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Abstract

In many empirical problems, the evaluation of treatment effects is complicated by sample selection so that

the outcome is only observed for a non-random subpopulation. In the absence of instruments and/or

tight parametric assumptions, treatment effects are not point identified, but can be bounded under

mild restrictions. Previous work on partial identification has primarily focused on the ‘always observed’

(irrespective of the treatment). This paper complements those studies by considering further populations,

namely the ‘compliers’ (observed only if treated) and the observed population. We derive sharp bounds

under various assumptions and provide an empirical application to a school voucher experiment.

I. Introduction

The sample selection problem, see for instance Gronau (1974) and Heckman (1974), arises when the

outcome of interest is only observed for a non-randomly selected subpopulation. This may flaw causal

analysis and is an ubiquitous phenomenon in many fields where treatment effect evaluations are conducted,

such as labor, health, and educational economics. E.g., in the estimation of the returns to a training it is

an issue when only a selective subgroup of training participants and non-participants finds employment

which is a condition for observing earnings. Similar problems are inherent in clinical trials when some

of the participants in medical treatments pass away (‘truncation by death’) before the health outcome is

measured. As a further example, consider the effect of randomly provided private schooling on college

entrance examinations. The sample selection problem arises if only a non-random subgroup of students

takes the exam.

In sample selection models in economics (see the seminal work of Heckman, 1974, 1976, 1979), iden-

tification commonly relies on tight functional form restrictions and the availability of a valid instrument

for selection. Albeit the literature has recently moved towards more flexible models, see for instance Das
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et al. (2003) and Newey (2009), it typically imposes strong assumptions on the unobserved terms unlikely

to hold in many applications, see Huber and Melly (2012), or uses invalid instruments, see Huber and

Mellace (2013). Similar arguments apply to many studies in the related field of missing data problems,

which often use regression or weighting adjustments (assuming selection on observables) to control for

missing outcomes, see for instance Hausman and Wise (1979), Robins et al. (1995), and Wooldridge

(2007). In the absence of unattractive parametric restrictions or instruments for sample selection, treat-

ment effects are not point identified, but upper and lower bounds can still be obtained under fairly mild

restrictions.

Partial identification of economic parameters in general goes back to Manski (1989, 1994) and Robins

(1989). In the context of the sample selection (or missing outcome data) problem, several contributions

in the fields of principal stratification, see Frangakis and Rubin (2002), and econometrics derive bounds

on treatment effects. Building on Horowitz and Manski (1998), Horowitz and Manski (2000) consider the

partial identification of the average treatment effect in the entire population assuming a binary outcome

and also allowing for missing covariate information. Zhang and Rubin (2003) (see also Zhang, Rubin, and

Mealli, 2008) bound the average treatment effects for one subpopulation, namely the ‘always observed’,

whose outcomes are observed both under treatment and non-treatment. They impose two assumptions

both separately and jointly: (i) monotonicity of selection in the treatment and (ii) stochastic dominance

of the potential outcomes of the always observed over those of other populations. Imai (2008) shows

that the bounds of Zhang and Rubin (2003) are sharp and additionally considers the identification of

quantile treatment effects. Lee (2009) invokes monotonicity of selection (but not stochastic dominance)

when assessing the average earnings effects of Job Corps, a training program for disadvantaged youths in

the USA, on the always observed and proves the sharpness of the bounds. Blanco et al. (2011) evaluate

the same program, but add assumptions on the order of mean potential outcomes within and across

subpopulations to obtain tighter bounds. In contrast to the aforementioned contributions, Lechner and

Melly (2007) bound the effects on those treated and observed, which is a mixed population consisting of

always observed and ‘compliers’ who are observed under treatment, but would not be without treatment.†

The main contribution of this paper is the derivation of sharp bounds (the tightest feasible bounds

given the assumptions imposed and the information available) on average treatment effects among compli-

ers, ‘defiers’ (outcomes observed if not treated and not observed if treated), and the observed population,

which have not been considered in previous work. We show that under the monotonicity and/or stochastic

dominance assumptions, informative bounds can be derived even when the outcomes of particular sub-

†This definition is not to be confused with the LATE framework (see Imbens and Angrist (1994)), where compliers are
those who are treated if assigned to treatment and not treated if assigned to control in a randomized trial.

2



populations are only observed in one treatment arm. For instance, one useful result is that under both

assumptions, the lower bound on the observed population coincides with that on the always observed.

This is relevant for many applications where particular interest lies in whether the lower bound includes

a zero effect. Thus, the assumptions may bear considerable identifying power, which is demonstrated in

an application to a school voucher experiment in Colombia previously analyzed by Angrist et al. (2006).

We argue that it is, depending on the evaluation problem at hand, useful to look at further target

populations than the ones covered in the literature so far, which can be done by the methods proposed

in this paper. E.g., it is the compliers whose selection state reacts on the treatment and it appears

interesting in many applications whether this is observed along with (and may be rooted in) a particular

treatment effect. Taking the wage effects of a job training program as an example, one might want to

learn whether the change in the employment state due to the training is accompanied by an increase in the

potential wage. If yes, this points to an increase in productivity that may be at least partly responsible

for finding employment. Furthermore, in particular applications, the compliers might also bear more

policy relevance than the always observed. E.g., consider a school voucher experiment investigating the

effect of private schooling on test scores in a college entrance exam which are only observed conditional

on taking the exam. As the compliers do so only under private schooling, they are likely to come from

educationally more disadvantaged families than the always observed. This might exactly be the group

policy makers want to target. As a further example which is related to truncation by death, assume that a

medical treatment reduces mortality but has detrimental side effects on health. In this particular set-up,

the always observed are clearly not of policy interest: as these individuals always survive, one would in

any case not expose them to a treatment that may harm their health state. In contrast, the compliers

are those who survive thanks to the treatment and are therefore highly relevant. For this reason, one

may want to assess the magnitude of the adverse effect on this group, e.g. for developing alternative

treatments that are less harmful.

Furthermore, we might prefer to make causal statements rather for larger shares of the entire popula-

tion than for smaller groups. The largest possible group for which at least one potential outcome (under

treatment or non-treatment) is observed constitutes the observed population, which is again a mixture

of several subpopulations. E.g., policy makers might want to learn about the average effects on all indi-

viduals whose outcomes are observed, without thinking in terms of different latent subpopulations. Also

Newey (2007) considers this population, however, investigating point identification based on continuous

instruments. As an example, one might prefer to evaluate the returns to training for those working,

who often make up a substantial share of the entire population. Note that in some cases, the observed
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population may even be more relevant than the entire population, because the latter also includes the

never observed for which the evaluation of causal effects does not always appear useful. E.g., under

truncation by death, the potential health states of individuals that never survive (under any treatment)

are not defined and therefore, this group appears irrelevant when evaluating a medical treatment.‡ In

contrast, one might want to learn about one may question whether the health effects on all survivors.

Likewise, one could challenge the relevance of assessing the effects of a schooling intervention (like school

vouchers) on college entrance examinations in the entire population, given that the latter also includes

individuals who would never take these exams or enter college. In contrast, we may be interested in the

effects on those participating in the exams and thus expressing the desire to go to college.

