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S.1 Summary of the results

Moderate interactions Weak interactions
Model
(6=73) (3<0<1)

5 Random Psg — 0 (Thm.[S.3.3 Ps — 0 or 1 (Thm.|S.3.5
o
g Competition Ps —0 Ps — 0or1 (Cor.[S.3.8
=
4,2 Mutualism Ps — 0 Ps — 0or 1 (Cor.|S.3.8
= Predation P — 0 Pg — 0 or 1 (Cor. [S.3.9
- Cascade Ps—0 Ps—0orl
<]
= ) z* not deterministic
E Niche Pg =0 and Ps — 0 or 1
—
53 ) 2* not deterministic

Nested hierarchy Pg — 0 and Pg — 0 or 1

Supplementary Table A Summary of the different results presented on Pg for S — oo.
The results are analytical if specified in brackets and otherwise obtained by simulations (see
Sections [S.3.1.2{ and [S.3.2.2| as well as Main Text).

S.2 Model and methods

S.2.1 Feasibility and stability in dynamical systems

Consider dynamics driven by a general system of first order autonomous ordinary differential
equations
dxz(t)
dt

with f = (f1,...,fs) : R® — RY a differentiable function and z(t) = (x1(t),...,z5(t)) € R,
Solutions z(t) of this system evolve in time and their trajectories are rarely describable as such,
especially in high dimensions. However, there are some important features that can be exhibited
without solving the system. One of the most instructive is the existence of equilibria, which are
points z* in the phase space R® where the solution of the system does not vary in time, that is
filz*) =0 for all i € S. A trajectory reaching an equilibrium remains indefinitely at this point.
If 2* belongs to the admissibility domain of the model (i.e., all z} > 0 for ecological systems),
then it is called feasible. Unfeasible equilibria are well-defined in the mathematical sense, but
have to be rejected in the perspective of the application.

If small perturbations of the trajectory in the neighbourhood of the equilibrium z* fade over
time, so that the system tends to restore the equilibrium, then z* is said to be locally stable.

— fi(2(t), ieS={1,...,S}, t>o0,



This property is related to the derivatives of the function f. More specifically, an equilibrium
x* is linearly stable when the Jacobian matrix J(z*) = (% (:z:*)) evaluated at the equilibrium

has only eigenvalues with negative real parts (see [L1], [67] or [68]).

S.2.2 Lotka-Volterra model

In the context of ecological networks, the dynamics of interacting species is commonly described
by the Lotka-Volterra equations (see e.g. [69, [70, 29]). The function f can be written as

dxi
dt

S
—a; | v+ 0m; + ; (Ci‘g)6 2 | = filz), ieS={1,---,5}, (S1)
where z; denotes the abundance of species i, # < 0 is a friction coefficient (intraspecific com-
petition, assumed to be the same for all species), r; describes the intrinsic growth rate of i and
the interaction coefficients a;; stand for the per capita effect of species j on species i. The con-
nectance C' denotes the proportion of links present in the network with respect to the number
of all possible links S(S — 1) or S2, depending on the model. The product CS is a measure of
the complexity of the system, and is the average number of links between two species. The term
(CS)% is introduced as a normalisation of the interactions strength, with § > 0 a parameter
controlling this renormalisation (see 2.3.3 below). In matrix form, the system writes

dx A

— =zo|r+(0l4+—= 2], S2

5= (r (o1 + s ) ) 52
where I denotes the S x S identity matrix, A = (a;j)1<i j<s is the interaction matrix, r =
(r1,...,rg) is the growth rates vector and o denotes the Hadamard product, that is z oy =

(191, -, T5Ys)-
The admissibility domain of this model is the positive orthant, that is z € RS with z; > 0
for all 7. A feasible equilibrium must then satisfy ;] > 0 for all species ¢ € S and

v = (—91 _ (C/;)E> o (S3)

so that the right hand side of ( equals zero, assuming this inverse matrix exists. Such

an equilibrium is locally stable if the Jacobian matrix (also named community matrix in this
context)

A

J(z*) =diag (z*) (0 + ——= S4

(0%) = ding (%) (07 + (G5 (54)

has all eigenvalues with negative real part. As one can see in the previous equation, this matrix

depends explicitly on the equilibrium abundances z* (diag (z*) denotes the matrix with z* in

the diagonal and 0 everywhere else) and it should not be confused with the interaction matrix A.

Several ecological models have been developed with the goal of understanding network struc-
ture and its effects on system dynamics [71], 10} 17, [I8, 28]. Those models generate essentially



different types of network structures, and consequently particular interaction matrices A. In
order to exhibit the particular effects of a structure on the dynamics of systems, the coefficients
a;; can be randomised. This allows the exploration of some behaviour of the models and the
detection of their key features. A direct consequence in considering random interactions is that
feasibility and stability have to be considered from a probabilistic point of view. We define
therefore the probability of feasibility of an equilibrium as

Ps=P(z!>0VieS). (S5)

The purpose of this work is to study this probability, which expresses the likelihood of a model
to provide feasible equilibria, for which the stability can eventually be examined.

S.2.3 Interactions

The interaction matrix A describes firstly who interacts with whom in the network (the struc-
ture), and secondly what is the type of these interactions: if a;; < 0 and aj; < 0, species ¢ and j
compete with each other; if a;; > 0 and aj; > 0, their interaction is mutualistic and they both
benefit from the presence of each other; if a;; > 0 and a;; < 0, then species ¢ preys upon species
J; if a;; = 0, species j has no direct effect on 7.

The models of complex ecological networks that we consider can be divided into two main
categories: unstructured and structured models. The former consist in webs for which the
topological structure is completely free and random. This equates to considering networks
based on Erdés-Rényi graphs, which are constructed by adding randomly edges between nodes
with the same probability C'. Here, we consider four of those models depending on the type
of interactions: random (as in May’s formalism [I0]), mutualistic, competitive and predator-
prey. Structured models define stochastic rules for the construction of the underlying graphs
so that not all graphs are equally likely. This is the case in the three models studied here: the
cascade [17], the niche [I8] and the nested-hierarchy model [28]. Since these three models were
built to represent food webs, only predator-prey interactions are considered. The section Method
in the Main Text describes their construction in detail. Suppl. Fig. [[] provides an example of
network samples for the unstructured predator-prey model and for the structured cascade and
niche model.

