖, then
v = λw for some λ > 0,

(2) Midpoint property: if v, v1, v2 ∈ V are such that ‖v1 − v‖ = ‖v2 − v‖ = 1
2‖v1 − v2‖,

then v = v1+v2
2 ,

(3) Geodesic linearity property: every infinite geodesic in (V, ‖ · ‖) is a line in V .

Equivalent characterizations of strict convexity as in Proposition 3.1 are well known; see
for instance [33, (i)] for the equivalence between (1) and (2), and [30] for the fact that strict
convexity is equivalent to (V, ‖ · ‖) being uniquely geodesic, which in turn implies (3). For
the convenience of the reader we include a proof for the fact that (3) implies (1).

Proof of (3) ⇒ (1). It turns out that the linearity of infinite geodesics is sufficient to
establish strict convexity. To see this, consider arbitrary v,w ∈ V \{0} with the property that
‖v + w‖ = ‖v‖ + ‖w‖. Using these particular points, we construct an infinite geodesic,
namely γ : R → V , defined by

γ (s) :=
{

v
‖v‖ s, s ∈ (−∞, 0]
w

‖w‖ s, s ∈ (0,+∞).

It is clear that γ restricted to (−∞, 0] and (0,+∞) is geodesic. In order to verify that γ is
globally geodesic, we first show that if ‖v + w‖ = ‖v‖ + ‖w‖, then there are in fact plenty
of points with this property. Indeed, for arbitrary a, b ∈ (0, 1), we find
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‖v‖ + ‖w‖ = ‖v + w‖
≤ ‖av + bw‖ + (1− b)‖w‖ + (1− a)‖v‖
≤ a‖v‖ + b‖w‖ + (1− b)‖w‖ + (1− a)‖v‖
= ‖v‖ + ‖w‖.

This shows that in every step of the above chain of estimates equality must be realized and
thus

‖av + bw‖ = a‖v‖ + b‖w‖, for all a, b ∈ [0, 1].
By scalar multiplication we deduce that the same identity holds for all a, b ≥ 0. This can
be employed to prove that γ is a global geodesic. To this end, it suffices to observe for
s ∈ (−∞, 0] and s ′ ∈ (0,+∞) that

‖γ (s′) − γ (s)‖ =
∥∥∥∥ w

‖w‖ s′ + v

‖v‖ (−s)

∥∥∥∥ = s′ − s = |s′ − s|,

Since γ is therefore an infinite geodesic with γ (0) = 0, it follows by the geodesic linearity
property that γ must be of the form γ (s) = us, s ∈ R, for a vector u ∈ V with ‖u‖ = 1. We
conclude that v = (‖v‖/‖w‖)w. The same argument applies to all such pairs of points v and
w, which shows that (V, ‖ · ‖) is strictly convex. This concludes the proof of the proposition.


�
Strictly convex norms have foundmany applications, some of which are listed for instance

in [16]. The most relevant result in the context of the present paper is the following.

Theorem 3.2 Assume that (V, ‖ · ‖V ) and (W, ‖ · ‖W ) are two R vector spaces. If ‖ · ‖W is
strictly convex, then every isometric embedding f : (V, ‖ · ‖V ) → (W, ‖ · ‖W ) is affine.

As explained in [33], this theorem follows from the midpoint property of strictly convex
norms together with the fact that a continuous map f : (V, ‖ · ‖V ) → (W, ‖ · ‖W ) is affine
if it preserves midpoints of line segments, see Lemma 3.11 below.

3.2 Strictly convex norms on Heisenberg groups

3.2.1 Notions of strict convexity

We saw in Sect. 3.1 that strict convexity in normed real vector spaces has different equivalent
formulations. One of these formulations, defined as geodesic linearity property in Proposition
3.1, (3), can be generalized: we say that any real linear space equipped with a metric has the
geodesic linearity property, if every infinite geodesic is a line. When the metric is induced
by a norm, then this property is equivalent to strict convexity.
Our aim is to relate the geodesic linearity property for the Heisenberg group equippedwith

a homogeneous distance to strict convexity and midpoint property, defined in an intuitively
analogous way.
When we speak about lines in the Heisenberg groupHn , we mean lines in the underlying

vector space R
2n+1. Straight lines l(s) = p0 + sv, v �= 0, in R

2n+1 can be also written as
l(s) = p0 ∗ (sz, st) for an appropriate (z, t) ∈ H

n\{0}. We call l horizontal if t = 0, and
non-horizontal if t �= 0. From now on, we use the word line to talk about the curve, or its
image.

Proposition 3.3 Let l : R → H
n, s → p0∗(sz, st), be a straight line and N a homogeneous

norm on H
n. If l is horizontal, then it can be reparameterized to be an infinite geodesic on the
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metric space (Hn, dN ). If l is non-horizontal, the segment determined by any two different
points of its image is not rectifiable.

Proposition 3.3 is well known and follows from more general results about rectifiable
curves (see for example [29] and the discussion around (2.4)).

Definition 3.4 Let N be an homogeneous norm onHn . We say that N is horizontally strictly
convex if for all p, p′ �= e it holds

N (p ∗ p′) = N (p) + N (p′) ⇒ p, p′ lie on a horizontal line through the origin, i.e.,
∃z ∈ R

2n\{0}, s, s′ ∈ R, such that p = (sz, 0) and p′ = (s′z, 0).

Lemma 3.5 The following two conditions for a homogeneous norm N on H
n are equivalent:

(1) N is horizontally strictly convex,

(2) For all p1, p2, p ∈ H
n, p1 �= p, p2 �= p, with dN (p1, p2) = dN (p1, p) + dN (p, p2),

the points p1, p2 belong to the horizontal line l := {p ∗ (sz, 0) : s ∈ R} for some

z ∈ R
2n\{0}.

Proof First, we prove the implication (1) ⇒ (2). For this, consider p1, p2, p ∈ H
n , with p1

and p2 both distinct from p, satisfying

dN (p1, p2) = dN (p1, p) + dN (p, p2).

Defining q := (p−1 ∗ p2)−1 and q ′ := p−1 ∗ p1, it follows

N (q ∗ q ′) = N ((p2)
−1 ∗ p1) = dN (p1, p2) = dN (p1, p) + dN (p, p2)

= N (p−1 ∗ p1) + N (p−1 ∗ p2) = N (q ′) + N (q).

Since q �= e and q ′ �= e, the horizontal strict convexity of N implies that there exist
z ∈ R

2n\{0} and s, s′ ∈ R such that q = (sz, 0) and q ′ = (s′z, 0). This implies p1 =
p ∗ q ′ = p ∗ (s′z, 0) and p2 = p ∗ q−1 = p ∗ (−sz, 0), as desired.
Now, for proving the implication (2) ⇒ (1), consider p, p′ ∈ H

n , p, p′ �= e, that satisfy

N (p ∗ p′) = N (p) + N (p′).

This implies

dN (p′, p−1) = N (p ∗ p′) = N (p) + N (p′) = dN (e, p−1) + dN (p′, e).

