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We initiate the study of group actions on (possibly infi-
nite) semimatroids and geometric semilattices. To every such 
action is naturally associated an orbit-counting function, a 
two-variable “Tutte” polynomial and a poset which, in the 
representable case, coincides with the poset of connected com-
ponents of intersections of the associated toric arrangement.
In this structural framework we recover and strongly gener-
alize many enumerative results about arithmetic matroids, 
arithmetic Tutte polynomials and toric arrangements by 
finding new combinatorial interpretations beyond the repre-
sentable case. In particular, we thus find a class of natural 
examples of nonrepresentable arithmetic matroids. Moreover, 
we discuss actions that give rise to matroids over Z with natu-
ral combinatorial interpretations. As a stepping stone toward 
our results we also prove an extension of the cryptomorphism 
between semimatroids and geometric semilattices to the infi-
nite case.
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0. Introduction

This paper is about group actions on combinatorial structures. There is an extensive 
literature on enumerative aspects of group actions, from Pólya’s classical work [32] to, 
e.g., recent results on polynomial invariants of actions on graphs [7]. The chapter on group 
actions in Stanley’s book [35] offers a survey of some of the results in this vein, together 
with a sizable literature list. Moreover, group actions on (finite) partially ordered sets 
have been studied from the point of view of representation theory [33], of homotopy 
theory [26], and of the poset’s topology [3,36].

Here we consider group actions on (possibly infinite) semimatroids and geometric 
semilattices from a structural perspective. We develop an abstract setting that fits dif-
ferent contexts arising in the literature, allowing us to unify and generalize many recent 
results.
Motivation. Our original motivation came from the desire to better understand the dif-
ferent new combinatorial structures that have been introduced in the wake of recent work 
of De Concini–Procesi–Vergne [14,15] on toric arrangements and partition functions, and 
have soon gained independent research interest. Our motivating goals are

– to organize these different structures into a unifying theoretical framework and to 
develop new combinatorial interpretations also in the nonrepresentable case;

– to understand the geometric side of this theory, in particular in terms of a suitable 
abstract class of posets (an “arithmetic” analogue of geometric lattices).

To be more precise, let us consider a list a1, . . . , an ∈ Zd of integer vectors. Such a list 
gives rise to an arithmetic matroid (d’Adderio–Moci [9] and Brändén–Moci [5]) with an 
associated arithmetic Tutte polynomial [29], and a matroid over the ring Z (Fink–Moci 
[20]). Moreover, by interpreting the ai as characters of the torus Hom(Zd, C∗) � (C∗)d

we obtain a toric arrangement in (S1)d ⊆ (C∗)d defined by the kernels of the characters, 
with an associated poset of connected components of intersections of these hypersurfaces. 
In this case, the arithmetic Tutte polynomial computes the characteristic polynomial of 
the arrangement’s poset and the Poincaré polynomial of the arrangement’s complement, 
as well as the Ehrhart polynomial of the zonotope spanned by the ai and the dimension 
of the associated Dahmen–Micchelli space [29]. Other contexts of application of arith-
metic matroids include the theory of spanning trees of simplicial complexes [17] and 
interpretations in graph theory [10]. After a first version of this paper was submitted, 
we learned about current work of Aguiar and Chan [1] focusing on toric arrangements 
defined by graphs. Although they stay in the “representable” realm, their interesting 
work refines some statistics related to arithmetic matroids and fits well into our setup.

On an abstract level, arithmetic matroids offer a theory supporting some notable 
properties of the arithmetic Tutte polynomial, while matroids over rings are a very 
general and strongly algebraic theory with different applications for suitable choices of 
the “base ring”.
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However, outside the case of lists of integer vectors in abelian groups, arithmetic Tutte 
polynomials and arithmetic matroids have few combinatorial interpretations. For in-
stance, the poset of connected components of intersections of a toric arrangement – 
which provides combinatorial interpretations for many an evaluation of arithmetic Tutte 
polynomials – has no counterpart in the case of nonrepresentable arithmetic matroids. 
Moreover, from a structural point of view it is striking (and unusual for matroidal ob-
jects) that there is no known cryptomorphism for arithmetic matroids, while for matroids 
over a ring a single one was recently presented [19].

In previous research – e.g. by Ehrenborg, Readdy and Slone [18] and Lawrence [25] on 
enumeration on the torus, and by Kamiya, Takemura and Terao [22,23] on characteristic 
quasipolynomials of affine arrangements – posets and “multiplicities” related to (but 
not satisfying the strict requirements of those arising with) arithmetic matroids were 
brought to light, calling for a systematic study of the abstract properties of “periodic” 
combinatorial structures.

Further motivation comes from recent progress in the study of complements of ar-
rangements on products of elliptic curves [4] which, combinatorially and topologically, 
can be seen as quotients of “doubly periodic” subspace arrangements. In this context 
our work is an attempt at a unified combinatorial treatment of linear, toric and elliptic 
arrangements.

Results. We initiate the study of actions of groups by automorphisms on semimatroids 
(for short “G-semimatroids”). Helpful intuition comes, once again, from the case of in-
teger vectors, where the associated toric arrangement is covered naturally by a periodic 
affine hyperplane arrangement: here semimatroids, introduced by Ardila [2] (indepen-
dently by Kawahara [24]), enter the picture as abstract combinatorial descriptions of 
finite arrangements of affine hyperplanes. In particular, we obtain the following results 
(see also Table 1 for a quick overview).

– An equivalence (a.k.a. cryptomorphism) between G-semimatroids, which are defined 
in terms of certain set systems, and group actions on geometric semilattices (in the 
sense of Wachs and Walker [37]), based on a theorem extending Ardila’s equivalence 
between semimatroids and geometric semilattices to the infinite case (Theorem E).

– Under appropriate conditions every G-semimatroid gives rise to an underlying fi-
nite (poly)matroid (Theorem A). Additional conditions can be imposed so that orbit 
enumeration determines an arithmetic matroid (often nonrepresentable). In fact, we 
see that the defining properties of arithmetic matroids arise in a natural “hierar-
chy” according to progressively stricter requirements on the action (Theorem B and 
Theorem C).

– In particular, we obtain the first natural class of examples of nonrepresentable arith-
metic matroids.

– To every G-semimatroid is naturally associated a poset P obtained as a quotient of 
the geometric semilattice of the semimatroid acted upon. In particular, this gives a 
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natural abstract generalization of the poset of connected components of intersections 
of a toric arrangement.

– To every G-semimatroid is associated a two-variable polynomial which evaluates as 
the characteristic polynomial of P (Theorem F) and, under mild conditions on the 
action, satisfies a natural deletion–contraction recursion (Theorem G) and a gen-
eralization of Crapo’s basis-activity decomposition (Theorem H). In particular, for 
every arithmetic matroid arising from group actions we have a new combinatorial 
interpretation of the coefficients of the arithmetic Tutte polynomial in terms of enu-
meration on P subsuming Brändén and Moci’s interpretation [5, Theorem 6.3] in the 
representable case.

– Any G-semimatroid satisfying appropriate algebraic conditions gives rise to a matroid 
over Z, and we discuss conditions under which the single modules have combinatorial 
interpretations (Theorem D).