S.2.3.1 Interaction models on unstructured networks

Random network. This model introduced by May in 1972 [I0] considers both the structure
and the type of interactions as fully random. The interactions are independent and identically
distributed (i.i.d.) centred random variables with common standard deviation ¢ and can thus be
either positive or negative, corresponding to a mixture of competition, mutualism and predation.
The coeflicients equal 0 independently of their position, with a fixed probability 1 — C'. Note
that a;; = 0 does not necessary imply a;; = 0, so that amensalism (0, —) and commensalism
(0, +) interactions are also possible. In this model, the connectance is given by C = L/S? where
L is the number of links in the network.

Mutualistic network. This model considers only mutualistic interactions (+, +). The diagonal
coefficients are a;; = 0 and any pair of species (7,7), i < j is linked with probability C. If the
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pair (i,7) is not linked, then a;; = a;; = 0, otherwise the interactions strength a;; and aj; are
positive i.i.d. random variables. The elements of A are almost all i.i.d., except for the pairs a;;
and aj;, which are only independent conditionally on the fact that they are different from 0. In
this model, the connectance is given by C = L/S(S —1).

Competitive network. This model is built in the exact same manner as the previous one,
except that the interactions are nonpositive random variables in such a way that there are only
competitive interactions (—, —).

Predator-prey network. This is an example of an unstructured model for predation. The
diagonal coefficients are a; = 0 and any pair of species (i,7), ¢ < j is linked with probability
C. If the pair (7,7) is not linked, then a;; = aj; = 0, otherwise the interactions strength
are independently sampled, with the restriction that sign(a;;) = —sign(a;;). This results in a
sign antisymmetric interaction matrix whose elements are identically distributed and almost all
independent, except for the pairs (a;j, a;;), which are correlated by their sign. The connectance
in this model is given by C' = L/S(S —1).

S.2.3.2 Interaction models on structured networks

Cascade model. This model introduced by Cohen et al. [17] is an example of structured food
webs. The interactions are of predator-prey type. The species are ordered on a line and they can
feed only on species with a strictly lower rank, excluding any loop in the network. The resulting
interaction matrix A has an upper diagonal with nonnegative i.i.d. entries and a lower diagonal
with nonpositive i.i.d. entries. An upper diagonal entry a;;,% < j can be zero with probability
1 —C and in this case aj; = a;; = 0. The diagonal of A consists in zeros and the connectance is

C=L/S(S—1).

Niche model. In 2000, Williams and Martinez [18] proposed a new model that permits loops
(including cannibalistic loops), and that generates purely interval food webs. Each species is
randomly assigned three numbers: a niche value, a range radius proportional to the niche value
and a range centre. Species feed on all species whose niche value falls into their range. The
species with the smallest niche value has a range 0 to ensure the presence of, at least, one basal
species. This defines the so-called adjacency matrix of the network: o with a;; = 1 if 7 preys
upon j and o;; = 0 otherwise. The parameters of the probability distributions of the niche
and the range are chosen in order to obtain an average connectance C'/2 in the matrix a. For
the construction of the corresponding interaction matrix, one multiplies the entries of o with
positive i.i.d. values and the entries of o with negative i.i.d. values, and finally one adds up the
two corresponding matrices. This results in a interaction matrix A with upper diagonal with
mostly (but not exclusively) nonnegative entries, and lower diagonal entries mostly nonpositive.
The average connectance of A is C' = L/S?. Notice that this construction is slightly different
from the one proposed by Allesina and Tang in [I5], since if species i preys on j and vice-versa,
those interactions do not cancel out but are added in A. The combination of both interactions
can either be mutualistic or competitive, or can remain a predator-prey interaction.

Nested-hierarchy model. Cattin et al. [28] proposed a model that tries to implicitly take
evolution into account and relaxes the intervality of the diets of the niche model. The model
creates a nested hierarchy between species driven by phylogenetic constraints. Two numbers



are randomly assigned to each species: a niche value and a number of prey that depends on
the niche value. The species with the smallest niche value has no prey. After having reordered
the species according to their niche value, prey are assigned to species starting with the species
that has the smallest niche value, according to the following rule: for a consumer i, one chooses
randomly a prey j with smaller niche value; then, one considers a pool of prey consisting of all
prey consumed by other consumers of j; consumer ¢ will then be assigned prey among this pool;
if the pool is too small, choose another pool, and if this is still not possible, choose randomly
a new prey. This algorithm builds the adjacency matrix of the network «, whose connectance
is set on average to C'/2 by tuning the parameters of the probability distribution of the niche
values and the number of links of each species. The interaction matrix A is then constructed in
the exact same way as for the niche model and the connectance is C = L/S2.

S.2.3.3 Interaction strength

Intensity of interactions plays a key role for the local stability of networks [30, BI]. As already

suggested by May’s criterion [10], in the framework of the random model, interactions strength

should decrease at least at rate \/éTS in order to preserve stability when complexity C'S increases.

This consideration motivates the introduction of the normalising parameter § > 0 in ( for the
study of ecological feasibility of equilibria. Three regimes naturally emerge: strong interactions
(6 = 0), moderate interactions (6 = 1/2) and weak interactions (6 = 1). A useful approach for
the interpretation of these different regimes is the weight of a node in the network. Consider
for example the random model. As the network is unstructured, all species have on average the
same role, and the expected total weight of their interactions is

S

1 1
W; = E (Jaij|) = e SE = (CS'°E 0
G5y ; (Jaiz]) (C5y (|a11]) = (CS) (la11] [ a11 # 0)
since a;; are ii.d. by assumption. One sees that for § = 1, W; is constant and does not

depend on the complexity. For § = %, the total weight is proportional to the square root of
the complexity, and for 6 = 0, W; depends linearly on the complexity. From the mathematical
point of view, these three regimes correspond to three normalisation of the sum of i.i.d. random
variables. Indeed, let X1, Xo,... be a sequence of i.i.d. centred random variables. The rescaled
sum %E?:l X; converges almost surely to zero if % < 0 < 1 (law of large numbers). If
0= %, the central limit theorem states that # >, X; converges in distribution to a normally
distributed random variable with mean zero and finite standard deviation. Proposition
and Theorem below show the link between these probabilistic regimes and the nature
of the equilibrium as the size of the network goes to infinity, depending on the parameter 9.
While z* converges to a deterministic value when interactions are weak (6 = 1), it obeys a
central limit theorem and converges to a well-defined random variable when the interactions are
moderate (0 = %) Finally, if 0 < § < %, the rescaled sum does not converge and its standard
deviation explodes. Consequently, the case of strong interactions (§ = 0) is not studied, as the
mathematical problem is asymptotically ill-posed.