Since p′ �= e and p−1 �= e, by assumption there exist z ∈ R
2n\{0} and s, s′ ∈ R such that

p′ = e ∗ (s′z, 0) = (s′z, 0) and p = (p−1)−1 = (e ∗ (sz, 0))−1 = (sz, 0)−1 = (−sz, 0), as
desired. 
�
Definition 3.6 (Midpoint property) Let N be a homogeneous norm on H

n . We say that N
has the midpoint property, if for all p1, p2, q ∈ H

n it holds

dN (p1, p2) = 2dN (p1, q) = 2dN (p2, q) ⇒ q = p1 + p2
2

.

This notion is motivated by studying the behavior of homogeneous norms along horizontal
lines. In the above definition, scalar multiplication and addition in the expression for q are
understood via the identification of H

n with R
2n+1. The midpoint property is equivalent to

the following metric condition:

dN (p, p−1) = 2dN (p, q) = 2dN (p−1, q) ⇒ q = e.
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Proposition 3.7 Let N be a horizontally strictly convex homogeneous norm on H
n. Then N

has the midpoint property.

Proof Consider points q, p1, p2 ∈ H
n with dN (p1, p2) = 2dN (p1, q) = 2dN (p2, q).

Assuming without loss of generality that q �= pi for i = 1, 2, we have
dN (p1, p2) ≤ dN (p1, q) + dN (q, p2) = 1

2dN (p1, p2) + 1
2dN (p1, p2) = dN (p1, p2).

(3.1)

Since N is horizontally strictly convex, there exist z ∈ R
2n\{0} and s1, s2 ∈ R, such that

p1 = q ∗ (s1z, 0) and p2 = q ∗ (s2z, 0). From this, we get

dN (pi , q) = N (q−1 ∗ pi ) = N ((si z, 0)) = |si |N (z, 0),

dN (p1, p2) = dN ((s1z, 0), (s2z, 0)) = N ((−s1z, 0) ∗ (s2z, 0)) = N ((s2 − s1)z, 0)

= |s2 − s1|N (z, 0). (3.2)

Since z �= 0, N (z, 0) is a strictly positve number. From the last calculations, we obtain

dN (p1, p2) = 2dN (q, p1) = 2dN (q, p2) ⇔ |s2 − s1|N (z, 0) = 2|s1|N (z, 0) = 2|s2|N (z, 0)

⇔|s2 − s1| = 2|s1| = 2|s2|. (3.3)

The reader can convince her- or himself that the last equality implies s2 = −s1. Finally,
writing q = (z0, t0) we get

p1 + p2
2

= 1
2 ((z0 + s1z, t0 + s12ωn(z0, z)) + (z0 − s1z, t0 − s12ωn(z0, z)))

= 1
2 (2z0, 2t0) = q.


�
Definition 3.8 Let N be a homogeneous norm on H

n . We say that N has the geodesic
linearity property if every infinite geodesic is a horizontal line, that is, if for every map
γ : R → H

n with dN (γ (s1), γ (s2)) = |s1− s2|, for all s1, s2 ∈ R, there exists z0 ∈ R
2n\{0}

such that γ (s) = γ (0) ∗ (sz0, 0), for all s ∈ R.

Example 3.9 Let dS R be the standard sub-Riemannian distance on H
n , that is, the sub-

Finsler distance generated by the Euclidean norm ‖ · ‖2 = √〈·, ·〉. The space (Hn, dS R)

has the geodesic linearity property, but there exist finite geodesics which are not horizontal
line segments with respect to dS R , see for instance [17]. This is different from the situation
in normed spaces. As explained below Proposition 3.1 the geodesic linearity property of a
normed space is equivalent to the fact that all geodesics are linear, not only the infinite ones.

Remark 3.10 Definition 3.8 is equivalent to “every infinite geodesic in (Hn, dN ) is a straight
line” since from Proposition 3.3 we know that a straight line can be reparameterized to be a
geodesic if and only if it is horizontal.

In the following, we will see that the geodesic linearity property is implied by the previ-
ously discussed properties. The proof is basically an application of the next lemma, which
appears for instance in [33, (2)].

Lemma 3.11 Let (V, ‖·‖V ) and (W, ‖·‖W ) be two real normed spaces and g : (V, ‖·‖V ) →
(W, ‖ · ‖W ) a map fulfilling
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(i) g(0) = 0,
(ii) g

(
v1 + v2

2

)
= g(v1) + g(v2)

2
, ∀v1, v2 ∈ V,

(iii) g is continuous.

Then, g is linear.

Proposition 3.12 Let N be a homogeneous norm on H
n having the midpoint property. Then,

N has the geodesic linearity property.

Proof Let γ : R → H
n be a map with dN (γ (s1), γ (s2)) = |s1 − s2|, for all s1, s2 ∈ R.

Without loss of generality we can assume that γ (0) = 0 (otherwise consider γ̂ := (γ (0))−1∗
γ ).

Claim γ is R-linear.

Proof of Claim The map γ : (R, | · |) → (Hn, dN ) is clearly continuous with respect to the
topology induced by dN . Since this topology is equal the Euclidean topology on R

2n+1, γ
is also continuous viewed as a map γ : (R, | · |) → (R2n+1, ‖ · ‖2). Furthermore, since by
assumption γ (0) = 0, in order to prove that γ is linear, according to Lemma 3.11 it suffices
to check that

γ

(
s1 + s2
2

)
= γ (s1) + γ (s2)

2
, ∀s1, s2 ∈ R. (3.4)

For this, consider s1, s2 ∈ R. Defining s̄ := s1+s2
2 , we get

dN (γ (s1), γ (s2)) = |s1 − s2| = 2|s1 − s̄| = 2dN (γ (s1), γ (s̄)),

dN (γ (s1), γ (s2)) = |s1 − s2| = 2|s2 − s̄| = 2dN (γ (s2), γ (s̄)). (3.5)

Since by assumption N has the midpoint property, this implies

γ

(
s1 + s2
2

)
= γ (s̄) = γ (s1) + γ (s2)

2
.


�
The fact that γ : R → R

2n+1 is linear means that it is actually a straight line that goes
through the origin. Furthermore, since γ is in particular a geodesic, it must be a horizontal
line, and therefor there exists z ∈ R

2n\{0} such that γ (s) = (sz, 0), s ∈ R. 
�

3.2.2 Strict convexity of restriction norms

In this section we provide one more sufficient condition and one necessary condition for
a homogeneous norm on H

n to have the geodesic linearity property. These conditions are
derived from the relation between N and its restriction ‖ ·‖. First we observe that Proposition
2.19 has the following immediate consequence.

Proposition 3.13 Assume that N is a homogeneous distance on Hn and let ‖z‖ := N ((z, 0)).
Denote by dSF the sub-Finsler distance associated to ‖ · ‖. If (Hn, dSF ) has the geodesic
linearity property, so does (Hn, dN ).

Proposition 3.13 provides a sufficient condition for geodesic linearity of a homogeneous
norm N in terms of the restriction norm ‖ · ‖. In the following we give a necessary condition.
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Proposition 3.14 If N is a homogeneous norm on H
n such that (Hn, dN ) has the geodesic

linearity property, then the norm ‖ · ‖ on R
2n, defined by ‖z‖ := N ((z, 0)), is strictly convex.

