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The sun, with all those planets revolving around it and dependent on it, can still

ripen a bunch of grapes as if it had nothing else in the universe to do

Galileo Galilei
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Zusammenfassung

Metalloxiden für UV-Stabile Perowskit-Solarzellen

Bart Roose

Diese Arbeit untersucht die Anwendung von Metalloxiden als Elektronentransport-

material in Perowskit-Solarzellen. Die zentrale Forschungsfrage ist, wie Metalloxide

die Stabilität von Perowskit-Solarzellen beeinflussen und wie Metalloxide, beispiel-

sweise durch gezielte Dotierung, modifiziert werden können, um die Stabilität von

Solarzellen zu verbessern.

Die Arbeit beginnt mit vier einleitenden Hintergrundkapiteln. Kapitel 1 erklärt

die zunehmende Notwendigkeit von Solarenergie und den Beitrag von Perowskit-

Solarzellen zu einer sauberen Energiezukunft. Kapitel 2 stellt die Arbeitsprinzip-

ien von Solarzellen vor, während Kapitel 3 mehr Details über die Geschichte und

den Aufbau von Perowskit-Solarzellen enthält. Kapitel 4 leitet insbesondere das

Konzept der Nanostrukturierung von Metalloxiden unter Verwendung einer Block-

copolymerschablone ein. Die für diese Arbeit benutzten experimentellen Methoden

werden ausführlich in Kapitel 5 beschrieben.

Diese einleitenden Kapitel dienen als Grundlage für die vier experimentellen

Hauptkapitel dieser Arbeit. Kapitel 6 beschreibt die Verwendung von Neodym-

dotiertem TiO2 in Perowskit-Solarzellen und den Einfluss der Dotierung auf den

Wirkungsgrad. Kapitel 7 und Kapitel 8 zielen darauf ab den Wirkungsgrad

SnO2-basierter Perowskit-Solarzellen zu steigern, indem einerseits ein neuartiges

Elektrodenmaterial verwendet wird und anderseits SnO2 mit Gallium dotiert wird.

Kapitel 9 beschreibt die spontane Koaleszenz von kollidalen Perowskit-Kristallen,

eine der außergewöhnlichen Eigenschaften von Perowskitmaterialien.
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Summary

Engineering Metal Oxides for UV-Stable Perovskite Solar

Cells

Bart Roose

This thesis is a study of the role of the metal oxide electron transporting material in

perovskite solar cells. The central research question is how the metal oxide influences

the stability of perovskite solar cells and how the metal oxide can be modified to

improve the stability.

The thesis begins by providing four background chapters. Chapter 1 explains

the need for solar energy and what perovskite solar cells can contribute to a clean

energy future. Chapter 2 covers the working principles of solar cells, whereas

Chapter 3 provides more detail about the history and architecture of the perovskite

solar cell. Chapter 4 introduces the concept of nanostructuring metal oxides, using

a block-copolymer template. The key experimental techniques and methods used

throughout this work are described in Chapter 5.

These introductory sections serve as the foundation for the four major experi-

mental chapters of the thesis. Chapter 6 reports on the use of neodymium doped

TiO2 in perovskite solar cells. Chapter 7 and Chapter 8 aim to increase the

efficiency of SnO2 based perovskite solar cells, by making use of a novel electrode

material and doping SnO2 with gallium. Chapter 9 covers the spontaneous coales-

cence of perovskite crystals, highlighting the extraordinary properties of perovskites.
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1 Introduction

Supplying the world with clean and renewable energy is one of the main challenges

mankind is facing at the start of the 21st century. The annual world energy con-

sumption has risen from 118.000 terawatt hours (TWh) at the start of the century

to 156.000 TWh in 2012. Because of increasing populations and the rapid indus-

trialisation of the developing world, this figure is predicted to increase further to

327.000 TWh by 2050. At present, 89.9 % of this energy is supplied by fossil fuels

and nuclear energy [1]. However, there are significant drawbacks in the use of these

energy sources. Greenhouse gases released during the consumption of fossil fuels

are believed to play an important role in the global climate change, while other pol-

lutants released during fossil fuel consumption are reported to cause an estimated

3 million premature deaths annually [2]. Additionally, fossil fuel reserves are finite,

estimated to run out within the next 100 years [3]. Nuclear energy is an unattrac-

tive alternative due to the processing and long-term storage of nuclear waste [4].

Renewable resources on the other hand are clean and abundant. Although hydro

and biofuels are currently the largest suppliers of renewable energy, solar energy is

the fastest growing technology [5]. Considering the huge potential of solar energy

this is no surprise; with 885 million TWh reaching the earth annually, this is enough

to meet the global annual demand for energy 5000 times over [6]. What remains is

the technological challenge to convert this solar energy in a cheap and efficient way.

Although the price of solar energy has dropped 200 fold since it’s introduction forty

years ago [7], solar energy is still 10-50 times more expensive than energy generated

from fossil fuels [8].
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1 Introduction

The main type of commercial solar cell is the monocrystalline silicon solar cell.

The drawback of this technology is the high initial cost due to the high price of sil-

icon feed stock and the high energy consumption of the processes needed to purify

the material to solar cell standards. To overcome this problem, a number of new

technologies are being investigated, which employ cheap and abundant materials

that can be easily processed in large quantities [9]. Amongst these technologies

perovskite solar cells (PSCs) are a relative newcomer. However, in the span of only

five years, labscale efficiencies of PSCs have rapidly become comparable to estab-

lished monocrystalline silicon technology. The success of PSCs can be attributed

to a high light absorption coefficient, large charge diffusion lengths and the benefit

of being able to profit from twenty years of research done on the closely related dye

sensitized solar cells (DSSCs). Besides the up-scaling from labscale fabrication to

module production, the long term stability of these devices has become the most

important impediment to commercial application. As a result, the PSC field is

shifting from trying to further improve the efficiency of PSCs, to enhancing the

long term stability [10,11].

The hole blocking layer and mesoporous electron transporting layer are two key

components of the PSC, usually consisting of the same metal oxide semiconductor.

This thesis aims to explore the influence of the metal oxide on the performance and

stability of PSCs. The thesis will begin with the fundamental working mechanisms

underlying solar cells in Chapter 2, followed by an overview of the field of PSCs in

Chapter 3. The architecture of a PSC will be described, as well as the properties of

the materials used to construct these devices. The desired mesoporous structure of

metal oxides described in this thesis is achieved by making use of the self-assembly

behaviour of block-copolymers. In Chapter 4 this technique will be described in

2



1 Introduction

detail. Chapter 5 covers the experimental techniques and methods used throughout

this thesis.

Chapter 6 describes the synthesis of neodymium (Nd) doped mesoporous titanium

dioxide (TiO2) and the application of this material in PSCs. Electron microscopy

and X-ray diffraction are used to study the impact of Nd-doping on TiO2 mor-

phology. Several spectroscopic techniques are used to investigate the impact of

Nd-doping on the electronic properties of TiO2 and the performance of PSCs em-

ploying Nd-doped TiO2 as electron transporting layer. Nd-doping is also shown

to reduce UV-induced degradation. Chapter 7 goes on to explore mesoporous tin

dioxide (SnO2) as a more stable substitute to TiO2, due to the larger band gap,

and addresses fluorine migration from the FTO electrode to the SnO2 hole blocking

layer, a process that is shown to have been limiting device performance of SnO2

based PSCs. Chapter 8 goes on to further improve the efficiency of SnO2 based

PSCs by doping with gallium (Ga), achieving similar efficiencies to TiO2 based de-

vices, but with improved UV-stability, paving the way for more stable PSCs.

Chapter 9 investigates the mechanism behind the spontaneous increase of device

performance upon storage of PSCs in a dark and dry environment at room tem-

perature. It is found that perovskite crystals can spontaneously coalesce, thereby

improving charge transport, leading to an overall increase of device performance.

3





2 Fundamentals of Solar Cells

A solar cell is a device that directly converts the energy carried by light into electric-

ity. Light is electromagnetic radiation, consisting of particles called photons. The

energy (E) a photon carries depends on the wavelength (periodicity or frequency)

(Figure 1) and is given by,

E =
hc

λ
, (1)

h is Planck’s constant, c is the speed of the light in a vacuum and λ is the wave-

length of the photon. For solar cells, only the radiation emitted by the sun is of

interest. The sun emits radiation ranging from the ultraviolet (UV) into the in-

frared (IR) part of the spectrum, corresponding to wavelengths ranging from 250

to 2500 nm. However, not all radiation emitted by the sun reaches the surface of

the earth, a substantial part is absorbed by the atmosphere (Figure 2) and can not

Figure 1: The electromagnetic spectrum; the energy carried by a photon decreases

with increasing wavelength. Adapted from [12].
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2 Fundamentals of Solar Cells

Figure 2: Spectrum of the electromagnetic radiation emitted by the sun, at the top

of the atmosphere (yellow) and at the surface of the earth (red). A substantial part

of the radiation is absorbed in the atmosphere before it reaches the surface of the

earth. Adapted from [13].

be used for electricity generation. Solar cells strive to capture as much as possible

of the remaining energy by absorbing photons and converting them into electricity.

Semiconductors are a special class of materials that have an energy gap between

their highest filled energy band (valence band, VB) and lowest empty energy band

(conduction band, CB). This property makes semiconductors well suited for solar

cell applications. When light is absorbed by a semiconductor, photons excite elec-

trons from the VB into the CB, leaving a so-called hole in the VB. Because of the

6



2 Fundamentals of Solar Cells

Figure 3: Schematic representation of the band structure of a conductor (metal), a

semiconductor and an insulator. Adapted from [15].

energy gap, electrons can not readily relax back to their initial energy state and

can diffuse away from the hole. This generates an electric field, driving the elec-

trons through an external circuit to do electrical work [14]. When the VB and CB

overlap, such as in metals, electrons relax back to their initial energy state before

they can diffuse, preventing the build up of an electric field and the extraction of

electrons. Materials having a bandgap that is so large it can not be overcome by

the energy provided by photons, is called an insulator (Figure 3). In order to ef-

fectively exploit the excitation of electrons and achieve a high conversion efficiency

from solar to electrical energy, several physical processes need to be considered, i)

the absorption of photons to generate charge carriers (electrons and holes), ii) the

subsequent separation of charge carriers of opposite type and iii) transport of the

charge carriers to their respective electrodes.

7



2 Fundamentals of Solar Cells

It was established earlier that the absorbing material needs a bandgap to separate

charges that are generated upon absorption of a photon. For this to occur, the

bandgap energy needs to be smaller than the energy of the absorbed photon. Pho-

tons with energies larger than the bandgap excite electrons to states above the CB

edge (the lowest CB energy), which subsequently relax to the CB edge. The energy

that can be harvested is therefore given by the bandgap and the surplus energy

of the photon above the bandgap is lost by these relaxation processes. The ideal

choice of the bandgap is therefore a compromise between two considerations: a large

bandgap provides a high energy that can be harvested, but reduces the part of the

solar spectrum that can be absorbed. On the other hand, a small bandgap allows

the absorption of a larger portion of the solar spectrum, but more energy is lost for

high energy photons. William Shockley and Hans-Joachim Queisser calculated the

ideal bandgap by taking into account these two considerations (Figure 2). They

found that a maximum of 33.7 % of the sun’s energy can be turned into electricity

for a 925 nm (1.34 eV) bandgap (Figure 4) [16].

The material needs to absorb as much as possible of the light that has an en-

ergy greater than the bandgap. This can be achieved by applying a thick layer

of the absorbing material, however the charge collection will become less efficient

with increasing thickness due to defects in the material, as defects can trap charges

that can then no longer contribute to the current. The optimum thickness is thus

a compromise between high absorption while maintaining good charge transport.

To separate charges of opposite type the absorbing material should be contacted in

such a way that the charges experience a spatial asymmetry. This can be achieved

by an electric field or a gradient in electron density. Usually, a junction is formed

8



2 Fundamentals of Solar Cells
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Figure 4: The Shockley-Queisser limit for the efficiency of a solar cell, using the

solar spectrum as shown in Figure 2. Adapted from [17].

between the absorber and an electron transporting material (ETM) and/or hole

transporting material (HTM). These junctions are of key importance as the charges

should lose as less of their electrical potential energy as possible, while still being

efficiently injected into the respective transporting layer. Note that in an ideal

(lossless) semiconductor such a diode structure is not necessary because electrons

and holes can diffuse to the right electrode. However, this process is too slow in

non-ideal semiconductors and charges would recombine before reaching the elec-

trode.

Lastly, to efficiently transport the charges to an external circuit, the materials

comprising the solar cell have to be good electrical conductors. Charges should not

recombine or lose energy due to resistances while being transported [14].

9



2 Fundamentals of Solar Cells

Figure 5: A characteristic J-V -curve of a solar cell. Maximum power point, VOC

and JSC are indicated for clarity.

Several techniques can be used to assess how well a solar cell performs. The most

simple and widely used method is the current-voltage (J-V ) scan (Figure 5), in

which the voltage is scanned, while recording the current response under illumina-

tion. The three important quantities governing the efficiency of a solar cell are the

short circuit current JSC, the open circuit voltage VOC and the fill factor FF . JSC

is the current through the device in the absence of a net voltage, that is, in a short-

circuited device. It is highly dependent on light absorption and charge collection

efficiency. VOC is the voltage across the device in the absence of a net current. It

depends on the energy difference between the VB of the HTM, CB of the ETM,

bandgap of the absorber and on recombination processes. The fill factor quantifies

10



2 Fundamentals of Solar Cells

the maximum power that can be delivered by the device. It is defined by dividing

the maximum power output of the device (which is the maximum of J × V ) by

JSC × VOC (which is the theoretical maximum power). Its magnitude depends on

series and shunt resistances in the device. A low series resistance and high shunt

resistance minimize internal losses, thereby maximizing the power output of the

device [18].

This chapter discussed solar cells in general, the next chapter will introduce and

explain in more detail the perovskite solar cell. A relatively new, but extremely

promising technology.

11





3 Perovskite Solar Cells

This chapter will give an introduction to PSCs and the evolution and current state

of the field, followed by a description of the working principles of PSCs. Because

the focus of this thesis is on the ETM of the PSC, the properties of TiO2 and SnO2

will be discussed in more detail.

3.1 Introduction

Perovskites are a class of materials with the chemical formula ABX3, A and B are

cations of different sizes, with A being larger than B and X is an anion [19]. The

crystal structure is shown in Figure 6. The first such described material was calcium

titanium oxide, which was discovered by Gustav Rose in 1839 and named after the

Russian mineralogist Lev Perovski. In 1958 Christian Møller discovered that cesium

lead halides had a perovskite structure with the chemical formula CsPbX3. He also

noted that the compounds were intensely coloured and photoconductive [20]. The

first organic-inorganic hybrid perovskite was synthesized in 1978 by replacing ce-

sium with methylammonium (CH3NH3) [21].

Despite the promising properties of this perovskite, it was not implemented in solar

cells until 2009, when Kojima et al. demonstrated the use of CH3NH3PbI3 and

CH3NH3PbBr3 in a liquid-electrolyte-based DSSC. The efficiency reached a humble

3.8 % and due to the rapid dissolution of the perovskite in the liquid electrolyte sta-

bility was very poor [22]. Im et al. improved the performance to 6.5 % by changing

Parts of this Chapter have been published in

Roose, B., Pathak, S., Steiner, U., ”Doping of TiO2 for sensitized solar cells” Chemical Society

Reviews, 44, 8326-8349 (2015)
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3 Perovskite Solar Cells

the method of deposition [23]. The liquid-electrolyte was subsequently replaced by a

solid-state hole transporting material (2,2',7,7'-tetrakis (N ,N -di-p-methoxyphenyl-

amine)-9,9'-spirobifluorene (spiro-OMeTAD)) [24,25], marking a big step in perfor-

mance and stability , which brought perovskites to the attention of the scientific

community. Especially the work of Lee et al. was revolutionary, as it showed that

perovskite does not need a conducting mesoporous scaffold, instead perovskite itself

transports electrons to the anode. In addition, the perovskite was shown to also be

an excellent hole conductor [26]. This set perovskite apart from DSSCs, as charge

transport can occur in the perovskite itself, the absorber is no longer limited to be-

ing applied as a monolayer. This in turn sparked a new device design in which the

perovskite fully infiltrates the metal oxide scaffold and forms a capping layer on top

(Figure 7), allowing for much thinner devices [27]. Modifying the perovskite compo-

sition proved to allow further enhancement of device performance and stability, as

methylammonium was (partly) replaced by formamidinium [28], guanidinium [29],

cesium [30] or rubidium [11]. The method of perovskite deposition is equally as

important, with two-step deposition [31], thermal evaporation [32] and anti-solvent

dripping [33] (a process where a solvent in which the perovskite does not dissolve

is dripped onto the perovskite precursor film to initiate crystallisation), all showed

significant improvements. The method of deposition mainly affects the morphology

of the perovskite film, where a pinhole-free film with large crystallites is required to

obtain high efficiencies. These advances have led to PSCs now reaching efficiencies

exceeding 22 %, rivalling the efficiency of commercial solar cells [9].

