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ABSTRACT: Users of dynamic light scattering (DLS) are
challenged when a sample of nanoparticles (NPs) contains
dust. This is a frequently inevitable scenario and a major
problem that critically affects the reproducibility and accuracy
of DLS measurements. Current methods approach this
problem via photon correlation spectroscopy, but remedy
exists only for a few special cases. We introduce here a general
criterion and a clearly defined measure to discriminate between
NPs and dust particles. The experimental results show that, in
contrast to photon correlation spectroscopy, hypothesis testing
and the statistical moment analysis of the photon count
distribution provides an accurate and precise way to character-
ize NPs and Brownian dynamics in the presence of dust. To
demonstrate, analyses of silica, iron oxide, and gold NPs of low
polydispersity are presented.

The interest in nanoparticles (NPs) and colloidal
phenomena stretches well beyond the classical realm of

soft matter physics and physical chemistry,1 and by now,
interdisciplinary topics, such as nanomedicine and nano-
toxicology, have become key research areas. Their fundamental
focus is on understanding and either exploiting or suppressing
harmful interactions at the nano−bio interface.2−6 Dynamic
light scattering (DLS) is one of the techniques found in any
laboratory interested in measuring the size of NPs,7−10 and yet,
the nuances of the theory, the experimental procedure, and data
analysis are frequently loosely interpreted. This is despite the
efforts of emphasizing the importance of respecting the
fundamental concepts again and again11−13 and proposing
standardized procedures.14−17 Whether this is partially
responsible for questionable reproducibility and for the setback
in translating NPs into clinical applications18,19 is under
debate.20,21 Nonetheless, the gravity of this issue is illustrated
well by the fact that national testing and metrology laboratories
were unable to provide consistent DLS results on standard
reference NPs dedicated to “evaluate and qualif y methodology
and/or instrument performance related to the physical/dimensional
characterization of nanoscale particles used in preclinical
biomedical research” issued by NIST (National Institute of
Standards and Technology).22−24

Although current DLS apparatus have high-quality parts and
the underlying theory itself grants accurate and precise
results,25−27 the quality of the experimental results, that is,
the accuracy and precision of determining particle size, is
dictated by the purity of the samples and by the capacity of the

algorithms regarding information collection, processing, and
analysis to work with, in particular, dusty samples. In light
scattering, dust is a generic term that refers to any foreign
matter and impurities found in the sample, such as large
particles, aggregates/agglomerates, traces, and remnants of the
synthesis. The importance of sample purification, such as
filtering, distillation, or centrifugation, cannot be stressed
enough. Yet, there are situations where purification is neither
applicable nor provides any desirable outcome.28 While the
“number-averaged” presence of dust is usually negligible, e.g.,
they seldom appear on TEM micrographs, their unwanted
“intensity-weighted” contribution to the scattering intensity in
the form of unpredictable and anomalous fluctuations is
significant enough to severely bias the results of the analysis.
Despite the fact that DLS is a mature technique, this is still a
major problem that critically limits the reproducibility and
accuracy of the measurements, especially at lower scattering
angles, because it artificially increases the apparent size and
broadens the apparent size distribution. The simplest attempt
in minimizing these deleterious outcomes is observing
scattering in backward direction (near 180°), but this
unfortunately limits the length-scale observed. Therefore,
DLS analysis through photon correlation spectroscopy (PCS)
and autocorrelation functions have been in the focus for a long
time.29 To analyze the correlation function, the method of
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cumulants30−34 and CONTIN35,36 are the most cited
approaches, although many alternatives and improvements
have been proposed.10,37−42 These include Bayesian analysis,
maximum entropy, and neural network models.43−49 All these
approaches address the intensity auto correlation function,
while it is well-known that the analysis of the correlation
function is an ill-posed inverse problem, which becomes
unreliable as soon as there is dust in the sample. In such cases,
the correlation function displays multiple decays, and by
inspecting solely the correlation function, one cannot
discriminate between intensity fluctuations from, e.g., dust
and those from larger but otherwise regular NPs. Also, given
that each sample requires a different procedure, a different time
range, the “...elimination of dust f rom a solution is considered by
many to be a black art.”50 While certain special cases can be
treated,51,52 e.g., a nonzero baseline of the correlation function,
it is impossible to give a universal recipe that guarantees a
solution to the problem of corrupted correlation functions. To
our knowledge, “dust-filter” algorithms of commercial instru-
ments (Brookhaven, Wyatt, Anton Paar, Malvern) test either
the average or the variance of the fluctuations of the scattering
intensity obtained by short measurements and then identify and
discard outliers by setting a threshold.53 We recognize three
major shortcomings of this approach. First, when using this
approach, it is inherently assumed that apart from outliers, most
of the measurements are correct.53 Second, the threshold is
more or less chosen arbitrarily for each sample and expected
particle size. Third, it is not taken into account that the rate and
the amplitude of the fluctuations is defined not only by the
particle size but also by (a) the Brownian dynamics of the NPs,
(b) the sample size collected, and (c) the integration time of
counting the scattered photons, as shown elsewhere.54,55 The
consequence is the uncertain accuracy and reproducibility of
the DLS analysis.
Here we present an alternative that circumvents these