Finally, there is also a statistical argument to look at populations other than the always observed.

In fact, if neither monotonicity nor unattractive parametric assumptions are imposed and if the share of

‘never observed’ (whose outcomes are not observed irrespective of the treatment state) is larger than the

one of the always observed, no informative bounds can be obtained for the latter. However, informative

(albeit generally quite large) bounds are still available for the observed population.

The remainder of this paper is organized as follows. Section 2 formally characterizes the sample

selection problem based on principal stratification. Section 3 discusses partial identification of treatment

effects for the compliers and the observed population under no assumptions (worst case bounds) as well

as under monotonicity and/or stochastic dominance. Estimators are presented in Section 4. An empirical

application to a school voucher experiment in Colombia is provided in Section 5. Section 6 concludes.

II. The Selection Problem

Assume that we are interested in the effect of a binary treatment, Ti ∈ {1, 0}, on an outcome Yi some

time after assignment. Using the potential outcome framework, see for instance Neyman (1923), Fisher

(1935), and Rubin (1977), we will denote by Yi(1) and Yi(0) the two potential outcomes that individual

i would receive under treatment and non-treatment. Even under randomization of the treatment, post-

treatment complications might introduce selection bias and flaw causal inference. One particular form

of such complications is sample selection, implying that the outcome of interest is only observed for

a non-random subpopulation. To address this problem let Si ∈ {1, 0} be an observed binary post-

treatment selection indicator which is 1 if the outcome of some individual is observed and 0 otherwise.

Furthermore, we denote by Si(1) and Si(0) the two potential selection states. Then, we can express the

‡Note, however, that mortality could be a relevant outcome on its own.
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selection indicator and the observed outcome as functions of the respective potential states:

Si = Ti · Si(1) + (1− Ti) · Si(0),

Yi = Ti · Yi(1) + (1− Ti) · Yi(0) if Si = 1 and not observed otherwise.

I.e., at best (if Si = 1) one of the two potential outcomes is observed. As at least one potential

outcome remains unknown, both point and partial identification of treatment effects require further

assumptions. The first restriction maintained throughout the discussion is the so-called Stable Unit

Treatment Value Assumption (SUTVA, e.g., Rubin, 1990), which rules out interference between units

and general equilibrium effects of the treatment:

Assumption 1:

Yi(t)⊥Tj ∀j 6= i,

Si(t)⊥Tj ∀j 6= i.

‘⊥’ denotes independence. This implies that the potential post-treatment variables of any subject i are

unrelated to the treatment status of any other individual.

Causal inference requires the specification of the treatment assignment mechanism. If randomly

assigned, the treatment is independent of the potential values of the post-treatment variables S, Y .

However, in many observational studies randomization is assumed to hold only conditional on some

observed pre-treatment covariates X. This assumption is known as conditional independence assumption

(CIA), also referred to as ‘selection on observables’ or ‘unconfoundedness’, see for instance Imbens (2004)

and Imbens and Wooldridge (2009). As elsewhere in the sample selection literature, see for instance Lee

(2009) and Mealli and Pacini (2008b), we therefore assume that the joint distribution of the potential

outcomes and selection states is independent of the treatment given X: §

Assumption 2:

Ti⊥(S(1)i, Si(0), Yi(1), Yi(0))|Xi = x, ∀x ∈ X ,

where X denotes the support of X. In the further discussion, conditioning on X will be kept implicit.

Therefore, all results either refer to the experimental framework, see also the application further below,

or to an analysis within cells with the same values of X.

As shown in Table 1 and discussed in Zhang and Rubin (2003), the population can be divided into

four subpopulations or principal strata (denoted as G), according to the value the selection indicator

§Assumption 2 may be replaced by Ti⊥(Si(1), Si(0), Yi(0))|Xi = x ∀x ∈ X , if the inference is conditional on T = 1,
i.e., if one is only interested in treatment effects on the treated.
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Si(t) takes under different treatment states.

TABLE 1

Principal strata
Principal strata (Gi) Si(1) Si(0) appellation

11 1 1 Always observed
10 1 0 Compliers
01 0 1 Defiers
00 0 0 Never observed

The terms ‘always/never observed’, ‘compliers’, and ‘defiers’ are in the spirit of Imbens and Angrist

(1994) and Angrist et al. (1996), who, however, consider the conceptually different problem of treatment

endogeneity. Assumption 2 implies that the stratum G some individual belongs to is independent of

the treatment assignment and that the potential outcomes are independent of the treatment conditional

on the principal stratum. Therefore, any treatment effect defined within a principal stratum is a well

defined causal parameter. The problem for identification is that either Si(1) or Si(0) but never both

are known for any individual so that the principal stratum to which a subject belongs is not directly

observed. Without further assumptions neither the principal strata proportions nor the distributions of

the potential outcomes within each stratum are identified. To see this, note that the observed values of

Ti and Si generate the following four observed subgroups, denoted as o(Ti, Si), which are all mixtures of

two principal strata.

TABLE 2

Observed subgroups and principal strata
Observed subgroups o(Ti, Si) principal strata Yi observed
o(1, 1) = {i : Ti = 1, Si = 1} subject i belongs either to 11 or to 10 yes
o(1, 0) = {i : Ti = 1, Si = 0} subject i belongs either to 01 or to 00 no
o(0, 1) = {i : Ti = 0, Si = 1} subject i belongs either to 11 or to 01 yes
o(0, 0) = {i : Ti = 0, Si = 0} subject i belongs either to 10 or to 00 no

Therefore, also the probability to belong to an observed subgroup is a mixture of principal strata

proportions, henceforth denoted as πss′ ≡ Pr(S(1) = s, S(0) = s′). Let Ps|t represent the observed

selection probability conditional on treatment, Pr(S = s|T = t), in the population of interest. Under

Assumption 2, which ensures that the strata proportions conditional on the treatment are equal to the

unconditional strata proportions, the relation between the observed Ps|t and the latent πss′ is as follows:

Thus, point identification of causal effects can only be obtained by imposing unattractive parametric

assumptions, see for instance the discussion in Mealli and Pacini (2008b), Zhang et al. (2009), and Heck-

man (1974, 1976, 1979). However, intervals of treatment effects for particular strata that are consistent

with the observed data can be derived under milder assumptions. As mentioned before, treated and

non-treated units are only observed for the always observed (stratum 11), i.e. those observed irrespective
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Table 1: Observed probabilities and principal strata proportions

TABLE 3

Observed probabilities and principal strata proportions
Observed cond. selection prob. princ. strata proportions

P1|1 ≡ Pr(S = 1|T = 1) π11 + π10
P0|1 ≡ Pr(S = 0|T = 1) π01 + π00
P1|0 ≡ Pr(S = 1|T = 0) π11 + π01
P0|0 ≡ Pr(S = 0|T = 0) π10 + π00

of the treatment state. For this reason, most of the literature on bounding treatment effects under sam-

ple selection focuses on stratum 11, see Zhang and Rubin (2003), Grilli and Mealli (2008), Zhang et al.

(2008), and Lee (2009), with the exception of Lechner and Melly (2007).