Structure of the paper. First, in Section 1 we recall the definitions of semimatroids, 
arithmetic matroids and matroids over a ring. Then we devote Section 2 to explaining 
our guiding example, namely the “representable” case of a Zd-action by translations on 
an affine hyperplane arrangement. Then, Section 3 gives a panoramic run-through of the 
main definitions and results, in order to establish the “Leitfaden” of our work. Before 
delving into the technicalities of the proofs, in Section 4 we will discuss some specific ex-
amples (mostly arising from actions on arrangements of pseudolines) in order to illustrate 
and distinguish the different concepts we introduce. Then we will move towards proving 
the announced results. First, in Section 5 we prove the cryptomorphism between finitary 
semimatroids and finitary geometric semilattices. Section 6 is devoted to the construction 
of the underlying (poly)matroid and semimatroid of an action. Then, in Section 7 we will 
focus on translative actions (Definition 3.2), for which the orbit-counting function gives 
rise to a pseudo-arithmetic semimatroid over the action’s underlying semimatroid. Sub-
sequently, in Section 8, we will further (but mildly) restrict to almost-arithmetic actions, 
and recover “most of” the properties required in the definition of arithmetic matroids. 
In Section 9 we will then discuss the much more restrictive condition on the action 
which ensures that our orbit-count function fully satisfies the definition of an arithmetic 
matroid, and we will discuss combinatorial interpretations of some associated matroids 
over Z. The closing Section 10 is devoted to the study of certain “Tutte” polynomials 
associated to G-semimatroids.

Acknowledgments. We thank Alex Fink for multiple discussions at different stages of our 
work, Kolja Knauer, Joseph Kung, Matthias Lenz and an anonymous referee for useful 
feedback on the first versions of this paper, Davide Bolognini for his careful reading, 
and Katharina Jochemko for stimulating discussions on integer-point enumeration. Both 
authors have been partially supported by the Swiss National Science Foundation Pro-
fessorship grant PP00P2_150552/1. Sonja Riedel has also benefited from support of the 
“Studienstiftung des Deutschen Volkes”.
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1. The main characters

We start by introducing some basic definitions and terminology, sometimes modified 
with respect to the standard literature in order to better fit our setting. The reader may, 
in a first reading, skip the technical details; however, a quick look at the main examples 
we offer in this section might be illuminating and help the intuition later on.

1.1. Finitary semimatroids

We start by recalling the definition of a semimatroid, which we state without finite-
ness assumptions on the ground set. This relaxation substantially impacts the theory 
developed by Ardila [2], much of which rests on the fact that any finite semimatroid 
can be viewed as a certain substructure of a (finite) ‘ambient’ matroid. Here we list the 
definition and some immediate observations, while Section 5 will be devoted to prov-
ing the cryptomorphism with geometric semilattices. We note that equivalent structures 
were also introduced by Kawahara [24] under the name quasi-matroids, with a view on 
studying the associated Orlik–Solomon algebra.

The motivation for introducing these structures was, in both [2] and [24], the com-
binatorial study of affine hyperplane arrangements. In particular, keeping an eye on 
Example 1.6 below will help make the following definition plausible. For a pictorial 
representation of an instance of this definition that does not arise from hyperplane ar-
rangements we point to Example 1.7, which we will also keep as a running example 
throughout the paper.

Definition 1.1 (Compare [2, Definition 2.1]). A finitary semimatroid is a triple S =
(S, C, rkC) consisting of a (possibly infinite) set S, a non-empty finite dimensional sim-
plicial complex C on S and a bounded function rkC : C → N satisfying the following 
conditions.

(R1) If X ∈ C, then 0 ≤ rkC(X) ≤ |X|.
(R2) If X, Y ∈ C and X ⊆ Y , then rkC(X) ≤ rkC(Y ).
(R3) If X, Y ∈ C and X ∪ Y ∈ C, then rkC(X) + rkC(Y ) ≥ rkC(X ∪ Y ) + rkC(X ∩ Y ).

(CR1) If X, Y ∈ C and rkC(X) = rkC(X ∩ Y ), then X ∪ Y ∈ C.
(CR2) If X, Y ∈ C and rkC(X) < rkC(Y ), then X ∪ y ∈ C for some y ∈ Y −X.

If only (R1), (R2), (R3) are known to hold, we call S a locally ranked triple.
A finite semimatroid is a finitary semimatroid with a finite ground set. Finiteness of 

locally ranked triples is defined accordingly.
Here, and in the following, we often write rk instead of rkC and omit braces when 

representing singleton sets, thus writing rk(x) for rk({x}) and X ∪ x for X ∪ {x}, when 
no confusion can occur.
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We call S the ground set, C the collection of central sets and rk the rank function
of the finitary semimatroid S = (S, C, rk), respectively. The rank of the semimatroid is 
the maximum value of rk on C and we will denote it by rk(S). A set X ∈ C is called 
independent if |X| = rk(X). A basis of S is an inclusion-maximal independent set.

Remark 1.2. We adopt the convention that every x ∈ S is a vertex of C, i.e., {x} ∈ C for 
all x ∈ S. Although this is not required in [2], it will not affect our considerations while 
simplifying the formalism. See also Remark 1.12.

Definition 1.3. A finitary semimatroid S = (S, C, rk) is simple if rk(x) = 1 for all x ∈ S

and rk(x, y) = 2 for all {x, y} ∈ C with x 
= y.
A loop of a locally ranked triple S = (S, C, rk) is any s ∈ S with rk(s) = 0. Two 

elements s, t ∈ S that are not loops are called parallel if {s, t} ∈ C and rk({s, t}) = 1. 
The triple S is called simple if it has no loops and no parallel elements. An isthmus of 
S is any s ∈ S such that, for every X ∈ C, X ∪ s ∈ C and rk(X ∪ s) = rk(X) + 1.

Remark 1.4. A matroid is, by definition, a finite semimatroid where every subset is 
central. Equivalently (and more classically), a matroid is given by a finite ground set S
and a rank function rk : 2S → N satisfying (R1), (R2), (R3). The dual to a matroid 
(S, rk) is (S, rk∗), where rk∗(X) := rk(S \X) − |X| − rk(S) for all X ⊆ S.

Remark 1.5. A polymatroid is given by a finite ground set S and a rank function rk : 2S →
N satisfying (R2), (R3) and rk(∅) = 0. Polymatroids will appear furtively but naturally 
in our considerations; we refer e.g. to [38, §18.2] for background on these structures.

Example 1.6 (The representable case, see Proposition 2.2 in [2]). Given a positive integer 
d and a field K, an affine hyperplane is an affine subspace of dimension d −1 in the vector 
space Kd. An arrangement of hyperplanes in Kd is a collection A of affine hyperplanes in 
Kd. The arrangement is called locally finite if every point in Kd has a neighborhood that 
intersects only finitely many hyperplanes of A . A subset X ⊆ A is central if ∩X 
= ∅. 
Let CA denote the set of central subsets of A and define the rank function rkA : CA → N
as rkA (X) := d − dim∩X.