shortcomings. Based on the statistical properties of photon
counting, we define a clear and rigorous criterion that allows
differentiating between fluctuations originating from the
coherent scattering of light from NPs and fluctuations
originating from dust. Due to the Brownian motion of the
NPs, the scattering intensity fluctuates randomly at an average
rate that depends on the scattering angle and particle size:

Γ = Q D2 (1)

D is the translation diffusion coefficient of spherical NPs of
radius r,

πη
=D

k T
r6
1B

(2)

where kB is the Boltzmann constant, T the temperature, η the
viscosity of the solvent, Q the momentum transfer

= π
λ

θ( )Q n sin4
2
, θ the scattering angle, λ the wavelength of

the scattered waves, and n the refractive index of the
suspension. Owing to the quantized nature of light, the
detection of photons is never instantaneous and requires a
finite time interval τ > 0. It can be shown that when 1 ≪ Γτ ≪
⟨n(τ)⟩, where ⟨n(τ)⟩ is the mean photon number, and the
integration time τ is much larger than the coherence time of the
intensity fluctuation due to coherent scattering, the photon
counts are uncorrelated and the photon count distribution
corresponding to the intensity fluctuations is symmetric and
essentially follows a Gaussian distribution:54,55

π σ
≅ μ σ− −P n( )

1
2

e n( ) /22 2

(3)

μ = ⟨n(τ)⟩ and σ2 = ⟨n(τ)⟩2 · (Γτ)−1, and ⟨n(τ)⟩ is the mean of
the photon count distribution. Accordingly, the relaxation rate
can be determined directly from the variance and mean of the
photon count distribution

τ
σ τ

Γ = ⟨ ⟩n( ) 12

2 (4)

Noncoherent outliers and drifts in the fluctuations will result
in an asymmetry and an excess width, which distort the
distribution of the photon counts. These critically affect the
variance, the skewness, and the kurtosis of the experimental
P(n). It is important to emphasize that particle polydispersity
and multimodality, however, do not distort the shape of the
photon count distribution. In such cases, P(n) is the
convolution of the respective modes, and thus, remains
Gaussian.54 This property lies at the heart of our approach,
since a normality test performed on P(n) can decide with high
certainty whether or not the intensity fluctuations are due to
coherent scattering of light from NPs. Furthermore, if P(n) is
accepted, eqs 1−4 can be used for particle size analysis, without
the necessity of constructing the correlation function.55

