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ABSTRACT Acquired 16S rRNA methylases (RMTases) conferring pan-drug resis-

tance to aminoglycosides were searched among enterobacterial isolates recovered in

Angola. A total of 36 hospitalized children were screened for rectal colonization us-

ing the Superaminoglycoside selective medium. Twenty-two pan-aminoglycoside-

resistant enterobacterial isolates were recovered, all of which produced RMTases, i.e.,

RmtB, ArmA, and RmtC. Highly diverse genetic backgrounds were identified for Esch-
erichia coli and Klebsiella pneumoniae isolates, most of which coproduced carbapen-

emases NDM-1 or NDM-5, respectively.
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Aminoglycosides (AGs) play an important role in antimicrobial therapy in severe

infections, usually in combination with �-lactam agents. AG resistance usually

arises from modification of the AG molecules by various enzymes, namely, phospho-

transferases, adenylyltransferases, nucloetidyltransferases, and acetyltransferases, which

affect some but not all AGs (1). Another mechanism corresponds with the production

of 16S rRNA methylases (RMTases) that are mostly encoded by plasmids and found

among Gram-negative bacteria (1). They methylate the AG binding site in the bacterial

16S RNA ribosomal subunit, leading to loss of interaction between the antibiotic and its

target (1, 2). The recent emergence and spread of genes encoding these RMTases is

worrisome because they are often identified in isolates that produce extended-

spectrum �-lactamases (ESBLs) (3) and carbapenemases, particularly the class B NDM-

like metalloenzymes in the latter case (2, 4). Among the 10 RMTases described so far,

the most widespread are ArmA and RmtB (1). They have been described worldwide

with a variable prevalence of �1% in Europe and Japan (3, 5) and likely higher rates in

Asia and the Middle East, with a rate of 37% estimated in a monocentric study in Saudi

Arabia (6). However, few data exist for Africa. A rate of 18% of RMTases has been

identified in Algeria among ESBL enterobacterial producers (7). In addition, RmtB was

recently identified in sporadic enterobacterial isolates recovered in Angola and Kenya

in association with the blaNDM-1 gene (8, 9).

In 2015, we conducted a study to evaluate the occurrence of carbapenemase genes

among enterobacterial isolates recovered from hospitalized children in Angola, and we

identified a series of isolates harboring blaOXA-181 (carried by IncX3-type plasmids) or

blaNDM-1 (carried by IncA/C- or IncL/M-type plasmids) (8) carbapenemase genes. In view

of the very high rate of carbapenemase producers identified there, we wondered

1

ht
tp
://
do
c.
re
ro
.c
h

Published in "Antimicrobial Agents and Chemotherapy 62 (4): e00021-18, 2018"
which should be cited to refer to this work.



whether Angola might also be a reservoir of pan-AG resistance determinants, particu-

larly RMTase producers.

We recently developed the first culture medium for selecting pan-AG-resistant

bacteria, mainly corresponding to RMTase producers. This so-called Superaminoglyco-

side medium has been validated on a collection of AG-resistant and -susceptible

reference strains (10). Our objective was therefore to perform a prospective evaluation

for screening RMTase producers using this novel selective medium. Our study was

performed using a pediatric population from a hospital in Angola, where the preva-

lence of carbapenemase producers is known to be high (8).

Children included in this study were hospitalized in different departments in the

main pediatric hospital of Luanda, Angola, in January 2017. Rectal swabs were collected

from 36 patients. Each sample was cultured overnight in Luria-Bertani (LB) broth. One

calibrated inoculated loop (10 �l) of each sample was plated onto the Superaminogly-

coside medium consisting of eosin-methylene blue agar (EMB) 3.75%, gentamicin 30

�g/ml, amikacin 30 �g/ml, vancomycin 10 �g/ml, and amphotericin B 5 �g/ml to select

for AG-resistant Gram-negative isolates (10). In addition, selection of carbapenem-

resistant isolates was performed using the Supercarba selective medium to select for

carbapenem-resistant isolates (11). Once selected, the carbapenem-resistant isolates

were tested by Carba NP to detect for carbapenemase producers (12). Finally, we

included in our screening a search for colistin-resistant Enterobacteriaceae by using the