Proof Let λ : R → (R2n, ‖ · ‖) be an infinite geodesic. Being geodesic, this curve is
Lipschitz, and hence differentiable almost everywhere as a map into the Euclidean space
R
2n . We can lift λ to a horizontal Lipschitz curve γ = (γI , γ2n+1) = (λ, γ2n+1) in H

n .
More precisely, integrating the formula in (2.4), we find a function γ2n+1 : R → R such that
γ = (γI , γ2n+1) = (λ, γ2n+1) : R → H

n is a horizontal curve. To see that γ is Lipschitz
with respect to dN , it suffices to verify that it is Lipschitz with respect to the sub-Finsler
distance dSF associated to ‖ · ‖, and this is immediate:

dSF (γ (s), γ (s′)) ≤
∫ s′

s
‖γ̇I (ξ)‖ dξ = |s − s′|, for all − ∞ < s < s ′ < ∞.

We claim further that γ is a geodesic with respect to dN . Indeed, we have for all s < s′ that

dN (γ (s), γ (s′)) ≤ L N (γ |[s,s′]) =
∫ s′

s
‖γ̇I (ξ)‖ dξ = L‖·‖((γI )|[s,s′]) = ‖γI (s) − γI (s

′)‖
≤ dN (γ (s), γ (s′)).

Here we have used (in this order), the metric definition of length, Proposition 2.14 and
Example 2.13, the geodesic property of γI = λwith the characterization in Lemma 2.18 and
Lemma 2.10 with the definition of N and ‖ · ‖. It follows that

dN (γ (s), γ (s′)) = ‖γI (s) − γI (s
′)‖ = |s − s′|, for all − ∞ < s < s ′ < ∞,

andhenceγ : R → (Hn, dN ) is an infinite geodesic. Since (Hn, dN )has the geodesic linearity
property, γ must therefore be a horizontal line, and hence also the projection γI = λ must
be a line (in R

2n). Since λ was an arbitrary infinite geodesic in (R2n, ‖ · ‖), this implies by
Proposition 3.1 that (R2n, ‖ · ‖) is strictly convex. 
�
In the first Heisenberg groupH

1, the classification of the geodesics with respect to a sub-
Finsler distance associated to a norm ‖·‖ is related to the following isoperimetric problem on
the Minkowski plane (R2, ‖ · ‖): given a number A find a closed path through 0 of minimal
‖ · ‖-length which encloses (Euclidean) area A. To describe the solution, we introduce the
following notation for the closed unit ball and dual ball in (R2, ‖ · ‖):

B := {z ∈ R
2 : ‖z‖ ≤ 1} and B◦ := {w : 〈w, z〉 ≤ 1 : z ∈ B}.

The isoperimetrix I is the boundary of B◦ rotated by π/2, and it can be parameterized as
a closed curve. Buseman [6] has proved that the solution to the above stated isoperimetric
problem is given by (appropriate dilation and translation) of the isoperimetrix. Note that if
‖ · ‖ is strictly convex, then I is of class C1. Based on Buseman’s work and its interpretation
in the Heisenberg context, one arrives at the following conclusion.

Corollary 3.15 Let N be a homogeneous norm on H
1. Then (H1, dN ) has the geodesic

linearity property if and only if the norm defined on R
2 by ‖z‖ := N ((z, 0)) is strictly

convex.

Proof Proposition 3.14 says that the geodesic linearity property of dN implies strict convexity
of ‖ · ‖. For the reverse implication it suffices, according to Proposition 3.13, to show that
strict convexity of ‖ · ‖ implies the geodesic linearity property of the associated sub-Finsler
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distance. So let dSF be the sub-Finsler distance on H
1 given by the norm ‖ · ‖. By left-

invariance it is enough to show that all infinite geodesics in (H1, dSF ) which pass through
the origin are straight lines. By [3, Theorem 1], [28, §4] it is known that if ‖ · ‖ is strictly
convex, then the geodesics in (H1, dSF ) passing through 0 project to the (x, y)-plane either
to (i) straight lines or line segments, or (ii) isoperimetric paths passing through zero, see
also Section 2.3 in [12]. By an isoperimetric path we mean a subpath of a dilated and left-
translated isoperimetrix in the sense of Buseman. Conversely, every horizontal lift of such a
line segment or isoperimetric path through 0 yields a geodesic in (H1, dSF ) passing through
the origin.
Let I be a (translated and dilated) isoperimetrix passing through 0. This is a closed curve

which can be lifted to a geodesic, say λ : [0, �] → (H1, dSF ). We claim that λ cannot
be extended to a length minimizing curve on any larger interval, and thus stops to be an
isometric embedding. The reason for this is that we can translate I so that some other point
passes through 0 with a tangent different from the one of the original curve I at 0. Lifting
the resulting curve, we obtain two different geodesics connecting the two points 0 = λ(0)
and λ(�) on the t-axis. If we could extend to a length minimizing curve past the point λ(�),
we would construct by concatenation a geodesic segment containing λ(0) which does not
project to a isoperimetric path or a line segment. This is impossible and we see that the lifts
of an isoperimetrix stop to be length minimizing after finite time. (See also the bottom of p.5
in [3].)
It follows that the only infinite geodesics are horizontal lines, and the proof is complete.


�

4 The main result

In this section we study isometric embeddings of Euclidean spaces or Heisenberg groups
into Heisenberg groups, with homogenous distances in the respective groups. The existence
of an isometric embedding f : R

m → H
n imposes restrictions on m and n. Namely, it is

known from [1,27] that Hn is purely m-unrectifiable for m > n, hence Hm( f (A)) = 0 for
every Lipschitz map f : A ⊆ R

m → H
n if m > n. (This holds for any choice of metric on

R
m which is bi-Lipschitz equivalent to the Euclidean distance, and any choice of metric on

H
n equivalent to the standard sub-Riemannian distance.) Since isometric embeddings are bi-
Lipschitz mappings onto their images and thus send positiveHm-measure sets onto positive
Hm-measure sets, it follows that there does not exist an isometric embedding f : R

m → H
n

if m > n. Moreover, there clearly cannot exist an isometric embedding f : H
m → H

n for
m > n. Thus the range of parameters m and n in the Theorem 4.1 below is the natural one.

Theorem 4.1 Let G1 ∈ {(Rm,+), (Hm, ∗)} and G2 = (Hn, ∗), m ≤ n, be endowed with
left invariant-homogeneous distances d1 and d2, respectively. If d2 satisfies the geodesic
linearity property, then every isometric embedding f : (G1, d1) → (G2, d2) is of the form
f = L p ◦ A, where Lg denotes left translation by an element g ∈ G2 and A : G1 → G2 is
a homogeneous homomorphism.