The biggest remaining challenge is now to extend the lifetime of PSCs [34–36],

although other issues, such as the use of toxic lead [37] and up scaling [38] can

not be ignored either. Established solar cell technologies retain more than 80 % of

14



3 Perovskite Solar Cells

Figure 6: Perovskite crystal structure. For perovskites used in solar cells, the

large cation A is usually cesium, or a small organic cation like methylammonium

(CH3NH3) or formamidinium (CH(NH2)2), the small cation B is Pb or Sn and the

anion X is a halide (I, Br or Cl). reprinted by permission from Macmillan Publishers

Ltd: Nature Photonics [19], copyright (2014)

the initial efficiency after 25 years of operation [39]. First reports on PSC stability

showed devices degraded within the first days to weeks after preparation [40–42].

Major degradation pathways include moisture [36,43,44], oxygen [45], heat [46,47],

light-soaking [48] and UV-light induced degradation [41], as well as the migration

of mobile species in the device [49, 50]. Although the effect of many of these phe-

nomena can be limited by encapsulating the device [51], they may still play a role
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on a 25 year time-scale and extensive work has been done to increase PSC resilience.

TiO2 is the default ETM in PSCs, the instability of TiO2 towards UV-light is

however a major cause of performance loss [41]. The instability has a dual cause,

upon exposure to UV-light, oxygen desorbs from TiO2, exposing deep traps that

increase recombination [52]. Additionally, TiO2 is a known photocatalyst [53] and

can degrade organic compounds (such as the organic cation in perovskite). This

instability can be limited by doping [52], or prevented by using larger band-gap

materials such as SnO2 [54], which absorb less UV-light and are less likely to be

affected by light induced (performance) degradation pathways. Additionally, it was

found that a mesoporous ETM provided increased stability over both planar ETM

and an inert mesoporous scaffold due to the combined effects of a better perovskite

morphology with less pinholes [55] and rapid extraction of electrons [56].

The stability of perovskite was found to be increased by substituting some of the

iodide by bromide [40], chloride [57] or thiocyanite [58], or by substituting the or-

ganic cation with formamidinium [28], cesium [30] or rubidium [11].

The HTM was found to play an important role in long term stability as well.

Spiro-OMeTAD is the most commonly used HTM in conventional PSCs, which

needs to be doped to achieve high conductivity and charge mobility. Lithium-

bis(trifluoromethane)sulfonamide (Li-TFSI) has been extensively used for this pur-

pose. This dopant is however highly hygroscopic and increases moisture and oxygen

induced degradation [36]. TFSI salts with less hygroscopic cations were found to

significantly increase device lifetime [59, 60]. Another strategy is to replace Spiro-

OMeTAD with more stable alternatives such as poly(3-hexylthiophene) (P3HT)
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[61], tetrathiafulvalene derivative (TTF) [62] or copper iodide (CuI) [63].

Lastly, the choice of back electrode can play an important role. Silver (Ag) is

easily corroded [36] and gold (Au) can migrate into the device under the influence

of the electric field. The deposition of a thin layer of chromium (Cr) has been shown

to be quite effective to stop Au migration [50]. Carbon-based electrodes have at-

tracted great attention as well due to their excellent stability [64].

These advances have extended the lifetime of PSCs to more than 6 months [10].

This thesis attempts to contribute to extend this lifetime to 25 years by investigating

the role of the ETM and reduce the effect of the ETM on device degradation.

17



3 Perovskite Solar Cells

3.2 Architecture of perovskite solar cells

PSCs have the advantage of a high absorption coefficient, needing just ∼500 nm

thick films to absorb most of the incident photons [65]. In comparison, silicon solar

cells need an absorbing layer that is tens to hundreds of µm thick, implying the

requirement of a much more pure and thus more expensive material [14]. Excitons

in perovskites have a low binding energy, making it easy to separate holes and elec-

trons [66] and excellent charge transport was measured within perovskites for both

electrons and holes, with carrier diffusion lengths exceeding 1 µm [66]. This allows

for very thin devices, the architecture of which is discussed below and shown in

Figure 7.

TCO coated glass
Hole blocking layer

ETM

Perovskite

Back electrode

HTM

Figure 7: Perovskite solar cell architecture (from top to bottom): glass panel coated

with a TCO; hole blocking layer and mesoporous electron transporting layer, typi-

cally titanium dioxide (TiO2) or tin oxide (SnO2); a perovskite layer infiltrating the

porous electron transporting layer and forming a thick capping layer; hole trans-

porting layer and back electrode.
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PSCs are build up using the following components

� Front contact, consisting of a transparent conducting oxide (TCO) deposited

on top of a glass panel. Common TCOs are indium tin oxide (ITO), fluorine

doped tin oxide (FTO) and aluminum doped zinc oxide (AZO).

� Hole blocking / electron selective layer, a thin conformal coating on top of the

TCO, separating the TCO from the rest of the device to prevent recombination

and shunting.

TCO ETM perovskite HTM
back 

electrode

E
n
er

g
y VOC

Ef (EC)
Ef (elec)

hv

Figure 8: Perovskite solar cell band-diagram, showing the relative energy levels of

the TCO, ETM, perovskite, HTM and back electrode. Also shown is the charge

transport upon excitation of an electron from the VB to the CB of the perovskite.
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� Electron transporting material (ETM); the function of the ETM is to accept

electrons from the perovskite and the subsequent transport of the electrons

to the front contact. Although highly efficient PSCs have been fabricated

without ETM [67], most PSCs do employ an ETM to improve the perovskite

morphology [56], charge separation [68] and stability [69].

� Perovskite, infiltrating the ETM and forming a thick capping layer; this layer

is responsible for the absorption of light.

� Hole transporting material (HTM), which transports holes to the back con-

tact.

� Back electrode, usually gold, but other highly conductive materials, such as

carbon, have been employed as well [64].

The band-diagram of a PSC is shown in Figure 8. Upon absorption of an inci-

dent photon (hv) by the perovskite, an electron is excited from the VB to the CB.

This electron is then injected into the ETM and transported to the front electrode.

Meanwhile, the hole that is left in the VB of perovskite is transferred to the HTM

and from there to the back electrode. By connecting the electrodes to an external

circuit the system can perform electrical work.

To obtain high efficiencies, it is important to match the CB of the ETM to the

CB of the perovskite so that the potential difference is sufficiently large for electron

injection, while keeping the difference between the CB of the ETM and the VB of

the HTM as large as possible to maximize VOC [18] In DSSCs the maximum VOC

is roughly the energy difference between the VB of the HTM and the CB of the

ETM. However, in PSCs band bending occurs at the interfaces, resulting in larger

obtainable VOC from perovskite absorbers with larger bandgaps.
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Although a J-V scan such as in Figure 5 can give a good indication, typically

more measurements need to be done to establish the performance of a PSC. The

direction in which the J-V scan is performed (either from open circuit to short

circuit, or from short circuit to open circuit conditions) can greatly influences the

shape of the curve (Figure 9a) [70]. This phenomenon is called hysteresis and has

been attributed to capacitive currents, trapping and detrapping processes, ferro-

electric polarization, ion migration and charge accumulation at interfaces, although

recent studies seem to indicate that a combination of ion migration and charge ac-

cumulation at the interfaces is the most likely cause [71,72]. A better technique to

obtain the device efficiency is maximum power point tracking (MPPT). For MPPT

the device is kept at the voltage for which the power is at maximum for a prolonged

amount of time (Figure 9b). During this period, the voltage of the maximum power

point is ascertained by small variations around the maximum power point. This

way a value can be extracted that closely resembles the efficiency under real working

conditions [73].
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a)

b)

Figure 9: Establishing the efficiency of PSCs; a) J-V scans from open circuit to short

circuit conditions (black) and from short circuit to open circuit conditions (red),

clearly illustrating the hysteresis effect and b) maximum power point tracking.
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3.3 Material properties

This section will expand on the material properties of TiO2 and SnO2, two of the

most used electron transporting materials in PSCs.

3.3.1 TiO2

The large band gap, suitable band edge levels for charge injection and extraction,

the long lifetime of excited electrons, exceptional resistance to photo corrosion,

non-toxicity and low cost have made TiO2 a popular material for solar energy ap-

plications [74–76].

TiO2 occurs naturally in three crystalline forms; anatase (tetragonal), rutile (tetrag-

onal) and brookite (orthorhombic). For PSCs, anatase is the most commonly used

phase due to its superior charge transport. The tetragonal anatase crystal struc-

ture is made up of a chain of distorted TiO6 octahedrons, which results in a unit

cell containing four Ti atoms (at positions [0,0,0], [1
2
,1
2
,1
2
], [0,1

2
,1
4
] and [1

2
,0,3

4
]) and

eight O atoms. The lattice parameters a and c are 3.7845 Å and 9.5143 Å respec-

tively [77–79] (Figure 10).

TiO2 prepared by sol-gel processes is amorphous and annealing at elevated tem-

peratures is required to achieve the desired crystal structure. The crystallization

temperature is limited by the anatase-rutile transition. Since rutile is the thermody-

namically most stable polymorph of TiO2 at all temperatures, the anatase to rutile

transition temperature depends sensitively on preparation conditions. Because of

their different band structures, mixed phases of anatase and rutile generally cause

the trapping of charge carriers and promote recombination processes. They are
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mostly undesirable in TiO2 electrodes, although there are some studies suggesting

a small amount of rutile nanoparticles can enhance device performance [80–82]. De-

vices employing rutile TiO2 generally suffer from a lower CB compared to anatase,

leading to a lower VOC. In addition, reduced charge transport lowers the obtainable

JSC and FF , especially affecting the latter [83–85]. Because of these complications,

rutile is not frequently used in PSCs.

The band gap of n-type semiconducting single-crystal anatase TiO2 is approxi-

mately 3.2 eV, the resistivity is ∼ 1015 Ωcm [86] and the mobility is <1 cm2V−1S−1

Figure 10: The anatase unit cell; titanium atoms are grey, oxygen atoms are red.

Oxygen atoms form a distorted octahedron with a titanium atom at the center,

which is clearly illustrated for the central titanium atom.
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[87]. The lower edge of the CB is made up of vacant Ti4+ 3d bands and the upper

edge of the VB is made up of filled O2– 2p bands [88]. Bulk oxygen vacancies,

titanium interstitials and reduced crystal surfaces generate shallow electron traps

that can enhance the conductivity of TiO2 as a result of the trapping-detrapping

transport mechanism of electrons [89], as described below. Of particular interest

here is the occurrence of Ti3+ species, which form a band roughly 0.5 eV below

the TiO2 CB. These defects act as n-type dopants, increasing the number of free

electrons in the TiO2 and hence the conductivity and current. At the same time

defects can act as charge trap and are therefore recombination centers, having a

negative effect on device performance [86,90].

The number of defects can be influenced by moderately heating the device or by

placing it in an inert atmosphere [91]. Furthermore, it was discovered that the

number of traps can be reversibly changed by oxygen exposure or deprivation, indi-

cating oxygen can adsorb onto TiO2 defects and by doing so passivate trap states.

A further remarkable observation is that UV irradiation causes the desorption of

oxygen from these defects. Under exposure to air, oxygen release is counterbalanced

by oxygen adsorption from the atmosphere. PSCs are however typically protected

from degradation by air-free encapsulation. The lack of oxygen inside the encap-

sulated device upsets the desorption-adsorption balance, leading to an increase in

trap states and deterioration of device properties. This again is reversible upon

breaking the seal and exposure to oxygen [41,52,92].

Because of its many defects and the resulting sub-band gap states in TiO2 (Figure

11a), electron transport is complex and hard to investigate. In devices, this is partic-

ularly difficult because parameters relating to one device property can not be stud-
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a) b)

Figure 11: a) Schematic illustration of the trap distribution and trapping-

detrapping process occurring in TiO2. The dotted line represents EFn in the TiO2,

the long dashes represent vacant sub-bandgap sites and the filled circles represent

electrons, vertical arrows represent trapping and detrapping and horizontal arrows

represent transport. b) Illustration of the DOS distribution in solid films. The dark

region below the EFn represents states with a probability greater than 50 % of being

filled. Reprinted with permission from [89].

ied individually without significantly changing other material properties. There is

however strong theoretical and experimental evidence indicating that charge trans-

port in TiO2 proceeds by detrapping from sub-band gap states (Figure 11a). These

states lie deep in the tail of the density of states (DOS, number of available states

at a certain energy, Figure 11b), from which electrons can be detrapped into the

CB, according to the multiple-trapping model for charge transport [89]. The occu-

26



3 Perovskite Solar Cells

pation of sub-band gap states at energy EA can be found through the Fermi-Dirac

distribution function

F (EA − EFn) =
1

1 + e(EA−EFn)/kbT
(2)

and the density of carriers at the energy EA is nA = NAFA, where NA is the total

number of available trap sites at this energy. From this, the density of electrons in

the CB (nCB) can be derived as a function of the position of the quasi-Fermi level

for electrons (EFn, the quasi-Fermi level is the Fermi level of electrons in the CB, the

Fermi level can be considered to be a hypothetical energy level of an electron, such

that at thermodynamic equilibrium this energy level would have a 50 % probability

of being occupied at any given time, Figure 11),

nCB = NCBe
(EFn−ECB)/kbT (3)

Considering electron transport takes place only in the CB, the conductivity of the

film is given by

σ = nCBeµ, (4)

where µ is the electron mobility. Generally, a higher TiO2 conductivity means a

higher current output from the device. From the equations above it is apparent that

the conductivity of the film is determined by the probability of the electrons being

in the CB, which increases as the quasi-Fermi level approaches the CB. This means

that any modification that eliminates deep trap states will increase the conductivity

of the film [89].

To be able to effectively modify the trap states it is important to know where

the traps are located. Different studies have suggested traps are located either in

the bulk [93], at inter-particle grain boundaries [94] or at the surface of the parti-

cles [95, 96]. Bulk defects do not seem to play a major role [97] and it should be
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noted that charge recombination is an interfacial process [98]. But because of the

difficulty to experimentally distinguish between boundary or surface defects it is

still unclear were exactly the traps are located [89], although there is strong evi-

dence that traps are predominantly found at grain boundaries in block-copolymer

templated metal oxides [99], such as the ones used in this thesis. Furthermore the

synthesis method heavily affects defect locations and type. This makes it difficult

to effectively modify the TiO2 structure. It is understood that weakly reducing

synthesis conditions and low annealing temperatures favor the formation of oxygen

vacancies, whereas more reducing synthesis conditions and high annealing temper-

atures favor titanium interstitials as main defects [77, 86].

This combination of factors leads to the complex situation where shallow traps

are essential for charge transport and can actually improve conductivity, but at

the same time, deep traps lower the quasi-Fermi level, making it harder to detrap

electrons, decreasing conductivity and enhancing recombination. The VOC of the

device, which depends on the energy difference between the CB of TiO2 and the VB

of the HTM (Figure 8) and the bandgap of the perovskite absorber, is also affected

by the trap states, with less deep traps resulting in a higher VOC. Furthermore,

traps can act as recombination sites for electrons and holes [77], which leads to a

decrease in both current and voltage.

At the interface between TiO2 and perovskite, band bending occurs due to the

formation of a space charge region, implying that the CB in the bulk and at the

surface do not have the same energy. The space charge region provides an electric

field that separates electrons and holes. An external voltage can cancel out band

bending and eliminate the space charge region. This specific voltage is called the
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flat-band potential (VFB) [100]. Because trap states are predominantly located on

the TiO2 surface they have a large influence on VFB and thereby on the separation

efficiency of electrons and holes. When VFB is negatively shifted (indicating an

upward shift of the CB and the Fermi level), the injection of electrons from the

perovskite into TiO2 will become less efficient and a loss in current occurs. The

reverse is also true and some defects make injection more efficient by positively

shifting VFB, causing a downward shift of the CB and Fermi level. With so many

interconnected processes it is clear that devising a method to improve the electronic

properties of TiO2 is not trivial.

3.3.2 SnO2

Tin oxide (SnO2) is often cited as a promising alternative to TiO2 due to the

high electron mobility (∼250 cm2V−1S−1) of SnO2 [101] compared to TiO2 (<1

cm2V−1S−1) [87]. Additionally, the ∼3.6 eV band-gap makes SnO2 more robust

a

a

c

Figure 12: The rutile unit cell; tin atoms are grey, oxygen atoms are red. Oxygen

atoms form an octahedron with a tin atom at the centre, which is clearly illustrated

for the central tin atom.
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and less photo catalytically active under UV-light than TiO2 [102]. However, the

major drawback of SnO2 is the low CB (∼0.3 eV lower than TiO2), leading to a

large overpotential at the perovskite/SnO2 interface and thus a loss of VOC, and

higher recombination, further limiting VOC and FF [102, 103]. To address these

issues, SnO2 has been doped with a wide variety of metals such as Al, Mg, Ga and

Zn [104–107], resulting in a higher CB and decreased recombination. Alternatively,

core-shell structures have been synthesized to suppress recombination [108].

SnO2 has a rutile (tetragonal) crystal structure, where each Sn atom is at the

centre of an octahedron surrounded by six oxygen atoms, with a unit cell contain-

ing two Sn atoms (at positions [0,0,0] and [1
2
,1
2
,1
2
]) and four O atoms [109] (Figure

12). The lattice parameters a and c are 4.737 Å and 3.185 Å respectively [101].

The lower edge of the CB of SnO2 is formed by the hybridization of O-2p and Sn-5s

states. The upper edge of the VB consists of filled O-2p and Sn-4d states [110].