We, however, argue that the always observed are generally not the only population of interest and

show that informative bounds can also be derived for other populations under assumptions which seem

plausible in many applications. In particular, we are interested in the effects in stratum 10 and in

the entire observed population (S = 1). Stratum 10 consists of those individuals observed with and not

observed without treatment. Thus, they can be referred to as ‘compliers’ in selection w.r.t. the treatment.

This stratum is interesting in many applications as it consists of the marginal population that changes

the selection state due to the treatment. Taking the wage effects of a job training program as an example,

we might be interested in whether the change in the employment state due to the training is accompanied

by an increase in the potential outcomes. If yes, this points to an increase in productivity that may be at

least partly responsible for finding employment. Furthermore, in a school voucher experiment investing

the effect of private schooling on college entrance examinations, the compliers are those who take the test

only under private schooling. They are therefore likely to be more disadvantaged and academically less

challenged at home than the always observed., which may be exactly the population policy makers want

to target.

The observed population is a mixture of always observed, compliers, and defiers (stratum 01: observed

under non-treatment, not observed under treatment) and therefore encounters individuals with different

‘selection behaviors’. Still, policy makers might want to learn about the effects on all individuals whose

outcomes are observed irrespective of their stratum affiliations. After all, the observed population contains

all subjects for which at least one outcome (under treatment and/or non-treatment) is observed so that

reasonable bounds on the effects may still be attained under the assumptions discussed below. In contrast,

for the never observed bounds are most likely very uninformative and in addition, this group does not

always appear policy relevant (e.g., under truncation by death, this is the group that never survives

so that their outcomes are not defined). Thus, the observed group appears to be the largest possible

subpopulation for which useful inference appears to be feasible.
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To link principal stratification to the econometric literature on sample selection, we conclude this

section by discussing the identification problem in a structural model (see also Huber, 2012, Mealli and

Pacini, 2008a, and Mellace and Rocci, 2010):

Yi = ϕ(Ti, Ui),

Si = I{ς(Ti, Vi) ≥ 0},

Ti = I{ψ(ζi) ≥ 0}, (1)

where I{·} is the indicator function, ϕ, ς, ψ are unknown functions, and U, V, ζ are unobserved terms.

ζ⊥U, V by random assignment (or conditional on X by the conditional independence assumption in

observational studies). The selectivity of S depends on the relationship of the unobserved terms U and

V . Note that the sample selection problem disappears when conditioning on V because then, S and U

are conditionally independent. Even though V is unknown, the problem can be controlled for if there

exists a function G(V ) so that

U⊥S|G(V ).

Imbens (2006) calls such a function ‘type of unit’. Principal stratification is a natural choice of G(·), as

G(v) = G(v′) if ς(t, v) = ς(t, v′) ∀ t, v 6= v′ ,

G(v) 6= G(v′) if ς(t, v) 6= ς(t, v′) for some t, v 6= v′ ,

and U⊥S|G(V ) by construction. Once we condition on the ‘type of unit’, selection becomes ignorable.

Principal stratification represents the coarsest possible choice of the type function. As pointed out by

Imbens (2006), the optimal type function is any functional that is constant on sets of values of V which,

for all values t, lead to the same value of S.

III. Assumptions and Partial Identification

Worst Case Bounds

We restrict the support of the potential outcomes to be bounded: Yi(1), Yi(0) ∈ Y ≡ [Y LB , Y UB ], where

−∞ < Y LB < Y UB <∞ are the values at the lower and upper end of the support Y, respectively. This

condition rules out infinite upper or lower bounds on the ATE in any population even without imposing

restrictions other than Assumptions 1 and 2. We will also assume that Y is continuous, whereas the

adaptation of our methods to discrete outcomes is discussed in online appendix A.5.
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Partial identification is obtained in three steps. In the first step, we derive sharp bounds on the

principal strata proportions using Assumption 2. As one can express three out of four proportions as a

function of the remaining one, we only need to bound the latter. Therefore, all bounds are computed

as functions of the defier proportion, but choosing any other principal stratum would entail the same

results. The second step (which is mostly discussed in the online appendix) gives the bounds on the mean

potential outcomes and the ATEs conditional on the defier proportion. It makes use of the fact that each

observed conditional mean outcome is a mixture of the potential outcome distributions of two principal

strata, with the mixing probabilities corresponding to the relative principal strata proportions:

f(Y |T = 0, S = 1) =
π11

π11 + π01
· f(Y (0)|G = 11) +

π01

π11 + π01
· f(Y (0)|G = 01) (2)

and

f(Y |T = 1, S = 1) =
π11

π11 + π10
· f(Y (1)|G = 11) +

π10

π11 + π10
· f(Y (1)|G = 10), (3)

Given the defier proportion (and thus, the mixing probabilities, in our case π11

π11+π01
, π01

π11+π01
and π11

π11+π10
, π10

π11+π10
,

respectively), the results of Horowitz and Manski (1995) (see Section 3.2 and Proposition 4 therein) can

be directly applied to derive sharp bounds on the mean potential outcomes, as well as any functional of

the potential outcomes that respects stochastic dominance (e.g. quantiles), in equations (2) and (3). Fi-

nally maximizing the ATEs in the second step over admissible defier proportions that satisfy Assumption

2 yields the sharp upper (lower) bounds on the ATEs. Similarly, one can bound other parameters such

as quantile treatment effects¶.

Concerning the bounds on the defier proportion, note that under Assumptions 1 and 2, Table 3

provides us with the following equations:

P1|0 − π01 = π11 ⇒ π01 ≤ P1|0,

P0|1 − π01 = π00 ⇒ π01 ≤ P0|1,

P1|1 − P1|0 + π01 = π10 ⇒ π01 ≥ P1|0 − P1|1,

so that

π01 ∈ [max(0, P1|0 − P1|1),min(P1|0, P0|1)]. (4)

¶One can adapt the results of Stoye (2010) to our framework to also bound spread parameters, e.g. variances of the
treatment effects.
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In the absence of further assumptions Zhang and Rubin (2003) derive the worst case bounds of the

ATE on the always observed (stratum 11), henceforth denoted as ∆11, which are shown to be sharp in Imai

(2008). For the sake of brevity, let Ȳt,s ≡ E(Y |T = t, S = s), i.e., the mean of Y given T = t and S = s

(which is only observed for S = 1). Furthermore, let FYt,s(y) ≡ Pr(Y ≤ y|T = t, S = s) and F−1
Yt,s

(q) ≡

inf{y : FYt,s
(y) ≥ q}, i.e., the conditional cdf and quantile function of Y given T = t and S = s. Finally,

let Ȳt,s(min |q) ≡ E(Y |T = t, S = s, Y ≤ F−1
Yt,s

(q)) and Ȳt,s(max |q) ≡ E(Y |T = t, S = s, Y ≥ F−1
Yt,s

(1−q)).