Proof We first prove the theorem in the case G1 = R
m and G2 = H

n . Assume that Rm is
endowed with a norm ‖ · ‖ and H

n is equipped with a homogeneous norm N and associ-
ated homogeneous distance dN . By post-composing with a left translation if necessary, we
may assume without loss of generality that f (0) = 0 and we will show that f equals a
homogeneous homomorphism A.
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Every line (affine 1-dimensional space) inR
m can be parameterized as an infinite geodesic

� : R → (Rm, ‖ · ‖). Since f is an isometric embedding, f ◦ � is an infinite geodesic in
(Hn, dN ), and thus, by the assumption on the geodesic linearity property and Proposition
3.3, a horizontal line.
Now every point inR

m lies on a line through the origin, whose image must be a horizontal
line through the origin in R

2n × {0} ⊂ H
n by what we said above. It follows that f (Rm) ⊆

R
2n × {0} and f is of the form

f (x) = (T (x), 0), for all x ∈ R
m,

for a suitable mapping T : R
m → R

2n . We will show that T is linear, thus proving the
claim that f is a homogeneous homomorphism. To see this, consider arbitrary x, y ∈ R

m

and s ∈ R. By what we said so far and since f is isometric, in particular along lines, we
know that there exist z, z0, and ζ in R

2n such that

f (ys) = (zs, 0) and f (x + ys) = (z0 + ζ s, 0), for all s ∈ R. (4.1)

Using the fact that f preserves distances and Lemma 2.10, we find that

‖x‖ = ‖(x + ys) − ys‖ = dN ((z0 + ζ s, 0), (zs, 0))

= N ((z0 + s(ζ − z), 2ωn(−zs, z0 + ζ s)))

≥ N ((z0 + s(ζ − z), 0))

� |s|‖ζ − z‖2 − ‖z0‖2,
where the last inequality (which holds up to an absolute multiplicative constant) follows from
the comparability of norms. Letting |s| tend to infinity, we arrive at a contradiction unless
‖ζ − z‖2 = 0. Thus we conclude that necessarily ζ = z. Using this information and an
analogous argument as before combined with the fact that N is comparable to, for instance,
the homogeneous norms given in Example 5.4, we deduce further that

‖x‖ �
√|ωn(−zs, z0 + ζ s)| = √|ωn(−zs, z0 + ζ s)| = √|s|√|ωn(−z, z0)|.

Letting |s| tend to infinity, we conclude that necessarily ωn(z, z0) = 0.
We have therefore that

(T (x + y), 0) = f (x + y) = (z0 + ζ, 0) = (z0 + z, 0) = (T x + T y, 0)

and

f (x + y) = f (x) ∗ f (y),

which shows that f is a group homomorphism. Moreover, it follows from the first iden-
tity in (4.1) that T is not only additive, but in fact linear, and f is a homogeneous group
homomorphism. This concludes the first part in the proof of Theorem 4.1.
Next we prove the theorem in the case G1 = H

m , G2 = H
n , with left-invariant metrics

d1 and d2 induced by homogeneous norms N1 and N2. Since left translations are isometries,
we may again assume without loss of generality that f (0) = 0, and it suffices to show that f
is a homogeneous homomorphism A. Every horizontal line inHm can be parameterized as a
geodesic � : R → (Hm, d1). Since f is an isometric embedding, f ◦ � is an infinite geodesic
in (Hn, d2) and thus, by the geodesic linearity property, a horizontal line. Hence, for every
z ∈ R

2m and p0 ∈ H
m , there exist T (z, p0) ∈ R

2n and q0(z, p0) ∈ H
n such that

f (p0 ∗ (sz, 0)) = q0(z, p0) ∗ (sT (z, p0), 0), for all s ∈ R. (4.2)
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We will show that q0 depends only on p0 and that T depends only on z.
Since f is isometric on the line s �→ p0 ∗ (sz, 0), we have by left-invariance of the

norms that N1((z, 0)) = N2((T (z, p0), 0)). Inserting s = 0 in the formula in (4.2), we find
f (p0) = q0(z, p0) and hence

f (p0 ∗ (sz, 0)) = f (p0) ∗ (sT (z, p0), 0), for all s ∈ R. (4.3)

We show that T depends only on z, but not on p0, in other words, every fibration determined
by a left-invariant horizontal vector field inH

m is mapped onto an analogous fibration in the
target. To see this, we exploit the comparability of all homogeneous distances on aHeisenberg
group. For convenience, we denote f (p) = (ζ(p), τ (p)) ∈ R

2n × R. This yields by (4.3)
for all z ∈ R

2m , p0 = (z0, t0) ∈ H
m , and s ∈ R that

‖T (z, p0) − T (z, 0)‖2|s| − ‖ζ(p0)‖2 ≤ ‖ζ(p0) + s(T (z, p0) − T (z, 0))‖2
� d2( f (p0 ∗ (sz, 0)), f ((sz, 0)))

= d1((p0 ∗ (sz, 0)), (sz, 0))

� ‖z0‖2 + √|t0 + 4sωm(z0, z)|
≤ ‖z0‖2 + √|t0| + 2√|s|√|ωm(z0, z)|.

We observe that the left-hand side of the above chain of inequalities grows linearly as |s| →
∞, whereas the right-hand side exhibits only a sub-linear growth. This would lead to a
contraction, unless

T (z, p0) = T (z, 0)

which must hence be the case. Thus we have found that

f (p0 ∗ (sz, 0)) = f (p0) ∗ (sT (z), 0), for all s ∈ R, p0 ∈ H
m, z ∈ R

2m (4.4)

for a suitable function T : R
2m → R

2n . In particular, by choosing p0 = (0, t) and s = 1,
we find

f ((z, t)) = f ((0, t)) ∗ (T (z), 0), for all (z, t) ∈ R
2m × R, (4.5)

and by choosing p0 = 0, we see that
(T (sz), 0) = f ((sz, 0)) = (sT (z), 0), for all z ∈ R

2m, s ∈ R. (4.6)

In the next step we will show that there exists a function h : R → R such that f (0, t) =
(0, h(t)) for all t ∈ R, that is, the vertical axis gets mapped to the vertical axis. To see this
we use the fact that for arbitrary t ∈ R, the two points (0, 0) and (0, t) can be connected by
a concatenation of four suitable horizontal line segments, parameterized as follows:

�1(s) := (−s t
4e1, 0

)
, s ∈ [0, 1]

�2(s) := (− t
4e1, 0

) ∗ (sem+1, 0) , s ∈ [0, 1]
�3(s) := (− t

4e1 + em+1, t
2

) ∗ (
s t
4e1, 0

)
, s ∈ [0, 1]

�4(s) := (em+1, t) ∗ (−sem+1, 0) , s ∈ [0, 1].
Here e1 and e(m+1) denote the standard first (respectively (m + 1)-th) standard unit vector in
R
2m . In particular, we can write

(0, t) = (− t
4e1, 0

) ∗ (em+1, 0) ∗ ( t
4e1, 0

) ∗ (−em+1, 0) .
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We apply f to both sides of the equation and apply iteratively the identity (4.4). In this way
we obtain two different formulae for the same point in H

n . By comparing the projection to
R
2n × {0}, we find

ζ(0, t) = T
(− t
4e1

) + T (em+1) + T
( t
4e1

) + T (−em+1) ,

which, by the homogeneity of T established in (4.6), yields ζ(0, t) = 0. Using (4.5), we
conclude that f is of the form

f (z, t) = (ζ(z, t), τ (z, t)) = (T (z), h(t)), for all (z, t) ∈ R
2m × R

with T (sz) = sT (z) for all s ∈ R. The restriction of the map f to the vertical axis maps the
vertical axis in H

m to the vertical axis in H
n , and since it is an isometric embedding, this

mapping must in fact be surjective. The identity

N1((0, t)) = N2((0, h(t))), for all t ∈ R,

then implies that h(t) = at for a suitable constant a ∈ R.
We plug this formula into the identity (4.5). This yields for all z, z0 ∈ R

2m and t0 ∈ R

that

(T (z0 + z), at0 + 2aωn(z0, z)) = f ((z0 + z, t0 + 2ωm(z0, z))

= f ((z0, t0)) ∗ (T (z), 0)

= (T (z0), at0) ∗ (T (z), 0)

= (T (z0) + T (z), at0 + 2ωn(T (z0), T (z))).