Bulk oxygen vacancies, tin interstitials, hydrogen interstitials and reduced crystal

surfaces can enhance the conductivity of SnO2 by acting as n-type dopants, in-

creasing the number of free electrons [111, 112]. At the same time defects can act

as charge traps and are therefore recombination centers, having a negative effect on

device performance. Oxygen vacancies have been shown to form shallow trap states

0.15-0.30 eV below the CB [113], indicating that reducing the number of oxygen

vacancies may be an effective method to reduce recombination in SnO2 based PSCs.

Due to the limited use of SnO2 in DSSCs and PSCs, its properties have not been

investigated as intensively as TiO2. However, there is strong evidence that elec-

tron transport in SnO2 occurs via a similar trapping-detrapping mechanism as in

TiO2 [114] and traps play an equally ambivalent role in SnO2 as in TiO2.
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This chapter will introduce the concepts of block-copolymer self assembly and sol-gel

chemistry and how a combination of the two can be used to synthesize mesoporous

metal oxides, which can be used as ETM in perovskite solar cells.

4.1 Block-copolymer self-assembly

A block-copolymer (BCP) is a type of macromolecule consisting of two or more lin-

ear blocks of covalently linked monomers of chemically different moieties. The most

simple variety is the diblock copolymer, consisting of a block of A and a block of B

moieties, commonly denoted as poly(A-block -B). It is possible to link blocks with

vastly different chemical properties, for example a hydrophilic and a hydrophobic

block. Thermodynamically it is favourable for these blocks to demix, but because

they are covalently linked only a partial demixing can be achieved. This leads to a

segregation of the blocks in the range of 5-100 nm, depending on the length of the

blocks [115].

Three parameters determine BCP morphology: (1) the overall degree of polymer-

Figure 13: Different morphologies of BCPs, depending on the volume fraction fA:

spheres (S), cylinders (C), gyroid (G) and lamellar (L). Reprinted from [116].
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C C

G

S S

Figure 14: Phase diagram of a BCP, morphology depends on χ,N and f. Phases

are labelled: disordered (DIS), close packed spheres (CPS), spheres (S), cylinders

(C), gyroid (G) and lamellae (L). Adapted with permission from [117]. Copyright

(1996) American Chemical Society.

ization N, which is the total number of monomers per polymer chain, (2) the volume

fractions of the A and B blocks (fA and fB) and (3) the Flory-Huggins parameter,

χAB. The χ-parameter specifies the incompatibility of the A and B blocks, which

drives the phase separation [118]. The most common morphologies are spheres (S),

cylinders (C), gyroid (G) and lamellae (L). A symmetric BCP (fA = fB) will adopt
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a lamellar morphology, as optimal demixing at this volume fraction is achieved for

planar interfaces. As the volume fraction asymmetry increases, these planar inter-

faces become less favourable and the system goes to a series of morphologies with

increased interface curvature, starting from the gyroid, to cylinders and spheres,

before becoming disordered. The dependence of the morphology on χ, N and f

is shown in Figure 14. The degree of microphase separation depends on the seg-

regation product χN. Because the incompatibility between the constituent blocks

generally decreases with increasing temperature, χ is positive and varies inversely

with temperature. This is reflected in the order-to-disorder transition (ODT), the

temperature at which the copolymers become disordered [118].

The phase behaviour of BCPs in bulk is both theoretically and experimentally

well understood [119]. However, the systems in this thesis are deposited from so-

lution, increasing the level of complexity as the affinity of the separate blocks with

the solvent has to be taken into account. In addition, the use of sol-gel chemistry

(Section 4.2) in combination with BCP self-assembly makes it next to impossible

to alter the morphology after deposition with solvent or temperature annealing.

O H

x y

Figure 15: Chemical structure of PI-b-PEO, x and y can be varied independently

to influence the morphology of the BCP.
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In solution, amphiphilic (having a hydrophobic and a hydrophilic block) BCPs are

known to form aggregates, including spherical micelles, rods and vesicles [120]. The

BCP used in this thesis is the fully organic poly(1,4-isoprene-b-ethylene oxide) (PI-

b-PEO, Figure 15) with fPI ≈ 0.25. In a polar solvent this BCP self-assembles into

spherical micelles, with isoprene cores, encapsulated by a shell of ethylene oxide.

When a thin film is cast from solution, the solvent will quickly evaporate, pushing

the micelles close together, to form a densely packed assembly. How this morphol-

ogy can be transformed into a porous metal oxide ETM, that can be used in PSCs,

is explored in the next section.

34



4 Block-copolymer templated metal-oxides

4.2 Sol-gel chemistry

The sol-gel process is an important method for the fabrication of metal oxides from

small molecules. In the process, reagents are molecularly mixed and the random-

ness of the solution state is trapped by rapidly quenching the system. This makes

it possible to produce inorganic materials such as metal oxides at relatively low

temperatures and short synthesis times [121]. The sol-gel process involves the con-

version of metal oxide precursors from solution into a colloidal solution (sol) and

finally into a network structure called a gel [122,123]. Typical precursors are metal

alkoxides and metal chlorides. The morphology of the solid phase ranges from

discrete colloidal particles to a continuous chain-like polymer network [124]. The

sol-gel process can be summarized in the following key steps [122], corresponding

to the numbers in Figure 16:

1. Synthesis of the ”sol” through hydrolysis and partial condensation of alkoxides

or chlorides.

2. Formation of the gel via polycondensation to form metal-oxo–metal or metal-

hydroxy–metal bonds.

3. Aging; condensation continues within the gel network, often shrinking it and

resulting in expulsion of solvent.

4. Drying the gel either to form a dense ”xerogel” via collapse of the porous

network or an aerogel for example through supercritical drying.

5. Removal of surface M-OH groups through calcination at high temperatures.

Complete hydrolysis often requires an excess of water and the use of an acid or base

as hydrolysis catalyst [126].
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1)

2)

3)

4,5)

Figure 16: Sol-gel reaction of tetraethyl orthosilicate to form SiO2. The reaction

proceeds the same way for any metal alkoxide or metal chloride. Adapted from [125].

This type of chemistry can be used to synthesize a wide variety of metal oxides,

including TiO2 and SnO2, from suitable precursors.
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4.3 Combining BCP self-assembly and sol-gel chemistry

The self-assembly of BCPs can be used to direct the nanoscale assembly of metal

oxides. Subsequently the polymer can be removed by heat treatment or etching,

leaving behind the metal oxide, which now resembles the morphology of the struc-

ture directing polymer. Early work showed micellar structures with pore sizes up

to 10 nm can be achieved by using surfactants in combination with silicate sol-gel

chemistry [127]. By using BCPs the pore size could be increased and additional

morphologies such as lamellae and cylinders were achieved [128]. In order for this

approach to be successful, several conditions have to be met:

� The metal oxide sol has to be selectively incorporated in one of the BCP

blocks. This is usually achieved by Coulombic interactions or hydrogen bond-

ing [129].

� Particles in the sol have to be relatively small compared to the radius of

gyration of the polymer chain to allow incorporation of the guest material,

without strongly disturbing the chain conformation of the polymer [130].

� Self-assembly of the BCP needs to happen on a significantly faster time-scale

than the gelation process of the metal oxide, to prevent particles from becom-

ing too big to incorporate in the guest material [131].

� The solvent system has to dissolve both the BCP and the metal oxide precur-

sors and allow uniform evaporation of the volatile species [132].

� Upon removal of the BCP, the metal oxide morphology has to be stable enough

to support itself. To fulfil this last requirement a high metal-oxide precursor

loading is needed [133].
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1 μm

Figure 17: Example of the inverse micelle morphology of a porous metal oxide film,

achieved by the BCP self-assembly directed synthesis method.

Metal oxides with different morphologies such as gyroids [134] cylinders and in-

verted micelles [135] have been employed as electron transporting material in solar

cells, but the device performance seems to be affected more by the porosity of the

morphology than by the morphology itself [135]. This allows the use of the inverted

micellar morphology, which is achieved readily by spincoating of a precursor solu-

tion and subsequent heat treatment [136] and yields a highly porous structure such

as the one shown in Figure 17.

An additional advantage of this method over conventional nanoparticle synthesis is

the tight control over morphology. In doping studies, the dopant often influences

the size of the nanoparticles and thus the morphology [123]. However, by using

the BCP method, the morphology can be kept identical, excluding morphological

influences from the study.
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This Chapter has detailed how the combination of block-copolymer self-assembly

and sol-gel chemistry can yield ETMs with identical morphology. This makes ETMs

synthesized through this method extremely interesting for studying the role of metal

oxides in PSCs, as is described throughout Chapters 6-8.
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5 Experimental techniques and methods

This chapter will give an overview of the experimental techniques and methods used

in this thesis, as well as a concise description of the working principles of some of

the less straight-forward techniques.

5.1 Morphological characterisation

Two key methods for analysing the morphology of materials are scanning electron

microscopy (SEM) and X-ray diffraction (XRD). Where SEM can be used to image

the surface of a sample, XRD can be used to extract crystal structure, crystal size

and lattice spacing.

5.1.1 Scanning electron microscopy

A scanning electron microscope produces images by scanning a sample with a fo-

cused beam of electrons. The electrons interact with atoms in the sample, which

produces various signals that can be used to reconstruct an image revealing the

topography and composition of the sample. The relevant signal used in this thesis

are secondary electrons. These electrons are ejected from the sample by inelastic

beam scattering interactions with beam electrons and are collected by a detector.

By correlating the amount of secondary electrons with the beam position an image

can be reconstructed with a resolution of up to 0.5 nm.

SEM was carried out on a Tescan MIRA 3 LMH with a field emission source op-

erated at an acceleration voltage of 10 kV. ImageJ 1.48v was used to extract pore

sizes and crystal sizes from SEM micrographs.
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5.1.2 X-ray diffraction

XRD is a precise method to determine crystal structures. It is routinely used to

determine the crystal structure and the presence of impurity phases. The Rietveld

refinement method allows a detailed analysis of XRD spectra by using a least squares

fit to approximate the measured diffractogram [137]. This way it is possible to

determine the average crystallite size D by using the Scherrer formula [138,139]

D =
Kλ

β cos θ
, (5)

where K is a dimensionless shape factor which is dependent on the shape of the

particles (0.9 for spherical particles), λ is the wavelength of the X-rays, β is the full

width half-maximum (FWHM) after subtracting the instrumental line broadening

and θ is the Bragg angle. It is important to note that β and θ are in radians, whereas

the instrumental output is usually in degrees. Furthermore, the inter-planar spacing

dhkl can be calculated with Bragg’s law [140]

d =
λ

2 sin θ
(6)

and using this interplanar spacing the lattice parameters a and c can be calculated

for TiO2 and SnO2 using the Bragg formula for a tetragonal (a = b) lattice [141]

1

d2
=
h2 + k2

a2
+
l2

c2
. (7)

In this study XRD was measured using a Bruker D8 θ/θ (fixed sample) spectrometer

with a LynxEye position sensitive detector and a standard SC detector with auto-

absorber and graphite 2nd beam monochromator. The spectrometer uses a Bragg

Brentano parafocusing geometry and operates in reflection mode. Samples were

deposited on Si-wafers and the (100) Si peak was used to calibrate the obtained

spectra.
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5.1.3 Cyclic voltammetry

Electrochemistry studies the relationship between electricity and chemical change.

More specifically, reactions involving the movement of electric charges between elec-

trodes and an electrolyte. These include reduction-oxidation (redox) reactions, in

which a molecule or ion changes its oxidation state. Reduction and oxidation al-

ways occurs in a paired fashion, one species is oxidized when another is reduced.

TCO ETM

E
n
er
g
y

redox

Figure 18: Simplified band-diagram of a redox reaction at the surface of a conduct-

ing substrate. Shown are the work function of the transparent conducting oxide

(TCO) substrate, the CB of the ETM and the redox potential of the redox couple.

Without an ETM, the reaction is allowed to occur freely, but in the presence of an

ETM the reaction is (partially) blocked, as depicted by the red cross.
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Redox reactions can be used to determine the effective coverage of a material on a

conductive substrate. In order to do so, the redox-potential has to lie below the CB

of the material covering the substrate, while still being able to transfer electrons

to the substrate (Figure 18). If the material fully covers the substrate, the redox

reaction will be completely suppressed and no current will be recorded. However,

incomplete surface coverage, such as caused by cracks or pinholes, will result in a

current. By comparing this current to the current collected for the bare substrate,

an effective surface coverage can be calculated.

Electrochemical experiments were carried out using a Metrohm PGSTAT302N Au-

tolab. SnO2 ETMs were deposited on FTO and AZO electrodes through spray

pyrolysis, as described in Section 5.3. deposited on A Ag/AgCl reference elec-

trode was used in an aqueous electrolyte solution containing 0.5 M KCl (0.5 M),

K4Fe(CN)6 (0.5 mM) and K3Fe(CN)6 (0.5 mM) [142]. Cyclic voltammograms were

collected at a scan rate of 50 mV/s. The electrolyte solution was degassed of oxygen

by purging with nitrogen before the measurement.
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5.2 Material characterisation

Several techniques are employed to investigate material properties. X-ray photo-

electron spectroscopy (XPS) is used to investigate material composition, UV/Vis

spectroscopy to probe changes in the bandgap and photothermal deflection spec-

troscopy (PDS) to detect sub-bandgap states. Mott-Schottky analysis is a powerful

tool to determine the CB edge and charge carrier density. Time-correlated single-

photon counting (TCSPC) can be employed to probe recombination behaviour.

5.2.1 X-ray photoelectron spectroscopy

XPS is a quantitative technique that measures the elemental composition of a mate-

rial, as well as the chemical and electronic state of the elements within the material.

The sample is irradiated by a beam of X-rays, while simultaneously the kinetic en-

ergy and number of electrons escaping the sample are measured. As electrons in

the bulk of the material have a higher chance of being trapped, the obtained sig-

nal originates mainly from the surface of the material. Each element produces a

characteristic set of XPS peaks that can be used to identify the elements present

in the sample. Each peak corresponds to the binding energy of an electron from

one of the electron shells (1s, 2s, 2p, etc.). The atomic ratios of the constituent

elements can be found by the relative intensity of the XPS signal (corrected by a

relative sensitivity factor). In addition, the local bonding environment can instigate

small shifts in the XPS signal, the so-called chemical shift. This chemical shift is

dependent on the oxidation state of the atom in question and the interactions with

the nearest neighbours and can thus give more detailed information about the local

chemical environment of the elements in the sample.
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5.2.2 UV/Vis spectroscopy

UV/Vis spectroscopy is used to determine the absorbance and bandgap of a ma-

terial. In UV/Vis spectroscopy the intensity of light passing through a sample (I)

is compared to the intensity of light before it passes through the sample (I0). The

transmittance (T ) is defined as I/I0 and the absorbance is given by

A = −log(T ). (8)

Absorbance is usually plotted against the wavelength of the incoming light, clearly

illustrating which part of the spectrum is absorbed by the material. For semicon-

ductors the bandgap energy can be estimated from the absorption onset.

UV-vis absorption in films was measured using a Varian Cary 300 UV-Vis spec-

trophotometer.

5.2.3 Photothermal deflection spectroscopy

PDS is an ultra-sensitive absorption technique that can detect absorbance values

as low as 10−5 [143]. This allows to detect sub-bandgap states, which play an im-

portant role in the electronic properties of semiconductors. For PDS measurements

a sample (deposited on quartz) is submersed in an inert, non-absorbing material

(typically a perfluorocarbon). A pump beam passes through the sample, heating

up the sample and the surrounding liquid as it is absorbed, causing a refractive

index gradient. A probe beam passes parallel to the sample and will be deflected

proportional to the temperature gradient of the liquid near the sample. From this

deflection the amount of absorbed radiation can be precisely determined.

PDS was measured with a Light Support MKII 100 W Xenon arc source coupled
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with a CVI DK240 monochromator. The probe beam comes from a Qioptiq 670

nm fiber-coupled diode laser. [144]

5.2.4 Mott-Schottky analysis

Upon contacting an n-type semiconductor and an electrolyte solution containing a

redox couple, the system will equilibrate by transferring electrons from the semi-

conductor to the redox couple, so that the Fermi levels (EF) of the semiconductor

and the redox couple are equal. This induces band bending and generates a space

charge region in the semiconductor, which is positively charged, counterbalanced by

a negatively charged region in the electrolyte. Changing the voltage of the semicon-

ductor by using a potentiostat pushes the Fermi levels apart, resulting in a change

CB

VB

Ef

semiconductor electrolyte

CB

VB

Ef

semiconductor electrolyte

a) b)

V = V V = VOC FB

Figure 19: a) semiconductor in contact with an electrolyte with no applied voltage,

the system equilibrates by transferring electrons from the semiconductor to the

electrolyte and causing band bending. b) By applying a voltage equal to Vfb, there

is no band bending.
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of the amount of charges at the interface. When the applied voltage is such that

there is no charge the semiconductor is at its flat-band potential (VFB)(Figure 19).

The Mott-Schottky equation can be used to determine VFB,

1

C2
=

2

εε0A2eND

(
V − VFB − kBT

e

)
, (9)

where C is the interfacial capacitance, ε is the dielectric constant of the semicon-

ductor, ε0 the permittivity of free space, A the interfacial area, ND the number of

donors, V the applied voltage, kB is Boltzmann’s constant, T the absolute temper-

Figure 20: Mott-Schottky plot for a semiconductor, the relation between the inter-

sect of the straight line with the V -axis and VFB, and between the slope and ND

are indicated.
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ature and e is the electronic charge. A plot of 1/C2 against V yields a straight line,

from which VFB can be determined from the intercept with the V -axis and ND from

the slope of the line (Figure 20). By referencing Vfb to a standardized electrode the

relative CB position can be found [145].