S.2.4 Growth rates

The parameter r is of particular interest when studying feasibility as illustrated in [26]. For any
fixed realisation of the random interaction matrix A, it is always possible to tune the parameter
r in order to get any desired equilibrium. Choose any vector u € RS and set

(0 = (-0~ g5 )

as a structural growth rates vector. A glance at ( shows immediately that the resulting
equilibrium is z* = u. Consider now the all-ones vector 1 in R®. This direction 1 is in a sense
the most feasible, since it is as far as possible from the boundaries of the admissibility domain
(i.e. the positive orthant). Setting the growth rates vector to the so-called structural vector
r(1) leads the equilibrium deterministically to 2* = 1. Interestingly, the authors of [20] studied
stability using non-random interaction weights. They used r(u) with v = (—d/0)1, for some
positive constant d > 0, to avoid transcritical bifurcations where the abundances of the steady
state x; become negative. They argue that with this particular choice, the only way in which
a species can become extinct is via a degenerate bifurcation that makes a positive equilibrium
unstable, causing the system to move suddenly to a different equilibrium point.

However, choosing the parameter r in such a way, i.e., contingently to A, is clearly uninfor-
mative as it erases the whole structure of the model, and nips the purpose of the randomisation
in the bud. The parameter r should thus not be set according to a particular realisation of A.
This can be achieved with, for example, the mean structural vector v defined by

v=E(r(1) =E <—01 - (Cg)é> 1. (S6)

This vector is deterministic, therefore clearly independent of the randomness of A, and it provides
equilibria that are, on average, the most feasible. Choosing this v as growth rates vector allows
then to study feasibility in the most favourable conditions. The mean structural vectors of the
seven models of interest are given in Table 2.

The analytical results of Sections [S.3.1.1] and [S.3.2.1] hold for more general growth rates
vector than v. They allow to consider random vectors r» = (r;) with i.i.d. entries. In the case
of unstructured models, v is indeed a particular case of this type of vectors, as the entries are
all identical and deterministic, therefore independent of each other. In the following, we always
illustrate our results with the mean structural vector v, unless specified.

S.3 Probability of feasibility

We study analytically the probability of feasibility Pg in the framework of the random model.
For moderate interactions, Ps decreases exponentially with the size of the system. For weak
interactions, Pg is asymptotically equal to one when the growth rate vector is set to v (see
Eq. (S@) We show that for other choices of growth vector, if the interactions are weak, then Pg
either equals one or zero, depending on the value of the parameters. We provide estimations of
Pg by means of Monte Carlo simulations for the other models and observe the same phenomenon.
In the case of weak interactions, Pg can be estimated analytically for all unstructured models.
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Model Mean interaction Mean structural vector

Random v; = |0] — (CS) 0 g
. B B C(S-1)
Competition E(aij | aij #0) = pa v; = 0] — ca)F 1A
Mutualism v; = 16] — (/E(Csis_);) A
Predation v = |0] — (C§)L—0 . EasThas
Cascade E(asj | aij > 0) = pa, >0 and Ui:\t9|—(é,_751)50u,47 —(g—g)’gcuh
Niche E(aji | aij <0)=pa_ <0 Simulated
Nested hierarchy Stmulated

Supplementary Table B Models of interactions and their corresponding mean structural
vector v. Note that the form of v is the same for the random, competition and mutualism models.
In a competitive system, g4 < 0 and in a mutualistic one, 4 > 0. In all unstructured models
(random, competition, mutualism, predation), the mean structural vector has the same direction
as the all-ones vector, meaning that the structural growth rates are the same for all species. For
the structured models (cascade, niche and nested hierarchy), species do have different roles in
the network, while in the other models all species behave, on average, identically. The mean
structural vector follows then a particular direction which is no more the all-ones vector. One
sees that, for the cascade model, for appropriate choice of the parameters 0, ua, and p4_ leads
to a vector v which has negative entries for species with small indices i (top predators) and
positive entries for species with large indices (basal species). This type of growth rate vector
is a characteristic of such networks [69, [70]. For the niche and the nested hierarchy models,
the algorithmic construction of the interaction matrix makes the formula of their respective v
very complicated. They are therefore obtained by Monte Carlo simulations. As for the cascade
model, negative growth rates are observed.



S.3.1 Moderate interactions

We show that in the random model with moderate interactions, there exists asymptotically
almost surely no feasible equilibrium of the system (S1)). The lack of structure of this model
brings independence of the entries of x*, the biomasses at equilibrium. Moreover, the rate of
normalisation § = % makes these entries follow asymptotically a normal law. Thus, when the
number of species becomes large, there is a smaller and smaller probability that all of them have
positive equilibrium, as illustrated in Suppl. Fig.[A] and Fig. 1, Main Text.

This phenomenon is a key feature of this model and does not depend on the choice of
the intrinsic rates r. Indeed, we can show analytically that the probability of persistence at
equilibrium goes towards zero for any choice of a random vector r with i.i.d. entries. This
framework contains the particular case where the intrinsic rates are all equal, i.e. the same
direction as v, the mean structural vector of the random model.

We extend this study by estimating Pg in the other unstructured and structured models by
simulations. For each model, one samples independent realisations of the interaction matrix A
and sets the growth rates vector to the mean structural vector v of the model. The equilibrium is
found according to Equation ( and Pg is estimated by the proportion at which the equilibrium
is admissible. The simulation results are analogous to the random model in the sense that Pg
decreases exponentially towards zero with S. Note that we also performed simulations for the

random model, whose results correspond nicely to the analytical prediction (see Suppl. Fig.

(a))-

S.3.1.1 Analytical results

First, we express the law of 7 for arbitrary large S. Our results ensue from the direct application,
with some extensions, of Geman’s work [33] on solution of random large systems. They hold
under the following assumptions:

Assumption S.3.1. In the Lotka-Volterra model (, we assume that
(i) 6=3;
(ii

) the interaction matrix A = (a;;) has i.i.d. entries with common mean E(a;1) = 0;
iii) the intrinsic growth rates vector r = (r;) has i.i.d. entries;
g

)

(iv) r and A are independent;

2 2
(v) the second moments of the laws of A and r satisfy % <1

(vi) there exists a constant & such that E(]ai;|%) < S, for all S > 2;

(vii) the matrix (01 + A/V/CS), where I denotes the S x S identity matrix, is nonsingular.