Hence we conclude for all z, z0 ∈ R
2m that{

T (z0 + z) = T (z0) + T (z)
aωn(z0, z) = ωn(T (z0), T (z)).

The first condition shows together with the homogeneity established in (4.6) that T : R
2m →

R
2n is linear. The characterization of homogeneous homomorphisms given in Lemma 2.3
concludes the proof of the theorem. 
�

5 Examples of homogeneous norms

5.1 Norms

We give a few examples of homogeneous norms on H
n , both classical and new ones, and

prove their properties regarding convexity. More examples of homogeneous norms on H
n

can be found for instance in [10,19,25].

Example 5.1 (Korányi-Cygan norm) Let n ∈ N≥1 and ‖ · ‖2 be the Euclidean norm on R
2n .

Then, the map

NK : H
n → R≥0, (z, t) �→ ((‖z‖2)4 + t2)

1
4 ,

defines a horizontally strictly convex homogenous norm on the Heisenberg group.

This is one of the best known homogeneous norms on the Heisenberg group, partially
because of its role in the definition of the fundamental solution of the sub-Laplacian on H

n

found by Folland in [14].
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Proof The fact that NK defines a homogeneous norm is well known and was first proved by
Cygan in [9]. We include here a proof for the triangle inequality because this is needed in
establishing the horizontal strict convexity of NK . For this, consider (z, t), (z′, t ′) in H

n . In
this case, it is convenient to use the complex notation of the Heisenberg group and interpret
z and z′ as vectors in C

n (this is possible if we identify the elements of these two spaces in
the way we did in Sect. 2.1). Taking into account the Cauchy-Schwarz inequality, we get

(NK ((z, t) ∗ (z′, t ′)))2 =
⎛⎜⎝

⎛⎝ n∑
j=1

|z j + z′
j |2

⎞⎠2 +
⎛⎝t + t ′ + 2

n∑
j=1
Im(z j z̄′

j )

⎞⎠2
⎞⎟⎠
1
2

=
∣∣∣∣∣∣
⎛⎝ n∑

j=1
(|z j |2 + |z′

j |2 + 2Re(z j z̄′
j )

⎞⎠ + i
⎛⎝t + t ′ + 2

n∑
j=1
Im(z j z̄′

j )

⎞⎠∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎛⎝ n∑

j=1
|z j |2

⎞⎠ + it +
⎛⎝ n∑

j=1
|z′

j |2
⎞⎠ + it ′ + 2

n∑
j=1

z j z̄′
j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n∑

j=1
|z j |2 + it

∣∣∣∣∣∣ +
∣∣∣∣∣∣

n∑
j=1

|z′
j |2 + it ′

∣∣∣∣∣∣ + 2
∣∣∣∣∣∣

n∑
j=1

z j z̄′
j

∣∣∣∣∣∣ (5.1)

≤
∣∣∣∣∣∣

n∑
j=1

|z j |2 + it
∣∣∣∣∣∣ +

∣∣∣∣∣∣
n∑

j=1
|z′

j |2 + it
∣∣∣∣∣∣ + 2

n∑
j=1

|z j ||z′
j | (5.2)

= (NK (z, t))2 + (NK (z′, t ′))2 + 2
n∑

j=1
|z j ||z′

j |

≤ (NK (z, t))2 + (NK (z′, t ′))2 + 2
⎛⎝ n∑

j=1
|z j |2

⎞⎠
1
2

⎛⎝ n∑
j=1

|z′
j |2

⎞⎠
1
2

(5.3)

≤ (NK (z, t))2 + (NK (z′, t ′))2 + 2NK (z, t))NK (z′, t ′)
= (NK (z, t) + NK (z′, t ′))2. (5.4)

Now, for proving horizontal strict convexity, assume that p = (z, t) �= (0, 0) �= (z′, t ′) = p′
and that NK (p ∗ p′) = NK (p) + NK (p′). Then equality must hold in (5.1), (5.2), (5.3) and
(5.4). First, (5.4) implies that⎛⎜⎝

⎛⎝ n∑
j=1

|z j |2
⎞⎠2

⎞⎟⎠
1
4

⎛⎜⎝
⎛⎝ n∑

j=1
|z′

j |2
⎞⎠2

⎞⎟⎠
1
4

=
⎛⎜⎝

⎛⎝ n∑
j=1

|z j |2
⎞⎠2 + t2

⎞⎟⎠
1
4

⎛⎜⎝
⎛⎝ n∑

j=1
|z′

j |2
⎞⎠2 + t ′2

⎞⎟⎠
1
4

,

from which we conclude that t = t ′ = 0, z �= 0 and z′ �= 0.
On the other hand, (5.2) and (5.3) yield∣∣∣∣∣∣

n∑
j=1

z j z̄′
j

∣∣∣∣∣∣ =
⎛⎝ n∑

j=1
|z j |2

⎞⎠
1
2
⎛⎝ n∑

j=1
|z′

j |2
⎞⎠
1
2

.
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Since in the Cauchy-Schwarz inequality on C
n equality holds only if the involved vectors

are linearly dependent, it follows that there must exist a complex number α �= 0 such that
z′ = αz. Furthermore, (5.1) with t = t ′ = 0 is equivalent to∣∣∣∣∣∣

⎛⎝ n∑
j=1

|z j |2
⎞⎠+

⎛⎝ n∑
j=1

|z′
j |2

⎞⎠+2
n∑

j=1
z j z̄′

j

∣∣∣∣∣∣ =
n∑

j=1
|z j |2 +

n∑
j=1

|z′
j |2+2

n∑
j=1

|z j ||z′
j |. (5.5)

Inserting z′ = αz in (5.5), and using the fact that |w + w′| = |w| + |w′| if and only if
ww̄′ ∈ R≥0, ∀w,w′ ∈ C, we obtain

|(‖z‖2)2 + |α|2(‖z‖2)2 + 2ᾱ(‖z‖2)2| = (‖z‖2)2 + |α|2(‖z‖2)2 + 2|α|(‖z‖2)2
⇔ |1+ |α|2 + 2ᾱ| = |1+ |α|2| + |2ᾱ|, ⇔ (1+ |α|2)2α ∈ R≥0, ⇔ α ∈ R>0.

As result, we obtain that p = (z, 0) and p′ = (αz, 0)withα ∈ R, which proves the horizontal
strict convexity of NK . 
�
Example 5.2 (Lee-Naor norm) Let NK be the Koranyi–Cygan norm onH

n , and ‖ · ‖2 be the
Euclidean norm on R

2n . Then, the map

N : H
n → R≥0, (z, t) �→

√
(NK (z, t))2 + (||z||2)2,

defines a horizontally strictly convex homogenous norm on the Heisenberg group.

The norm in Example 5.2 has appeared independently in different contexts. J. Lee and A.
Naor [25] showed that

√
dN is a metric of negative type on H

1, that is, (H1,
√

dN ) admits
an isometric embedding into Hilbert space. This provided a counterexample to the so-called
Goemans-Linial conjecture, since it follows at the same time by the work of J. Cheeger and
B. Kleiner that (H1, dN ) does not biLipschitzly embed into L1. The distance dN was also
used by Le Donne and Rigot in [11] as an example of a homogeneous distance on H

n for
which the Besicovitch covering property holds. In fact, dN is a particular instance of a whole
family of homogeneous norms which were constructed by W. Hebisch and A. Sikora [19],
and for which Le Donne and Rigot established the Besicovitch covering property.