In this thesis Mott-Schottky analysis was performed using a Metrohm PGSTAT302N

Autolab. SnO2 ETMs were deposited on FTO and AZO electrodes through spray

pyrolysis, as described in Section 5.3. A Ag/AgCl reference electrode was used

in an aqueous electrolyte solution containing 0.5 M KCl (0.5 M), K4Fe(CN)6 (0.5

mM) and K3Fe(CN)6 (0.5 mM). The electrolyte solution was degassed of oxygen by

purging with nitrogen before the measurement. Electrochemical impedance data

was collected at ∼1 kHz to find the capacitance.

5.2.5 Time-correlated single-photon counting

The principle of TCSPC is the detection of single photons and the measurement

of their arrival times with respect to a reference signal, such as a laser pulse. This

way, it is possible to measure a radiative decay, such as fluorescence, as a function

of time. This data can then be fitted and a charge lifetime can be extracted from

the decay profile.

Fluorescence lifetime data was collected using a Florolog 322 spectrofluorometer

(Horiba Jobin Ybon Ltd). A NanoLED-405LH (Horiba) laser diode (406 nm) (op-

erated at a 400 kHz repetition rate) was used for excitation. The samples were

mounted at 60 ◦ and the emission collected at 90 ◦ from the incident beam path.

The emission monochromator was set to 760 nm with a 14 mm slit width and the

photoluminescence was recorded using a picosecond photodetection module (TBX-
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04, Horiba Scientific).
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5.3 Solar cell fabrication

This section will give a layer-by-layer experimental description of the fabrication of

PSCs and DSSCs.

5.3.1 Perovskite solar cell device assembly

Several different PSC architectures have been investigated for this thesis. This

section describes the fabrication of each individual layer. The experimental sections

of Chapters 6-9 will detail which particular device configuration was used.

TiO2 compact layer

Nippon Sheet Glass with an FTO coating (10/�) was cleaned by sonication in a

2 % Hellmanex solution for 30 minutes. After rinsing with deionised water and

ethanol, the substrates were treated with UV-ozone for 15 minutes. A 30 nm TiO2

compact layer was deposited via spray pyrolysis at 450 ◦C from a precursor solution

of titanium diisopropoxide bis(acetylacetonate) in anhydrous ethanol.

SnO2 compact layer

Fluorine doped tin oxide coated glass slides (Sigma-Aldrich, 7/�) and aluminum

doped zinc oxide coated glass slides (Zhuhai Kaivo Optoelectronic Technology Co.,

<10/�) were cleaned by sonication in a 2 % Hellmanex soap solution for 15 minutes.

After rinsing with deionized water and ethanol, the substrates were again sonicated

with isopropanol and rinsed with acetone. The substrates were treated with UV-

ozone for 5 minutes and a 30 nm thick SnO2 ESL was deposited by spray pyrolysis

at 450°C from a precursor solution of butyltin trichloride (250 mM) in anhydrous

ethanol [146]. Alternatively, a 15 nm thick SnO2 compact layer was deposited by
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atomic layer deposition (ALD) [147].

Mesoporous TiO2 layer

Mesostructured TiO2 electrodes were synthesised using a structure directing BCP

[136], as described in Chapter 4. A titanium precursor sol was prepared by adding

50 µl of HCl (37 %) to 150 µl of titanium(IV) isopropoxide (TTIP) (Sigma-Aldrich,

99.999 %) and stirred for 10 minutes. For the doped samples, neodymium(III)

isopropoxide (Sigma-Aldrich, 99.8 %) was dissolved in TTIP before the addition of

HCl. The doping concentrations are given in terms of the Nd:Ti ratio. Subsequently,

polyisoprene-block -polyethyleneoxide (PI-b-PEO) (50 mg, molar mass Mn= 34.4 kg

mol−1, 28wt% PEO) was dissolved in 1 ml of azeotrope (72.84wt% toluene and

27.16wt% 1-butanol) and added to the precursor sol. After 20 h, the resulting

solution was spin-coated (4000 rpm, 20 s) onto the FTO substrate. The films were

annealed on a programmable hotplate (2000 W, Harry Gestigkeit GmbH) using a

linear 2 hour ramp to 600 ◦C followed by a dwell time of 1 hour to remove the BCP

template and crystallise TiO2.

Mesoporous SnO2 layer

Mesostructured SnO2 electrodes were synthesized using a structure directing BCP

[136], as described in Chapter 4. A tin oxide precursor sol was prepared by dissolv-

ing poly(1,4-isoprene-b-ethylene oxide) (25 mg, Polymer Source, Mn: PI(50000)-

PEO(12000), Mw/Mn: 1.05) in tetrahydrofuran (1 ml), after which tin(IV) chloride

pentahydrate was added (80 mg) and stirred for 30 minutes. For the doped samples,

gallium(III) acetylacetonate (Sigma-Aldrich, 99.99 %) was added to the solution.

The doping concentrations are given in terms of the Ga:Ti ratio. The mixture was

stirred for 30 minutes and then spin-coated (4000 rpm, 10 s) onto the substrate and
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immediately transferred to a preheated hotplate (150 ◦C). The films were annealed

on a programmable hotplate (2000 W, Harry Gestigkeit GmbH) using a 45 minute

ramp to 450 ◦C followed by a dwell time of 30 minutes to remove the BCP template

and crystallize SnO2.

DT perovskite

A precursor solution containing formamidinium iodide (FAI) (1 M), lead iodide

(PbI2) (1.1 M), methylammonium bromide (MABr) (0.2 M) and lead bromide

(PbBr2) (0.2 M) in anhydrous DMF:DMSO 4:1 (v:v) was spin-coated in a two-

step program at 1000 and 4000 rpm for 10 and 30 s respectively, to form a film of

FA/MA mixed cation lead I/Br mixed halide perovskite, hereafter referred to as

”DT” perovskite. During the second step, 100 µl of chlorobenzene was poured onto

the spinning substrate 15 seconds prior the end of the program. The substrates

were then annealed at 100 ◦C for 1 hour in a nitrogen glove box [148].

CDT perovskite

Cesium containing DT perovskite (”CDT”) precursor solution was synthesized by

adding 5 vol. % of cesium iodide (CsI) solution (1.5 M in DMSO) to a DT perovskite

precursor solution. The perovskite solution was spin-coated in a two-step program

at 1000 and 4000 rpm for 10 and 20 s respectively. During the second step, 100

µl of chlorobenzene was poured onto the spinning substrate 15 seconds prior the

end of the program. The substrates were then annealed at 100 ◦C for 1 hour in a

nitrogen glove box [30].
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Hole transporting layer

Subsequently, the substrates were cooled down for a few minutes and a spiro-

OMeTAD (Merck) solution (70 mM in chlorobenzene) doped with bis(trifluoro-

methylsulfonyl)imide lithium salt (Li-TFSI, Aldrich), tris(2-(1H-pyrazol-1-yl)-4-tert-

butylpyridine)-cobalt(III)tris(bis(trifluoromethylsulfonyl)imide) (FK209, Dyenamo)

and 4-tert-butylpyridine (TBP, Aldrich) was spun at 4000 rpm for 20 s. The molar

ratio of additives for spiro-OMeTAD was: 0.5, 0.03 and 3.3 for Li-TFSI, FK209 and

TBP, respectively. [149]

Gold electrode

70 nm of gold was thermally evaporated under high vacuum on top of the device.

5.3.2 Dye sensitized solar cell device assembly

Due to the overlap of the IMPS and IMVS signals of perovskite and metal ox-

ides [150], DSSCs were used to perform these measurements instead.

Compact and mesoporous layers were fabricated as described above. m-TiO2 elec-

trodes were then immersed in a Y123-dye solution (acetonitrile/1-butanol, 50/50

v/v%) for one hour [151]. m-SnO2 electrodes were immersed in a Z907-dye solution

(acetonitrile/1-butanol, 50/50 v/v%) overnight [146]. Electrodes were rinsed with

acetonitrile before the deposition of the hole transporting layer and gold electrode

as described above.
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5.4 Solar cell characterisation

Current-Voltage (J-V ) characteristics were measured to obtain device performance.

5.4.1 Current-Voltage characteristics

For photovoltaic measurements, a solar simulator from ABET Technologies (Model

11016 Sun 2000) with a xenon arc lamp was used and the solar cell response was

recorded using a Metrohm PGSTAT302N Autolab. The intensity of the solar sim-

ulator was calibrated to 100 mW/cm2 using a silicon reference cell from ReRa

Solutions (KG5 filtered). J-V -curves were measured in reverse bias (from high to

low voltages), at a scan rate of 10 mV/s. The cells were masked to define the active

area (0.09 cm2) and were measured two days after their preparation. The voltage

at the maximum power output was extracted from the J-V -curves, the device was

then held at this voltage to obtain the variation of the stabilised power output

efficiency with time.

5.4.2 Incident photon-to-current efficiency

The incident photon-to-current efficiency (IPCE) gives the efficiency of the conver-

sion of incoming light to collected current, as a function of the wavelength of the

incoming light. The area under the curve represents the current collected under the

full spectrum white light and is thus equivalent to JSC .

In this thesis, monochromatic light was derived from a 250 W tungsten halogen

white light source (Newport, Model 66881) using a Oriel Cornerstone 130 monochro-

mator. The light beam was split into two beams using a semi-transparent mirror.

One beam is directed towards a reference photodiode (Thorlabs SM05PD1A), the
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second beam illuminated the optoelectronic device under investigation.The current

response was measured using a Keithley 2635 sourcemeter. Prior to the actual mea-

surement, the reference diode was calibrated using a second diode (also Thorlabs

SM05PD1A) with known spectral responsivity. The measurement was controlled

with a LabView program.

5.4.3 Intensity Modulated Photocurrent Spectroscopy

For Intensity Modulated Photocurrent Spectroscopy (IMPS), the dynamic response

of the solar cell to a small amplitude sinusoidal modulation of the incident light

intensity is measured as a function of the angular modulation frequency ω. The

incident photon flux Φ consists of a monochromatic modulated part (AC) superim-

posed on a constant background (DC). By measuring the photocurrent as a variation

of the photon flux, a so-called transfer function can be constructed

HIMPS =
∆i

∆Φ
eiϕ, (10)

where ∆i is the variation of the current, ∆Φ the variation of the photon flux and

ϕ is the phase angle. In the case of single step one-electron charge transfer reac-

tions, the frequency of the maximum imaginary part of the IMPS response, ωmax,

corresponds to the sum of the charge transport and recombination rate constants.

By performing the measurement at short circuit conditions the recombination rate

becomes negligible compared to the transport rate and the electron transport time,

τtr, is given by

τtr =
1

2πωmax

. (11)

τtr can be considered to be the mean arrival time of photogenerated electrons at

the electrode [152,153] and as such can be used to evaluate the conductivity of the

electron transporting material.
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IMPS was performed according to the procedure described in literature, using a

625 nm LED driver at different light intensities and a Metrohm PGSTAT302N

Autolab. [153]

5.4.4 Intensity Modulated Photovoltage Spectroscopy

Intensity Modulated Photovoltage Spectroscopy (IMVS) is based on the same prin-

ciple as IMPS, with the exception that the dynamic excitation of the incident pho-

ton flux is now related to the photovoltage, which is further related to the charge

density. The corresponding transfer function is

HIMVS =
∆V

∆Φ
eiϕ, (12)

where ∆V is the variation of the current, ∆Φ the variation of the photon flux and

ϕ is the phase angle. The frequency of the maximum imaginary part of the IMVS

response, ωmax, again corresponds to the sum of the charge transport and recombi-

nation rate constants. This time, by performing the measurement at open circuit

conditions, the transport rate becomes negligible compared to the recombination

rate and the electron recombination time is given by

τrec =
1

2πωmax

. (13)

τrec can be considered to be the mean life-time of photogenerated electrons before

they recombine [152].

IMVS was performed according to the procedure described in literature, using a

625 nm LED driver at different light intensities and a Metrohm PGSTAT302N

Autolab. [153]
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5.4.5 Charge extraction

Charge extraction is used to estimate the concentration of excess charge carriers

in a device under operating conditions. It allows the concentration of electrons

trapped in the device to be estimated as a function of potential [154]. For this

measurement, the device is illuminated while being kept at open circuit at the start

of the measurement. The illumination is then switched of and the voltage is allowed

to decay simultaneously. After a set amount of time, or when a certain voltage is

reached, the device is switched to short circuit conditions and all the remaining

charge is collected. The amount of charge collected corresponds to the amount of

filled energy states at this voltage. Because these energy states are well below the

CB, they can act as electron traps. Charge extraction can thus be used to probe

the trap state density of a device.
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lar cells

The aim of this chapter is to study the effect of doping TiO2 with neodymium (Nd)

on the performance and stability of perovskite solar cells (PSCs). The chapter

describes the fabrication of mesoporous TiO2 (m-TiO2) electron transporting layers

using BCP assisted assembly. The influence of Nd-doping on material properties of

m-TiO2 is described, as well as the influence on performance and stability of PSCs

employing Nd-doped m-TiO2.

6.1 Introduction

As described in Chapter 1, solar energy is one of the leading candidates to meet the

ever increasing demand for energy. The costs for solar energy production are how-

ever currently higher than other conventional and renewable energy sources. [38]

Potential low cost alternatives to the currently used Si and GaAs based solar tech-

nologies [9] include solar cells that make use of m-TiO2 electrodes to collect and

transport the electronic charges generated in metal-organic dyes (dye sensitised

solar cells (DSSCs)), first demonstrated by O’Regan and Graetzel [155] and the

subsequent introduction of organic-inorganic perovskites as light absorber, which

combine high light absorption with good charge transport. [22,24,25,28,30–33] The

high perovskite conductivity enabled the exploration of new device architectures

This chapter has been published as:

Roose, B., Gödel K. C., Pathak, S., Sadhanala, A., Correa Baena, J. P., Wilts, B. D., Snaith,

H. J., Wiesner, U., Grätzel, M., Steiner, U., Abate, A., ”Enhanced Efficiency and Stability of

Perovskite Solar Cells through Nd-doping of Mesostructured TiO2” Advanced Energy Materials,

6 (2), 1501868 (2016)
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spanning from a perovskite-sensitized mesoporous TiO2 to TiO2-free planar hetero-

junction solar cells. [156] Currently, the best performing perovskite-based solar cells

(PSCs), with a certified power conversion efficiency of more than 22 %, employ a

thin m-TiO2 layer as electron selective contact in combination with a thick solid

perovskite absorber capping layer.[2]

Due to the favourable position of its CB, a large band gap, long electron life-

times and low fabrication costs, TiO2 is the choice electron transporting layer for

PSCs. [18] Nevertheless, the relatively high density of electronic trap states below

the CB are a significant drawback for the application of TiO2 electrodes in solar

cells. [89] Indeed, trap states may have a large influence on charge recombination

and charge transport, which in turn influence the solar cell voltage and current

(see Section 3.3). [86, 90, 157] One method to reduce the trap states in TiO2 is

doping. A wide range of doping elements have been investigated for mesoporous

TiO2 electrodes in DSSCs and PSCs [18]. Some dopants reduce the charge recom-

bination [158] or increase electron transport [159] by reducing trap states below

the CB. In addition to changes in the density of trap states, doping may induce

a complex interplay of other effects that impact the device performance; for ex-

ample the TiO2 nanoparticle size and distribution and thereby the morphology

of the mesostructured film, leading to a changed TiO2-absorber interface area in

DSSCs. [160] Furthermore, lowering the CB energy of TiO2 by doping can increase

electron injection from the absorber into TiO2 [161], thereby increasing JSC, or

increase VOC by shifting the CB upwards. [162] These two effects however often

adversely affect each other. Another observed effect of doping is the stabilization

of the power output of PSCs [52] and a reduction of the hysteresis of the device

current-voltage characteristic. [163]
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In a previous study we showed that aluminium (Al) doping increases stability in

DSSCs by passivating oxygen defects in the TiO2 lattice. [52] We demonstrated that

oxygen defects not only limit electron transport within the TiO2, but are also the

cause of fast deterioration of solar cell performance upon UV irradiation. There-

fore, DSSCs prepared with Al-doped TiO2 were significantly more stable to UV

exposure. However, the short-circuit current was significantly lowered as a result

of a reduced charge injection from the dye into the TiO2, instigated by an upward

CB shift.

In this study, the stability and the performance of PSCs was improved by Nd

doping of the m-TiO2 ETL. The Nd electron states are expected to have a negli-

gible effect on the CB of TiO2, [164] thus preventing the loss of photocurrent that

was observed for Al doping. To study the electronic properties of the material inde-

pendent of the film morphology, we use the BCP templated solution based method

described in Chapter 4, which allows the preparation of identical mesoporous films

irrespective of the Nd doping concentration. This way, we are able to demonstrate

that Nd doping reduces the density of deep traps in the TiO2 lattice, leading to

reduced electron recombination, increased electron transport and increased stability

in PSCs. Nd-doped TiO2 PSCs with a stabilized power output of more than 18 %

were manufactured.
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6.2 Experimental methods

6.2.1 Material characterization

SEM, XRD, PDS, XPS and UV/Vis spectroscopy were performed according to

Sections 5.1 and 5.2.