The upper and the lower bound of the ATE on the always observed ∆11 ≡ E(Y (1)−Y (0)|G = 11), denoted

as ∆UB
11 and ∆LB

11 , in Zhang and Rubin (2003), are

∆UB
11 = min

π01

[Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |(P1|0 − π01)/P1|0)],

∆LB
11 = max

π01

[Ȳ1,1(min |(P1|0 − π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)]. (5)

Thus, the authors suggest to optimize over all possible values of the defiers’ share π01 that are

consistent with the data to obtain the upper and lower bound. A first contribution of the present work

is to show that numerical optimization is not necessary. As outlined in the online appendix, ∆UB
11 and

∆LB
11 can be simplified to

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0),

∆LB
11 = Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0), (6)

where πmax
01 ≡ min(P1|0, P0|1), as the highest feasible defiers’ share maximizes the upper bound and

minimizes the lower bound. Note that the bounds are only informative (i.e., tighter than Y UB − Y LB)

if P1|0 > P0|1, which has also been noticed by Lee (2009). This implies that π11 > π00, i.e., that the

share of always observed is larger than the share of never observed. In this case, (P1|0 − πmax
01 )/P1|1 =

(P1|0 − P0|1)/P1|1 and (P1|0 − πmax
01 )/P1|0 = (P1|0 − P0|1)/P1|0, so that the bounds only depend on this

ratio of observed proportions.

In contrast to previous work we will now also derive bounds for the compliers (stratum 10), the defiers

(stratum 01), and the observed population. It is obvious from our previous discussion that the share of

compliers in o(1, 1) is π10/(π11 + π10) = (P1|1 − P1|0 + π01)/P1|1, i.e., the fraction of those who are not

always observed. This allows us to bound the upper and lower values of the mean potential outcome under

treatment by Ȳ1,1(max |(P1|1 − P1|0 + πmin
01 )/P1|1) and Ȳ1,1(min |(P1|1 − P1|0 + πmin

01 )/P1|1), respectively,

where πmin
01 ≡ max(0, P1|0−P1|1). However, nothing can be said about the mean potential outcome under

non-treatment, as there are no compliers in o(0, 1). This requires us to assume the theoretical upper and
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lower bounds of the outcome Y UB and Y LB . Then, the sharp upper and lower bounds of the ATE on

the compliers ∆10 ≡ E(Y (1)− Y (0)|G = 10), denoted as ∆UB
10 and ∆LB

10 , are

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y LB ,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0 + πmin

01 )/P1|1)− Y UB . (7)

These bounds are informative only if P1|0 − P1|1 < 0 ⇒ π10 > π01 (more compliers than defiers). Then,

(P1|1−P1|0 +πmin
01 )/P1|1 = (P1|1−P1|0)/P1|1. The proofs for the sharpness of these and all other bounds

proposed below are provided in the online appendix.

Similarly, the share of defiers in o(0, 1) is π01/(π11 + π01) = π01/P1|0. This allows us to bound the

upper and lower value of the mean potential outcome under non-treatment by Ȳ0,1(max |πmin
01 /P1|0) and

Ȳ0,1(min |πmin
01 /P1|0), respectively. Since there are no defiers in o(1, 1), we again need to invoke Y UB and

Y LB . The sharp upper and lower bounds for the ATE on the defiers ∆01 ≡ E(Y (1) − Y (0)|G = 01),

denoted as ∆UB
01 and ∆LB

01 , are

∆UB
01 = Y UB − Ȳ0,1(min |πmin

01 /P1|0),

∆LB
01 = Y LB − Ȳ0,1(max |πmin

01 /P1|0). (8)

These bounds are only informative if P1|0 − P1|1 > 0⇒ π01 > π10, i.e., if the defiers’ share is at least as

large as the compliers’ share. If this is true, then πmin
01 /P1|1 = (P1|0 − P1|1)/P1|1. This is, together with

the identification result for the compliers, an interesting finding because it implies that without imposing

monotonicity of selection in the treatment (as outlined below), bounds are informative either for the

defiers or for the compliers, but never for both populations. It also implies that unless P1|1 − P1|0 = 0,

either positive (if P1|1 − P1|0 > 0) or negative (if P1|0 − P1|1 > 0) monotonicity of S in T is consistent

with the data, but not both at the same time. See the discussion in the next subsubsection.

Finally, we derive the worst case bounds for the ATE on the observed population ∆S=1 ≡ E(Y (1)−

Y (0)|S = 1), which is a mixed population of always observed, compliers, and defiers. Since

Pr(S = 1) = Pr(S = 1|T = 1) · Pr(T = 1) + Pr(S = 1|T = 0) · Pr(T = 0)

= π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01,
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their respective shares in the observed population are given by

π11

π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01
=

(P1|0 − π01)

Pr(S = 1)
,

Pr(T = 1) · π10

π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01
=

Pr(T = 1) · (P1|1 − P1|0 + π01)

Pr(S = 1)
,

Pr(T = 0) · π01

π11 + Pr(T = 1) · π10 + Pr(T = 0) · π01
=

Pr(T = 0) · π01

Pr(S = 1)
.

In online appendix A.1.4 we use this fact to show that the bounds on ∆S=1 are given by

∆UB
S=1 =

(P1|0 − πmax
01 ) · Pr(T = 0) · Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)

Pr(S = 1)

−
(P1|0 − πmax

01 ) · Pr(T = 1) · Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0)

Pr(S = 1)

+
Pr(T = 1) · P1|1 · Ȳ1,1 − Pr(T = 0) · P1|0 · Ȳ0,1

Pr(S = 1)

+
Pr(T = 0) · πmax

01 · Y UB − Pr(T = 1) · (P1|1 − P1|0 + πmax
01 ) · Y LB

Pr(S = 1)
(9)

∆LB
S=1 =

(P1|0 − πmax
01 ) · Pr(T = 0) · Ȳ1,1(min |(P1|0 − πmax

01 )/P1|1)

Pr(S = 1)

−
(P1|0 − πmax

01 ) · Pr(T = 1) · Ȳ0,1(max |(P1|0 − πmax
01 )/P1|0)

Pr(S = 1)

+
Pr(T = 1) · P1|1 · Ȳ1,1 − Pr(T = 0) · P1|0 · Ȳ0,1

Pr(S = 1)

+
Pr(T = 0) · πmax

01 · Y LB − Pr(T = 1) · (P1|1 − P1|0 + πmax
01 ) · Y UB

Pr(S = 1)
. (10)

The identification region shrinks as the shares of compliers and/or defiers decreases. In the special

case that both shares are zero the ATE on the observed population is point identified. If the share of

only one population is equal to zero the bounds are equivalent to those under monotonicity which we

will derive in the next subsubsection. Another result worth noting is that the bounds on the observed

population are always informative. E.g., if P1|0 < P0|1, the bounds become

∆UB
S=1 =

Pr(T = 1) · P1|1

Pr(S = 1)
· (Ȳ1,1 − Y LB) +

Pr(T = 0) · P1|0

Pr(S = 1)
· (Y UB − Ȳ0,1)

and

∆LB
S=1 =

Pr(T = 1) · P1|1

Pr(S = 1)
· (Ȳ1,1 − Y UB) +

Pr(T = 0) · P1|0

Pr(S = 1)
· (Y LB − Ȳ0,1),

which happen to be equal to the bounds under π11 = 0, i.e., in the absence of always observed. Thus,
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even though informative bounds cannot be derived for the always observed if P1|0 < P0|1, they can still

be derived for the observed population.