The assumptions (v) and (vi) on the second and higher moments of A and r are very natural
and not restrictive, since they are satisfied by a wide collection of laws (normal, uniform, beta,
gamma, lognormal,...) as long as the chosen standard deviation is not too large. Note also that
the mean structural vector satisfies these assumptions. The last condition allows us to consider
that the solution to ( always exists.



Proposition S.3.2. Under Assumptions the biomasses at equilibrium of the model (S1))
converge in law towards Gaussian random variables:

. L E(r1) Var(m) , E(rf)o’ ,
mi:>/\/'<— 0 e —|—92(02_02) ,  foralli=1,...,8S. (S7)
Moreover, for every fixzed 1 < k < S, the collection (x7,...,x}) has independent entries.

Proof. The proof is a generalisation of a result given in [33]. We will assume without loss of
generality that C' = 1. Indeed, E(%azj) =0 and Var(%aij) = Var(a;j|ai; # 0) so that in the
case of moderate interactions the variance of the a;; is preserved when dividing any a;; by V.

Consider the system ,

1
—Ox" =r+ —=Ax".
V'S

First approach the solution of the system by a Neumann progression which is given by

9§3<j§> (_;)’z

() () G Zramman.

Lyensl

As in [33], define

Qr o (Zv k, S) =

k
%) (—%)k r. We compute the joint moments of the o g

and show that they are the same as those of normal random variables. For m fixed and distinct
we thus compute E (H;”Zl ayg (i5,k;,5)™ ). This involves the same combi-
natorics as the one employed in [33] as mixing terms from (S8)) arise. Indeed for asymptotical

contributions, each chain aj,s,...a;, 1,7, has to be paired exactly with itself. Using moreover
independence of the (a;;) and the (r;), this gives the joint moments

which is simply the ¢th component of (

pairs (kjvnj)lgjgm

m o\ i king yyn;/2 .

5 (T ok, 5y | = {TERBEDE (57 TR @r 1)t every n, ane even
b 0 otherwise.

These are the joint moments of independent Gaussian random variables, i.e.

(g (i1,k1,S) s ooy Qg (s Firns S)) 2 (Z1se00s Zim) |

2k ;
where Z; ~ § (0, E (r%) ggk;) are independent. Returning now to the Neumann progression

and by calculating variance and expectation, we find that when S — oo

E 2 2
lim ot =25 ~ N (_]E(Tl) Var(rq) N (7“1) o ) '

S—r00 0 02 02 (62 — o2)
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This result is similar to that obtained in [71], equations (16.12) and (16.21)], where mean,
variance, and coefficient of variation have been computed. The normal asymptotical distribution
and the fact that the equilibria are asymptotically i.i.d. from the previous Proposition allow
to go one step further and to show that there exists almost surely no feasible equilibrium for
species-rich systems of type .

Theorem S.3.3. Under Assumption the probability that an equilibrium of model (1)) is

feasible tends toward zero. That is limg_,, Pg = 0.

Proof. Let us define Pék) =P <$3k >0,Vj=1,.. .,k:). With this notation, Pg = Pés). The

convergence in law in (97)), as well as the independence of (x}) imply

0< lim Py < limsupPéS)
S—o0 S—o0

< limsup Pék)

S—o00
= P(z;>0,Vj=1,...,k)
E(r1)
\/Var(rl) +E (r%) ﬁ

for all £ > 1 and where ® denotes the standard Gaussian cumulative distribution function. Since
the probability on the right-hand side is strictly less than 1, this implies that lim supg_,., Py =
0. [ |

= ¢

i

When considering the mean structural vector of the random model r = v (see Suppl.Table 2),
the previous proof allows to approximate the probability that an equilibrium is feasible in the

following way:
S
2 _ 2
&%@( 020>, (S9)

g

which is represented in Suppl. Fig. [A]

S.3.1.2 Simulations

The exponential decrease of Pg is not restricted to the random model, for which our analytical
result holds. Indeed, we have computed numerically the probability of feasibility for the other
models, as well as for the random model (see Fig. 1, Main Text). The growth rates vector is set
to the mean structural vector for each model respectively (Table 2).

An interaction is non-zero with probability C. We choose a;; ~ N(0,0) for any non-zero
entries of the interaction matrix A in the random model, i.e. when the sign of the interaction
does not matter. In this sense, E(a;;) = 0 and Var(a;;) = C - Var(aj|a;; # 0) = C - 0% In
the other cases, a strictly positive interaction is randomly drawn from a folded normal distri-
bution such that a;; ~ |[N(0,0)|. The expectation is E(ajjlai; # 0) = 04/2/7 and the variance
Var(a;jla;; # 0) = 02 (1 —2/m). A strictly negative interaction is similarly sampled such that

CLZ']' ~ — |N(0,0’)|
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In Fig. 1 of Main Text, the connectance as been fixed to C' = 0.25 for each model. To reach
such a connectance in the case of the niche model, we choose the niche values uniformly on the
interval [0;1], and their breadth according to a Beta random variable with shape parameters
(L,3).

0.7
0.6
0.5
0.4
0.3
0.2

o

Probability of feasibility

0.1

100 200 300 400 500 100 200 300 400 500
Number of species Number of species

Supplementary Figure A. Probability of feasibility as a function of number of species S and
standard deviation of interaction strengths ¢ in the random model under moderate interactions
and with the mean structural vector. (a) The continuous line denotes the analytical predictions
of Pg, while the error bars are 95% confidence intervals from Monte-Carlo estimates for 1000
simulations. The parameters are C = 1, 0 = 0.4, § = —1. (b) Analytical prediction of the
probability of feasibility with respect to ¢ and S.

In the case of the niche and nested-hierarchy models, we also simulated the equilibria feasibil-
ity when not using the mean structural vector v. In Suppl. Fig.[B], the growth rates are i.i.d. gaus-
sian random variables with standard deviation fixed to 0.15 and mean one (in Suppl. Fig.|B|(a-d))
or mean zero (in Suppl. Fig. [B] (e-f)). In the former, the probability of feasibility rapidly de-
creases towards zero, similarly as what is predicted with random models. When E(r;) = 0 for
all 4, the equilibria abundances are centered around zero with a positive variance independently
of the species index 7. As such, there is no chance to observe Pg > 0 for this choice of ;.

S.3.2 Weak interactions

For the case § = 1, we provide the conditions under which the system ( possesses almost surely
a feasible equilibrium. In this situation, the interactions between the species become extremely
weak when the size of the system grows. Compared to the moderate case, the variance of the
solution approaches zero allowing us to use a law of large numbers. This drives each component
x; of the solution to a constant proportional to its intrinsic growth rate r; as illustrated in
Suppl. Fig. [C] This leads to feasible equilibria for any positive growth rate.