Proof It is known that N defines a homogeneous norm, see [11,25]. As in the proof of
Theorem 5.1, the horizontal strict convexity will be deduced from a careful inspection of the
proof of the triangle inequality. For this, let (z, t), (z′, t ′) ∈ H

n . First, we remark that

NK (z, t)NK (z′, t ′) + ‖z‖2‖z′‖2 ≤ (
NK (z, t)2 + ‖z‖22

) 1
2
(
NK (z′, t ′)2 + ‖z′‖22

) 1
2 .

Using this, we obtain

N ((z, t) ∗ (z′, t ′))2 = NK ((z, t) ∗ (z′, t ′))2 + ‖z + z′‖22
≤ (NK (z, t) + NK (z′, t ′))2 + (‖z‖2 + ‖z′‖2)2
= NK (z, t)2 + ‖z‖22 + NK (z′, t ′)2 + ‖z′‖22 + 2 (

NK (z, t)NK (z′, t ′) + ‖z‖2‖z′‖2
)

≤ NK (z, t)2 + ‖z‖22 + NK (z′, t ′)2 + ‖z′‖22
+ 2 (

NK (z, t)2 + ‖z‖22
) 1
2
(
NK (z′, t ′))2 + ‖z′‖2

)2
)
1
2

=
((

NK (z, t)2 + ‖z‖2)2
) 1
2 + (

NK (z′, t ′)2 + ‖z′‖2)2
) 1
2

)2
= (

N (z, t) + N (z′, t ′)
)2

. (5.6)
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If N ((z, t) ∗ (z′, t ′)) = N ((z, t))+ N ((z′, t ′)), then equality must hold everywhere in the
above chain of estimates. In particular, we have by (5.6) that NK ((z, t)∗(z′, t ′)) = NK (z, t)+
NK (z′, t ′), which according to Theorem 5.1 implies that p = (z, t) and p′ = (z′, t ′) lie on
a horizontal line through the origin, if both are nonzero. This means that N is horizontally
strictly convex. 
�
In Sect. 3.2.1we saw that themidpoint property implies geodesic linearity.Nowwepresent

an example which shows that the converse does not hold in general. This example belongs to
a whole family of homogeneous norms, constructed using not only the Euclidean norm but
the entire spectrum of p-norms on R2n . The properties of these norms depend on the value
of p. In particular, for studying these properties we will often use the exact value of the best
Lipschitz constant between different p-norms, presented in the following lemma.

Lemma 5.3 Let 1 ≤ p < q ≤ ∞ and ‖ · ‖r be the r-norm on R
n, r ∈ {p, q}. Then, for all

x ∈ R
n, it holds

‖x‖q ≤ ‖x‖p ≤ ‖x‖qn
1
p − 1q .

The above lemma can be obtained from theHölder inequality and elementary calculations.

Example 5.4 Let n ∈ N, p ∈ [1, ∞], and let ‖ · ‖p be the p-norm on R
2n and a ∈ (0,∞).

Then the function

Np,a : H
n → R, (z, t) �→ max

{
||z||p, a

√|t |
}

,

defines a norm on H
n , if and only if

(i) 1 ≤ p ≤ 2 and 0 < a ≤ 1,
or

(ii) 2 < p ≤ ∞ and 0 < a ≤ n1/p−1/2.

In both cases, Np,a is homogenous.

Due to its simplicity, the norm N2,1 has often been used in literature, see for instance [31].
To the best of our knowledge, the norms Np,a for p �= 2 have not been studied in detail
before.

Proof The only nontrivial assertion is the triangle inequality:

Np,a((z, t) ∗ (z′, t ′)) ≤ Np,a(z, t) + Np,a(z′, t ′),

which is equivalent to⎧⎨⎩
‖z + z′‖p ≤ Np,a(z, t) + Np,a(z′, t ′)
and
a
√|t + t ′ + 2〈z, Jnz′〉| ≤ Np,a(z, t) + Np,a(z′, t ′).

(5.7)

From the triangle inequality for the p-norm ‖ · ‖p on R
2n and the definition of Np,a , we see

that the first condition in (5.7) is always fulfilled. Hence, Np,a defines a homogeneous norm
if and only if the second condition in (5.7) is fulfilled for every (z, t), (z′, t ′) in R

2n × R.
First, assume that 1 ≤ p ≤ 2:
If 0 < a ≤ 1, using Cauchy-Schwarz inequality and Lemma 5.3, we get

a2|〈z, Jnz′〉| ≤ |〈z, Jnz′〉| ≤ ‖z‖2‖Jnz′‖2 = ‖z‖2‖z′‖2 ≤ ‖z‖p‖z′‖p. (5.8)
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This implies for all (z, t), (z′, t ′) ∈ H
n that(

a
√|t + t ′ + 2〈z, Jnz′〉|

)2 ≤ a2|t | + a2|t ′| + 2a2|〈z, Jnz′〉|
≤ a2|t | + a2|t ′| + 2‖z‖p‖z′‖p

≤ max
{
‖z‖p, a

√|t |
}2 +max

{
‖z′‖p, a

√|t ′|
}2

+ 2max
{
‖z‖p, a

√|t |
}
max

{
‖z′‖p, a

√|t ′|
}

= (
Np,a(z, t) + Np,a(z′, t ′)

)2
. (5.9)

Hence (5.7) and the triangle inequality hold. On the other hand, if a > 1, choosing z := e1,
z′ := −en+1, t := 1/a2, and t ′ := 1/a2, we have

a
√|t + t ′ + 2〈z, Jnz′〉| =

√
2+ 2a2 > 2 = Np,a(z, t) + Np,a(z′, t ′),

and thus (5.7) and the triangle inequality fail.

Now, assume 2 < p ≤ ∞. If 0 < a ≤ n
1
p − 12 , using again Cauchy-Schwarz inequality

and Lemma 5.3, we get

a2|〈z, Jnz′〉| ≤ a2‖z‖2‖z′‖2 ≤ a2n1/2−1/p‖z‖pn1/2−1/p‖z′‖p ≤ ‖z‖p‖z′‖p. (5.10)

By the computation as in (5.9), this implies the triangle inequality. Finally, if n
1
p − 12 < a < ∞,

taking z := ∑n
j=1 e j , z′ := −∑2n

j=n+1 e j , t := n
2
p

a2
and t ′ := n

2
p

a2
, we obtain

a
√|t + t ′ + 2〈z, Jnz′〉| =

√
2n

2
p + 2na2 > 2n

1
p = Np,a(z, t) + Np,a(z′, t ′).


�
In the following we show that for a specific choice of parameters p and a, Example 5.4

proves that the geodesic linearity property is not equivalent to the midpoint property.

Proposition 5.5 Let p ∈ [1, ∞] and a > 0 be such that the function Np,a (defined as in
Example 5.4) is a norm on H

n. Then, Np,a does not have the midpoint property.

Proof Choosing p̂ := (e1, 0), and q = (0, 1/a2), it holds

dNp,a ( p̂, p̂−1) = max{‖ − 2e1‖p, a
√|0|} = 2,

dNp,a ( p̂, q) = max{‖ − e1‖p, a
√

|1/a2|} = 1,
dNp,a ( p̂−1, q) = max{‖e1‖p, a

√
|1/a2|} = 1.