Then, the triple (A , CA , rkA ) is a finitary semimatroid. It is simple if all elements of 
A are distinct, and it is a matroid if all elements of A are linear subspaces (i.e., they 
contain the origin of Kd). �

Example 1.7 (Pseudoline arrangements). There are cases of nonrepresentable semima-
troids in which we can still take advantage of a pictorial illustration — one such instance 
is given by arrangements of pseudolines in the sense of Grünbaum [21], i.e., sets of 
homeomorphic images of R in R2 (“pseudolines”) such that

(1) every point of R2 has a neighborhood intersecting only finitely many pseudolines,
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Fig. 1. A non-stretchable pseudoline arrangement (it should be thought of as repeating and tiling the plane).

(2) any two pseudolines intersect at most in one point (and if they intersect, they do so 
transversally).

Fig. 1 shows such an arrangement of pseudolines. The definitions of Example 1.6
can be carried over to this context. The triple (S, C, rk) associated to this pseudoline 
arrangement is given by

S = {ai | i ∈ Z} ∪ {bi | i ∈ Z} ∪ {ci | i ∈ Z} ∪ {di | i ∈ Z} ∪ {ei | i ∈ Z},

C ={∅} ∪ {ai}i ∪ {bi}i ∪ {ci}i ∪ {di}i ∪ {ei}i ∪ {ai, bj}i,j ∪ {ai, cj}i,j

∪ {ai, dj}i,j ∪ {ai, ej}i,j ∪ {bi, cj}i,j ∪ {bi, dj}i,j ∪ {bi, ej}i,j ∪ {ci, dj}i,j

∪ {di, ej}i,j ∪ {a2i+k, b2i−k, ck}i,k ∪ {a2i+k, b2i−k, dk}i,k ∪ {ak, bk−2i−1, ei}i,k

∪ {a2i+k, ck, di}i,k ∪ {b2i−k, ck, di}i,k ∪ {a2i+k, b2i−k, ck, di}i,k,

rk(X) = codim(∩X) for all X ∈ C

and one easily checks that this defines a finitary semimatroid.
For readability’s sake, here and in all following examples we omit to specify that all 

indices run over Z and that the union is taken over sets of sets, and we use the shorthand 
notation {ai, bj}i,j for {{ai, bj} | i, j ∈ Z}.

Notice that this triple cannot be obtained from an arrangement of straight lines: such 
an arrangement is called non-stretchable. �

We now state some basic facts and definitions about semimatroids for later reference. 
Except where otherwise specified, the proofs parallel those given in [2, Section 2].
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Definition 1.8. Let S = (S, C, rk) be a finitary semimatroid and let X ∈ C. The closure 
of X in C is

cl(X) := {x ∈ S | X ∪ x ∈ C, rk(X ∪ x) = rk(X)}.

A flat of a finitary semimatroid S is a set X ∈ C such that cl(X) = X. The set of flats 
of S ordered by containment forms the poset of flats of S, which we denote by L(S).

Remark 1.9. For all X ∈ C we have cl(X) = max{Y ⊇ X | X ∈ C, rk(X) = rk(Y )}, i.e., 
the closure of X is the maximal central set containing X and having same rank as X. 
In particular, we have a monotone function cl : C → C.

Remark 1.10. A poset is the poset of flats of a matroid if and only if it is a geometric 
lattice (see Definition 5.1). In Section 5 we will prove a similar correspondence between 
finitary semimatroids and geometric semilattices (Theorem E).

We now introduce the notions of deletion and contraction for locally ranked triples. 
Example 1.13 below will illustrate the case of pseudoline arrangements.

Definition 1.11. Let S = (S, C, rk) be a locally ranked triple. For every T ⊆ S let C\T :=
C ∩ 2S\T and define the deletion of T from S as

S \ T := (S \ T, C\T , rk),

where we slightly abuse notation and write rk for rk |C\T
. Moreover, we will denote by 

S[T ] := S \ (S \ T ) the restriction to T .
Furthermore, for every central set X ∈ C let

C/X := {Y ∈ C\X | Y ∪X ∈ C}, S/X := {s ∈ S | {s} ∈ C/X}

and define the contraction of X in S as

S/X := (S/X , C/X , rk/X),

where, for every Y ∈ C/X , rk/X(Y ) := rkC(Y ∪X) − rkC(X).

Remark 1.12. This definition applies in particular to the case where S is a semimatroid 
and, in this case, differs slightly from that given in [2]: since we assume every element 
of the ground set of a semimatroid to be contained in a central set, we need to further 
constrain the ground set of the contraction.

Example 1.13. Let S = (S, C, rk) be the semimatroid of Example 1.7 (see Fig. 1). If 
T := {ei}i∈Z, then
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Fig. 2. Arrangements of pseudolines corresponding to the deletion S \ {ei}i (l.h.s.), and the contraction 
S/{e0} (r.h.s.), where S is the semimatroid of Example 1.7. Again, we show only local pieces of these 
infinite arrangements, and the pictures must be thought of as being repeated in order to fill the plane (resp. 
the line).

C\T = C \ ({ei}i ∪ {ai, ej}i,j ∪ {bi, ej}i,j ∪ {di, ej}i,j ∪ {ak, bk−2i−1, ei}i,k),

and S \ T is the semimatroid associated to the arrangement on the left-hand side in 
Fig. 2.

The contraction of S to e0 ∈ S has ground set S/{e0} = S \ ({ci}i∈Z ∪ {ei}i∈Z) and 
family of central sets C/{e} = {∅} ∪ {ai}i ∪ {bi}i ∪ {di}i ∪ {ai, bi−1}i with rank function 
rk/{e0} given by

rk/{e0}(∅) = rk({e0})− rk({e0}) = 0;

rk/{e0}({ai}) = rk({ai, e0})− rk({e0}) = 1,

similarly rk/{e0}({bi}) = rk/{e0}({di}) = 1;

rk/{e0}({ai, bi−1}) = rk({ai, bi−1, e0})− rk({e0}) = 1;

where i ranges over the integers. This triple is represented by the arrangement of points 
depicted on the right-hand side in Fig. 2. �

Proposition 1.14. Let S = (S, rk, C) be a finitary semimatroid. For every T ⊂ S, S \ T

is a finitary semimatroid and, for every X ∈ C, S/X is a finitary semimatroid.

Proof. The proof of [2, Proposition 7.5 and 7.7] adapts straightforwardly. �
Definition 1.15. To every finite locally ranked triple S = (S, C, rk) we associate the 
following polynomial.
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TS(x, y) :=
∑
X∈C

(x− 1)rk(S)−rk(X)(y − 1)|X|−rk(X)

Remark 1.16. If S is a finite semimatroid, this is exactly the Tutte polynomial of S
introduced and studied by Ardila [2]. In particular, if S is a matroid, this is the associated 
Tutte polynomial.

A celebrated result about Tutte polynomials of matroids is the following “activities 
decomposition theorem” due to Crapo (for terminology we refer to [31]).