Therefore, the analysis of the photon count distribution of
the scattered light enables (a) separating NPs from dust and
(b) quantifying Brownian dynamics. If P(n) is Gaussian, the
DLS data is fit for analysis, if not it is to be discarded. Testing
univariate normality is a common procedure in statistics, and
among the various tests,56 the Shapiro−Wilk test57 (SW) shows
a very good performance.58 SW can be performed in R,
Mathematica, Matlab, Octave, and online calculators are also
available for free. SW is a goodness-of-fit test, with the null
hypothesis that the particular set of data is drawn from a normal
distribution. The test evaluates two mutually exclusive
possibilities, accept or reject the particular set of data, by
determining which possibility is supported better by the
available data. SW determines the degree of closeness between
the experimental data and the normal distribution via three
steps: first, the data is standardized by subtracting its mean, and
then by dividing the data by its standard deviation:

Δ = − ⟨ ⟩
⟨ ⟩ − ⟨ ⟩

n
n n

n n2 2
(5)

In the second step, the standardized data is ordered. The
standardized and ordered data (order statistics) now increases
monotonically and has a zero mean and a unit variance. In the
third step, the degree of closeness is quantified by the test
statistic (0 ≤ W ≤ 1), which is essentially the measure of the
Pearson correlation between the standardized and ordered data
and the quantile function of the standard normal distribution.
(The mean and variance of the standard normal distribution is
zero and one, respectively.) The quantile function of the
standard normal distribution, in other words, the inverse
cumulative density function, is frequently referred to as the
“Probit” function: f(x) = √2 Erf−1 (2x − 1). From W, the p-
value is calculated by taking into account the size of the data
set. The p-value is by definition the probability of obtaining
eitherW or larger thanW given that the normality hypothesis is
true. Therefore, the closer the value of p to zero, the stronger
the evidence against accepting the data as normally distributed.
As for any hypothesis test, the significance level (0 < α < 1)
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dictates whether we shall accept or not the data characterized
by a given p -value. The significance level is not derived from
any observational data, independent of the nature of the
hypothesis, and usually set prior to performing the test
calculations. Usually, α = 0.05 or α = 0.01 are set, and hence
the data is rejected if p < α.
To show the value of statistical inference in DLS experi-

ments, we have synthesized silica NPs (Supporting Informa-
tion, Materials). Figure 1 shows two typical DLS results taken

from ten 10-s long measurements recorded at θ = 60° on the
same sample. Although the sample was purified, the normality
test concludes that only one of them is acceptable for analysis
(Data A) and the other one is not (Data B). (In fact, from ten
measurements, the normality test rejected three.) While the
photon count distribution of Data B is asymmetric and strongly
deviates from the normal distribution, Data A is symmetric and
follows the normal distribution. For comparison, we also
performed PCS analyses and find that the field auto correlation
functions of Data A and Data B are clearly different. Data B
exhibits a prolonged second decay, whose impact is already
clear in the cumulant analysis. The linear slope of the early
decay of Data B is much smaller than that of Data A, and the
apparent radii, estimated by the slopes of Ln g1 are 106.1 nm
(Data B) and 35.7 nm (Data A), respectively. There is a 3-fold
difference between the two results, but the normality test
rejects Data B, and hence, we discard this result. (We will show

later that the number given by the analysis of Data B is entirely
inconsistent with the TEM result.)
To extend the use of statistical inference prior to the analysis

of Brownian dynamics, we collected DLS data on a larger range
(θ = 15°, 25°, 25°,.., 90°). Additionally, to make it clear that the
statistical analysis of photon counts is effective even at low
temporal resolution (PCS analysis requires submicrosecond
temporal resolution), we set the integration time to 0.525 s and
recorded photon counts during 10 s. After the normality test,
the accepted photon counts were analyzed directly via eqs 1−4
to determine the relaxation rate and hydrodynamic radius.
Although the sample size was relatively low (s = 18), the
expected relative accuracy is high (within 1%). The expected
accuracy is calculated by following the steps explained
previously.55 Only for comparison, the “apparent” relaxation
rate of the rejected data were also computed. Figure 2 shows