Analytical results are given in the case of unstructured models, whereas structured models
are explored by mean of simulations.

12



E(r) =1 E(r)=0

-
—_
(&)

> | i 6fc P e
_ 208 e b e  S=150 1
23 S 4f8ar ®  S=400
S © ° CPRL T S
e Los 5 M $=1000 05 o s
o Qo 1 S oo ~
g > : 2 u\-“"-. °
23 04 8 T T
[} < . o
Q <4 ~ . .
902 B O Hagaapy - mmmmmemmeeeme e e —0.5 oo, o oo
o %‘ I e ¢
I TER -u: e T
0 s -1
0 100 200 0 025 05 075 1 0 025 05 075 1

-

o
©

o
~

o
[}
Species abundance

o
o

Nested hierarchy model
Probability of feasibility

o

100 200 0 025 05 075 1 0 025 05 075 1
Number of species Rescaled species index

o

Supplementary Figure B. Equilibria simulated from the niche and nested-hierarchy models
under moderate interactions and for i.i.d. random growth rates. (a-b) The probability of feasi-
bility decreases rapidly when E(r;) = 1. Envelop (the maximum and the minimum value) of the
equilibria for (c-d) E(r;) = 1 and (e-f) E(r;) = 0. In this case Pg is always zero. The species
have been assigned a number between zero (top species) and one (basal species) corresponding
to their hierarchy in the web. 500 simulations have been performed for each S. The growth
rates are normally distributed with a fixed standard deviation \/Var(r;) = 0.15.

S.3.2.1 Analytical results
We begin by giving the assumptions under which our analytical results hold :

Assumption S.3.4. In the Lotka-Volterra model (S1f), we assume that
(i) 6=1;

(ii) the interaction matrix A = (a;;) has i.i.d. entries with common mean E(ai;) = Cpa so
that [pal <101;

(iii) the intrinsic growth rates vector r = (7;) has bounded entries;
(iv) the law of the (a;;) satisfies E(afj) < o0;
(v) the matrix (0 + A/(CS)) is nonsingular.

As for the Assumptions these conditions are not restrictive on the choice of the dis-
tributions for the (a;;). The mean structural vector satisfies the Assumption [S.3.4] (iii) for all
the models that are considered. In (ii), E(a11) = Cua is equivalent to E(aq11 | a11 # 0) = ua

13



since C is the probability that an entry of the matrix is set to 0. Note furthermore that, in the
settings of weak interactions, the entries of A are divided by C'S so that E(a;;/(CS)) = pa/S.

We first introduce the analytical result for the random model.

Theorem S.3.5. Under Assumption with pa = 0 the asymptotic equilibrium of the
model ( is feasible and is given by
*,00

€.

; almost surely, foralli=1,...,85.

= lim a:f:ﬂ
S—00 | ’

Moreover, x;"* is almost surely feasible for any r such that r; > 0 for all i.

Proof. The convergence of x} toward % follows directly from results on the solution of large
random systems of linear equations, [33, Thm. 1]. |

In the case of the random model, setting the growth rates vector to v = |6 - 1 leads thus to
z;°° =1 for all i. But Theorem is more general and allows to consider any growth rates
vector r with bounded entries. In Suppl. Fig. [C| for example, the entries of r are chosen to take
only two values and one sees that the equilibrium vector also converges only toward two values
(proportional to r;) when S becomes large.

In Assumption the expectation 4 does not need to be zero. This enables the deriva-
tion of analytical results in the case of random models in which the mean interaction is positive
(mutualistic and commensalistic interactions) or negative (competitive and amensalistic inter-
actions). Indeed, a generalisation of the previous proof by allowing arbitrary p4 leads to the
following;:

Theorem S.3.6. Under Assumption the asymptotic equilibrium of the model (1)) is
given by

re

s MiAf almost surely, for alli=1,...,5,

st 6] 101(16] — pa)

where 7 denotes the arithmetic mean of the entries of r. Moreover, if r; > uiiG -7 for all
i=1,...,5, then £ is feasible with probability one.

Proof. The proof is analog to the one provided in [33] Thm. 2], where we write W=w-M
with M the S x S matrix with every component set to C'ua, W = A and W is an S x S random
matrix with i.i.d. centred entries. |

However, the competition and mutualistic models introduced in Section do not com-
pletely satisfy the Assumptions[S.3.4] since some dependences are introduced among the entries
of the interaction matrix A. Indeed, a;; = 0 < aj; = 0, so that commensalistic/amensalistic
interactions are forbidden. Moreover, the particular case of predation leads to a sign antisym-
metric matrix A, i.e. a;; > 0 < aj; < 0. In the following, we show that the same type of results
are obtained for these cases.

For mutualism or competition, we define the entries of A in the following way,

CLij = wij . bij and aji = wﬂ . bija

14



where (w;;) are i.i.d. random variables of mean p4 and variance o (e.g. folded normal random
variables) and (b;;) are i.i.d. Bernoulli random variables of parameter C.

Note that for every i,j € S, E(a;j) = E(aj;) = Cpa, so that if we define M to be the matrix
with all elements set to C'u4, the matrix

W=A-M (S10)

is centred and that Cov(i;;, wj;) = p%-C(1—C) # 0. Like in the proof [33, Thm. 2], we need to
show that ||[W/S|| — 0. This assertion is based on [72], which gives an upper bound for the norm
of sample covariance matrix, and can be related to the work in [73], where the largest eigenvalue
of random symmetric matrices is studied. Here we will show that |1V /S| — 0 in the framework
of [74], where it is demonstrated that the limiting distribution of the eigenvalues of a sample
covariance matrix 1/ SVVT remains the MarGenko-Pastur law, even with some dependencies
among the entries of a centred random matrix V.

Lemma S.3.7. Consider the random matriz W defined by equation (S10) and assume that there
exists a constant K such that E(|w;;|*) < K?* for any k < S and 1 <4,5 < S. Then

W /S| =0 almost surely.