Proposition 1.17 ([8, Theorem 1]). Let S be a matroid with set of bases B and fix a total 
ordering < on S. Then,

TS(x, y) =
∑
B∈B

x|I(B)|y|E(B)|,

where, for every B ∈ B,

I(B) is the set of internally active elements of B, i.e., the set of all b ∈ B which are 
<-minimal in some codependent subset of S \ (B \ b).

E(B) is the set of externally active elements of B, i.e., the set of all e ∈ S \B that are 
<-minimal in some dependent subset of B ∪ e.

Remark 1.18. Representable arithmetic Tutte polynomials satisfy an analogue to Crapo’s 
theorem (see Remark 1.25). One of our results is the generalization of this theorem to 
all centered translative G-semimatroids (Theorem H).

1.2. Arithmetic (semi)matroids and their Tutte polynomials

We extend the definition of arithmetic matroids given in [5] and [9] to include the 
case where the underlying structure is a finite semimatroid.

Definition 1.19 (Compare Section 2 of [5]). Let S = (S, C, rk) be a locally ranked triple. 
A molecule of S is any triple (R, F, T ) of disjoint sets with R∪F ∪T ∈ C and such that, 
for every A with R ⊆ A ⊆ R ∪ F ∪ T ,

rk(A) = rk(R) + |A ∩ F |.

Remark 1.20. Once a total ordering of the ground set S is fixed, the notion of basis 
activities for matroids briefly recapped in Proposition 1.17 above allows us to associate 
to every basis B a molecule (B \ I(B), I(B), E(B)).

Definition 1.21 (Extending Moci and Brändén [5]). Let S = (S, C, rk) be a finite locally 
ranked triple and m : C → R any function. If (R, F, T ) is a molecule, define
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ρ(R, R ∪ F ∪ T ) := (−1)|T | ∑
R⊆A⊆R∪F ∪T

(−1)|R∪F ∪T |−|A|m(A).

We call the pair (S, m) arithmetic if the following axioms are satisfied:

(P) For every molecule (R, F, T ),

ρ(R, R ∪ F ∪ T ) ≥ 0.

(A1) For all A ⊆ S and e ∈ S with A ∪ e ∈ C:
(A.1.1) If rk(A ∪ {e}) = rk(A) then m(A ∪ {e}) divides m(A).
(A.1.2) If rk(A ∪ {e}) > rk(A) then m(A) divides m(A ∪ {e}).

(A2) For every molecule (R, F, T )

m(R)m(R ∪ F ∪ T ) = m(R ∪ F )m(R ∪ T ).

Following [5] we use the expression pseudo-arithmetic to denote the case where m only 
satisfies (P). An arithmetic matroid is an arithmetic pair (S, m) where S is a matroid.

Remark 1.22. Following [9], the dual to an arithmetic matroid (S, m) is the pair (S∗, m∗), 
where S∗ is the dual matroid to S and m∗(A) := m(S \A).

Example 1.23. To every set of integer vectors, say a1, . . . , an ∈ Zd, is associated a matroid 
on the ground set [n] := {1, . . . , n} with rank function

rk(I) := dimQ(spanQ(ai)i∈I),

and a multiplicity function m(I) defined for every I ⊆ [n] as the greatest common 
divisor of the minors of the matrix with columns (ai)i∈I . These determine an arithmetic 
matroid [9]. We say that the vectors ai realize this arithmetic matroid which we call then 
representable. �

To every arithmetic pair (S, m) we associate an arithmetic Tutte polynomial as a 
straightforward extension of Moci’s definition from [29].

Definition 1.24. Given an arithmetic pair (S, m), set

T(S,m)(x, y) :=
∑
X∈C

m(X)(x− 1)rk(S)−rk(X)(y − 1)|X|−rk(X).

Remark 1.25. When (S, m) is an arithmetic matroid, the polynomial T(S,m)(x, y) enjoys 
a rich structure theory, investigated for instance in [5,9]. When this arithmetic matroid 
is representable, say by a set of vectors a1, . . . , an ∈ Zd, the arithmetic Tutte polynomial 
specializes e.g. to the characteristic polynomial of the associated toric arrangement (see 
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Section 2) and to the Ehrhart polynomial of the zonotope obtained as the Minkowski 
sum of the ai. Moreover, always in the representable case, Crapo’s decomposition the-
orem (Proposition 1.17) has an analogue [5, Theorem 6.3] which gives a combinatorial 
interpretation of the coefficients of the polynomial in terms of counting integer points of 
zonotopes and intersections in the associated toric arrangement.

1.3. Matroids over rings

We give the general definition and some properties of matroids over rings. Further 
explanations and proofs of statements can be found in [20].

Definition 1.26 (Fink and Moci [20]). Let E be a finite set, R a commutative ring and 
M : 2E → R-mod any function associating an R-module to each subset of E. This defines 
a matroid over R if

(R) for any A ⊂ E, e1, e2 ∈ E, there is a pushout square

M(A) −−−−→ M(A ∪ {e1})⏐⏐� ⏐⏐�
M(A ∪ {e2}) −−−−→ M(A ∪ {e1, e2})

such that all morphisms are surjections with cyclic kernel.

Remark 1.27 ([20, Section 6.1]). Every matroid over the ring R = Z induces an arith-
metic matroid on the ground set E with rank function satisfying rk(E) − rk(A) =
rankZ M(A) and m(A) equal to the cardinality of the torsion part of M(A), for all 
A ⊆ E. We call (E, rk) the underlying matroid to MS and (E, rk, m) the underlying 
arithmetic matroid to MS.

Remark 1.28 (See Definition 2.2 in [20]). A matroid M over a ring R is called repre-
sentable if there is a finitely generated R-module N and a list (xe)e∈E of elements of N
such that for all A ⊆ E we have that M(A) is isomorphic to the quotient N/(

∑
e∈A Rxe). 

Realizability is preserved under duality.

2. Geometric intuition: periodic arrangements

As an introductory example we describe the arithmetic matroid and the matroid over 
Z associated to periodic hyperplane arrangements, highlighting the structures we will 
encounter in the general theory later.

Let K stand for either R or C and recall that an affine hyperplane arrangement is a 
locally finite set A of hyperplanes in Kd. It is called periodic if it is (globally) invariant 
under the action of a group acting on Kd by translations.
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Fig. 3. A drawing of a “piece” (in fact, a neighborhood of a fundamental region) of the arrangement A of 
Example 2.1, with explicit labeling of some of the H(X, k)s.
Notice that H({1, 2, 3}, (1, 0, 0)) = ∅, and that H(∅, 0) = R2.

For simplicity, we will consider the standard action of Zd on Kd, with k ∈ Zd acting 
as tk(x) = x +

∑
i kiεi, where ε1, . . . , εd is the standard basis of Kd, and we will suppose 

the arrangement A being given by a finite list of integer vectors a1, . . . , an ∈ Zd (which 
we think of as the columns of a d × n matrix A) together with a corresponding list 
α1, . . . , αn ∈ K of real numbers as follows.

For X ⊆ [n] let A[X] be the d × |X| matrix obtained by restricting A to the relevant 
columns. Moreover, given k ∈ ZX we define the subspace

H(X, k) := {x ∈ Kd | ∀i ∈ X : aT
i x = αi + ki}.