the Q2-dependence of the relaxation rate determined by the
statistical analyses of the photon counts. The result shows that
testing for normality effectively classifies the DLS data into two
distinct groups. The set of data that was rejected by the
hypothesis test is without a clear trend and display large
uncertainty and, thus, indeed unsuitable for further analysis. In
contrast, the set of data that passed the statistical test defined a
straight line, as expected in the case of coherent light scattering
from Brownian NPs in the dilute regime. The linear regression
determines a radius of R = 36.5 nm, and the 95% confidence
interval is 35.2−37.7 nm. To assess the extent of the quality of
the results obtained via DLS and the normality test, the size of
the SiO2 NPs was also characterized by transmission electron
microscopy (Figure 3, TEM, Supporting Information, Meth-
ods). From TEM, fully independent of DLS, we determine a Z-
average (⟨R6⟩/⟨R5⟩) of 35.9 nm. The agreement with our DLS
analysis is excellent.

Figure 1. (a) Standardized photon counts of two 10-s long
measurements recorded at θ = 60° (τ = 0.105, sample size s = 94)
and (b) the distribution of the photon counts. The solid black line is
the standard normal distribution. Data A is symmetric and appears to
agree well with the normal distribution. Data B is asymmetric and
strongly deviates from the normal distribution. (c) The order statistics
together with the Probit function (solid black line). At α = 0.05
significance level the Shapiro-Wilk test rejects Data B (W = 0.87, p =
0), and accepts Data A (W = 0.99, p = 0.947). (d) The corresponding
field autocorrelation functions. Data B exhibits a prolonged second
decay, whose impact is clear, e.g., in the cumulant analysis (inset). The
linear slope of the early decay of Data B is much smaller than that of
Data A. Consequently, the apparent radii, estimated by the slopes of
Ln g1 are 38.7 nm (A) and 106.1 nm (B), respectively. The latter is
entirely inconsistent with the TEM result (Figure 3).

Figure 2. Q2-dependence of the relaxation rate determined by the
statistical analyses of the photon counts of dynamic light scattering
(15° ≤ θ ≤ 90°). At each angle, 50 photon count traces were collected
with τ = 0.525 s integration time during 10 s. Each trace, thus,
contained 18 data points. The distributions of photon counts of each
trace was tested for normality and accepted/rejected using a
significance level equal to 0.05. The relaxation rates Γ were computed
via eq 4 directly from the photon counts. For each Q-value, the
accepted/rejected data were averaged and the error bars display the
95% confidence intervals for the population mean. The solid black line
is a linear regression to the data accepted.
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At last we show that the normality test is a very useful
screening method when analyzing the correlation function itself
via familiar standardized methods, such as the method of
cumulants.59 To this end, we collected data on citrate-stabilized
iron oxide (SPIONs) and gold nanoparticles (AuNPs, NIST
standard reference material). First, all the correlation functions
were analyzed by the method of cumulants without testing
whether or not the corresponding photon counts follow a
normal distribution. Next, only the data that had passed the
normality test was analyzed. The results clearly show
(Supporting Information) that performing the normality test
prior to any analysis is worthwhile and has a clearly positive
impact on the precision and accuracy of the results.
In summary, we have shown that inferential statistical

analysis of the photon count distribution in DLS is an effective
and general approach to discriminate intensity fluctuations that
are not due to coherent scattering of light from NPs. Analyzing
photon counts is rapid, straightforward, and does not require
supervision and a digital correlator. Our approach provides an
accurate and precise characterization, even in the presence of
dust. If required, the goodness-of-fit hypothesis test may be
extended beyond the normal distribution. To our best
knowledge, this approach is new and nontrivial and represents
a significant improvement in DLS, which can be directly
adapted to depolarized DLS (DDLS) and to X-ray photon
correlation spectroscopy (XPCS) as well.
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