Proof. The conditions (MP1), (MP2) and (MP3) in [74] still hold for W in our framework. Thus
letting A\pnqz be the largest eigenvalue of 1/ SWWT, the same combinatorial arguments can be
used, and following [74, Section 4] we arrive to

/.:!((1?]1)!1)!5 +c-K*+0(1/9)

< 4S84 - K* +0(1/8),

E(M,,) <E (méWWT)’f) <

where ¢ is a constant and Tr(+) the trace operator. Letting € > 0 and using the Markov inequality,
we find

4k S + cK%k

Sk€2k +O(1/Sk+1)7

1 L s k k 2k
IV . <
P<\/§H\@ >6> P()\ma$>56 >\

which goes to zero when S is large and since ) P (% H%W” > e) < oo for k > 3, almost
sure convergence holds. |

Corollary S.3.8. Under Assumption with a matriz A so that a;; = 0 < aj; = 0, and
where E(aijla;; # 0) = pa and r = v - 1, with v € R*, the asymptotic equilibrium of the
model (91)) is given by

d T = T almost surely,

foralli =1,...,S. Under these assumptions and for /(10| — pa) > 0, 2% is feasible with
probability one.
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Proof. Since each line in A, i.e. the collection (a;;), <j<s for arbitrary ¢ € S, still contains
independent elements for arbitrary S, the proof is analog to the one of Thm [S.3.6] by using
Lemma [5.3.7] |

In the case of predation, interactions have the form (4, —), so that the previous Corollary
extends in the following way.

Corollary S.3.9. Consider Assumption with a matriz A so that pa = %, where
E(aij]aij > 0) = pA, > 0, E(aij\aij < 0) = pua_ <0, and with ajj = 0 & aj; = 0 and
sign(a;j) = —sign(aji). Then for r = ~ -1, with v € R*, the asymptotic equilibrium of the

model (1)) is given by

*,00

;" = lim a} = 7 almost surely,

¢ S HAL FHA_
T - e
foralli=1,...,S. Under these assumptions and for v/ (|0| — %) >0, £ is feasible

with probability one.

Consequently, the mean structural vector (see Suppl. Table 2) leads almost surely * to the
vector 1 for every unstructured model.

S.3.2.2 Simulations

Unstructured networks. As in the moderate case, simulations have been performed to illus-
trate our analytical results. We illustrate the results for the random model in Suppl. Fig. [C]
The outcomes for the other unstructured models are analogous. All random variables a;; are
defined as in Section [S.3.1.2] with C' = 0.25, 0 = 0.4 and 0 = —1.

Abundances

Time Time

Supplementary Figure C. Trajectories of the abundances of species through time in the case
of weak interactions (6 = 1) for the random model. Half of the species have a growth rate set
to 1, the other half set to 1.5. As predicted analytically (Thm , the abundances stabilise
around their intrinsic growth rates (|#| = 1 and o = 0.4). The simulations have been performed
with MATLAB ode45. (a) With 36 species. (b) With 500 species. Note that for S — oo,
equilibrium abundances converge to 1 and 1.5.
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Structured networks. The case of the cascade model [17] is illustrated in Suppl. Fig. @ (a)
and (b). We represent the envelop of the equilibria for different S from 1000 simulations with
C =025 0 =04 and § = —1. The standard deviation of any =] decreases towards zero
when S increases, independently of the role of species i. Using the mean structural vector,
the same convergence to the equilibrium 1 as in the random model is hence obtained. We
hypothesise that this result is a consequence of the cascade model yielding adjacency matrices
with inferior triangular parts constructed like a Erdés-Rényi network. The distribution of a
top, an intermediate and a basal species are illustrated in Suppl. Fig. |[E| (a) and shows that any
species abundance is independent of its role in the web, exactly as in random models.

For the niche model [I§] and the nested-hierarchy model [28], a particular phenomenon occurs
that is not observed for the other models. Indeed, simulations show that the equilibrium remains
random when S increases. This result is likely attributable to the construction of the models,
with the standard deviation of the abundances depending on the hierarchical position of the
species. Importantly, standard deviations do not decrease towards zero as the size of the network
grows, as illustrated in Suppl. Fig. [D] (d) and (f). Indeed, these highly structured networks
and their related mean structural growth rates induce correlations among the abundances at
equilibrium that prevent a convergence to a deterministic value, but rather takes place on a
compact support. This is illustrated by the envelop of the equilibria that is represented in
Suppl. Fig.[D] (c) and (e) for different values of S. The empirical distribution of 2} for particular
species roles i is illustrated in Suppl. Fig. [E] From these results, it is apparent that basal species
may rapidly converge to a deterministic constant. However, for intermediate and top species,
simulations show that the convergence is very likely to occur on a non-trivial support.

We also tested i.i.d. Gaussian random growth rates with o, = y/Var(r;) = 0.15 for the niche
and the nested-hierarchy models in Suppl. Fig. [F| When E(r;) = 1, a similar phenomenon as
what was observed with the mean structural vector appears. The standard deviations of z
converge towards positive numbers and the resulting distribution of z; depends on the species
index i. However, when E(r;) = 0 or when the standard deviation of r; increases, this particular
hierarchical behavior disappears, as illustrated in Suppl. Figs. [F| and @ Every equilibria x] are
similarly distributed around zero.

S.3.3 Empirical networks

We used our method on empirical food webs to illustrate how species abundances at equilibrium
depend on their intrinsic role in the web. The topology is thus fixed to the observed one and the
interactions are modeled as for any random structured web (see the section Method in the Main
Text). We report the results of four arbitrary networks. In Suppl. Fig. the mean structural
vector is used. In Suppl. Fig. [ two different random vectors with i.i.d. components are chosen.
The distributions under weak interactions are also illustrated in Suppl. Fig. [E] to allow better
comparison with the niche and the nested-hierarchy models.

S.3.4 Connectance and interactions strengths

In our approach, we fixed the connectance C to arbitrary values in the mathematical develop-
ments, and to fixed values in the simulations. In this section, we briefly explore the consequence

17



Cascade Niche Nested hierarchy

a - C e
2 . 50 species 2 2
150 species B e
400 species e ., i
“ 1000 species N, e, o, .. .
< 15 1.5 T el 1.5¢,°
o e o o . . . .’13 *¢ 0%, k .’ ° o o -. AR
Z P A e e o N e T e o R "\'.{\- PRIARE N A s,
w1} 1 1
,«M e
o = feaieninid 4 o i e
R R 8 et -‘4:':*"',,"‘“ s P _..:.-,::‘.“.‘.’.' G ot o e
0.5 s 05 [ " Tt ety 05[ . e e
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Rescaled species index

0.12 0.25 0.16
Top predator
0.1 - :Er;terrrediate 02 0.14
'5 = 0.12
kS
3 0.08 o1
©
B
S 0.06 0.08
S
® 0.06
0.04
0.04
0.02 0 0.02
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000