Superpolymyxin selective medium (13). For all selected isolates, identification at the

species level was performed with the API20E system (bioMérieux, La Balme-les-Grottes,

France). Antimicrobial susceptibility testing was performed and interpreted according

to the disk diffusion method following CLSI recommendations (14). Polymyxin suscep-

tibility was performed by the broth microdilution method as recommended by EUCAST

(www.eucast.org). Identification of the ESBL and carbapenemase genes, the aminogly-

coside resistance 16S rRNA methylase genes, the qnr-type quinolone resistance genes,

and the polymyxin resistance mcr-like genes was performed by PCR as described

previously (15–19), followed by sequencing of the amplicons.

The main procedure and the main results obtained from our prospective screening

are summarized in Fig. 1.

Out of the 36 patients from whom rectal swabs were taken, 22 distinct isolates were

recovered from 20 different patients onto the Superaminoglycoside medium. In accor-

dance with the high specificity of this selective medium, they all displayed a high level

of resistance to the four AGs tested by the disk diffusion method (i.e., amikacin,

tobramycin, kanamycin, and gentamicin) and were found to be positive by the rapid

aminoglycoside NP test (20).

PCR and sequencing were performed to identify RMTase-encoding genes (Table 1).

Surprisingly, all 22 isolates tested positive for an RMTase gene. A total of 16 isolates

harbored the rmtB gene (9 Escherichia coli, 5 Klebsiella pneumoniae, 1 Enterobacter
cloacae, and 1 Enterobacter aerogenes), 5 harbored the armA gene (2 K. pneumoniae, 1
E. aerogenes, 1 E. cloacae, and 1 Citrobacter freundii), and a single K. pneumoniae
harbored the rmtC gene (Table 1). None of the strains carried two different RMTase-

encoding genes.

All of the pan-AG isolates were resistant to broad-spectrum cephalosporins, and 10

of the 22 isolates were resistant to carbapenems. In addition, all of these isolates were

resistant to fluoroquinolones. PCR amplification followed by sequencing was used to

identify coresistance determinants and showed that 15 isolates produced the ESBL

CTX-M-15, 2 isolates produced the ESBL CTX-M-55, and 10 isolates produced the NDM-5

carbapenemase (Table 1). In addition, the plasmid-mediated quinolone resistance gene

qnrB was identified in 16 isolates (Table 1).

To characterize the plasmids bearing the RMTase genes, conjugation assays were

performed, followed by PCR-based replicon typing (PBRT), Kieser extraction, and gel

electrophoresis to evaluate the plasmid sizes (21, 22). In addition, IncX3-type replicons

were searched by using specific primers as described previously (8). Azide-resistant E.
coli J53 was used as a recipient for mating-out assays. Transconjugants were selected
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on LB agar plates supplemented with sodium azide 100 �g/ml, gentamicin 50 �g/ml,

and amikacin 50 �g/ml. The rmtB gene was carried, in most cases, by a conjugative

125-kb IncFIB plasmid that also carried the blaTEM-1 penicillinase gene (10/16 isolates).

The other identified rmtB-positive plasmids belonged to IncL/M, IncN, and IncY incom-

patibility groups, which carried blaCTX-M-15, blaCTX-M-55, and blaNDM-5, respectively (Table

1). The armA gene was carried by a conjugative IncA/C plasmid, associated with the

blaNDM-5 carbapenemase gene for three of the five isolates harboring this gene. Even

though transconjugants could be obtained, the incompatibility group of the plasmid

bearing the rmtC gene could not be determined by PBRT, suggesting that the genetic

background of this plasmid corresponded to one that was uncommon.