Then,

A = {H({i}, j) | i ∈ [n], j ∈ Z}.

Example 2.1. The periodic arrangement given by

A :=
(

1 1 1
1 −1 0

)
α1 = α2 = α3 = 0

Is the set (see Fig. 3)

A = { = {x ∈ R2 | x1 + x2 = j} | j ∈ Z}

∪ { = {x ∈ R2 | x1 − x2 = j} | j ∈ Z}

∪ { = {x ∈ R2 | x1 = j} | j ∈ Z} �

The poset of intersections of A is the set

L(A ) := {∩K | K ⊆ A } \ {∅}

ordered by reverse inclusion (i.e., x ≤ y if x ⊇ y), see for instance [30]. This is a geometric 
semilattice in the sense of Wachs and Walker [37], see also Definition 5.2.
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Fig. 4. Left-hand side: a drawing of the toric arrangement A associated to the periodic line arrangement A
of Example 2.1. Right-hand side: the poset of layers C(A ).

A closer look at the definition will reveal that L(A ) is the poset of all nonempty 
H(X, k), ordered by reverse inclusion.

Remark 2.2. The toric arrangement associated to A is the set

A := {H/Zd | H ∈ A /Zd}

of quotients of orbits of the action on A . (Notice that Zd acts on the set A by permuting 
the hyperplanes and, for every H0 ∈ A , it acts on the space H = ZdH0 by translations; 
in particular H/Zd = H0/Zd is a torus.)

The poset of layers of A is the set C(A ) of connected components of the intersections 
of elements of A , ordered by reverse inclusion. (See Fig. 4.). This poset is an important 
feature of toric arrangements: when K = C, we have an arrangement in the complex 
torus Cd/Zd (customarily given as a family of level sets of characters, see e.g. [11, §2.1]) 
and C(A ) encodes much of the homological data about the arrangement’s complement 
(see e.g. [6,13]). When K = R, this is the poset considered in [18,25] pertaining to 
enumeration of the induced cell structure on the compact torus Rd/Zd � (S1)d.

Remark 2.3. We see that C(A ) is the quotient (in the sense of Definition 3.21) of the 
poset L(A ) under the induced action of Zd (where the element εl ∈ Zd maps H({i}, j)
to H({i}, j + 〈εl | ai〉)).

For X ⊆ [n] and k ∈ ZX define

W (X) := {k ∈ ZX | H(X, k) 
= ∅}. (1)

We call A centered if αi = 0 for all i = 1, . . . , n and assume this for simplicity 
throughout this section. Notice that the toric arrangements considered in [29] can be 
obtained from actions on centered arrangements.

Remark 2.4. If A is centered, then W (X) = (A[X]TRd) ∩ZX for all X ⊆ [n], thus W (X)
is a pure subgroup (hence a direct summand) of ZX .
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Remark 2.5. Notice that H(X, k) is the preimage of α + k with respect to the linear 
function Rd → RX , x �→ A[X]T x, thus H(X, k) is connected whenever nonempty.

Lemma 2.6. If A is centered, the map

ϕX : k �→ H(X, k) =
⋂

i∈X

H({i}, ki)

is a bijection between W (X) and the connected components of 
⋃

k∈ZX H(X, k).

Proof. The map ϕX is well-defined and surjective by definition of W (X). It is injective 
by Remark 2.5, as A[X]T -preimages of distinct elements are disjoint. �
Example 2.7 (Continued from Example 2.1).

W ({1, 2, 3}) = {k ∈ Z3 | AT x = k for some x ∈ R2}

= {k ∈ Z3 | k1 + k2 = 2k3}

W ({1, 2}) = {k ∈ Z2 | x1 + x2 = k1, x1 − x2 = k2 for some x ∈ R2} = Z2 �

Remark 2.8. We say that Zd acts on Z{i} by εl(j) = j + 〈εl | ai〉 and, by coordinatewise 
extension, we obtain an action of Zd on ZX for all X ⊆ [n]. This induces an action of 
Zd on W (X) which is the action on W (X) of its subgroup A[X]TZd by addition and 
coincides with the ”natural” action described in Remark 2.3.

Definition 2.9. For X ⊆ [n] let I(X) := A[X]TZd and consider

Z(X) := ZX/I(X).

Example 2.10 (Continued from Example 2.7). In the case X = {1, 2, 3}, we have 

I({1, 2, 3}) = ATZ2 =
(1

1
1

)
Z +

( 1
−1
0

)
Z = W (X). Since 

(1
1
1

)
, 

( 1
−1
0

)
, 

(1
0
0

)
is a 

unimodular basis of Z3,

Z({1, 2, 3}) = (Zε1 ⊕W (X))/I(X) = Zε1 � Z.

In the case X = {1, 2} we have W ({1, 2}) = Z2 and I({1, 2}) =
(

1 1
1 −1

)
Z2. Hence,

Z({1, 2}) = W ({1, 2})/I({1, 2}) =
{(

0
0

)
+ I({1, 2}),

(
1
0

)
+ I({1, 2})

}
� Z/2Z. �

In general, we have the following description.

15

ht
tp
://
do
c.
re
ro
.c
h



Lemma 2.11. There is a direct sum decomposition of abelian groups

Z(X) � Zη ⊕W (X)/I(X),

where η = |X| − rk A[X]T , the nullity of X, is the rank of Z(X) as a Z-module.

Proof. The decomposition ZX � Zη ⊕W (X) exists by Remark 2.4, and Z(X) decom-
poses as stated because I(X) ⊆ W (X). For the claim on the rank, notice that both 
W (X) and I(X) are, by construction, free abelian groups of rank rk A[X]T , thus the 
quotient on the right hand side is pure torsion. �
Remark 2.12. Arithmetic matroids were introduced by d’Adderio and Moci in [9] in order 
to study, in the centered case, the combinatorial properties of the rank and multiplicity 
functions on the subsets of [n], where every X has rk(X) := rk A[X] and m(X) :=
[Zd ∩A[X]RX : A[X]ZX ]. Since, by Remark 2.4 and Remark 2.8,

|W (X)/I(X)| = [W (X) : I(X)] = [ZX ∩A[X]TRd : A[X]TZd],

classical work of McMullen [27] shows that m(X) = |W (X)/I(X)|. We thus recover in 
a geometric way the multiplicity function from [9].

Remark 2.13. The function ϕX of Lemma 2.6 induces a (natural) bijection between the 
elements of W (X)/I(X) and the layers of 

[⋃
k∈ZX H(X, k)

]
/Zd in the toric arrangement 

A (cf. Remark 2.2). This bijection exhibits the enumerative results proved in [9].

Example 2.14 (Continued from Example 2.10). Let us consider X = {1, 2}. We have seen 
that the family 

[⋃
k∈ZX H(X, k)

]
/Z2 equals

{H(X, (0, 0) + A[X]TZ2), H(X, (1, 0) + A[X]TZ2)}.

The map ϕX is then defined by

ϕX

((
i
j

))
= H(X, (i, j)).