Species number

Supplementary Figure D. Behaviour of the structured models under weak interactions with
the mean structural vector. In the first row, we plot for different values of S the envelop (the
maximum and the minimal value) of the equilibrium z* among 1000 simulations. The species
have been assigned a number between zero (top species) and one (basal species) corresponding
to their hierarchy in the web. In the second row, the standard deviations of z} for i = 1
(top predator), i = S/2 (intermediate) and ¢ = S (basal) are represented as a function of
S. The parameters are C = 0.25, 0 = 0.4 and § = —1. (a and b) In the cascade model,
although hierarchically ordered, species tend to behave similarly with regard to convergence as
S grows. The equilibrium converges almost surely to the vector 1. (c - f) The niche and the
nested-hierarchy models keep the randomness of the equilibrium when S grows, even under weak
interactions.

of a relationship between connectance and species number on feasibility, as observed in several
contributions, e.g. [75] [42]. Observe first that, from the point of view of the average interaction
strength, introducing zeros with a given probability 1 — C' in the interaction matrix is the same
as multiplying the whole matrix by C. Therefore, one has

A BC

sy (Cs)”
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Supplementary Figure E. Empirical distribution of top, intermediate and basal species under
a regime of weak interactions. (a) Cascade model with S = 800. (b) Niche model with .S = 800.
(c) Nested-hierarchy model with S = 800. The same parameters as in Suppl. Fig. |§| have been
used among 1000 simulations. (d) The distribution of a top, intermediate and basal species
from the empirical food web Stony is illustrated. The interactions strength have been simulated
similarly as for any structured web (see Section Method in Main Text). The mean structural
vector has been simulated with Monte-Carlo methods (200 trials).

where B is a matrix with all entries i.i.d. and such that P(b;; = 0) = 0. Consider C' = %, for

B > 0, which is a flexible function that adequately captures observed relationships between C'

and S. We get
BC B

(CS) — §o+B(—8)
In the Main Text and above, we showed that feasibility is warranted when § + 3(1 — 40) > %,
i.e. for .
(3 —9)
1-9)

8>

Taking g > % leads almost surely to feasible equilibria in the models considered here, inde-
pendently of the exponent §. For § < %, 0 can be smaller than 0.5. This shifts the three
previously described regimes for § to the left, so that § can be smaller to reach the same results.
Consequently, the existence of a relationship between C' and S does not affect our conclusions.

S.4 Consequences on local stability analysis

Any local stability analysis should be preceded by a feasibility analysis [27, 22], [76]. Indeed,
studying the local stability of a point that is not biologically feasible is not instructive on the
behaviour of the network dynamics. Moreover, the Jacobian matrix of the system (, therefore
its eigenvalues too, depend explicitly on x*. Therefore, there is no warranty that randomly
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Supplementary Figure F. Equilibria simulated from the niche and nested-hierarchy models
under weak interactions and for i.i.d. random growth rates. (a-b) The standard deviations of a
top, an intermediate and a basal species are illustrated as a function of S for E(r;) = 1. Envelop
of the equilibria for (c-d) E(r;) = 1 and (e-f) E(r;) = 0. 500 simulations have been performed
for each S. The growth rates are normally distributed with a fixed standard deviation o, = 0.15.

sampling directly the Jacobian may be sufficient to address local stability. Here, we explore this
question, which extends the analyses of May and Allesina and co-workers [10} 15].

S.4.1 Random networks

We first focus on the random model of May [I0] in the case of moderate interactions in the
Proposition below. In this case, we find that May’s criterion still holds when we randomly
sample the interaction matrix A (and not directly the Jacobian) under the additional condition
that the equilibrium z* is feasible.

S.4.1.1 Moderate interactions
In Proposition we first show that May’s criterion for stability, i.e.
vCSe < |6,

is still sufficient for any feasible equilibrium when & is the standard deviation of the normalised
interaction matrix A/(CS)?, and not the standard deviation of the Jacobian matrix of the sys-
tem. Recall that the case of moderate interactions is here very natural, as relying on Wigner’s [12]
and Girko’s [77] original convergence results. The criterion simply becomes

o <0,
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Supplementary Figure G. When the standard deviation o, of i.i.d. random growth rates
increases, equilibria variances of top, intermediate and basal species tend to become similar
under weak interactions in a structured food-web (illustration for the niche model). (a) Boxplot
representation of the distributions. (b) Illustration of the variances ratio between basal and top
(red trace, 0, ../ U?Fop) and intermediate and top (blue trace, o2 ... / a%op) as a function of
o, with a 95% confidence interval. 1000 simulations have been performed for each o,., S = 800
and the growth rates are normally distributed with E(r;) = 1.

where o is the standard deviation of A.

Proposition S.4.1. Under Assumption[S.3.1] and if
o <],

any asymptotic feasible equilibrium of the model ( 1s almost surely linearly stable.
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Supplementary Figure H. Species abundance at equilibrium in four empirical food webs with
the mean structural vector. (a-b) Stony, (c-d) Broom, (e-f) El-Verde and (g-h) Little Rock
Lake. The mean of each z; is always one due to the mean structural vector, but the variance
depends on the species index i, i.e. on the species role in the web. 2000 simulations of z*
are represented in each case. The mean structural vector has been simulated via Monte-Carlo
methods (200 simulations).

Proof. Consider A/v/CS so that ¢ < |f|. This is equivalent to say that B = (9[ + \/;(TSA)

possesses only eigenvalues with negative real parts. Define now the symmetric matrix B =

DB + BT D, where D = diag (%) Each non-diagonal entry of the matrix B are independent
of the others up to symmetry, and have mean zero and standard deviation o. By the Wigner
semicircle law and May’s criterion, its eigenvalues are almost surely all negative when S — oo.
The matrix B is thus dissipative when S — oo, which implies that any feasible equilibrium of

the model (1)) is locally stable (see [76]). [

Note that feasibility is required to conclude on the stability of the equilibrium. Indeed, we
illustrate in Suppl. Fig. that a stable equilibrium in the sense of J = (I 4+ A/+/CS) (as in [10],
i.e. so that v/SCo < |6]), is stable in the sense of J = diag(z*)(0I + A/+/CS) only when it is
feasible, which we showed is never the case in large systems (see Thm. .