Clonality of the different RMTase-producing E. coli and K. pneumoniae isolates was

investigated by multilocus sequence typing (MLST), which showed highly diverse

genetic backgrounds for E. coli and K. pneumoniae isolates (Table 1). Noticeably, ST448

complex was the most frequently identified RmtB-producing E. coli clone (5/9).

By using the carbapenem-resistant selective medium followed by testing with Carba

NP, 57 carbapenemase-producing enterobacterial isolates were recovered from 28

patients, leaving only 8 patients free of carbapenemase producers. This rate of colo-

nization (78%) by carbapenemase-producing Enterobacteriaceae was much higher than

the rate found in a study we conducted in the same hospital 2 years earlier that

revealed a colonization rate of 36% (8).

The blaNDM-5 gene was identified in 24 isolates, the blaNDM-1 gene in 10 isolates, and

the blaOXA-181 gene in 23 isolates (Table 2). Four patients were colonized by the three

different carbapenemase producers. The emergence of NDM-5-producing isolates was

FIG 1 Flow diagram illustrating the procedure and results for the prospective screening of 16S rRNA

methylase producers, carbapenemase producers, and colistin-resistant isolates using the Superaminogly-

coside, Supercarba, and Superpolymyxin selective media, respectively.
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noticed, whereas only a few NDM-1 and most OXA-181 producers were recovered in

our previous study (8).

Among the NDM-producing isolates were 14 K. pneumoniae isolates producing

NDM-1 or NDM-5 (8 and 6 isolates, respectively) and 15 E. coli isolates producing

NDM-5, among which 4 isolates coproduced RmtB (Table 2). The other species identi-

fied were E. cloacae (2 NDM-1 and 2 NDM-5 positive) and a single NDM-5-producing C.
freundii. The 24 OXA-181 producers included 10 K. pneumoniae, 8 E. coli, 4 E. cloacae,
and 1 E. aerogenes; and the blaOXA-181 gene was located on an �30-kb IncX3 plasmid

in 20 isolates, as found previously (8). Transformation experiments using E. coli TOP10
as the recipient were performed for the 4 IncX3-negative OXA-181 producers, identi-

fying the blaOXA-181 gene on a 60-kb untypeable plasmid that did not carry any other

resistance determinant. Two NDM-5 and 3 NDM-1 producers were also transformed.

Most often, the blaNDM-1 gene was carried by an �60-kb untypeable plasmid cohar-

boring qnrS and blaCTX-M-15, whereas the blaNDM-5 gene was located on an �50-kb

IncX3 plasmid (Table 2).

MLST analysis showed a predominance of the ST147 clone among the NDM-1-

positive K. pneumoniae isolates (7/8) and the ST10 clone among the NDM-1-positive E.
coli isolates (9/15). Six different E. coli and 8 different K. pneumoniae clones were

identified among the OXA-181 producers.

Note that no enterobacterial isolate exhibiting acquired resistance to colistin was

detected.

We report here a high rate of recovery of 16S RMTase and carbapenemase producers

in this population of hospitalized children in Angola, colonizing 56% and 78% of the

patients, respectively. The high rate of identification of 16S RMTase producers is of

concern in the context of endemicity of carbapenemases.

TABLE 1 Genetic features associated with the 16S RMTase-producing isolates

Strain Species ST Resistance determinantsa
Plasmid

incompatibilityb
Plasmid

size (kb)c Resistance phenotyped

R21 E. coli ST448 rmtB, bla TEM-1, blaCTX-M-15, qnrB IncFIB 95 CAZ, SXT, TET, NAL, GEN, AMK
R23 E. coli ST10 rmtB, blaTEM-1, blaNDM-5,

blaCTX-M-15

IncFIB 95 CAZ, IMP, SXT, TET, NAL, GEN, AMK

R24 E. coli ST10 rmtB, blaTEM-1, blaNDM-5 IncFIB ND CAZ, IMP, SXT, TET, NAL, GEN, AMK
R31r E. coli ST448 rmtB, blaTEM-1, blaNDM-5,