We have also previously seen that

W (X)/I(X) =
{(

0
0

)
+ I(X),

(
1
0

)
+ I(X)

}
.

Hence we can easily compute

ϕX

((
0
0

)
+ I(X)

)
= H(X, (0, 0) + I(X))

16

ht
tp
://
do
c.
re
ro
.c
h



ϕX

((
1
0

)
+ I(X)

)
= H(X, (1, 0) + I(X))

which, since by definition I(X) = A[X]TZ2, is a bijection as stated. �

Remark 2.15. As proved in [29], the arithmetic Tutte polynomial associated to this 
arithmetic matroid evaluates to many interesting invariants — for instance to the char-
acteristic polynomial of the poset C(A ). Thus, it counts the number of chambers of the 
associated toric arrangement in (S1)d. Moreover, the quotient of the induced action on 
the complexification of A is an arrangement of subtori in (C∗)d, and the arithmetic 
Tutte polynomial specializes to the Poincaré polynomial of its complement.

For Y ⊆ X ⊆ [n] we consider ZX\Y ⊆ ZX as an intersection of coordinate subspaces 
and let πX,Y denote the coordinate projection of ZX onto ZX\Y . Since I(X \ Y ) =
I(X) ∩ ZX\Y , the map πX,Y restricts to a surjection I(X) → I(X \ Y ) and induces a 
map πX,Y : Z(X) → Z(X \ Y ) which, if |Y | = 1, has cyclic kernel.

Lemma 2.16. For X ⊆ [n], i, j ∈ X, the diagram

Z(X) πX, i−−−−→ Z(X \ i)⏐⏐�πX, j

⏐⏐�πX\i, j

Z(X \ j)
πX\j, i−−−−−→ Z(X \ {i, j})

is a pushout square of epimorphisms with cyclic kernels.

Proof. This can be verified either directly or with Lemma 10.8, where the rows of the 
required diagram arise from short exact sequences of the type 0 → I(X) → ZX →
Z(X) → 0, and the morphisms between the sequences are induced by the projections 
π∗,∗. �
Theorem 2.17. The assignment I �→ Z([n] \ I) defines a matroid over Z on the ground 
set [n]. The underlying arithmetic matroid is dual to that associated to the list X :=
{a1, . . . , an} ⊂ Zd in Example 1.23, see [9].

Proof. The previous lemma shows that this in fact defines a matroid over Z. For the 
duality claim let us write rk for matrix rank, rkX for the rank function of the arith-
metic matroid associated to the list X, and rkZ for the rank function of the underlying 
arithmetic matroid, respectively. Now, by Remark 1.27 and Lemma 2.11 we have

rkZ([n])− rkZ(I) = rankZ Z(I \ [n]) = |Ic| − rk(AT [Ic]),

where we write Ic := [n] \I. Moreover, rkX(I) = rk A[X] = rk AT [I] (see Example 1.23). 
Therefore we conclude
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rkX(Ic) = |Ic|+ rkZ(I)− rkZ([n]),

which is the very definition of rkX being the rank function of the dual of the matroid 
defined by rkZ (see [31, Proposition 2.1.9]).

Similarly, let us write mX for the multiplicity function of the arithmetic matroid 
associated to the list X, and mZ for the rank function of the underlying arithmetic 
matroid, respectively. Lemma 2.11 implies mZ(J) = |W (Jc)/I(Jc)| for all J ⊆ [n]. By 
Remark 2.12, we conclude mZ(I) = mX(Ic), corresponding to the relationship between 
multiplicity functions of dual arithmetic matroids in [9]. �
3. Overview: setup and main results

Throughout, we fix a finitary semimatroid S = (S, C, rk) on the ground set S with set 
of central sets C, rank function rk : C → N and semilattice of flats L.

Let G be a group acting on S. Given x ∈ S write g(x) (or simply gx) for its image 
under g ∈ G, and Gx for its orbit. Moreover, given X ⊆ S let

X := {Gx | x ∈ X} ⊆ S/G

denote the set of orbits met by X. Write

gX := {g(x) | x ∈ X},

to signify the induced action of G on the power set 2S .

Remark 3.1. As a support for the intuition, the reader can think of the representable 
case described in Example 1.6, namely that of a periodic arrangement of hyperplanes. 
As a tangible instance, consider Example 2.1: there, the elements of the semimatroid are 
the hyperplanes H({i}, j), and the action of Z2 is by standard translation, i.e., such that 
k ∈ Z2 sends H({i}, j) to H({i}, j + 〈k | ai〉) (compare Remark 2.3).

3.1. Group actions on semimatroids

We now discuss group actions on a set S that carries the structure of a semimatroid. 
In order to get a sense of the objects and notions introduced in the following definition 
the reader may already keep an eye on Example 3.7 and Fig. 7.

Definition 3.2 (G-semimatroids). An action of G on a semimatroid S := (S, C, rk) is an 
action of G on the set S, whose induced action on 2S preserves rank and centrality. 
A G-semimatroid

S = G � (S, C, rk)
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is a semimatroid together with a G-action. We define then

ES := S/G; CS = C/G; C := {X | X ∈ C};

where we take quotients of sets, i.e., ES and CS are families of orbits. We call such an 
action

– centered if there is an X ∈ C with X = ES,
– weakly translative if, for all g ∈ G and all x ∈ S, {x, g(x)} ∈ C implies rk({x, g(x)}) =

rk({x}).
– translative if, for all g ∈ G and all x ∈ S, {x, g(x)} ∈ C implies g(x) = x.

Moreover, for A ⊆ ES define

rk(A) := max{rkC(X) | X ⊆ A}

and write rk(S) := rk(ES) = rk(S) for the rank of the G-semimatroid S.

Remark 3.3. We call a G-semimatroid S representable if it arises from a periodic affine 
arrangement (see beginning of Section 2). In particular, S is representable in the sense 
of Example 1.6.

Remark 3.4. Every translative action is weakly translative. Moreover, every weakly 
translative action on a simple semimatroid is translative.

Remark 3.5. We will sometimes find it useful to consider the set system CS as a poset, 
with the natural order defined by GX ≤ GY if X ⊆ gY for some g ∈ G (notice that this 
is well-defined: in fact, it is the poset-quotient of the poset of simplices of C ordered by 
inclusion).

Definition-assumption 3.6. The action is called cofinite if the set CS is finite (in partic-
ular, ES is finite). We will assume this throughout without further mention.

Theorem A. Every G-action on S gives rise to a polymatroid on the ground set ES with 
rank function rk (see Remark 1.5). This polymatroid is a matroid if and only if the action 
is weakly translative: in this case the triple

SS := (ES, C, rk)

is locally ranked and satisfies (CR2). The triple SS is a matroid if and only if S is 
centered.

Proof. The first part of the claim is Proposition 6.4. The second part follows from Propo-
sition 6.4 and Proposition 6.7. �
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Fig. 5. A picture of the fundamental region of the Z2-semimatroid of Example 3.7, obtained from the natural 
action by translations on the pseudoline arrangement of Fig. 1.