Monotonicity

A commonly imposed assumption in the literature on partial identification of treatment effects under

sample selection is weak monotonicity of selection w.r.t. the treatment:

Assumption 3:

Pr(Si(1) ≥ Si(0)) = 1 (monotonicity of selection).

In terms of the structural model in (1) this can be stated as

Assumption 3SM:

ς(1, Vi) ≥ ς(0, Vi) ∀ subjects i.

The monotonicity assumption requires that the potential selection state never decreases in the treat-

ment and, thus, rules out the existence of the defiers (stratum 01). A symmetric result is obtained

by assuming Pr(Si(0) ≥ Si(1)) = 1 which implies that stratum 10 does not exist. As already men-

tioned before, assuming Pr(Si(1) ≥ Si(0)) = 1 (positive monotonicity) is only consistent with the data if

P1|1−P1|0 ≥ 0 and Pr(Si(0) ≥ Si(1)) = 1 (negative monotonicity) if P1|0−P1|1 ≥ 0. These are necessary,

albeit not sufficient conditions for the respective monotonicity assumption. For the sake of brevity and

due to the symmetry of the argumentation, we will only focus on Assumption 3 (positive monotonicity)

in the subsequent discussion.

The plausibility of monotonicity depends on the empirical context. E.g., it is not necessarily satisfied

in the evaluation of the returns to a job training. In fact, employment (S) might react negatively on the

training (T ) due to reduced job search effort while being trained, a phenomenon known as ‘lock-in’ effect.

Monotonicity might therefore only be plausible in later periods after the accomplishment of the training.

The assumption seems more innocuous when evaluating the effectiveness of private schooling on college

entrance examinations, given that private schooling offers a better education than public alternatives

and affects the preferences for academic achievement. It appears reasonable to assume that students are

more likely to take the test when receiving better education or motivation to pursue an academic career

so that defiers can be ruled out.

Monotonicity has been considered in Lee (2009), Zhang and Rubin (2003), and Zhang et al. (2008) to

bound the ATE on the always observed (stratum 11) and in Lechner and Melly (2007) to derive bounds
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for the treated and observed population. Lee (2009) shows that the following bounds are sharp for the

ATE on the always observed:

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1. (11)

Under monotonicity, o(0, 1) consists only of individuals belonging to stratum 11 so that Ȳ0,1 is the mean

potential outcome of the always observed under non-treatment. Furthermore, P1|0 = π11. Therefore,

the share of the always observed in o(1, 1) is π11/(π11 + π10) = P1|0/P1|1. In the most extreme cases,

either the upper or lower P1|0/P1|1 share of the outcome distribution in o(1, 1) represents the potential

outcomes of the always observed under treatment, which gives rise to the upper and lower bounds on

∆11 that are tighter than the worst case bounds.

Two points are worth noting. First, we have seen in the last section that if π00 > π11, informative

bounds are only obtained for the observed population and either compliers or defiers without further

assumptions. Introducing monotonicity also identifies informative bounds for the always observed, which

turn out to be tighter than under the stochastic dominance assumption discussed below. Second, if

P1|0 − P1|1 > 0, the bounds are not informative, because π01 cannot be zero. As discussed before, the

data can provide evidence against (positive or negative) monotonicity.

We now derive the bounds on the ATE on the compliers, ∆10, which are just special cases of the worst

case bounds given that π01 = 0. Therefore, they are sharp given the sharpness of the worst case bounds.

Thus, under monotonicity ∆10 is bounded by

∆UB
10 = Ȳ1,1(max |(P1|1 − P1|0)/P1|1)− Y LB ,

∆LB
10 = Ȳ1,1(min |(P1|1 − P1|0)/P1|1)− Y UB . (12)

Monotonicity does not shrink the bounds for the compliers, as the worst case bounds under non-treatment

are unaffected by ruling out defiers. However, the assumption assures that the bounds are informative.

Indeed, in the worst case scenario the bounds were only informative if P1|0−P1|1 < 0 which implies that

the lower bound on the defiers’ share is zero (πmin
01 = 0), see (4).

Assumption 3 has identifying power for the observed population, which is now only a mixture of
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always observed and compliers. The respective proportions of these groups are

π11

π11 + Pr(T = 1) · π10
=

P1|0

Pr(S = 1)
,

Pr(T = 1) · π10

π11 + Pr(T = 1) · π10
=

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
,

Again, the bounds are a special case of the worst case bounds under π01 = 0 and given by

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y LB ,

(13)

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(min |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y UB ,

(14)

The identification region shrinks as the complier population decreases and ∆S=1 is point identified in

the absence of compliers so that P1|1 − P1|0 = 0. Then, the observed population consists only of always

observed individuals.

Stochastic Dominance

Assumption 4 formalizes stochastic dominance which has been considered by Zhang and Rubin (2003),

Grilli and Mealli (2008), Zhang et al. (2008), and Lechner and Melly (2007), see also Blundell et al. (2007)

for a related, but somewhat different form of dominance.

Assumption 4:

Pr(Yi(t) ≤ y|G = 11) ≤ Pr(Yi(t) ≤ y|G = 10), ∀ y ∈ [Y LB , Y UB ], t ∈ {0, 1},

and

Pr(Yi(t) ≤ y|G = 11) ≤ Pr(Yi(t) ≤ y|G = 01), ∀ y ∈ [Y LB , Y UB ], t ∈ {0, 1}

(stochastic dominance).

I.e., the potential outcome among the always observed at any rank of the outcome distribution and
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in any treatment state is at least as high as that of the compliers or the defiers, respectively.‖ Taking the

evaluation of the returns to a job training as example, it implies that the always observed have potential

wages that are at least as high as the ones of other groups. To justify Assumption 4, note that the always

observed are employed irrespective of the training. Therefore, they are likely to be more motivated and/or

able than other populations. Zhang et al. (2008) argue that ability tends to be positively correlated with

wages and thus, the stochastic dominance assumption (or ‘positive selection’) appears to be plausible.

Similar arguments hold for the evaluation of private schooling with regard to the performance in college

entrance examinations. As the always observed are those taking the exam with and without private

schooling, it seems reasonable to assume that their potential test scores are higher than those of other

groups.

Under Assumption 4, Imai (2008) shows that the following bounds proposed by Zhang and Rubin

(2003) are sharp for the ATE on the always observed:

∆UB
11 = Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0). (15)

As E[Y (t)|G = 11] ≥ E[Y (t)|G = 10], E[Y (t)|G = 11] ≥ E[Y (t)|G = 01] for t ∈ {0, 1}, the means

Ȳ1,1, Ȳ0,1 constitute the lower bounds of E[Y (1)|G = 11] and E[Y (0)|G = 11], respectively. Thus,

Assumption 4 is likely to shrink the worst case bounds because Ȳ0,1 ≥ Ȳ0,1(min |(P1|0 − πmax
01 )/P1|0) and

Ȳ1,1 ≥ Ȳ1,1(min |(P1|0−πmax
01 )/P1|1). Note that width of the bounds is maximized if the share of the always

observed is smaller than the one of the never observed. Then, Ȳ1,1(max |(P1|0−πmax
01 )/P1|1) = Ȳ1,1(max |0)

and Ȳ0,1(max |(P1|0−πmax
01 )/P1|0) = Ȳ0,1(max |0) so that they are uninformative which requires us to use

the theoretical upper bound Y UB .