This means that dNp,a ( p̂, p̂−1) = 2dNp,a ( p̂, q) = 2dNp,a ( p̂−1, q), but q �= p̂+ p̂−1
2 . 
�

We now obtain examples of a geodesic linear norm without midpoint property.

Theorem 5.6 Let n ∈ N, p ∈ [1, ∞] and a > 0 such that the map Np,a (defined as in
Example 5.4) is a homogeneous norm on H

n. Then, Np,a has the geodesic linearity property
if and only if p ∈ (1,∞). Moreover, in this case every finite geodesic is a horizontal line
segment.
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Proof Since the norm on R
2n defined through z �→ Np,a(z, 0) is nothing else than the p-

norm, we remark that for p ∈ {1, ∞}, the norm Np,a cannot have the geodesic linearity
property since according to Proposition 3.14 this would require the strict convexity of ‖ · ‖p .
For n = 1, Corollary 3.15 allows us to conclude in converse direction that Np,a has the
geodesic linearity property for p ∈ (1,∞) since, in this case, ‖ · ‖p is a strictly convex norm
on R

2.
For n > 1 we verify the geodesic linearity property by explicit estimations. So let p ∈

(1,∞) and γ : ([0, 1], | · |) → (Hn, dNp,a ) be a geodesic with γ (0) = 0. We need to show
that for an appropriate z0 ∈ R

2n , γ can be written as γ (s) = (sz0, 0), s ∈ [0, 1]. We can
write γ (s) = (z(s), t (s)), with continuous functions z : [0, 1] → R

2n and t : [0, 1] → R,
such that z(0) = 0 and t (0) = 0. The proof is a succession of steps formulated as claims.

Claim 1 ||z(s)||p ≥ a
√|t (s)|, for all s ∈ (0, 1).

Proof Assume by contradiction that ‖z(s0)‖p < a
√|t (s0)| for some s0 ∈ (0, 1). By conti-

nuity, there exists an interval [b, c] ⊆ (0, 1) such that s0 ∈ [b, c] and ‖z(s)‖p < a
√|t (s)|,

for all s ∈ [b, c]. Defining g1 := γ (b) and g2 := (γ (b))−1 ∗γ (c), and denoting gi = (zi , ti )
for i = 1, 2, we get

a
√|t1 + t2 + 2ω(z1, z2) = a

√|t (c)| = Np,a(γ (c))

= c = b + |c − b| = Np,a(g1) + Np,a(g2). (5.11)

From (5.9) (formulated for 1 < p ≤ 2, the other cases work analogously), we see that (5.11)
implies

||z1||p||z2||p = Np,a(g1)Np,a(g2). (5.12)

Since g2 �= e (because γ is injective), (5.12) implies ||z1||p = Np,a(g1), which by definition
of g1 means a contradiction. 
�

We remark that all calculations made so far are also true for p ∈ {1, ∞}. By continuity,
the assertion of Claim 1 can be extended to

‖z(s)‖p ≥ a
√|t (s)|, ∀s ∈ [0, 1]. (5.13)

This shows in particular, together with the assumption z(0) = 0 and the injectivity of γ ,
that z(s) �= 0, for all s ∈ (0, 1]. We can now show a stronger fact, where the assumption
p ∈ (1,∞) starts to be essential.

Claim 2 For all s ∈ [0, 1], there exists C(s) ∈ R, such that z(s) = C(s)z(1)

Proof Since z(0) = 0, without loss of generality, we can assume that s ∈ (0, 1]. Using
Np,a(γ (s)) = ‖z(s)‖p , as established in (5.13) for all s ∈ [0, 1], we have
1 = s + |1− s| = Np,a(γ (s)) + Np,a((γ (s))−1 ∗ γ (1)) ≥ ‖z(s)‖p + ‖z(1) − z(s)‖p

≥ ‖z(s)‖p + (‖z(1)‖p − ‖z(s)‖p)

= Np,a(γ (1)) = 1,
and hence

‖z(s)‖p + ‖z(1) − z(s)‖p = ‖z(1)‖p. (5.14)
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We know that z(s) �= 0. If z(1) − z(s) = 0, then the assertion of Claim 2 is obviously true.
Otherwise, if z(1) − z(s) �= 0, it follows from (5.14) and the strict convexity of the norm
‖ · ‖p for p ∈ (1,∞), that there exists α(s) ∈ R\{0} such that

α(s)z(s) = z(1) − z(s). (5.15)

Since we also know that z(1) �= 0, it follows from (5.15) that α(s) �= −1 and z(s) =
(1/(1+ α(s)))z(1). 
�
Now, we focus our attention on the map t : [0, 1] → R. In order to prove that γ̂ is the

segment of a horizontal line through the origin, we still need to show that this map is actually
zero everywhere. The results obtained sofar allow us to do this:
Claim 3 t ≡ 0.
Proof It suffices to show that t is 2-Hölder, which implies that t is constant on [0, 1]. In
order to prove the 2-Hölder continuity of t , we first remark that the assertion of Claim 2 in
particular implies ωn(z(s1), z(s2)) = 0, for all s1, s2 ∈ [0, 1]. Taking this into account, we
get

|s1 − s2| = Np,a((γ̂ (s1))
−1 ∗ γ̂ (s2)) ≥ a

√|t (s2) − t (s1)|,
(5.16)

which yields the claim. 
�
Summarizing, what we have got so far is that every geodesic γ : [0, 1] → (H1, dNa,p )

for p ∈ (1,∞) can be written as γ (s) = (C(s)z(1), 0), with a vector z(1) ∈ R
2n\{0},

and a map C : [0, 1] → R. In particular, this implies that the curve γI : ([0, 1], | · |) →
(R2n, ‖ · ‖p), s �→ C(s)z(1) is a geodesic through zero and a line segment in R

2n . Since
C(1) = 1, it follows that C is the identity map, and hence γ (s) = (sz(1), 0) for s ∈ [0, 1].
Upon left translation and reparameterization, we have thus shown that every geodesic

segment in (H1, dNa,p ) is linear and thus, in consequence, every infinite geodesic in this
space is a horizontal line. 
�
We conclude that, unlike for real vector spaces, the properties (horizontal) strict convexity,

midpoint property, and geodesic linearity are not all equivalent in the Heisenberg group. Both
horizontal strict convexity and midpoint property imply the geodesic linearity property, so
that the assertion of Theorem 1.1 remains valid if we replace “…If every infinite geodesic
in (Hn, d ′) is a line…” by “…If (Hn, d ′) is horizontally strictly convex…” or “…If (Hn, d ′)
has the midpoint property…”.