Example 3.7. As an illustration consider the semimatroid S described in Example 1.7
(and Fig. 1) with an action of the group Z2 given by

ε1(ai) = ai+2, ε1(bi) = bi+2, ε1(ci) = ci, ε1(di) = di+1, ε1(ei) = ei

ε2(ai) = ai+1, ε2(bi) = bi−1, ε2(ci) = ci+1, ε2(di) = di, ε2(ei) = ei+1

where, as above, ε1, ε2 is the standard basis of Z2.
This action gives rise to a well-defined Z2-semimatroid S, with

ES = {a, b, c, d, e}, C = 2{a,b,c,d} ∪ 2{a,b,e} ∪ 2{e,d}

and rank function defined via rk(∅) = 0 and, for A ⊆ ES, rk(A) = 1 if |A| = 1, else 
rk(A) = 2. A sketch of the fundamental region of this action is given in Fig. 5, and the 
associated CS is shown in Fig. 6.

In this case, SS does not satisfy (CR1). For instance, with X := {a, b, c} and Y :=
{a, b, e}, we have X, Y ∈ C with rk(X ∩ Y ) = rk({a, b}) = 2 = rk(X), but X ∪ Y =
{a, b, c, e} /∈ C. �

Remark 3.8. Notice that SS not being a semimatroid is not a consequence of S not being 
representable. In fact, Fig. 7 shows that the properties of being representable, centered 
and SS being a semimatroid can appear in any combination not explicitly covered in 
Theorem A.

We want to study the “sets of orbits that give rise to central sets”: the following 
definition makes this sentence precise, and Example 3.11 below illustrates it.

Definition 3.9. Let S be a G-semimatroid. Given A ⊆ ES we define

�A�C := {X ∈ C | X = A} ⊆ C.

For any given A ⊆ ES, the set �A�C carries a natural G-action, and we will be concerned 
with the study of its orbit set, i.e., the set
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Fig. 6. The set system CS, with dotted lines representing the Hasse diagram of the associated poset. We use 
shorthand notation, where we write, e.g., [a0b0c0] for the orbit Z2{a0, b0, c0}.

Fig. 7. This diagram depicts the fundamental regions of different cases of Z2-actions on arrangements of 
(PL-)pseudolines. The full arrangement can be recovered in each case by tiling the plane with copies of the 
respective picture, identifying the edges of adjacent squares, just as the arrangement of Fig. 1 is obtained 
from the fundamental region of Fig. 5.
These examples realize every combination of centered, representable and “SS is semimatroid”, within weakly 
translative actions (with the only constraint that for centered actions SS always is a semimatroid – indeed 
in this case SS is a matroid).

�A�C/G = {T ∈ CS | �T � = A}

where, for any orbit T = G{t1, . . . , tk} ∈ CS we write

�T � := {Gt1, . . . , Gtk},

so that �·� defines a map CS → C. For every A ⊆ ES, let then

mS(A) := |�A�C/G|.
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Fig. 8. The set C for Example 3.7, with the multiplicity mS(A) written as a superscript of every set A ∈ C.

Remark 3.10. We illustrate the relationships between the previous definitions by fitting 
them into a diagram.

C CS C ⊆ 2ES

⊆ ⊆ ⊆

�A�C �A�C/G A

∈ ∈ ∈

X GX X

/G �·�

preimage of preimage of

The number mS(A) is nonzero if and only if A ∈ C. We will often tacitly consider the 
restriction of mS to its support, which in the cofinite case defines a multiplicity function 
mS : C → N>0.

Example 3.11. In our running example (the Z2-semimatroid S of Example 3.7), we con-
sider for instance the set {a, b} ∈ C. Then,

�{a, b}�C = {{ai, bj} | i, j ∈ Z}

and so

�{a, b}�C/Z2 =
{
Z2{a0, b0},Z2{a1, b0},Z2{a1, b1},Z2{a2, b1}

}
,

thus mS({a, b}) = 4. Repeating this procedure for all elements of C we obtain the 
multiplicities written as “exponents” next to the corresponding sets in Fig. 8. �

Definition 3.12. We call the action of G

– normal if, for all x ∈ S, stab(x) is a normal subgroup of G,
– almost arithmetic if it is translative and normal.

Remark 3.13. The two above-defined conditions are independent from each other and 
from the previous definitions. Indeed: the action of the symmetric group on its associated 
braid arrangement (see e.g. [30, Example 1.9]) is neither normal nor translative; the 
permutation action of the symmetric group on n distinct points in R is translative but 
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not normal; the nontrivial action of Z2 on the uniform matroid of rank 1 on two elements 
is normal but not translative; every representable G-semimatroid is translative.

Theorem B. If S is a G-semimatroid associated to an almost-arithmetic action, then the 
pair (SS, mS) is pseudo-arithmetic (see Definition 1.21). If SS is a semimatroid, mS

defines a pseudo-arithmetic semimatroid whose arithmetic Tutte polynomial, which we 
will call TS(x, y) (cf. Definition 3.28), satisfies an analogue of Crapo’s decomposition 
formula (Theorem H) generalizing the combinatorial interpretation of [5, Theorem 6.3].

Proof. This is proved as Proposition 8.6 and Theorem H. �
Remark 3.14. If, in addition to satisfying the conditions of Theorem B, S is also centered, 
then SS is a matroid and mS defines a pseudo-arithmetic matroid on ES in the sense 
of [5]. Notice that this way we can produce a natural class of nonrepresentable arith-
metic matroids, e.g., by the action associated to non-stretchable pseudoarrangements 
(see Fig. 5).

Definition 3.15. If the action of G is translative, for every X ∈ C we have that stab(X) =
∩x∈X stab(x). If, moreover, the action is normal, it follows that, for every X ∈ C, stab(X)
is a normal subgroup of G. We can then define the group

Γ(X) := G/ stab(X)

and, for g ∈ G, write [g]X := g + stab(X) ∈ Γ(X). For any X ⊆ S consider then the 
group

ΓX :=
∏

x∈X

Γ(x)

and the natural map

h′
X : G → ΓX , h′

X(g) = ([g]x)x∈X .

Given γ ∈ ΓX , let

γ.X := {γx(x) | x ∈ X}

and, for all X ∈ C, define

W (X) := {γ ∈ ΓX | γ.X ∈ C}.

Since X ∈ C implies im(h′
X) ⊆ W (X), we can restrict h′

X to W (X) as follows.

hX : G → W (X), hX(g) := h′
X(g).
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Remark 3.16. In order to help the intuition, notice that this definition of W (X) coincides, 
in the representable case, with that given in Equation (1).