Stochastic dominance implies the following bounds for the ATE on the compliers:

∆UB
10 = Ȳ1,1 − Y LB ,

∆LB
10 = min

π01

[
Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)

]
. (16)

The intuition is that any mean potential outcome of the compliers is at best as high as that of the

always observed, so that Ȳ1,1 and Ȳ0,1(max |(P1|0 − π01)/P1|0) are upper bounds for E[Y (1)|G = 10]

and E[Y (0)|G = 10], respectively. Thus, the bounds are likely tighter than the worst case bounds

‖For our purpose, which is the derivation of bounds on the ATE, the weaker mean dominance assumption, i.e.
E[Y (t)|G = 11] ≥ E[Y (t)|G = 10] and E[Y (t)|G = 11] ≥ E[Y (t)|G = 01], t ∈ {0, 1}, is sufficient. However, stochastic
dominance is required when considering other parameters as for instance the quantile treatment effect.

16



since Ȳ1,1 ≤ Ȳ1,1(max |(P1|1 − P1|0 + π01)/P1|1) and Ȳ0,1(max |(P1|0 − π01)/P1|0) ≤ Y UB . In particular,

stochastic dominance in general raises the lower bound of the effect, since it does not depend on Y UB

anymore. This is relevant for empirical applications, where the lower bound is often more interesting

than the upper bound, as it provides evidence on the existence of a positive effect. Note that since

Ȳ1,1(min |(P1|1−P1|0+π01)/P1|1) is minimized for π01 = πmin
01 and Ȳ0,1(max |(P1|0−π01)/P1|0) is maximized

for π01 = πmax
01 , we need to minimize ∆LB

10 over all possible values of π01.

In an analogous way, the bounds of the ATE on the defiers can be derived as

∆UB
01 = max

π01

[
Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |π01/P1|0)

]
,

∆LB
01 = Y LB − Ȳ0,1. (17)

As for the compliers, any mean potential outcome of the defiers can be at best as high as the one of the

always observed so that Ȳ1,1(max |(P1|0 − π01)/P1|1) constitutes the upper bound under treatment and

Ȳ0,1 the upper bound under non-treatment. These bounds are likely to be narrower than the worst case

bounds since Ȳ1,1(max |(P1|0−π01)/P1|1) ≤ Y UB and Ȳ0,1 ≤ Ȳ0,1(max |π01/P1|0). Since Ȳ1,1(max |(P1|0−

π01)/P1|1) is maximized for π01 = πmax
01 and Ȳ0,1(min |π01/P1|0) is minimized for π01 = πmin

01 , we need to

maximize ∆UB
01 over all possible values of π01.

Finally, the bounds of the ATE on the observed population are identified by

∆UB
S=1 =

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ1,1(max |(P1|0 − πmax

01 )/P1|1)

−
P1|0 − Pr(T = 1) · πmax

01

Pr(S = 1)
Ȳ0,1

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0 + πmax
01 )

Pr(S = 1)
· Y LB

∆LB
S=1 =

Pr(T = 1) · P1|1 + Pr(T = 0) · (P1|0 − πmax
01 )

Pr(S = 1)
· Ȳ1,1

−
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ0,1(max |(P1|0 − πmax

01 )/P1|0)

+
Pr(T = 0) · πmax

01

Pr(S = 1)
· Y LB −

Pr(T = 0) · P1|0

Pr(S = 1)
· Ȳ0,1 (18)

For both the upper and the lower bound of ∆S=1, stochastic dominance eliminates Y UB present in the

worst case scenario. The identification region shrinks since the bounds for always observed, compliers,

and defiers become narrower. However, if the never observed outnumber the always observed, the bounds

correspond to the worst case ones. Interestingly, the bounds on ∆S=1 are tighter than those on ∆11.

Again, we obtain more informative bounds for the observed population than for the always observed if
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π00 > π11.

Monotonicity and Stochastic Dominance

We subsequently investigate the identifying power of combining Assumptions 3 and 4. This was first

considered by Zhang and Rubin (2003) who derive the following bounds for the always observed, which

were shown to be sharp by Imai (2008):

∆UB
11 = Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1,

∆LB
11 = Ȳ1,1 − Ȳ0,1. (19)

These bounds are a simplification of those under stochastic dominance for π01 = 0. The upper bound is

the same as under monotonicity and is, thus, not affected by additionally assuming stochastic dominance,

which does not change the conditional means to be compared. However, the lower bound is tightened by

the fact that Ȳ1,1 now constitutes the lower bound of the mean potential outcome of the always observed

under treatment.

In the same manner, the bounds on the compliers simplify to

∆UB
10 = Ȳ1,1 − Y LB ,

∆LB
10 = Ȳ1,1(min |1− P1|0/P1|1)− Ȳ0,1. (20)

The upper bound is the same as under stochastic dominance and unaffected by adding monotonicity,

because ruling out defiers does not change the comparison outcome under non-treatment, which is still

the theoretical lower bound (as compliers are not observed under non-treatment). Also for the lower

bound, monotonicity does not bring any benefits for the same reasons as under Assumption 3: For all

admissible values π01 ≥ 0, π01 = 0 minimizes the lower bound of the mean potential outcome under

treatment. Therefore, setting π01 = 0 by assumption does neither increase the lower bound of the mean

potential outcome, nor of ∆10.
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The bounds of the ATE on the observed population are identified by

∆UB
S=1 =

P1|0

Pr(S = 1)
· (Pr(T = 0) · Ȳ1,1(max |P1|0/P1|1)− Ȳ0,1)

+
Pr(T = 1) · P1|1

Pr(S = 1)
· Ȳ1,1 −

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· Y LB ,

∆LB
S=1 =

P1|0

Pr(S = 1)
· (Ȳ1,1 − Ȳ0,1) +

Pr(T = 1) · (P1|1 − P1|0)

Pr(S = 1)
· (Ȳ1,1 − Ȳ0,1)

= Ȳ1,1 − Ȳ0,1. (21)

Compared to just invoking monotonicity, the upper bound of ∆S=1 is unaffected by the introduction

of stochastic dominance. This is due to the fact that Ȳ1,1 still represents the weighted average of the

mean potential outcomes under treatment of the always observed and the compliers (even if the potential

outcomes are now restricted in a particular way by stochastic dominance). Nor does the assumption

change the bound of any other potential outcome relevant to the upper bound. Stochastic dominance

does, however, change the lower bound on ∆S=1. Ȳ0,1 now represents the mean potential outcome under

non-treatment for all observed individuals because it constitutes the upper bound on the compliers’ mean

potential outcome. Therefore, an interesting result of imposing both assumptions is that the lower bound

now coincides with the one for the always observed.

IV. Estimation

This section briefly sketches estimation, which is mostly based on the sample analogs of the bounds

derived under the various assumptions (even though the lower bound for the compliers and the upper

bound for the defiers under stochastic dominance deserve particular consideration, as discussed below).