6.2.2 Solar cell preparation

PSCs employing TiO2 and DT perovskite and DSSCs employing TiO2 and Y123-dye

were prepared according to Section 5.3.

6.2.3 Solar cell characterisation

PSCs were characterised according to Section 5.4, using current-voltage scans and

maximum power point tracking. DSSCs were characterised according to Section

5.4, using IMPS and IMVS.
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6.3 Results and Discussion

6.3.1 Characterization of m-TiO2

Scanning Electron Microscopy

A frequently observed phenomenon in doping studies is a decrease of the average

TiO2 particle size for doped samples, [123] leading to an increased TiO2-absorber

interface area, which results in improved performance. This however complicates

the study of electronic properties of the materials as a function of dopant concen-

tration. To exclude these morphological factors, we used the self-assembly of the

Figure 21: SEM micrographs of BCP self-assembly templated interconnected net-

works of a) TiO2, b) 0.3 % Nd-doped TiO2 and c) 0.5 % Nd-doped TiO2. Scale bars

are 500 nm.
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Nd ( %) Dp (nm) Dc (nm) a (Å) c (Å)

0 33 ± 6 25.9 ± 0.5 3.763 ± 0.001 9.431 ± 0.002

0.3 33 ± 6 26.2 ± 0.9 3.766 ± 0.001 9.439 ± 0.002

0.5 34 ± 6 23.5 ± 0.8 3.766 ± 0.001 9.437 ± 0.002

Table 1: Dopants and their main contribution to the improvement of DSSCs.

amphiphilic BCP polyisoprene-block-polyethyleneoxide (PI-b-PEO) to control the

pore morphology during TiO2 synthesis. The TiO2 precursor complexes with the

PEO block, yielding a porous network that is determined by the self-assembly of

the polymer upon sample drying, calcination and removal of the polymer. [136]

The pore morphology is dictated by the molecular weight of the BCP and the

polymer-precursor concentration ratio, while the confinement of TiO2 within the

self-assembled morphology dictates the crystal size within the polycrystalline TiO2

network. An inverse micelle inter-connected network with high porosity and surface

area is formed during TiO2 synthesis, where the pores are defined by the coil-size

of the polyisoprene. Micrographs and corresponding pore size distribution (Dp) of

samples for undoped (Figure 21a), 0.3 % Nd-doped (Figure 21b) and 0.5 % Nd-doped

(Figure 21c) TiO2 show very similar morphologies with pore sizes of approximately

33 nm (Table 1).

Crystal Structure

XRD was used to confirm the formation of anatase TiO2. Figure 22 shows the

spectra for pristine, 0.3 % and 0.5 % Nd-doped TiO2, all peaks can be assigned to

anatase TiO2.
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Figure 22: XRD diffractograms of mesoporous films of undoped, 0.3 and 0.5 % Nd-

doped TiO2. All peaks can be assigned to anatase TiO2, indicating that Nd is

incorporated into the TiO2 lattice.

Because of the large difference in ionic radius between Nd3+ and Ti4+ (98 pm and 61

pm respectively [165]), the TiO2 lattice expands upon substitutional incorporation

of Nd3+, resulting in a peak-shift to smaller angles in the XRD diffractogram. Inter-

stitial doping has a much smaller effect on the lattice spacing. [166] Due to the large

size of the Nd ion it is likely to be incorporated near the surface of TiO2 crystal-

lites. Lattice parameters and particle sizes were calculated according to equations

reported in Section 4.1.2. The values for the average size of crystallites (Dc) of the

polycrystalline assembly and lattice parameters a and c are given in Table 1. Dp and
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Dc are similar (∼ 33 nm and ∼ 25 nm respectively) for all doping concentrations,

thus confirming that the BCP templating not only preserves the morphology for the

different doping levels, but also confines the crystallisation, preserving the crystal

size. The lattice parameters for the doped samples show a unilateral increase from

3.763 to 3.766 Å for a and from 9.431 to 9.439 Å for c. The initial increase in lattice

parameters suggests substitutional incorporation is dominant for 0.3 % Nd-doped

TiO2. For 0.5 % Nd, the lattice expansion is very similar to 0.3 % doping, suggesting

additional Nd is incorporated interstitially or at the surface, where it may form an

insulating coating.

Electronic Properties

PDS [167] was used to probe sub-band gap states in undoped and doped TiO2 as re-

ported elsewhere. [143] Figure 23 shows the PDS spectrum for TiO2 with increasing

Nd-doping concentration. The intra-bandgap state at 2.1 eV is attributed to the 4f

transitions of Nd. [168] The peak intensity correlates with the doping concentration,

indicating Nd is indeed increasingly incorporated into the TiO2 lattice. Because the

UV/Vis spectra (Figure 27) do not show a significant change in absorbance, a varia-

tion in the thickness of the films can be excluded as a possible cause for the observed

change in intensity. Lanthanide induced intra-bandgap states are often associated

with the up-conversion of low energy photons, making it possible to absorb photons

that are otherwise lost. [169] Because of the low density of the intra-band gap states

and the low quantum efficiency of up-conversion processes it seems however unlikely

that up-conversion contributes significantly to light absorption.

The band gap of TiO2 is ∼3.2 eV, the energy levels of surface traps typically lie

0.5-0.7 eV below the CB (grey shading in Figure 23). [170, 171] In Figure 23, the
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Figure 23: PDS spectrum of undoped, 0.3 % and 0.5 % Nd-doped TiO2. Deep trap

state energies are marked in grey. PDS is an ultrasensitive absorption technique

that allows detecting absorbance values as low as 10−5.

trap state density in this energy range is lowest for 0.3 % Nd-doped TiO2. Because

deep traps can act as recombination centers it is expected that the recombination

rate for 0.3 % Nd-doped TiO2 is lower than that of pristine TiO2. [89] For 0.5 % Nd-

doped TiO2 the trap state density increases again, presumably because interstitial

Nd ions act as trap states, which is expected to lead to an increase in recombination

and a loss in device performance.
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Nd ( %) VOC (mV) JSC (mA/cm2) FF ( %) PCE ( %)

0 961 17.3 71.4 12.1

0.1 989 17.0 71.8 12.2

0.2 976 17.9 72.6 12.8

0.3 969 18.1 74.7 13.1

0.4 1003 17.2 72.0 12.6

0.5 1007 16.5 73.3 12.1

Table 2: Photovoltaic parameters of Nd-doped TiO2: open-circuit voltage (VOC),

short circuit current (JSC), fill factor (FF ), power conversion efficiency (PCE). The

J-V characteristics were recorded at reverse bias at a scan rate of 10 mV/s across

a 0.16 cm2 aperture active area.

6.3.2 Photovoltaic Performance

An initial doping concentration optimisation in the range of 0 % to 0.5 % Nd showed

an increase in device performance up to 0.3 % doping, after which the performance

decreased. The results of this optimisation can be found in Table 2.

Undoped, 0.3 % and 0.5 % devices were further optimised and studied in more detail

to find the reason for the increase and subsequent decrease in device performance.

The results of this optimization can be found in Table 3. The SEM micrograph in

Figure 24 shows the cross section of a photovoltaic device employing a ∼150 nm

thick mesoporous layer of TiO2.

The photocurrent-voltage (J-V ) curves of the PSCs measured under AM1.5 simu-

lated solar light (100 mW/cm2) illumination are shown in Figure 25. The photo-
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Figure 24: SEM cross-section of a photovoltaic device, scale bar is 500 nm; FTO

transparent conductive electrode, compact TiO2 electron blocking layer, 150-200

nm Nd-doped mesoporous TiO2, perovskite capping layer, spiro-OMeTAD hole con-

ducting layer and gold back contact.

voltaic parameters extracted from the J-V -curves, the open-circuit potential (VOC),

short-circuit current (JSC), fill factor (FF), power conversion efficiency (PCE), and

the stabilised power output efficiency after 30 s and 200 s are shown in Table 3.

The maximum PCE is achieved for 0.3 % Nd doped TiO2, mainly through the im-

provement of the fill factor. In contrast to the earlier study employing Al doping

in DSSCs, [52] no loss in JSC was observed. This can be correlated with the fact

that the Nd doping does not affect the TiO2 band gap, as evidenced by identical

UV/Vis spectra for all doping concentrations (Figure 27), showing also that the

CB position is unaffected, a change of which would lead to a decrease in electron

injection and a loss of JSC.
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Figure 25: (J-V -curves for PSCs employing TiO2, 0.3 % Nd-doped TiO2 and 0.5 %

Nd-doped TiO2. The J-V -curves were measured from forward bias to short cir-

cuit condition at the scan rate of 5 mV/s under AM1.5 simulated solar light (100

mW/cm2) illumination. The cells were masked (0.16 cm2) and characterized two

days after their preparation. Table 3 lists the photovoltaic parameters for the three

curves.

Because the obtained efficiency in PSCs is dependent on the way the device is

measured (preconditioning bias (light and voltage), voltage scan speed and direc-

tion) additional measurements are needed to verify the obtained PCE for device

operation under realistic conditions. By determining the maximum power point

and keeping the system at the corresponding voltage for extended periods of time,

a realistic PCE value can be determined. [73] Figure 26 shows the PCE at the max-

imum power point for the first 200 seconds, which demonstrates that steady-state

70



6 Neodymium doping of m-TiO2 in perovskite solar cells

Figure 26: (Stabilized PCE of undoped, 0.3 % Nd-doped and 0.5 % Nd-doped TiO2

PSCs. The voltage at the maximum power output was extracted from the J-V -

curves, the device was held at this voltage for 200 s to obtain the stabilized power

output efficiency.

conditions are achieved after approximately 30 seconds. We note that, regardless

the doping level of TiO2, the steady-state PCE is nearly identical to the PCE ex-

tracted from the J-V -curves measured at 5 mV/s. These data confirm that the

highest PCE is achieved for 0.3 % Nd-doped TiO2. A striking difference between

the undoped and doped devices is the rapid decay of the device power output. For

the undoped devices, the PCE initially increases and reaches a maximum after de-

vice operation for ∼50s, followed by a rapid decrease in the PCE. The 0.3 % and

0.5 % doped PSCs, on the other hand, remained stable for 200s after the initial

PCE increase. A three hour stability test is shown in Figure 28, here the initial
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Nd VOC JSC FF PCE Stab. PCE Stab. PCE

( %) (mV) (mA/cm2) ( %) ( %) after 30s ( %) after 200s ( %)

0 1129 ± 6 22.0 ± 0.1 68.9 ± 1.4 17.1 ± 0.3 17.5 ± 0.2 17.1 ± 0.1

0.3 1133 ± 6 22.3 ± 0.3 70.5 ± 1.9 17.7 ± 0.6 18.1 ± 0.3 17.9 ± 0.4

0.5 1137 ± 2 21.9 ± 0.5 67.4 ± 0.3 16.6 ± 0.3 16.9 ± 0.4 16.8 ± 0.3

Table 3: Photovoltaic parameters of Nd-doped TiO2 averaged over 3 devices: open-

circuit voltage (VOC), short circuit current (JSC), fill factor (FF ), power conversion

efficiency (PCE) and stabilized power conversion efficiency (Stab. PCE) after 30

and 200 seconds, extracted from Figure 26. The J-V characteristics were recorded

at reverse bias at a scan rate of 5 mV/s across a 0.16 cm2 aperture active area.

The voltage at the maximum power output was extracted from the J-V -curves and

devices were then held at this voltage to determine the variation of the power output

efficiency with time.

rapid drop in PCE for undoped devices is again clearly shown, while it is absent

for the doped devices. Such rapid losses in performance can be attributed to the

UV-induced desorption of O2 from oxygen vacancies in TiO2, which exposes deep

trap states in TiO2, leading to a marked decrease in electronic properties. [41] This

phenomenon typically occurs within the first hours of operation, which justifies the

relatively short testing period. [52] On longer time scales other processes such as

gold migration [50], ion migration [172] or perovskite degradation [48] start to play

a role. Trivalent dopants, such as Al and Nd, have been shown to reduce the density

of oxygen defects, thus inhibiting the PCE decay upon UV irradiation. [52]

In order to study the electronic properties of TiO2 electrodes upon doping with Nd,
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Figure 27: UV/Vis absorption spectrum of undoped, 0.3 and 0.5 % Nd-doped TiO2.

we used IMPS [173] and IMVS. [154] In PSCs the frequency overlap for charge trans-

port in TiO2 and perovskite may complicate the data interpretation. In order to

circumvent this problem we prepared a set of solid state DSSCs, sensitizing the Nd-

doped and undoped m-TiO2 films with Y123-dye [151] and using spiro-OMeTAD as

the hole transporting material, according to a method we reported previously. [174]

Electron transport lifetimes for undoped, 0.3 % Nd-doped and 0.5 % Nd-doped sam-

ples are plotted against the short circuit current in Figure 29a. A single exponential

fit shows the transport lifetime evolution with the short circuit current (JSC). Elec-

tron transport is faster in the doped samples compared to the undoped analogues.

This is in agreement with the increased performance of 0.3 % Nd-doped devices.

Faster charge transport leads to a lower series resistance, which in turn gives rise to
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Figure 28: Stability test of undoped, 0.3 % and 0.5 % Nd-doped TiO2 PSCs. The

voltage at the maximum power output was extracted from the J-V -curves in Figure

25, the device was held at this voltage for 3 hours in which the PCE was determined

every second. After completion of the measurement a second J-V-curve was taken

to confirm that the maximum power point had not significantly changed.

the increase in the fill factor of Table 3. The effect is larger for low light intensities,

again indicating a larger difference between the Nd-doped and undoped TiO2 in

deep trap state density, as deep trap states are filled at higher light intensities and

contribute less to charge transport. [175] In Figure 29b, electron lifetimes are plot-

ted against the open circuit voltage (VOC) for undoped, 0.3 % and 0.5 % Nd-doped

TiO2 samples. Electron lifetime is increased for the doped samples, indicating that

charge recombination is reduced through the elimination of deep traps, resulting
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a)

b)

Figure 29: a) Electron transport lifetimes as a function of JSC, obtained through

IMPS and b) electron lifetimes as a function of VOC, obtained though IMVS, for

undoped, 0.3 % and 0.5 % Nd-doped TiO2 in solid state DSSCs. [154,173]
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in an increase of VOC. For 0.5 % Nd-doped samples the electron lifetime is shorter

than that of 0.3 % Nd-doped samples. This indicates that the interstitially incor-

porated Nd sites can act as recombination centres, leading to a decreased device

performance. The formation of an insulating layer on the surface of TiO2, which

could not be excluded from XRD data, is unlikely as such insulating layers are

usually accompanied by an increase in FF [176] and a large increase in VOC, which

is contrary to what is observed here.
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6.4 Conclusion

Polymer assisted sol-gel chemistry was used to prepare mesoporous Nd-doped TiO2

electrodes. SEM, XRD and PDS were employed to compare the resulting doped

and undoped materials. Both interstitial and substitutional incorporation of Nd

within the TiO2 crystal lattice were observed. For 0.3 % Nd content, substitutional

doping was dominant. Upon increasing the doping concentration, the additional Nd

ions were incorporated into interstitial sites. This was directly reflected in the PSC

performance, which reached a maximum in power conversion efficiency for 0.3 % Nd-

doped mesoporous TiO2 electrodes, mainly caused by an increase in the FF, and

deteriorated with higher doping levels. PDS, IMPS and IMVS analysis elucidated

this result by demonstrating the largest decrease in deep trap states, improved elec-

tron transport and reduced charge recombination for 0.3 % Nd-doping. For 0.5 %

Nd-doping the deep trap state density increases again, leading to increased charge

recombination and a drop in device performance. Furthermore, device power con-

version efficiency was maintained under continuous illumination. PSCs prepared

with Nd-doped TiO2 electrodes have higher early-time stability compared to un-

doped PSCs. Indeed, the optimised doping concentration of 0.3 % Nd enabled 18 %

stabilized power conversion efficiency for 200 s in air, while undoped devices started

to show a drop in performance after reaching a maximum around 50 s. The bet-

ter lifetime of the doped devices is attributed to Nd passivation of oxygen defects,

which in sealed devices play an important role in PSC degradation. In difference

to earlier studies of Al-doping of TiO2, Nd-doping increased the stability of PSCs

without adversely affecting the short-circuit current of the devices.
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of the TCO

This chapter aims to investigate the stability of m-SnO2 based PSCs compared

to m-TiO2 and planar SnO2 PSCs. In addition, the influence of the transparant

conducting oxide (TCO) on m-SnO2 based PSCs is studied. Although m-SnO2

has great potential as electron selective contact in PSCs, to date no devices have

been shown to be able to match the efficiency achieved with m-TiO2. This chapter

investigates one possible reason for the lack in performance. Fluorine doped tin

oxide (FTO) is commonly used as front electrode, but fluorine may migrate from

FTO into the SnO2 compact layer. This greatly reduces the electron selectivity of

the compact layer. By replacing FTO with aluminum doped zinc oxide (AZO), this

problem can be circumvented.