5.2 Nonlinear embeddings

In this section we show through a few examples that for homogeneous distances d1 on
G ∈ {Rm, H

m : m ∈ N} and d2 on H
n , an isometric embedding f : (G, d1) → (Hn, d2)

does not need to be a homogeneous homomorphism if d2 does not have the geodesic linearity
property (GLP). Actually, for the caseG = R and d1(x, y) = |x − y|, the fact that d2 does not
have the GLP already implies, by definition, the existence of an isometric embedding fromG

toH
n which is not a homogeneous homomorphism: if d2 does not have the GLP, there exists a

geodesic γ : (R, | · |) → (Hn, d2) (hence, in particular an isometric embedding) which is not
a horizontal line and clearly such an embedding cannot be a homogeneous homomorphism.
Among the examples presented in Sect. 5.1, the only two cases not having the GLP are

the norms N1,a and N∞,a , for any appropriate positive constant a. We justified this assertion
arguing that in these two cases ‖ · ‖p is not strictly convex on R

2m and hence the norm Np,a
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itself cannot have the GLP either (see Proposition 5.5 and Proposition 3.14). In fact, the
proof of this implication already provides a method to construct a non linear geodesic γ =
(γI , γ2n+1)with target (Hn, dNp,a ) using a non-linear geodesic γI : (R, | · |) → (R2n, ‖ · ‖p)

(whose existence follows from Proposition 3.1). In this section we present concrete examples
for such geodesicswhich are not even piecewise linear. In additionwe give one example for an
isometric embedding f : (Hm, d1) → (Hn, d2) that is not a homogeneous homomorphism,
for the spacial case d2 = dN1,a .

Proposition 5.7 The maps

γ : (R, | · |) → (Hn, dN1,a ), 0 < a ≤ 1
γ (s) :=

(
1
a

( 1
2 (as + sin(as))e1 + 1

2 (as − sin(as))en+1
)
, 1

a2
(2 cos(as) + as sin(as))

)
,

and

γ : (R, | · |) → (Hn, dN∞,a ), 0 < a ≤ 1√
n

γ (s) :=
(
1
a

(
ase1 + sin(as)

2 en+1
)

, 1
a2

(−2 cos(as) − as sin(as))
)

,

are isometric embeddings which are not homogeneous homomorphisms.

Proof We first discuss the embedding for p = 1. Recall that N1,a((z, 0)) = ‖z‖1 for all
z ∈ R

2n . Note that the curve γ given above for the case p = 1 is a horizontal lift of the curve
γI : R → R

2n , defined by

γI (s) := 1
a

( 1
2 (as + sin(as))e1 + 1

2 (as − sin(as))en+1
)
.

Indeed, one finds

γ̇3(s) = − 1a sin(as) + s cos(as) = 2γ̇1(s)γ2(s) − 2γ̇2(s)γ1(s), for all s ∈ R.

According to the proof of Proposition 3.14, in order to prove that γ is an isometric embedding,
it suffices to show that γI is a geodesic with respect to ‖ · ‖1. To see this, let us fix s1, s2 ∈ R,
s1 �= s2. Then

‖γI (s2) − γI (s1)‖1 = 1
2a (|as2 − as1 + (sin(as2) − sin(as1))| + |as2 − as1

− (sin(as2) − sin(as1))|
= 1

a max{|as2 − as1|, | sin(as2) − sin(as1)|}
= |s2 − s1|,

by the mean value theorem.
In an analogous way, we compute for p = ∞ and the respective curve

γ̇3(s) = 1
a sin(as) − s cos(as) = 2γ̇1(s)γ2(s) − 2γ̇s(s)γ1(s), for all s ∈ R,

and

‖γI (s2) − γI (s1)‖∞ = max{|s2 − s1|, 12a | sin(as2) − sin(as1)|} = |s2 − s1|,
which shows that γ , which is a horizontal lift of γI , must be an isometric embedding into
(Hn, dN∞,a ). 
�
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Proposition 5.8 For n ≥ 2 and 0 < a ≤ 1√
n

, the map

f : (H1, dN∞,a ) → (Hn, dN∞,a ), (x, y, t) �→ (xe1 + sin(x)e2 + yen+1, t). (5.17)

is an isometric embedding which is not a homogeneous homomorphism.

Proof Clearly, by Lemma 2.3, the map f is not be a homogeneous homomorphism. On the
other hand, we can easily check that f is actually an isometric embedding:

dN∞,a ( f (x1, y1, t1), f (x2, y2, t2))

= max{max{|x2 − x1|, | sin(x2) − sin(x1)|, |y2 − y1|}, a
√|t2 − t1 + 2x1y2 − 2x2y1|}

= max{max{|x2 − x1|, |y2 − y1|}, a
√|t2 − t1 + 2x1y2 − 2x2y1|}

= dN∞,a ((x1, y1, t1), (x2, y2, t2)),

for any (x1, y1, t1) and (x2, y2, t2) in H
1. 
�

6 Final comments

The a priori information that an isometry or an isometric embedding, if it exists, has to be
affine often allows to prove that one space cannot be isometrically embedded into another.
As a corollary of Theorem 4.1, we obtain the following result:

Corollary 6.1 Let G1 ∈ {(Rm,+), (Hm, ∗)} and G2 = (Hn, ∗) for m ≤ n be equipped
with homogeneous distances d1 and d2, respectively. If (G1, d1) does not have the geodesic
linearity property, while (G2, d2) does have the geodesic linearity property, then there cannot
exist an isometric embedding f : (G1, d1) → (G2, d2).

Proof Let us assume towards a contradiction that there exists an isometric embedding
f : (G1, d1) → (G2, d2). By postcomposing with a left translation, we may without loss of
generality suppose that f (0) = 0. Since (G2, d2) has the geodesic linearity property, Theo-
rem 4.1 yields that f is a homogeneous homomorphism. As (G1, d1) violates the geodesic
linearity property, it must contain an infinite geodesic, say γ , which is not a line. The image
f ◦ γ is a geodesic in (G2, d2) and thus a horizontal line. Yet clearly f −1| f (G1) maps lines
to lines, so γ would have to be a line, which is a contradiction. 
�

As an application of Corollary 6.1, we see immediately by Theorem 5.6 that (Hm, dNp,a )

for p ∈ {1, +∞} does not isometrically embed into (Hn, dNp′,a′ ) for p′ ∈ (1,+∞). Here
the parameters a and a′ are chosen so that Np,a and Np′,a′ are homogeneous norms.
Concerning surjective isometries f : (Hn, dNp,a ) → (Hn, dNp′,a′ ), it follows already

from the work of Kivioja and Le Donne that such f must be affine, and in fact it must be a
homogeneous homomorphism if we assume, as we may, that f (0) = 0. The classification of
different �p norms on R

2n then yields the isometric classification of the Np,a-norms on H
n .

As the third author showed in [32], the spaces (Hn, dNp,a ) and (Hn, dNp′,a′ ) are isometric
exactly in the following cases:

(1) n = 1, p = 1, a = √
2b, p′ = ∞, a′ = b, (for b ∈ (0, 1/

√
2]),

(2) n = 1, p = ∞, a = b, p′ = 1, a′ = √
2b, (for b ∈ (0, 1/

√
2]),

(3) n ∈ N, (p, a) = (p′, a′).
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As Corollary 6.1 indicates, it is useful to know whether a homogeneous distance has the
geodesic linearity property. In the first Heisenberg group, Corollary 3.15 reduces the problem
to verifying the strict convexity of a norm in R

2. We conjecture that this works analogously
in higher dimensional Heisenberg groups, that is, a homogeneous distance dN onH

n has the
geodesic linearity property if and only if the norm ‖ · ‖ defined by ‖z‖ := N ((z, 0)) on R

2n

is strictly convex. This conjecture holds true for all the examples considered in this note, and
in particular for the norms Np,a from Example 5.4.
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