blaCTX-M-15, qnrB
IncFIB 125 CAZ, IMP, SXT, TET, NAL, GEN, AMK

R46 E. coli New ST rmtB, blaTEM-1, blaNDM-5,

blaCTX-M-15

IncY 125 CAZ, IMP, SXT, NAL, GEN, AMK

R49 E. coli ST448 rmtB, blaTEM-1, blaCTX-M-15, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R52 E. coli ST448 rmtB, blaTEM-1, blaCTX-M-15, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R57r E. coli ST448 rmtB, blaTEM-1, blaCTX-M-15, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R62 E. coli New ST rmtB, blaTEM-1, blaCTX-M-55 IncN 54 CAZ, SXT, TET, NAL, GEN, AMK
R28 K. pneumoniae ST273 rmtB, blaTEM-1, blaNDM-5,

blaCTX-M-15, qnrB
ND ND CAZ, IMP, SXT, TET, NAL, GEN, AMK

R30 K. pneumoniae ST147 rmtB, blaTEM-1, blaCTX-M-15, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R39 K. pneumoniae ST307 armA, blaNDM-5, blaCTX-M-15,

qnrB
IncA/C 154 CAZ, IMP, SXT, TET, NAL, GEN, AMK

R40 K. pneumoniae ST307 armA, blaTEM-1, blaCTX-M-15, qnrB IncA/C ND CAZ, SXT, TET, NAL, GEN, AMK
R45 K. pneumoniae ST147 rmtB, blaTEM-1, blaCTX-M-55, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R48 K. pneumoniae ST273 rmtC, blaNDM-5, blaCTX-M-15, qnrB ND 125 CAZ, IMP, SXT, TET, NAL, GEN, AMK
R57b K. pneumoniae ST101 rmtB, blaTEM-1, blaCTX-M-15, qnrB IncL/M 66 CAZ, SXT, GEN, AMK
R69 K. pneumoniae ST36 rmtB, bla-TEM-1, qnrB ND 190 CAZ, SXT, TET, GEN, AMK
R31b E. aerogenes ND rmtB, blaTEM-1, blaCTX-M-15, qnrB IncFIB 125 CAZ, SXT, TET, NAL, GEN, AMK
R50 E. aerogenes ND armA, blaNDM-5, qnrB IncA/C 154 CAZ, IMP, SXT, TET, GEN, AMK
R72 E. cloacae ND armA, blaNDM-5 IncA/C 135 CAZ, IMP, SXT, GEN, AMK
R79 E. cloacae ND rmtB, blaTEM-1, blaCTX-M-15 IncFIB 110 CAZ, SXT, GEN, AMK, TOB
R8 C. freundii ND armA, blaTEM-1, blaNDM-5,

blaCTX-M-15, qnrB
IncA/C ND CAZ, IMP, SXT, TET, NAL, GEN, AMK

aUnderlined resistance genes are colocated with the RMTase-encoding gene.
bND, not determinable by the PBRT method.
cPlasmid size of the plasmid carrying the RMTase-encoding gene. ND, not determined because of plasmid degradation on electrophoresis gel.
dCAZ, ceftazidime; IMP, imipenem; SXT, trimethoprim-sulfamethoxazole; TET, tetracycline; NAL, nalidixic acid; GEN, gentamicin; AMK, amikacin; TOB, tobramycin.
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TABLE 2 Genetic features associated with carbapenemase-producing isolates