To this end, we define the following sample parameters:

P̂1|1 ≡
∑n
i=1 Si · Ti∑n
i=1 Ti

, P̂0|1 ≡ 1−
∑n
i=1 Si · Ti∑n
i=1 Ti

,

P̂1|0 ≡
∑n
i=1 Si · (1− Ti)∑n
i=1(1− Ti)

, P̂0|0 ≡ 1−
∑n
i=1 Si · (1− Ti)∑n
i=1(1− Ti)

,

ˆ̄Y1,1 ≡
∑n
i=1 Yi · Si · Ti∑n
i=1 Si · Ti

, ˆ̄Y0,1 ≡
∑n
i=1 Yi · Si · (1− Ti)∑n
i=1 Si · (1− Ti)

,

ˆ̄Yt,s(max |q) ≡
∑n
i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≥ ŷ1−q}

,

ˆ̄Yt,s(min |q) ≡
∑n
i=1 Yi · I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}∑n
i=1 I{Si = s} · I{Ti = t} · I{Y ≤ ŷq}

,

ŷq ≡ min

{
y :

∑n
i=1 Si · Ti · I{Yi ≤ y}∑n

i=1 Si · Ti
≥ q
}
,
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where I{·} is the indicator function. Using these expressions instead of the population parameters

in the formulas for the bounds immediately yields feasible estimators. However, note that depending

on the parameters considered, particular common support conditions have to be satisfied. E.g., the

estimation of P̂1|1, P̂0|1 and P̂1|0, P̂0|0 requires that Pr(T = 1) > 0 and Pr(T = 1) < 1, respectively (or

that 0 < Pr(T = 1) < 1 for the joint estimation of P̂1|1, P̂0|1, P̂1|0, P̂0|0). Likewise, ˆ̄Y1,1 demands that

E(S ·D) > 0 and ˆ̄Y0,1 that E(S ·D) < 1.

√
n-consistency and asymptotic normality of the estimators of the bounds for the compliers and the

observed population under both monotonicity and stochastic dominance directly follows from the results

of Lee (2009). To see this, first consider the estimators of ∆UB
11 ,∆LB

11 under monotonicity alone:

∆̂UB
11 = ˆ̄Y1,1(max |P̂1|0/P̂1|1)− ˆ̄Y0,1,

∆̂LB
11 = ˆ̄Y1,1(min |P̂1|0/P̂1|1)− ˆ̄Y0,1.

In his appendix, Lee (2009) shows
√
n-consistency and asymptotic normality using a GMM framework

based on Theorems 2.6 and 7.2 of Newey and McFadden (1994). It suffices to show the desirable properties

for ˆ̄Y1,1(max |P̂1|0/P̂1|1) and ˆ̄Y1,1(max |P̂1|0/P̂1|1) (or just one of them due to the symmetry of the problem)

because these estimators are independent of the observed mean outcome under non-treatment ˆ̄Y0,1.

Now consider the estimators for the compliers under monotonicity:

∆̂UB
10 = ˆ̄Y1,1(max |1− P1|0/P1|1)− Y LB ,

∆̂LB
10 = ˆ̄Y1,1(min |1− P1|0/P1|1)− Y UB . (22)

Y LB , Y UB are constants not relevant for the properties of the estimators. Furthermore, note that the

problem of estimating ˆ̄Y1,1(max |1 − P1|0/P1|1) is symmetric to ˆ̄Y1,1(max |P̂1|0/P̂1|1) (and ˆ̄Y1,1(min |1 −

P1|0/P1|1) to ˆ̄Y1,1(max |P̂1|0/P̂1|1)). Therefore, Lee’s results immediately apply to the estimators of the

bounds for the compliers. This in turn implies
√
n-consistency and asymptotic normality of ∆̂UB

S=1, ∆̂
LB
S=1,

as the observed population is just a weighted average of the always observed and compliers. Finally,

note that imposing stochastic dominance in addition to monotonicity replaces some parameters in the

estimators by simple conditional means, which again entails
√
n-consistency and asymptotic normality

of all estimators.

However, under stochastic dominance alone, the latter result does not apply to the lower bound of the

ATE on the compliers and the upper bound of the ATE on the defiers, because they contain min and max

operators, respectively. Hirano and Porter (2012) show that for parameters that are non-differentiable
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functionals of the data (such as min/max operators), asymptotically unbiased estimators do not exist.

Therefore, the sample analog estimators of ∆LB
10 = minπ01

[
Ȳ1,1(min |(P1|1 − P1|0 + π01)/P1|1)− Ȳ0,1(max |(P1|0 − π01)/P1|0)

]
and ∆UB

01 = maxπ01

[
Ȳ1,1(max |(P1|0 − π01)/P1|1)− Ȳ0,1(min |π01/P1|0)

]
are likely downward and upward

biased, respectively, due to optimizing over the defier proportion. This yields overly conservative (i.e.

too large) intervals for the ATEs as well as confidence regions that are based on standard asymptotics or

bootstrapping. In our application (see the next section), we in addition to bootstrap-based inference also

consider the method of Chernozhukov et al. (2013) to obtain half-median-unbiased point estimates and

confidence intervals for the lower bound of the compliers. The procedure is described in online appendix

A.6.

V. Application

In this section, we use our methods to re-evaluate the school voucher experiment of Angrist et al. (2006).

As mentioned before, the authors investigate the effects of school vouchers provided to high school students

in the course of Colombia’s PACES program (taking place between 1991 and 1997). The outcome we

focus on are the reading scores achieved in the centralized college entrance examinations, the ICFES,

several years later. Many of the vouchers that covered half the cost of private secondary schooling were

randomly assigned by a lottery among applicants so that Assumption 2 appears likely to hold. The

experimental estimates in Angrist et al. (2006) suggest that vouchers increase reading test scores on

average by roughly 0.7 points (or roughly 0.12 standard deviations) and this result is significant at the

5% level.

However, only 30.2% (or 1,223 students) of the 4,044 applicants actually took the test. Therefore,

the experimental estimates might be flawed by selection bias. E.g., if the treatment positively affects

the likelihood to take the test so that also a priori less motivated students are induced to participate,

then the distribution of motivation differs across treated and non-treated students conditional on being

tested. If motivation positively affects the test scores, this entails a (downward) bias of the estimated

effect. For this reason, Angrist et al. (2006) use both censored regression to control for sample selection

and derive nonparametric bounds on the ATE of the always observed population based on Assumptions 3

(monotonicity of selection) and 5 (monotone treatment response). On balance, they still find substantial

gains from the PACES program.

We complement their analysis by estimating the ATE under different sets of assumptions and for

several populations. To be specific, we invoke Assumption 3 (monotonicity of selection) and/or Assump-

tion 4 (stochastic dominance) to bound the ATE on the always observed, compliers, and the observed
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population. Both assumptions appear to be plausible in this context. Monotonicity roots in the presump-

tion that the treatment weakly increases participation in the exam because private schools are plausibly

more committed to the academic success of their (paying) students, which may serve as measure of

school quality. Stochastic dominance seems reasonable because the always observed are those taking the

exam irrespective of the treatment and are, thus, likely to have higher potential test scores than other

groups, for instance due to ability or motivation. We do not consider Assumption 5 (monotone treatment

response) which restricts the direction of the effects.