S.4.1.2 Weak interactions

In the case of weak interactions, May’s criterion [I0] and the criteria for competition and
predation-prey established by Allesina and Tang [I5] are asymptotically trivially satisfied if
the parameters are chosen so that the (deterministic) equilibrium is admissible. Indeed, the
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Supplementary Figure I. Species abundance at equilibrium in two empirical food webs with
random growth rates. (a-d) Stony and (e-h) Broom. The growth rates are i.i.d. with mean one
(a-b and e-f) or zero (c-d and g-h) and standard deviation fixed to 0.15. 2000 simulations of
x* are represented in each case.

criterion becomes o/v/SC < |0| and o/v/SC — 0 for S — oc.
Concerning mutualistic networks, the criterion in [I5] is non-trivial. We show that this
criterion still holds under the additional condition that x* is feasible:

Proposition S.4.2. Under weak interactions (Assumptions and for a mutualistic inter-
action matriz A, x* is locally stable when x* is feasible and when

E(lai;]) < 16]- (S11)

Proof. the inequality (S11)) has been computed in [15] using the GerSgorin circles [78]. With
analogous arguments as in the proof of Prop we define the symmetric matrix B = DB +

BT D, where D = diag (L) and B = (9[ + %A) Its largest eigenvalue has been computed

V2
in [73] and is given by v/2E(|a;j|)++/26, which is negative when (1)) holds. B is thus dissipative

and consequently the equilibrium locally stable [76]. [

S.4.2 Structured models

Determining stability criteria in structured models is mathematically difficult, since the entries
of the resulting random matrix J(z*) can become highly dependent. In this situation, a direct
use of the classical results in [33] [79] [80] is no longer possible. In Suppl. Fig. E we illustrate
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Supplementary Figure J. Spectra of the interactions matrix and the Jacobian matrix for
§ = 0.5 and S = 1000. The spectrum of the interactions matrix (61 + A/+/CS) is represented in
yellow and the eigenvalue with largest real part is highlighted in red. With this renormalisation,
the convergence result of Girko [77] is recovered and, since the parameters are o0 = 0.4, C' =1
and § = —1, May’s criterion holds. However, the equilibrium is very unlikely to be feasible with
S = 1000 (see Fig. 1, Main text), so that the criterion of Prop. is violated and the resulting
equilibrium is not stable. This is illustrated by the spectrum of the Jacobian matrix J(z*) in
cyan. The eigenvalue with largest real part is highlighted in blue.

some spectra of A and J(z*) for 50 networks of the three structured models to evidence their
difference. We find that a link between feasibility and stability is very likely to exist, in a similar
way as for unstructured networks.
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Supplementary Figure K. Spectra of the Jacobian matrix for different values of § in structured
models. The eigenvalues of J(z*) are plotted in blue when z* is feasible, and in red otherwise;
the eigenvalues of the interactions matrix (§I + A/v/CS) is represented in yellow. (a - ¢) For
strong interactions, the systems are degenerate for the three models, i.e. never feasible nor
stable. (d - i) For moderate interactions and weak interactions, we observe the same kind of
relationship between feasibility and stability as for unstructured models. For the cascade model
(d, g), =* converges to a deterministic constant; for the niche and nested-hierarchy models (e, f,
h, i), 2* converges on a compact support, which can include negative values. It is thus necessary
to tune the parameters to obtain feasibility; here, we chose S = 150, ¢ = 0.4, C' = 0.25 and
0 = —1 in all cases.
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Supplementary Figure L. Illustration of some predator-prey networks and adjacency matri-
ces. (a-b) Unstructured model for predation. (c-d) The cascade model. (e-f) The niche model.
The parameters are C' = 0.25 and S = 30. The interaction strengths are sampled at random,
according to the procedure described in Section S.2.3. Thicker green arrows represent larger
interaction strengths. Only positive interactions are represented.
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S.5 Feasibilty with a Holling type II functional response

The question of feasibility is of course not restricted to the models studied in the present work.
Instead of the Lotka-Volterra dynamics which was used in the previous and for which the inter-
actions follows a mass action law (Holling type I [81]), we could for example explore the same
question with different type of functional response.

As an illustration, we consider the following system of differential equations [82] in the

predator-prey model of Section

s aij s Qi
dx; B (CS)3 (CS)?
dar x; | ri + 0w "" Z s Z a_. Ly +A Z ha Z 4k, Ly (812)
jePrey(i) (CS)ys vk j€Pred(i) (Cs)sk
kePrey(i) kePrey(5)

for i € § = {1,...,5}, where h > 0 is some constant, Prey(:) is the set of preys of species
i and Pred(7) its set of predators. This kind of functional response changes drastically the
asymptotic behavior of the probability of feasibility as illustrated in Suppl. Fig. where we
see it converging to one in the case of moderate interactions (0 = 1/2).

The reason for this difference with the Holling type I models comes from the saturation
term. In this mean-field framework, Holling type II dynamics acts has a buffer of interactions by
taking into account the number of preys and predators in the system. Asymptotically, it makes
interactions weak, whatever the value of the parameter §. Hence, it ensures the feasibility of the
equilibrium.

To understand this, consider the global effect of any species 7 € S on ¢ given by the generic
term
_ aij/(CS)° N

h+ ZkePrey(i) alk’/(cs)éxk a

To simplify, assume that each a;; is equal to its conditional mean a4 > 0, if 7 is a predator or
a_ < 0if 7 is a prey. Then, considering that, in this predator-prey model, the number of preys
and predators of species i is a contant time C'S, that is [Prey(i)| = |[Pred(i)| = O(CS) in Landau
notation, b;; can be approximated by

ax oo X
h-(CSY +~-a,CSz 7~ C8™P

bij ~

where a1 = a4 if j is a predator and a+ = a_ otherwise, T is the empirical mean of all considered
xj, v and 7y are some positive constant. Note that the last approximation holds for 0 < ¢ <1
and S large. Therefore, the order of an interaction b;; is 1/C'S (weak interaction) no matter
what regime § was initially set.
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Supplementary Figure M. Probability of feasibility under moderate interactions § = 1/2
when considering Holling type II (continuous line) and Holling type I (dotted line) functional
responses. The system considered is the random predator-prey model. The 95%-confidence
intervals are calculated over 1000 simulations. Holling type II reacts as if the interactions were
weak in a mass-action dynamics. In particular, the probability of feasibility approaches one in
this case. For comparison purposes, we set » = 1, 0 = 0.4, C' = 0.4, and § = —1 in both cases
and in these simulations, h = 1. The system at equilibrium becomes non-linear but has been
solved numerically with the method fsolve in Matlab R2012b.
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