Strain Species STa Resistance determinantsb
Plasmid

incompatibility

Plasmid

size (kb)c Resistance phenotyped

CR23r E. coli ST10 blaNDM-5, blaCTX-M, rmtB IncX3 55 CAZ, ETP, IMP, NAL, TET, GEN, AMK, TOB
OR24 E. coli ST10 blaNDM-5, blaTEM-1, rmtB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, AMK, TOB
CR28 E. coli New ST blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN
CR31r E. coli ST10 blaNDM-5, blaCTX-M, rmtB IncX3 60 CAZ, ETP, IMP, NAL, TET, GEN, AMK, TOB
CR39r E. coli ST10 blaNDM-5, qnrB IncX3 60 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR40 E. coli ST10 blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR44 E. coli ST10 blaNDM-5, qnrB IncX3 50 CAZ, ETP, IMP, NAL, TET, TOB
CR47r E. coli ND blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, TOB
CR48r E. coli ST2083 blaNDM-5, blaCTX-M IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR50r E. coli ST448 blaNDM-5, qnrS IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR52r E. coli ST10 blaNDM-5, rmtB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, AMK, TOB
CR57r E. coli New ST blaNDM-5, blaCTX-M IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
OR62 E. coli ND blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, GEN, AKN, TOB
CR74 E. coli ST10 blaNDM-5, blaCTX-M IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR79 E. coli ST10 blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
OR9r E. coli New ST blaOXA-181, qnrS, qnrB IncX3 60 ETP, NAL, TET, GEN, TOB
OR26r E. coli New ST blaOXA-181, qnrS, blaCTX-M IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR39r E. coli New ST blaOXA-181, qnrS, qnrB IncX3 60 ETP, NAL, GEN, TOB
OR45r E. coli ST448 blaOXA-181, blaCTX-M IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR46r E. coli ST448 blaOXA-181, blaCTX-M IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR47r E. coli ST448 blaOXA-181, blaCTX-M IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR78 E. coli New ST blaOXA-181, qnrS IncX3 60 ETP, TET
OR79 E. coli New ST blaOXA-181, qnrS IncX3 60 ETP, NAL
CR2 K. pneumoniae ST1031 blaNDM-5, blaCTX-M-like, qnrB IncX3 50 CAZ, ETP, IMP, TET
CR9 K. pneumoniae ST414 blaNDM-5, blaCTX-M, qnrB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR21 K. pneumoniae ST2602 blaNDM-5, blaCTX-M, qnrB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR23b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, AMK, TOB
CR25 K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, AMK, TOB
CR30b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 60 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR31b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 60 CAZ, ETP, IMP, NAL, AMK, TOB
CR39b K. pneumoniae ST2602 blaNDM-5, blaCTX-M IncX3 60 CAZ, ETP, IMP, NAL, TET, GEN I, TOB
CR47b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, AMK, TOB
CR48b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, AMK, TOB
CR50b K. pneumoniae ST414 blaNDM-5, qnrB IncX3 50 CAZ, ETP, IMP, GEN, TOB
Cr60 K. pneumoniae ST11 blaNDM-1, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR69 K. pneumoniae ST11 blaNDM-5, blaCTX-M, qnrB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR79b K. pneumoniae ST147 blaNDM-1, blaCTX-M, qnrS IncFIA 60 CAZ, ETP, IMP, NAL, AMK, TOB
OR3 K. pneumoniae ST11 blaOXA-181, qnrB, blaCTX-M IncX3 60 CAZ, ETP, TET, GEN, TOB
OR9b K. pneumoniae ST1214 blaOXA-181 IncX3 60 ETP
OR26b K. pneumoniae ST2092 blaOXA-181, qnrS, qnrB, blaCTX-M IncX3 60 CAZ, ETP, NAL, TOB
OR30 K. pneumoniae ST466 blaOXA-181, qnrS, blaCTX-M, qnrB IncX3 60 CAZ, ETP, TET, GEN, TOB
OR31 K. pneumoniae ST976 blaOXA-181, qnrS, blaCTX-M IncX3 60 CAZ, ETP, TET
OR39b K. pneumoniae ST11 blaOXA-181, qnrS, qnrB, blaCTX-M IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR47b K. pneumoniae New ST blaOXA-181, qnrS, qnrB, blaCTX-M IncX3 60 CAZ, ETP, TET, GEN, TOB
OR50 K. pneumoniae ST26 blaOXA-181, qnrS, qnrB, blaCTX-M IncX3 60 CAZ, ETP, GEN, TOB
OR52b K. pneumoniae New ST blaOXA-181, qnrS, blaCTX-M IncX3 60 CAZ, ETP, GEN, TOB
OR57 K. pneumoniae ST2092 blaOXA-181, qnrS, qnrB, blaCTX-M IncX3 60 CAZ, ETP, GEN, TOB
CR3 E. cloacae ND blaNDM-1, qnrB IncFIA 100 CAZ, ETP, IMP, NAL, TOB
CR45 E. cloacae ND blaNDM-1, blaCTX-M, qnrS IncFIA 100 CAZ, ETP, IMP, NAL, AMK, TOB
CR52b E. cloacae ND blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
CR57b E. cloacae ND blaNDM-5 IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB
OR2 E. cloacae ND blaOXA-181, blaCTX-M, qnrS, qnrB IncX3 60 CAZ, ETP, GEN, AMK, TOB
OR45b E. cloacae ND blaOXA-181, qnrS, qnrB IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR48 E. cloacae ND blaOXA-181, qnrS IncX3 60 CAZ, ETP, NAL, TET, GEN, TOB
OR60 E. cloacae ND blaOXA-181 IncX3 60 CAZ, ETP, GEN, TOB
OR72 E. aerogenes ND blaOXA-181, qnrB IncX3 60 CAZ, ETP, TET, GEN, TOB
CR52v C. freundii ND blaNDM-5, blaCTX-M, qnrB IncX3 50 CAZ, ETP, IMP, NAL, TET, GEN, TOB