Estimation is based on the approach outlined in online appendix A.5. Concerning inference, we

compute the confidence intervals based on the method described in Imbens and Manski (2004), which

contains the treatment effect of interest with a probability of at least 95%:

(
∆̂LB − 1.645 · σ̂LB , ∆̂UB + 1.645 · σ̂UB

)
,

where ∆̂LB , ∆̂UB are the estimated bounds and σ̂LB , σ̂UB denote their respective estimated standard er-

rors.∗∗ We compute the latter by bootstrapping the original sample 1999 times and estimating ∆̂LB , ∆̂UB

in each bootstrap replication in order to estimate their distributions. As worst case bounds Y UB and

Y LB , we take the maximum and minimum test scores observed among test takers.

The estimates of the conditional selection probabilities, P̂1|1 = 0.328, P̂1|0 = 0.267, P̂0|1 = 0.672, and

P̂0|0 = 0.733, allow us to bound the strata proportions. Table 4 reports these bounds and shows that

the lower bound on the share of the never observed is larger than the upper bound on the share of any

other population and in particular than the one of the always observed. Therefore, without monotonicity

the bounds on this population will be uninformative in the worst case scenario and quite large under

stochastic dominance. Moreover, the lower bound of the compliers’ share is larger than zero so that

positive monotonicity is consistent with the data whereas negative is not. In Table 4 we also provide the

estimated strata proportions and the mixture probabilities under Assumption 3 (monotonicity), which

are then point identified.

TABLE 4

Estimated (bounds on the) proportions of latent strata
Latent strata Bounds without monotonicity Proportions under monotonicity
Always observed [0.000, 0.267] 0.267
Compliers [0.061, 0.328] 0.061
Never observed [0.406, 0.672] 0.672
Defiers [0.000, 0.267] -
Always observed among observed 0.897
Compliers among observed 0.103

∗∗The confidence intervals apply to cases where the distance between the upper and lower bound of the effect is bounded
away from zero, see the discussion in Stoye (2009).
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Table 5 presents the results for the always observed, compliers, and the observed population under

various assumptions. The bounds of the ATE estimates are given in square brackets, the 95% confidence

intervals in round brackets. The worst case bounds are not informative for the always observed and very

wide for any other population. Monotonicity narrows the bounds substantially for the always observed

and the observed population, even though the identification region still includes the zero. As discussed

before, monotonicity has no identifying power for the compliers as a zero proportion of π01 implies the

widest bounds possible.

Stochastic dominance entails narrower bounds than the worst case scenario for all three populations.

However, for the always observed, the identification region is substantially larger than under monotonicity.

Using both assumptions jointly brings important improvements. The lower bounds of the ATEs on the

always observed and the observed population are now significantly larger than zero and point to a positive

effect of private schooling. Also the upper bounds do not appear unreasonably high. For the observed

population, this is due to the small share of compliers (10.28%) to which the theoretical upper bound Y UB

applies. For the compliers alone, the bounds are not more informative than under stochastic dominance,

as monotonicity does not further narrow the bounds for reasons discussed in Section 3.

TABLE 5

ATE estimates and confidence intervals
Assumptions Always observed Compliers Observed

Worst case [ -31.000, 32.000] [ -24.593, 25.432] [ -16.587, 17.413]
Not informative ( -26.503, 27.086) ( -17.483, 18.276)

Monotonicity [ -1.113, 2.547] [ -24.593, 25.432] [ -7.736, 8.645]
( -1.892, 3.308) ( -26.503, 27.086) ( -8.529, 9.450)

Stochastic dominance [ -13.396, 17.079] [ -13.396, 17.604] [ -14.676, 17.413]
( -15.064, 18.344) ( -15.042, 18.754) ( -15.856, 18.276)

Mon. + stoch. dom. [ 0.683, 2.547] [ -7.514, 17.604] [ 0.683, 3.369]
( 0.140, 3.308) ( -9.132, 18.754) ( 0.140, 4.423)

Notes: Bounds in square brackets and confidence intervals in round brackets. Confidence
intervals are based on 1999 bootstraps. All results are based on the estimators for discrete
outcomes discussed in online appendix A.5. Applying the procedure of Chernozhukov et al.
(2013) to the lower bound of the ATE on the compliers under stochastic dominance gives an
estimate of -12.428 with a lower confidence bound of -13.796. In the algorithm described in
online appendix A.6, we set α = 0.05, m = 100, B = 1, 999 and R = 200, 000. We thank
Xuan Chen and Carlos Flores for providing us with the Matlab code of their paper Chen
and Flores (2012), which implements the Chernozhukov et al. (2013) procedure, and for their
helpful advice about its use.

All in all our results give support to the conclusions of Angrist et al. (2006) suggesting that the PACES

program in Colombia had a positive effect on the reading scores in college entrance examinations. The

lower bounds of the ATEs on those who would take the test irrespective of private schooling (supposedly

the most able and motivated) and on all test takers are positive when invoking both monotonicity and

stochastic dominance. Furthermore, the Imbens and Manski (2004) confidence intervals suggest that

these ATEs are significantly different from zero. For the compliers alone, however, we cannot reject the

null hypothesis of a zero effect based on our assumptions.
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VI. Conclusion

This paper discusses the partial identification of average treatment effects (ATE) in the presence of sam-

ple selection, implying that outcomes are only observed for a non-random subpopulation. The previous

work considering this problem has predominantly focussed on bounding the ATE on the ‘always ob-

served’, whose outcomes are observed irrespective of the treatment received. Here, we also derived sharp

bounds for other populations such as the ‘compliers’ (observed under treatment, not observed under

non-treatment) and the observed population (all individuals whose outcomes are observed), which is a

mixture of several groups.

These populations appear to be relevant for policy recommendations in many empirical contexts.

Taking, for instance, the compliers, one might be interested whether switching the selection state as a

reaction on the treatment comes along with (and may be rooted in) a particular treatment effect. An

example is the effect of a training on wages, which might induce formerly unemployed individuals to work

because their potential wage surpasses their reservation wage after the training. Furthermore, it might be

preferable to make causal statements rather for larger than for smaller shares of the total population. The

largest subgroup for which outcomes are observed is the observed population, so that results obtained for

these individuals are likely to have more external validity than those based on smaller (and unobservable)

subgroups.

In the discussion on identification, we have argued that the combination of monotonicity (of selection

in the treatment) and stochastic dominance (of the potential outcomes of the always observed over those

of others) assumptions may bear considerable identifying power even for populations whose outcomes are,

in contrast to the always observed, only observed in one treatment state. In particular, it has been shown

that the lower bound of the ATE on the observed population coincides with the lower bound for the

always observed. This is an important result, as we are often most interested in the lower bound, which

gives evidence about the existence of a positive effect. Its practical relevance has been demonstrated by

means of an empirical application to a school voucher experiment.

Finally, the paper also shows that principal stratification provides an adequate framework for a better

understanding of the identifying assumptions involved, because they are expressed in terms of individual

selection behavior rather than the less tangible relation of error terms in some structural model. For

example, we have found that if the share of the always observed is smaller than the one of never observed,

bounds on the always observed are not informative if we do not assume monotonicity of selection in the

treatment. In contrast, we can still bound the ATE on the observed population. This might be hard to
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see from the equations characterizing a structural model.
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