7.1 Introduction

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has in recent

years rapidly increased from 3.8 % [22, 24, 25] to more than 22 %, now rivaling the

efficiency of market reference silicon solar cells [9]. Having passed this first hurdle,

it is now becoming more important to increase the stability of PSCs to pass the

industry standards, i.e. a PCE loss of less than 0.5 % per year over a life span of

25 years [6]. More robust perovskites [177], metal contacts [50] and hole transport-

ing materials [174] have been demonstrated to be quite effective to enhance the

This chapter has been published as:

Roose, B., Correa Baena, J. P., Gödel K. C., Grätzel, M., Hagfeldt, A., Steiner, U., Abate,

A., ”Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells” Nano

Energy, 30, 517-522 (2016)
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lifetime of PSCs, even though device stability is still far from industrial standards.

A major loss in PCE was found to be caused by a rapid degradation in the per-

formance of TiO2-based devices caused by the exposure to UV light [41], which is

the most common device configuration in state-of-the-art PSCs. This performance

degradation arises from the desorption of O2
– that passivates deep electronic traps

caused by oxygen vacancies in the TiO2 lattice [41]. Although this effect can be

significantly reduced by doping [52,150], attempts have been made to replace TiO2

altogether [178, 179]. One promising alternative inorganic material for electron se-

lective layers (ESL) is SnO2.

Due to the wider band-gap, SnO2 absorbs less UV light and is thus more robust

than TiO2 under full sunlight [146]. In addition, the bulk electron mobility in SnO2

is two orders of magnitude higher than that of TiO2 [101], and electron injection

from perovskite into SnO2 has been shown to be more efficient than into TiO2 [147].

SnO2 has been successfully implemented on lab scale as ESL in low-temperature

processed planar PCSs, yielding a stabilized PCE of more than 20.5 % [67,147,180].

However, the rapid and poorly controlled perovskite crystallization makes it diffi-

cult to scale up planar PSCs for industrial application. A porous ESL can overcome

this problem by changing the surface wettability [181] to achieve uniform perovskite

coverage over large areas [69, 182]. A porous ESL has also been shown to be ben-

eficial for electron extraction [68]. It is thus of interest to develop a mesoporous

SnO2 (m-SnO2) ESL for the industrial production of stable and efficient PSCs. So

far, the highest reported PCE for solution processed, high temperature sintered

m-SnO2 based PSCs has only been 6.5 % (not-stabilized) [183]. PSCs employing

low temperature m-SnO2 deposition have, however, reached a PCE of 12 % (not-

stabilized) [69]. The deposition of a thin conformal coating of TiO2 onto high
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temperature sintered m-SnO2 has been reported to increase the PCE to 11.9 %

(not-stabilized) [184]. The addition of TiO2, however, defeats the purpose of using

SnO2 as a potentially more stable alternative.

In this study we show that m-SnO2 PSCs are more stable than planar SnO2 and

m-TiO2 PSCs during maximum power point tracking under continuous full sunlight

illumination (no UV filtering) in an inert atmosphere. A significant hurdle, how-

ever, is the low open circuit voltage (VOC) and fill factor (FF) of m-SnO2 compared

to planar SnO2 and m-TiO2 PSCs. We show that the origin of this behavior is the

poor electron selectivity of m-SnO2 when processed at high temperature atop of flu-

orine doped tin oxide (FTO) as transparent conductive oxide (TCO) electrode. We

have investigated two possible causes; cracking of the ESL upon heating, or fluorine

migration [185]. Our data suggests that, at high temperatures, fluorine migrates

from FTO into SnO2, doping the ESL to an extent where charge selectivity is com-

promised and recombination is increased. To circumvent this problem we prepared

m-SnO2 PSCs using aluminum doped zin oxide (AZO) as TCO. Moreover, AZO has

good conductivity (sheet resistance <10/�) and is low-cost, composed of abundant

materials, easy to etch and has a high transmittance in the near-IR region [186].

Using this alternative TCO, a strong increase in PCE and a remarkable stability of

m-SnO2 based PSCs were achieved.
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7.2 Experimental methods

7.2.1 Material characterization

SEM, XRD and cyclic voltammetry were performed according to Section 5.1.

7.2.2 Solar cell preparation

PSCs employing SnO2 and CDT perovskite and DSSCs employing SnO2 and Z907-

dye were prepared according to Section 5.3.

7.2.3 Solar cell characterisation

PSCs were characterised according to Section 5.4, using current-voltage scans, max-

imum power point tracking and IPCE measurements. DSSCs were characterised

according to Section 5.4, using IMVS.
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7.3 Results and Discussion

7.3.1 Characterization of compact SnO2

Scanning Electron Microscopy

AZO (Figure 30a) and FTO (Figure 30b) electrodes were coated with a thin com-

pact ESL of SnO2 by spray pyrolysis at 450 ◦C. On AZO, the ESL, consisting of

densely packed particles, is clearly visible and therefore it is likely that this layer

grows heteroepitaxially (Figure 30c). In contrast, the ESL appears to have grown

epitaxially on FTO and no distinct layer can be distinguished (Figure 30d).

a) b)

c) d)

AZO FTO

AZO-SnO2 FTO-SnO2

1 μm 1 μm

1 μm 1 μm

Figure 30: SEM micrographs of (a) AZO, (b) FTO, (c) SnO2 ESL on AZO and (d)

SnO2 ESL on FTO.
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Cyclic Voltammetry

To test the surface coverage and rectifying behavior of the SnO2 ESL, cyclic voltam-

metry was performed in an aqueous solution of Fe(CN)6
3−/4− for both FTO (Figure

31a) and AZO (Figure 31b) substrates, onto which a SnO2 ESL was deposited by

spray pyrolysis at 450 ◦C. The work function of the TCOs FTO and AZO are

-4.7 [187] and -4.73 eV [188] respectively. The CB energy of SnO2 is -4.25 eV [187]

and the redox potential of the Fe(CN)6
3−/4− redox couple is -4.68 eV [142]. As a

result, SnO2 behaves like an electrochemically silent dielectric material against the

Fe(CN)6
3−/4− redox couple [142](Figure 18). The charge-transfer reaction is there-

fore assumed to occur exclusively at the bare TCO surface. The effective TCO

surface area in contact with the electrolyte can be determined by dividing the peak

current of the ESL covered substrate by the peak current of the bare TCO sub-

strate [142], yielding an effective uncovered FTO area of 60 %. In contrast, the ESL

covered AZO substrate exhibited an effective uncovered AZO area of <1 %.

The poor apparent effective coverage of the SnO2 ESL on FTO may have two

causes; (i) thermal stresses could cause cracks/pores upon cooling and/or heating,

(ii) fluorine migration from FTO to the SnO2 ESL, making the two layers electroni-

cally equivalent. The first option is highly unlikely since the FTO and SnO2 lattice

constants match, while the wurtzite/cassiterite interface of the AZO/SnO2 junction

has a much higher lattice mismatch, which should cause a much larger strain [189].

This implies that SnO2 on AZO should be more prone to cracking than SnO2 on

FTO, in contrast to our observation. Indeed, SEM micrographs show a conformal

SnO2 ESL on FTO and no evidence of cracking (Figure 30). Fluorine migration

in SnO2 has however been previously shown at annealing temperatures similar to

this study [185, 190] , which would explain the observed effects, since fluorine mi-
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a)

b)

Figure 31: Cyclic voltammograms of (a) a bare FTO electrode and FTO covered by

a spray coated SnO2 ESL, (b) a bare AZO electrode and AZO covered by a spray

coated SnO2 ESL. The scan rate was 50 mV/s and the electrolyte solution consisted

of 0.5 mM K4Fe(CN)6 + 0.5 mM K3Fe(CN)6 in 0.5 M aqueous KCl.
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gration renders SnO2 electronically equivalent to FTO and thereby results in a loss

in electron selectivity.

Dark Current-Voltage Scan

The poor electron selectivity of SnO2 on FTO also becomes clear from the current-

voltage scan under dark conditions of a complete PSC. The presence of a large

dark current is an indication that the ESL is not effectively preventing the TCO

from contacting the photoactive or hole transporting layers. Figure 32 shows the

minimal and maximal dark currents for a single batch of PSCs (8 devices). AZO

based PSCs show a narrow dark-current distribution and overall low dark currents.

Figure 32: The minimal and maximal dark current of one batch (8 devices) of FTO

and AZO based PSCs.
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On the other hand, FTO based PSCs exhibit a large variation in the dark current,

with high overall values.

Intensity Modulated Photovoltage Spectroscopy

The effect of the electron selectivity of SnO2 coated TCO can be investigated by

IMVS (Figure 33). Because of the overlap of the perovskite and metal oxide sig-

nals [150], dye sensitized solar cells (DSSCs) were used instead. From this measure-

ment it becomes apparent that electron lifetimes are 2-3 times longer for DSSCs

employing AZO as TCO, compared to DSSCs employing FTO as TCO, showing

that recombination can be reduced by using AZO instead of FTO.

Figure 33: Electron lifetimes of DSSCs employing FTO and AZO as TCO as de-

termined by IMVS.
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7.3.2 Characterization of m-SnO2

m-SnO2 electrodes were synthesized via BCP assisted self-assembly [136]. The re-

sulting films show a homogeneous coverage of the electrode by mesoporous material

with a pore size of approximately 60 nm (Figure 34a). XRD showed the formation

of rutile SnO2 (Figure 34b). The average particle size was 10.9 ± 1.0 nm, calculated

using the Scherrer equation [18].

7.3.3 Photovoltaic performance

The SEM micrograph in Figure 35a shows the cross section of a photovoltaic device

employing AZO as the TCO, a thin SnO2 hole blocking layer, a ∼ 100 nm thick m-

SnO2 layer infiltrated and capped by the perovskite absorber, spiro-OMeTAD HTM

and gold back electrode. The photocurrent-voltage (J-V ) curves of the PSCs mea-

sured under AM1.5 simulated solar light (100 mW/cm2) illumination are shown in

Figure 35b. The photovoltaic parameters extracted from the J-V -curves; the open-

circuit potential (VOC), short-circuit current (JSC), fill factor (FF), power conversion

efficiency of the backward scan (PCE BW) and the stabilized power output efficiency

after 300 s are shown in Table 4. IPCE spectra are shown in Figure 36. The JSC

values are in good agreement with those extracted from J-V curves. Since the PCE

of PSCs is dependent on the way the device is measured (light and bias precondi-

tioning, voltage scan speed and direction), additional measurements are required

to verify the obtained PCE for device operation under realistic conditions [73]. By

performing maximum power point tracking, a PCE value can be determined that

accurately represents the efficiency of a device under real-world conditions. Device

parameters clearly show a superior performance for AZO based devices owing to

a higher VOC and FF, resulting in an increase in stabilized PCE from 8.7 % for

FTO to 11.6 % for AZO based PSCs (averages of 8 devices). An increase in VOC
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1 μm

b)

a)

Figure 34: (a) SEM micrograph of a mesoporous SnO2 electrode synthesized by

a solution deposition process in which pore formation was controlled by the self-

assembly of a BCP. (b) XRD spectrum of the mesoporous SnO2. All peaks can be

assigned to rutile SnO2 (indexed).
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a)
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Figure 35: (a) SEM cross-section of a m-SnO2 based PSC. (b) J-V curves for PSCs

employing FTO and AZO as transparent conducting electrodes. Table 4 lists the

photovoltaic parameters for the two curves.
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TCO VOC JSC FF PCE BW Stab. PCE

(mV) (mA/cm2) ( %) ( %) (after 300s) ( %)

FTO average 887 ± 36 19.4 ± 0.9 56 ± 2 9.5 ± 0.8 8.7 ± 1.0

FTO best 945 20.9 58 11.4 9.9

AZO average 965 ± 16 20.2 ± 1.4 60 ± 2 11.6 ± 1.3 11.6 ± 0.7

AZO best 983 21.1 63 13.1 12.5

Table 4: Photovoltaic parameters of m-SnO2 PSCs: open-circuit voltage (VOC),

short circuit current (JSC), fill factor (FF ), power conversion efficiency (PCE) ex-

tracted from the J-V curves in Figure 35b and stabilized power conversion efficiency

(Stab. PCE) after 300 seconds of maximum power point tracking. All values are

averages for 8 devices. J-V characteristics were recorded sweeping the voltage from

forward bias to short circuit condition at a scan rate of 10 mV/s. Active area: 0.148

cm2.

and FF is indicative of improved electron selectivity and reduced recombination at

the ESL/perovskite interface, as was shown by IMVS measurements. Therefore, by

replacing FTO with AZO it is possible to achieve an effective m-SnO2 ESL.

7.3.4 Stability of PSCs

Planar SnO2 and m-TiO2 electrodes were prepared as previously reported [147],

m-SnO2 electrodes were prepared as described above. PSCs prepared with these

electrodes were exposed to AM1.5 simulated solar light (100 mW/cm2) illumination

while tracking the maximum power point for 10 hours in a nitrogen atmosphere.

UV-induced degradation is a rapid degradation process, manifesting itself in the

first 1-2 hours of operation [41, 52, 150], so any UV-induced degradation should be
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Figure 36: IPCE of FTO and AZO based m-SnO2 PSCs.

evident in the 10 hour testing period. To exclude an effect from the TCO, all de-

vice configurations were fabricated using FTO. The result of this maximum power

point tracking is shown in Figure 37a. The SnO2-based devices show a remark-

able increase over the first 1-2 hours. Previous work has shown that this can be

attributed to improved electron injection from the absorber into SnO2, by an in-

crease in the relative density of acceptor states as a result of a CB shift, induced by

charging of the SnO2 and a rearrangement of charge species at the absorber-SnO2

interface [191]. On the other hand, m-TiO2 shows a rapid decay during the first

hour. It is known that defects in TiO2 can be passivated by the adsorption of atmo-

spheric oxygen. Under the influence of UV-light oxygen desorbs, leading to a rapid

decrease in performance in oxygen free conditions [150], as is observed here. Figure

37a shows that this is not the case for SnO2-based PSCs, presumably because of

the wider bandgap of SnO2 compared to TiO2. Another observation is that the
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mesoporous device power output reaches a plateau after these initial rapid changes,

whereas the planar SnO2 keeps steadily decreasing. The mesoporous network has

been reported to inhibit the degradation or phase segregation of the perovskite by

providing mechanical and chemical stability, inhibiting the penetration of harmful

substances such as moisture, oxygen [69], or gold [50] into the perovskite layer. A 28

day light-soaking stability test under AM1.5 simulated solar light (100 mW/cm2)

illumination (>1000 ppm oxygen) is shown in Figure 37b. Again the same trend

is observed, m-TiO2 and planar SnO2 based PSCs lose ∼50 % of the initial perfor-

mance in the first few days, whereas m-SnO2 based PSCs lose only ∼15 %. Overall,

Figure 37 shows superior stability for m-SnO2 under these conditions, combining

the UV-stability of SnO2 with the mechanical and chemical stability of a meso-

porous scaffold. This proves the importance of developing efficient m-SnO2 based

PSCs.

93



7 Stability of m-SnO2 based PSCs and the role of the TCO

a)

b)

Figure 37: a) Maximum power output normalized to the maximum value for m-

SnO2, m-TiO2 and planar SnO2 employing PSCs exposed to AM1.5 simulated solar

light (100 mW/cm2) illumination in nitrogen atmosphere. b) Stability of m-SnO2,

m-TiO2 and planar SnO2 employing PSCs exposed to AM1.5 simulated solar light

(100 mW/cm2) illumination (>1000 ppm oxygen).
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7.4 Conclusion

Highly efficient m-SnO2-based PSCs are shown to be of critical importance to the

commercial viability of PSCs, because of their increased stability compared to m-

TiO2 and planar SnO2 PSCs. Using FTO covered by SnO2 is however problematic

because of the migration of fluorine into the SnO2 ESL upon heating the assembly to

temperatures above 450 ◦C. This high temperature sintering is especially important

for sol-gel derived mesoporous structures, to remove organic residues and crystallise

the material. The fluorine migration decreases the electron selectivity of the ESL, as

it renders the SnO2 ESL electronically equivalent to the FTO electrode. This effect

was confirmed by cyclic voltammetry and dark current leakage. Cracks or pinholes

were excluded as a cause for the bad behaviour of the ESL by SEM. AZO was

found to be a viable alternative, circumventing the problem of fluorine migration.

Mesoporous SnO2 electrodes were fabricated through BCP self-assembly assisted

sol-gel chemistry. SEM and XRD were used to confirm the formation of a porous

SnO2 electrode. Using AZO as the TCO instead of FTO resulted in a reduced

recombination and in higher VOC and FF values, leading to an increase in stabilized

PCE from 8.7 % to 11.6 % (champion 13.1 %), an increase of ∼ 25 %. This is an

important step towards UV-stable PSCs.
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Increasing the stability of PSCs is the last remaining challenge for commercializa-

tion. It was shown in Chapter 6 that one of the major performance losses occurs

upon UV-exposure of state-of-the-art TiO2-based perovskite solar cells. In Chap-

ter 7 it was shown that this UV instability can be solved by replacing TiO2 with

SnO2. However, the performance of m-SnO2 perovskite solar cells has so far not

been able to rival the performance of TiO2 based perovskite solar cells. In Chapter

7 it was shown that this was partly caused by a poor choice of electrode. Although

the performance was much enhanced by employing a more suitable electrode (AZO,

which is also used in this study), the performance still could not match that of TiO2

based perovskite solar cells. In this Chapter, high efficiency m-SnO2 perovskite solar

cells were fabricated by doping SnO2 with gallium, yielding devices that can com-

pete with the performance of TiO2 based devices. We found that gallium doping

strongly decreases the trap state density in SnO2, leading to a lower recombination

rate. This in turn leads to an increased VOC and fill factor, yielding a stabilized

power conversion efficiency of 16.4 %.