aND, not determinable.
bUnderlined resistance genes are colocated with the carbapenemase-encoding gene.
cSize of the plasmid carrying the carbapenemase-encoding gene.
dCAZ, ceftazidime; ETP, ertapenem; IMP, imipenem; SXT, trimethoprim-sulfamethoxazole; TET, tetracycline; NAL, nalidixic acid; GEN, gentamicin; AMK, amikacin; TOB,

tobramycin.
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It is worth highlighting that our methodological approach may explain this high

detection rate. Our study was prospective, using the first screening medium developed

to select for pan-AG-resistant Enterobacteriaceae, previously shown to exhibit excellent

sensitivity. Therefore, the high rate in this study compared with those found in the

literature might be the result of a very sensitive screening methodology for 16S RMTase

producers. We may speculate that the global prevalence of 16S RMTase producers is

largely underestimated worldwide and that the Superaminoglycoside selective me-

dium will be an excellent tool for better assessment of the real extent of the problem.

Another concern that came out of the present study is the occurrence of NDM-5

producers, which were not identified in our previous study performed a year earlier in

the same hospital (8). It has been shown that NDM-5 possesses a higher hydrolytic

capacity than NDM-1 toward carbapenems and confers higher resistance levels to those

molecules (23). Therefore, we can speculate that the carbapenem selective pressure

may be responsible for a switch from NDM-1 producers to NDM-5 producers in that

geographic area. Interestingly, the blaNDM-5 gene was associated with an IncX3 plasmid,

as previously reported in different European countries, Australia, Algeria, India, and

China (23, 24). This plasmid type seems to play an important role in the horizontal

transfer of the carbapenemase gene among enterobacterial isolates and has been

found to be associated with the spread of both blaNDM and blaOXA-181 genes in our

study. Note that our study identified NDM-1-producing K. pneumoniae ST147 as a

source of nosocomial dissemination, as previously reported in China and recently in

Tunisia and Algeria (25, 26). Therefore, this clone appears to be widespread on the

African continent and elsewhere, and implementation of surveillance and control

studies should be reinforced to prevent its massive dissemination.
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