8.1 Introduction

Since the first report in 2009 [22], the PCE of PSCs has rapidly increased to more

than 22 % [9], owing to the introduction of solid state hole transporting mate-

rials [24, 25], optimized perovskite compositions [11, 28, 30] and deposition pro-

cesses [31–33]. However, to become commercially viable, the long term stability

of PSCs has to be greatly improved [10, 50, 174]. One of the major degradation

97



8 Highly efficient m-SnO2 PSCs through
Gallium doping

pathways is the rapid decrease in performance of state-of-the-art m-TiO2 PSCs

upon UV-exposure [41, 52, 150] and alternative electron transporting materials are

being investigated [178, 179]. SnO2 is an especially promising candidate, owing to

the large bandgap, making the material less sensitive to UV-radiation [101]. Pla-

nar SnO2 PSCs have rapidly caught up with m-TiO2 based PSCs, now achieving

a PCE of 20.7 % [67]. However, planar SnO2 PSCs were shown to be much less

stable than m-SnO2 PSCs, underlining the importance of highly efficient m-SnO2

PSCs to achieve UV stability [54]. The increased stability of a mesoporous layer

has been ascribed to an increased tolerance towards environmental conditions (oxy-

gen, moisture) [56, 69] and the reduction of the negative effect of ion migration on

device performance. So far, the best reported PCE of m-SnO2 is quite poor, with

a stabilized PCE of 12.5 % [150]. Higher PCEs have been reached employing SnO2

nanosheets (16.25 % stabilized) [69, 192]. This structure is however very open and

holds the middle ground between a planar and a truly mesoporous morphology and

the resulting stability has not yet been investigated.

The main reason for the relatively low PCE compared to m-TiO2-based PSCs is

the lower CB energy of SnO2 compared to TiO2 [101, 147]. Since the VOC depends

on the energy difference between the CB of the electron transporting material and

the VB of the hole transporting material, the lower CB energy of SnO2 implies

the obtainable VOC is lower compared to TiO2. Secondly, SnO2-based PSCs tend

to suffer from high recombination rates, further limiting the VOC and fill factor

(FF) [101]. Doping of m-SnO2 has been shown to be an effective way to increase

device performance in DSSCs [101], planar SnO2 PSCs [193, 194], and nanosheet

SnO2 PSCs [192]. In DSSCs, gallium (Ga) was found to be one of the most promis-

ing dopants, showing impressive improvements in both VOC and FF by reducing
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recombination [106].

In this chapter the high recombination rate of m-SnO2 PSCs is addressed by Ga-

doping. It shows that Ga-doping greatly reduces the trap state density, leading to

reduced recombination and as a result in a large increase of VOC and FF. A stabi-

lized PCE of 16.4 % was achieved, rivalling the performance of m-TiO2 PSCs made

in our lab.
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8.2 Experimental methods

8.2.1 Material characterization

SEM, XRD, XPS and Mott-Schottky analysis were performed according to Sections

5.1 and 5.2.

8.2.2 Solar cell preparation

PSCs employing SnO2 and CDT perovskite and DSSCs employing SnO2 and Z907-

dye were prepared according to Section 5.3.

8.2.3 Solar cell characterisation

PSCs were characterised according to Section 5.4, using current-voltage scans, max-

imum power point tracking and charge extraction. DSSCs were characterised ac-

cording to Section 5.4, using IMPS and IMVS.
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8.3 Results and Discussion

8.3.1 Characterization of Ga-doped SnO2

X-ray Photoelectron Spectroscopy

The incorporation of Ga was confirmed by (XPS). The full XPS spectrum of Ga-

doped SnO2 can be found in Figure 38a. A close-up of the Ga 2p1/2 and Ga 2p3/2 is

shown in Figure 38b, clearly illustrating the presence of Ga. The Ga concentration

was determined to be ∼6 %, higher than the amount of Ga in the precursor solution

(2.5 %). As XPS is a surface sensitive technique, only the top 1-2 nm of the sample

are probed. This suggests that the Ga concentration is higher near the surface than

in the bulk.

Crystal Structure

XRD was used to confirm the formation of rutile SnO2. Figure 39 shows the diffrac-

tograms for undoped and 2.5 % Ga doped SnO2. All peaks can be assigned to SnO2

and no additional peaks are observed upon doping, indicating that the Ga ions

are incorporated into the SnO2 lattice. Because Ga3+ has a slightly smaller ionic

radius than Sn4+ (62 and 69 pm respectively [165]) the crystal lattice is expected

to contract on substitutional incorporation of Ga. This would result in a XRD

peak shift to larger angles. Lattice parameters a and c can be determined using

the formula for a tetragonal lattice [18] and a was found to decrease upon doping

from 4.721 Å to 4.706 Å while c decreased from 3.175 Å to 3.169 Å, indicating that

Ga is substitutionally incorporated in the SnO2 lattice. The average crystallite size

(Dc) can be calculated using the Scherrer equation [139]. Dc decreases from 15 ±

2 nm to 7 ± 1 nm upon doping. A reduced crystallite size is a frequently observed

phenomenon in doping studies [123].
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a)

Figure 38: a) full XPS spectrum of Ga-doped SnO2, showing the characteristic

peaks for Ga and Sn. b) Close-up of the Ga 2p1/2 and Ga 2p2/3 peaks.
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Figure 39: XRD patterns of undoped and 2.5 % Ga doped m-SnO2. All peaks

can be assigned to rutile SnO2 and a slight contraction of the lattice is observed,

indicating that Ga is incorporated into the SnO2 lattice.

Scanning Electron Microscopy

Doping metal oxides can have large effects on the morphology of the electrode [18]

and doping can thus affect the metal oxide-perovskite interface area and penetra-

tion of the perovskite into the mesoporous metal oxide network. To minimize the

influence of morphology on device performance, the self-assembly of the amphiphilic

BCP polyisoprene-block-polyethyleneoxide (PI-b-PEO) was used to control the m-

SnO2 morphology [136, 150]. SEM micrographs show mesoporous structures with

similar pore sizes for undoped (54 ± 13 nm) and doped (57 ± 12) SnO2 films (Figure

40a and 40b). The similar pore sizes indicate that the morphology is not changed
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Figure 40: a) SEM micrographs of undoped m-SnO2 and b) 2.5 % Ga-doped m-

SnO2, showing identical morphologies for undoped and doped samples.

by doping and rules out an influence of morphology on device performance.

8.3.2 Solar Cell Characterization

Photovoltaic Performance

PSCs employing Ga-doped m-SnO2 were fabricated according to literature [30,54].

The SEM micrograph in Figure 41a shows the cross section of a photovoltaic device

employing an AZO transparent conductive electrode, a compact SnO2 ESL, 100

nm mesoporous SnO2, a perovskite capping layer, a spiro-OMeTAD hole conduct-

ing layer and a gold back contact. The photocurrent-voltage (J-V ) curves of the

PSCs measured under AM1.5 simulated solar light (100 mW/cm2) illumination are

shown in Figure 41b. The photovoltaic parameters extracted from the J-V -curves,

the open-circuit potential (VOC), short-circuit current (JSC), fill factor (FF), power

conversion efficiency (PCE) and the stabilized power output efficiency after 150 s are

shown in Table 5 (average of 7 devices and best device). Because the obtained effi-

ciency in PSCs is dependent on the way the device is measured (preconditioning bias

104



8 Highly efficient m-SnO2 PSCs through
Gallium doping

Au

spiro-OMeTAD

Perovskite

m-SnO2

AZO

500 nm

a)

b)

Figure 41: a) SEM cross-section of a m-ceSnO2-based PSC. b) J-V curves for

PSCs employing undoped and 2.5 % Ga-doped SnO2. The stabilized maximum

power point (Stab MPP) is indicated with an arrow for each curve.
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Ga VOC JSC FF PCE Stab. PCE

( %) (mV) (mA/cm2) ( %) ( %) ( %)

0, average 988 ± 16 21.6 ± 0.3 57 ± 1 12.1 ± 0.3 12.2 ± 0.3

0, best 997 22.0 57 12.5 12.7

2.5, average 1061 ± 10 22.1 ± 0.4 69 ± 1 16.3 ± 0.3 15.8 ± 0.3

2.5, best 1070 22.8 70 17.0 16.4

Table 5: Photovoltaic parameters of Ga-doped SnO2, average of 7 devices and

best performing device: open-circuit voltage (VOC), short circuit current (JSC),

fill factor (FF), power conversion efficiency (PCE) extracted from the J-V curves

in Figure 41b and stabilized power conversion efficiency (Stab. PCE) after 150

seconds. The J-V characteristics were recorded scanning from forward bias to

short circuit conditions at a scan rate of 10 mV/s across a 0.09 cm2 aperture active

area. The voltage at the maximum power output was extracted from the J-V -curves

and devices were then held at this voltage to determine the variation of the power

output efficiency with time.

(light and voltage), voltage scan speed and direction) it is necessary to determine

the efficiency by an additional method. By determining the maximum power point

and keeping the system at the corresponding voltage for extended periods of time, a

PCE value can be determined that resembles the PCE of a device under real world

working conditions [73]. PCE values show an increase of ∼25 % upon Ga-doping,

which can be attributed mainly to an increase in VOC and FF. To further investigate

the origin of this increase in device performance several (opto-)electronic measure-

ments were performed; Mott-Schottky analysis on m-SnO2 electrodes to investigate

the CB energy and density of free charges, charge extraction measurements on com-
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plete PSCs to probe trap state density and IMVS and IMPS on DSSCs (because of

the overlapping signals of perovskite and the electron transporting material [195])

to find the electron transport lifetime and recombination rate.

Mott-Schottky analysis

Mott-Schottky analysis (Figure 42a) was used to reveal changes in the CB energy.

VFB is the external voltage for which no band bending occurs and corresponds to the

intersect of the linear part of the curve with the x-axis [145]. As the severity of the

band bending depends on the CB position, a VFB shift is indicative of the relative

position of the CB. Figure 42a shows that the VFB is not significantly shifted upon

doping. The observed ∼70 mV increase in VOC from J-V device measurements is

thus not caused by a CB shift and may be attributed to reduced recombination

instead. Because of the small CB shift, the electron injection efficiency from the

perovskite absorber into SnO2 is not expected to change and have an effect on JSC.

The slope of the linear part of the curve in Figure 42a can be used to deduct

the number of free electrons (Ne)

Slope =
2

εε0A2eNe,
(14)

where ε is the permittivity of free space, ε0 the dielectric constant of the material,

A the sample area and e the electronic charge. Upon doping, Ne increases from

2.5·1011 cm−2 to 6.0·1011 cm−2, which will have an effect on JSC as the conductivity

(σ) of the metal oxide is given by

σ = Neµe, (15)

where µe is the mobility of the electrons. If the mobility is unchanged, an increase of

Ne results in a higher conductivity and may have a positive effect on JSC. Electron
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a)

Figure 42: Optoelectronic analysis of undoped and 2.5 % Ga-doped m-SnO2 devices;

a) Mott-Schottky plot; the electrodes were submersed in a 0.5M KCl solution, with

a Pt-counter electrode and an Ag/AgCl reference electrode, b) Charge extracted at

open circuit as a function of voltage.
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mobility is measured using IMPS (see below). The increase in Ne is somewhat

unexpected, as Ga3+ can donate less valence electrons than Sn4+ and if Ga3+ were

to replace Sn4+ substitutionally Ne would decrease. It is therefore likely that Ga3+

preferentially replaces Sn2+ defects, resulting in a net increase in Ne.

Charge Extraction

Charge extraction measurements were performed to quantify the trap state density

of undoped and doped m-SnO2 (Figure 42b). The cell was operated under illumina-

tion at VOC, after which the illumination was switched off and the VOC was allowed

to decay for a set time, after which the cell was switched to short circuit and the

remaining charge was collected. The amount of charge left in the cell at a certain

voltage is directly proportional to the number of energy states at this voltage [195].

Because these energy states are below the CB they act as electron traps and have

a detrimental effect on device performance by acting as recombination centres and

slowing down charge transport. Figure 42b clearly illustrates the drastic reduction

of trap states upon doping as much less charge is collected for similar voltages be-

low the bandgap. It is therefore likely that recombination is reduced and electron

mobility increased.

Intensity Modulated Photovoltage Spectroscopy

Because the observed increase in VOC cannot be exclusively explained by a shift

of the CB of SnO2, IMVS was performed to determine the recombination lifetime

of undoped and Ga-doped m-SnO2 devices (Figure 43a) [154]. Because electron

transport and recombination in metal oxides and perovskite have similar lifetimes

[195], DSSCs were used for IMPS and IMVS measurements instead. Figure 43a

shows an order of magnitude reduced recombination for Ga-doped m-SnO2 based
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a)

b)

Figure 43: Optoelectronic analysis of undoped and 2.5 % Ga-doped m-SnO2 DSSCs;

a) Electron lifetime as a function of charge density, obtained through IMVS,

b)Electron transport lifetimes as a function of charge density, obtained through

IMPS. IMPS and IMVS data are well fit by a single exponential function.
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DSSCs, which is largely responsible for the observed increase of VOC. Similarly the

decreased recombination rate results in a reduced shunt resistance and an increase in

FF. The decreased recombination rate is likely to be a result of the lower trap state

density in Ga-doped m-SnO2 devices. A second possibility may be the formation

of a thin charge barrier layer at the surface of SnO2, as XPS data showed a higher

concentration of Ga near the surface. Such thin charge barrier layers have been

reported to reduce recombination [196]. However, the different slope of the fits of

undoped and 2.5 % Ga-doped indicate that the recombination is reduced as a result

of trap state passivation by Ga-doping [154].

Intensity Modulated Photocurrent Spectroscopy

The charge transport rate was determined by IMPS (Figure 43b). Electron trans-

port is faster for undoped devices at low current densities, which indicates a reduced

injection of electrons after incorporation of Ga. This reduced injection may be the

result of a charge barrier layer at the surface of SnO2 [196]. However, the curves are

converging at high current densities and electron transport rates are very similar

for current densities commonly achieved in PSCs (∼20 mA/cm2). The increased

mobility of electrons in Ga-doped m-SnO2 at high current density is a result of the

reduced deep trap state density compared to undoped m-SnO2. As the mobility is

unchanged upon doping and the number of free electrons increases, the conductivity

of Ga-doped SnO2 is higher than that of undoped SnO2 (Equation 15), which can

contribute to in an increase in JSC.
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8.4 Conclusion

The self-assembly of a BCP was used to direct the structure of mesoporous Ga-

doped SnO2 electrodes prepared through sol-gel chemistry. SEM and XRD were

employed to compare the resulting doped and undoped materials. Although the

average crystal size is reduced upon doping, SEM showed the morphology does not

significantly change upon doping. XRD and XPS both confirmed the substitutional

incorporation of Ga into the SnO2 lattice. It was found that m-SnO2 based devices

suffer from high recombination rates, limiting VOC and FF. Ga-doping eliminates

deep trap states that act as recombination centers, leading to a marked increase

in VOC and FF. Ga-doped m-SnO2 based PSCs were shown to reach a stabilized

PCE of 16.4 %, compared to 12.7 % for undoped m-SnO2 devices, showing for the

first time m-SnO2 based PSCs that can compete with state-of-the-art m-TiO2 based

PSCs. A further increase in device performance can possibly be achieved by using

a dopant that shifts the CB of SnO2 upwards, leading to a further increase in VOC.

112



9 Coalescence of perovskite crystals

Perovskite solar cells have recently reached staggering efficiencies through efforts

focused on optimizing the morphology of the perovskite films. However, intrinsic

phenomena taking place in the perovskite films during storage, thereby affecting

device performance, are not well understood. In this chapter we demonstrate that

small crystallites within perovskite films spontaneously coalesce into larger crystals,

even when complete devices are stored in the dark at room temperature. We show

that crystal coalescence significantly improves the performance of state-of-the-art

perovskite solar cells. Our results reveal the dynamic nature of the morphology of

perovskite films and highlight the crucial role that coalescence plays in producing

highly efficient devices.

9.1 Introduction

PSCs have rapidly become one of the most promising prototype technologies for low-

cost and efficient harvesting of solar energy [11, 197–201]. Recent reports demon-

strated outstanding solar-to-electric power conversion efficiencies (PCEs) above

22 % [202]. Since the first demonstrations by Kim et al. [25] and Lee et al. [24],

the main advances have been achieved through engineering the perovskite depo-

sition, with the aim of forming a compact film with homogenous crystalline do-

mains on the micrometre scale [197, 203]. Several reports have indicated that

small crystallites present between larger perovskite domains result in suboptimal

charge extraction under stabilized working conditions, such as maximum power

point tracking, or in larger hysteresis under non-stabilized current-voltage (J-V )

scans [180, 204]. Nevertheless, hysteresis is frequently found to decrease several

hours to weeks after device preparation and it is often accompanied by an increased
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stabilized PCE [40, 147, 205, 206]. Improved performance or self-healing activated

by light is well documented and it has been associated with the passivation of de-

fects within the perovskite [207, 208]. However, performance improvements have

also been observed in devices stored in the dark at room temperature [204]. This

is consistent with the common, and often undisclosed, practice of storing devices

for several hours to a few days after the preparation, before measuring the first

J-V curve [174]. The absence of any external influence suggests that a spontaneous

mechanism is actively improving the devices during storage.

Here, we show that coalescence of small perovskite crystallites into larger crys-

talline domains takes place in perovskite films stored in dark at room temperature.

SEM and XRD were employed to investigate the evolution of the perovskite film

morphology. This study demonstrates that small perovskite crystallites in the film

decrease in number and the average crystal size increases over the timescale of a

few weeks. We have prepared state-of-the-art PSCs and used TCSPC, IMPS and

photovoltaic performances to demonstrate that perovskite crystal coalescence is a

spontaneous, self-healing mechanism, which is inadvertently exploited to achieve

high stabilized efficiencies.
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9 Coalescence of perovskite crystals

9.2 Experimental methods

9.2.1 Material characterization

SEM, XRD and TCSPC were performed according to Sections 5.1 and 5.2.

9.2.2 Solar cell preparation

PSCs employing a SnO2 compact layer deposited by ALD and CDT perovskite,

were prepared according to Section 5.3.

9.2.3 Solar cell characterisation

PSCs were characterised according to Section 5.4, using current-voltage scans and

IMPS.
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Days Scan direction VOC JSC FF PCE

after preparation (mV) (ma/cm2) ( %) ( %)

2 FB to SC 1175 22.0 70.3 18.7

SC to FB 1159 21.9 59.5 15.6

28 FB to SC 1176 22.7 72.5 19.3

SC to FB 1170 22.7 70.6 18.7

Table 6: Photovoltaic performance parameters: open-circuit voltage (VOC), short

circuit current (JSC), fill factor (FF) and maximum power conversion efficiency

(PCE) extracted from the J-V curves in Figure 44, from forward bias (FB) to short

circuit (SC) and vice versa.

9.3 Results and Discussion

9.3.1 Photovoltaic performance

State-of-the-art PSCs were prepared in an inert atmosphere, using a lead-based

mixed halide (bromine and iodine) and cation (methylammonium and formami-

dinium) perovskite in a planar device architecture, as reported in the most recent

literature [67]. Figure 44 displays the current density-voltage (J-V ) curves of the

same PSC collected under identical conditions, 2 days and 28 days after preparation

and storage in dry air (below 1 % relative humidity) at room temperature in the

dark. The corresponding device performance parameters are listed in Table 6. It

is evident that hysteresis is reduced and performance has improved with storage.

As previously reported, we observed the opposite trend, i.e. reduced performances

and improved hysteresis, when J-V s were collected every day or when devices were

stored in ambient light [202]. Depending on the perovskite composition, device ar-
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9 Coalescence of perovskite crystals

chitecture and preparation procedure, the PCE can increase by up to 25 % after a

few days or weeks of storage in the dark. Interestingly, devices with an initial lower

PCE show more improvement and they tend to come closer to the highest per-

forming ones. Having eliminated the influences of light, water and applied voltage

during storage, oxygen remains the only external agent that may potentially affect

Figure 44: Current density-voltage (J-V ) curves for PSCs stored for 2 and 28 days

after the preparation, in dry air, in the dark at room temperature. The J-V curves

were measured at a scan rate of 10 mV/s from forward bias to short circuit condition

and vice versa under AM1.5 simulated solar light illumination. The device was not

preconditioned under light or voltage bias before each J-V scan. The active area

was defined by a shadow mask with an aperture of 0.16 cm2.
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the device performance. Oxygen is known to interact with metal oxides, organic

semiconductors and the perovskite employed in these devices and modifies their

electronic properties [41, 45, 56, 148, 209]. However, oxygen permeation within the

device takes place on the timescale of a few hours and it is likely to saturate before

the first J-V curve was collected [45]. Therefore, oxygen can be ruled out, as well

as other external stimuli, which may play an important role in the improvement of

PCEs during storage in the dark at room temperature.

9.3.2 Optoelectronic Characterization

To shed light on the origin of PCE improvement caused by storage in the dark, we

performed IMPS on a complete device. Figure 45a shows the imaginary component

frequency spectra of the current response to the light modulated intensity (10 % of

the stationary value) around 100 mW cm−2, collected from the same device 2 and

28 days after preparation. The spectra show three main features, which have been

reported earlier by Correa-Baena et al. [204] and Seo et al. [180] for similar PSCs.

The low frequency feature (100 - 102 Hz) stems from the resonant frequencies of

ion and ion vacancy migration within the perovskite lattice [180, 204, 210]. Here,

we note that this feature is shifted towards higher frequencies or faster responses in

the spectrum for the 28 day old sample. According to the study of Correa-Baena et

al. [204], a faster ionic response is indicative of larger crystalline domains within the

perovskite film. Moving to higher frequencies, there are two more features that have

been assigned to the resonant frequencies of the charges within the perovskite film

and the other device components, such as the hole and the electron transporting

layers. While the peak at the highest frequency (105 Hz) is unaffected, the shoulder

at 104 KHz is less pronounced after a long period of storage in the dark. Seo et

al. demonstrated that this behaviour is correlated with a reduced concentration of
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small crystallites within the perovskite film, which results in a better device perfor-

mance [180].

To further investigate the changes in the perovskite film due to storage in the dark,

we performed TCSPC measurements. Figure 45b displays decay traces measured

2 and 28 days after preparation of the perovskite film, which was deposited on a

microscope slide. An exponential function was fitted to the data between 0.15 and

1.95 µs and the photoluminescence decay time was indeed found to be significantly

Figure 45: Data collected 2 and 28 days after the sample preparation. The samples

were stored in dark and dry air at room temperature. a) Imaginary part of IMPS

spectra of a complete PSC. The spectra were normalized to the highest peak at

105Hz. b)TCSPC of a perovskite film deposited on a microscope glass slide. The

sample was excited at 480 nm from the perovskite side and the emission from the

same side was monitored at 760 nm. The curves were normalised to the maximum

signal.
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longer after 28 days of storage in the dark and dry air (0.64 µs) compared to that

after 2 days (0.45 µs). This points to a reduction in the non-radiative recombina-

tion through electronic defects or trap states within the perovskite film [211], as

this process is dominant at low excitation densities such as in this study [212]. We

have excluded from our experiment any external agent capable of passivating de-

fects, such as water and light [213]. Therefore, the presence of increased crystalline

domain sizes, suggested by IMPS, appears to be the most plausible explanation for

the increased photoluminescence lifetime. As defects are more numerous at or near

grain boundaries [214], the number of trap states is greatly reduced by enlarging

the crystalline domains within the perovskite film. Therefore, the optoelectronic

characterization suggests that storing the PSCs under dry conditions in the dark for

a few weeks results in reduced non-radiative charge recombination and improved

charge transport, which may be correlated to morphological changes in the per-

ovskite film.

9.3.3 Film Morphology

The morphological evolution of perovskite films was studied by top view SEM anal-

ysis. The images were collected from the same film 2 days (Figure 46a) and 28

days after preparation and storage (Figure 46b) at room temperature in the dark

under dry conditions. It seems that two adjacent crystals in the centre of Figure

46a have merged into a larger single crystalline domain in Figure 46b, eliminating

one grain boundary. To show the statistical relevance of this effect, the distribution

of grain areas (Figure 46c) was extracted from larger SEM top view images (Figure

46d and e). A statistical analysis revealed a significant reduction in the number of

small crystallites (i.e. <0.025 µm2) by about 66 % per surface area, approximately

doubling the average crystal size after long storage.
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This observation is attributed to the phenomenon of coalescence, where adjoining

crystals fuse to form larger crystals. This phenomenon has been reported to take

place in thin films of various materials including metals [215,216] and polymers [217]

during processes such as aging and sintering [218]. Solvent annealing [219,220] and

Ostwald ripening [221] were systematically exploited to increase the average crys-

tal size and thus the photovoltaic performance in PSCs [197]. Recently, Sheng et

Figure 46: SEM analysis of a perovskite film stored for a) 2 and b) 28 days in

dark and dry air at room temperature. c) Statistical distribution of the area of the

crystalline domains from the SEM top view in d) 2 days after preparation and e)

28 days after preparation.
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Figure 47: XRD patterns collected 2 and 28 days after perovskite film preparation.

The samples were stored in the dark and dry air at room temperature.

al. also reported spontaneous increase of the average crystal size in CH3NH3PbBr3

perovskite films stored in the dark at room temperature, but a potential impact on

PSCs performance remained unexplored [222].

In order to study the changes in the crystallinity of the film, XRD measurements of

the perovskite film 2 and 28 days after preparation, were conducted and are shown

in Figure 47. All peaks can be assigned to the tetragonal perovskite structure, PbI2

excess in the perovskite film and FTO from the substrate [223]. The Miller indices,

FWHM values, the relative intensity of the peaks and the extracted crystal sizes are
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Angle hkl FWHM FWHM Intensity Intensity Size Size

(θ) 2 days 28 days 2 days 28 days 2 days 28 days

(θ) (θ) (nm) (nm)

14.5 002, 110 0.12 0.11 0.34 0.21 69 74

20.4 112, 020 0.12 0.11 0.34 0.44 72 77

25.0 022 0.13 0.12 0.34 0.27 64 73

28.8 004, 220 0.15 0.15 0.28 0.16 57 57

32.3 114, 222, 130 0.15 0.14 1.00 1.00 57 61

35.4 024, 132 0.16 0.16 0.20 0.12 53 76

Table 7: Miller indices (hkl), full width at half maximum (FWHM), peak intensity

normalized to the intensity of the perovskite peak at 32.3 θ and crystal size extracted

from the spectra in Figure 47.

given in Table 7. The FWHM of most of the perovskite peaks decreased slightly

after storage, which points towards an increase in the average crystal size [139].

The average domain size of perovskite crystals was extracted 2 and 28 days after

preparation, using the Scherrer equation [139]. For most of the crystal orientations

shown in Table 7, the domain size increased after storage in the dark. Considering

the (022) reflection, the corresponding domain size increased by approximately 9

nm, while for most other orientations the increase was about 3-5 nm.

9.3.4 Thermodynamics of Coalescence

The grain-grain orientation is of importance for coalescence, since the surface energy

associated with each grain boundary varies based on the crystallographic misori-

entation between the contacting faces [218]. If the degree of misorientation at the
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grain boundary is low, the boundary energy is also low and these crystals prefer-

entially coalesce, as shown in the schematic in Figure 48a and 48c. On the other

hand, a high degree of misorientation at the grain boundary, as shown in Figure 48b

and 48d, is unfavourable for coalescence. This explains the directional selectivity

of coalescence shown in Table 7. On this basis, we distinguish coalescence from

the Ostwald ripening phenomena reported in literature [221,224], which also causes

the average size of perovskite crystals to increase. Ostwald ripening involves the

Figure 48: Schematic of crystal coalescence in a perovskite film. a) An as-prepared

film of crystals with a small crystallographic misorientation at the grain boundary

shown in red. Arrows indicate the grain boundary of interest between these crystals.

b) Film after dark storage, showing the coalescence of these crystals. c) Cross

sectional view of crystals with a small crystallographic misorientation at the grain

boundary which preferentially coalesce. d) Cross sectional view of crystals with a

large crystallographic misorientation at the grain boundary which do not coalesce.
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transfer of material from the smaller crystals to the larger ones through an external

phase which acts as a transfer medium (for instance, 2-propanol solution [221]). In

contrast, coalescence involves the selective fusion of adjacent crystals by removing

a connecting grain boundary.
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9.4 Conclusion

Using XRD and SEM it was shown that perovskite crystals in PSCs stored in dark

and dry conditions at room temperature can spontaneously coalesce, indicating that

perovskite films within complete devices are highly dynamic. TCSPC indicates that

this coalescence brings about a reduction in the number of grain boundaries and

the associated trap states, which suppresses non-radiative recombination, resulting

in an increased PCE and reduced hysteresis upon storage. Further evidence was

provided by IMVS, ion(vacancy)-migration is greatly increased upon ageing of the

device, which is indicative of larger grain sizes and has been credited for a less

hysteretic behaviour of the device. This self-repair ability, which improves the

electronic properties of perovskite films, provides an important insight into the

success of perovskites as photovoltaic materials.
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The aim of this thesis was to explore the influence of the metal oxide on the perfor-

mance and stability of PSCs and using the gained knowledge to increase the stabil-

ity of PSCs. Mesoporous metal oxides were synthesized through a block-copolymer

templated method, allowing for excellent control over the film morphology. This

way morphological considerations could be excluded when comparing different metal

oxide compositions.

m-TiO2 is the ETM of choice in many high efficiency PSCs [11, 28, 30]. However,

other studies previously showed a rapid performance loss for TiO2 based PSCs upon

exposure to full spectrum solar light [41,52], caused by the UV-induced desorption

of oxygen, exposing deep trap states. A similar rapid drop in device efficiency was

found in Chapter 6. By doping TiO2 with Nd, the resistance of PSCs against UV-

induced performance loss can be much improved. It was found that for 0.3 % Nd

content the stability could significantly be increased. Additionally, the PSC effi-

ciency increased, mainly caused by a higher FF. This was due to a decrease in the

deep trap state density, leading to improved electron transport and reduced charge

recombination. The better lifetime of the doped devices is attributed to the Nd

passivation of oxygen defects in the TiO2 lattice. Even for an optimized doping

concentration, UV-induced performance loss could not be completely prevented,

indicating that TiO2 may not be the ideal candidate for stable PSCs.

Chapter 7 investigated the use of m-SnO2 as a more stable alternative to m-TiO2.

Due to the larger bandgap, m-SnO2 does not show any UV-induced degradation.

Remarkably, m-SnO2 based PSCs exhibited a much improved stability compared to
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planar SnO2 based PSCs. The major downside of using m-SnO2 in devices is the

relatively low efficiency that had been achieved in PSCs employing m-SnO2. Chap-

ter 7 shows that this is partly due to fluorine migration from the FTO electrode

into the SnO2 ESL, negating the hole blocking qualities of the ESL. This problem

was overcome by replacing FTO with AZO, resulting in a marked increase in per-

formance. The work in Chapter 8 shows that it is possible to further increase the

efficiency of m-SnO2 based PSCs by Ga-doping. The number of deep trap states

was drastically reduced upon doping, resulting in lower recombination rates, which

in turn resulted in the improved FF and VOC. The efficiency of these Ga-doped

m-SnO2 based PSCs is now comparable to the efficiency of m-TiO2 based PSCs

fabricated in our lab.

An insight into one of the underlying mechanisms for the enormous success of PSCs

is given in Chapter 9. Upon storing perovskite films in a dark and dry environ-

ment at room temperature, perovskite crystal spontaneously coalesce, resulting in

a larger average crystal size. As a consequence hysteresis and recombination are

reduced, resulting in improved device performance at no extra cost.
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Because m-SnO2 based PSCs have not reached efficiencies comparable to m-TiO2

based PSCs, the system has not been studied intensively and many interesting prop-

erties remain to be explored.

A good starting point for further studies will be to investigate the influence of

processing conditions (temperature, chemical environment) and interactions with

light on the structure of SnO2. As defects in the material have an enormous ef-

fect on the material properties, it is key to understand how defects are created

during fabrication and operation. One key processing condition is the annealing

temperature. m-SnO2 is typically heated to ∼450 ◦C to improve the crystallinity,

oxidize SnO2 precursors and sinter nanoparticles together. However, high efficien-

cies have also been achieved using low temperature processed SnO2 [147]. A recent

study showed a significant increase in efficiency when tin was not fully oxidized to

SnO2, particularly showing a large increase in obtainable voltage. Another study

showed a downward shift of the CB upon annealing of SnO2 [225]. By annealing

SnO2 films at different temperatures and studying the effect on crystallinity, trap

state density, elemental composition, conduction band position, electron transport

and electron recombination, it will be possible to link the annealing temperature,

material composition and device performance. A second factor that influences the

SnO2 composition is the chemical environment during annealing, since the oxygen

content of the surrounding gas determines the degree to which SnO2 precursors are

oxidized. By controlling both temperature and oxygen concentration, SnO2 can be

synthesized with a wide variety of properties.
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A second interesting feature of m-SnO2 based PSCs is a marked increase in ef-

ficiency during the first minutes of operation (Figure 37a). This effect has been

linked to a rearrangement of charged species or loss of surface oxygen [191]. How-

ever, in that study an increase in current was observed, while in this thesis it is

mainly the voltage that increases. To further study this effect it will be interesting

to measure trap state density and the conduction band position before and after

light soaking as well as the electron transport and recombination rates. This may

shed more light on the precise mechanism underlying this light induced performance

increase.

Lastly, the exact origin of the improved stability of m-SnO2 over m-TiO2 and pla-

nar SnO2 remains to be explored. Several explanations have been offered, such

as better surface coverage of the perovskite [69], better protection against ingress

of degradants [56] or ion (vacancy) migration [172]. To test these hypotheses the

surface coverage can be studied using SEM. By tracking the light absorption of the

perovskite, while exposing it to humidity and heat, the degradation can be moni-

tored and compared between SnO2 and TiO2 and between mesoporous and planar

morphologies. Recently, pseudo-mesoporous SnO2 based PSCs have reached high

efficiencies [69, 192], but no stability data was presented in these works. This does

however raise the question of how much mesoporosity is required to gain the ad-

vantageous stability effects. By studying systems with a different thickness of the

mesoporous layer, it should be possible to find the right balance between efficiency

and stability.
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