Example 3.17. In our running example (from Example 1.7 and 3.7) we can illustrate the 
construction of W (X) by taking, e.g., X = {a0, b0, c0} ∈ C. We have

stab(a0) = Z
(−1

2
)

, stab(b0) = Z
( 1
2
)

, stab(c0) = Z
( 1
0
)

,

hence

Γ(a0) = Z2/ stab(a0) = {
( 0

k

)
+ stab(a0) | k ∈ Z} � Z

Γ(b0) = Z2/ stab(b0) = {
( 0

−k

)
+ stab(b0) | k ∈ Z} � Z

Γ(c0) = Z2/ stab(c0) = {
( 0

k

)
+ stab(c0) | k ∈ Z} � Z

where we take the isomorphism with Z to send k ∈ Z to the element listed in the braces.
Then, ΓX = Γ(a0) × Γ(b0) × Γ(c0) � Z3 and for γ ∈ ΓX , say γ = (i, j, l) ∈ Z3, our 

choice of the isomorphisms with Z above implies that

γ.{a0, b0, c0} = {ai, bj , cl}

and thus we see that γ.{a0, b0, c0} ∈ C if and only if i − l = j + l is an even number 
(compare Example 1.7). Therefore

W (X) = {(2h + l, 2h− l, l) | h, l ∈ Z}

is clearly seen to be a subgroup of ΓX . We leave it to the reader to check that this 
applies to every X, thus the Z2-semimatroid S is arithmetic (though not centered, 
neither representable, and SS is not a semimatroid). �

Definition 3.18. An almost-arithmetic action is called arithmetic if W (X) is a subgroup 
of ΓX for all X ∈ C.

Theorem C. If S is an arithmetic G-semimatroid, then the pair (SS, mS) is arithmetic. 
If, moreover, S is centered, then (ES, rk, mS) is an arithmetic matroid.

Proof. This is a combination of Proposition 8.6 and Lemma 9.6. �
3.2. Matroids over Z

Under appropriate circumstances, the objects defined in Notation 3.15 give rise to a 
matroid over Z defined on the ground set ES. In fact, for every arithmetic G-semimatroid, 
the groups Γ(X) and ΓX from Definition 3.15 do not depend on the choice of X in �X�C
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(Lemma 9.1). Moreover, if we assume that all groups Γ(x) are cyclic, then every group 
ΓX is abelian, and in particular all notions introduced in Notation 3.15 above do not 
depend on the choice of X inside �X�C (Lemma 9.3). So given A ∈ C it makes sense to 
write Γ(A), ΓA, W (A) etc., see Section 9 for a more thorough discussion.

Definition 3.19. Let S denote an arithmetic and centered G-semimatroid such that, for 
all a ∈ ES, the group Γ(a) is cyclic. Given A ⊆ ES we will write Ac := ES \ A and 
define

MS(A) := ΓAc

/h′
Ac(G).

Theorem D. Let S denote an arithmetic and centered G-semimatroid such that, for all 
a ∈ ES, the group Γ(a) is cyclic. Then the abelian groups MS(A), where A runs over 
all subsets of ES, define a representable matroid over Z. Moreover, if the groups Γ(a)
are infinite cyclic, the underlying matroid of MS is the dual to (ES, rk). If, additionally, 
W (A) is a pure subgroup of ΓA we have an isomorphism

MS(A) � Z|Ac|−rk(Ac) ⊕W (Ac)/hAc(G)

and the underlying arithmetic matroid is dual to (ES, rk, mS).

Proof. This statement combines those of Proposition 9.13, Corollary 9.15, Corollary 9.16, 
Proposition 9.17 and Corollary 9.18. �
Remark 3.20. In general, a toric arrangement in (C∗)d is given as a family of level sets of 
characters of (C∗)d (see e.g. [11, §2.1]). By lifting the toric arrangement to the universal 
covering space of the torus one recovers a periodic affine hyperplane arrangement A . 
If S is the Zd-semimatroid associated to this action as in Section 2, then MS is dual 
to the matroid over Z associated to the characters defining the toric arrangement (see 
Theorem 2.17).

3.3. Group actions on finitary geometric semilattices

The main tool allowing us to establish a poset-theoretic formulation of the theory of 
G-semimatroids is the following cryptomorphism result between finitary semimatroids 
and finitary geometric semilattices. Its proof is the object of Section 5.

Theorem E. A poset L is a finitary geometric semilattice if and only if it is isomorphic to 
the poset of flats of a finitary semimatroid. Furthermore, each finitary geometric semilat-
tice is the poset of flats of an unique simple1 finitary semimatroid (up to isomorphism).

1 See Definition 1.3.
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We now discuss some basics about group actions on finitary geometric semilattices.

Definition 3.21. An action of G on a geometric semilattice L is given by a group homo-
morphism of G in the group of poset automorphisms of L. We define

PS := L/G,

the set of orbits of elements of L partially ordered such that GX ≤ GY if there is g with 
X ≤ gY (where as usual we identify a group element in G with the automorphism to 
which it corresponds).

Remark 3.22. The fact that automorphisms of L preserve rank implies that the above 
binary relation on PS is indeed a partial order. For another appearance of this definition 
of a “quotient poset” see, e.g., [36].

Example 3.23 (Toric arrangements). If S arises from a periodic arrangement of hyper-
planes as in Section 2, then PS is the poset of layers of the associated toric arrangement 
(cf. Remark 2.2 and Remark 2.3). �

Example 3.24 (Toric pseudoarrangements). If S is the Z2-semimatroid associated to a 
periodic arrangement of pseudolines (see, e.g., Example 1.7) then PS is the poset of 
layers of the associated pseudoarrangement on the torus.

The higher-dimensional analogue of this construction needs a (combinatorial) notion of 
a “periodic affine arrangement of pseudoplanes” whose intersection poset is a geometric 
semilattice. A forthcoming paper [16] will provide such a notion by defining finitary 
affine oriented matroids and studying their topological representation. If S arises from 
an appropriate Zd-action on a rank d finitary affine oriented matroid, then PS is the 
poset of layers of the associated pseudoarrangement on the torus. �

Remark 3.25. It is clear that every action on a semimatroid induces an action on its 
semilattice of flats, and every action on a geometric semilattice induces an action on the 
associated simple semimatroid. It is an exercise to reformulate the requirements of the 
different kinds of actions in terms of the poset – where, however, the distinction between 
weakly translative and translative does not show. In our proofs we will mostly use the 
semimatroid language, in order to treat the most general case, and will call an action on 
a geometric semilattice cofinite, weakly translative, translative, normal, arithmetic, etc., 
if the corresponding G-semimatroid is.

Example 3.26. The poset PS for the Z2-semimatroid of Example 3.7 can be read off the 
picture of the fundamental region in Fig. 5, and gives the poset depicted in Fig. 9. �

The poset PS can also be obtained through a “closure operator” on CS.
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Fig. 9. The poset PS for the (nonrepresentable) Z2-semimatroid S of our running Example 3.7, where we 
use the same conventions as in Fig. 6.

Definition 3.27. Given a G-semimatroid S : G � (S, C, rk), define the function

κS : CS → PS, GX �→ G cl(X)

where cl denotes the closure operator associated to (S, C, rk) (see Remark 1.9).

The function κS is independent from the choice of representatives (since the action is 
rank-preserving) and thus defines a “closure operator” κS : CS → CS whose closed sets 
are exactly the elements of PS.

Think of CS as a poset with the natural order given by GX ≤ GY if there is g ∈ G with 
gX ⊆ Y , and let C and C be ordered by inclusion. Then, for every weakly translative 
S-semimatroid we have the following commutative diagram of order-preserving func-
tions.

C CS C 2ES

L PS L0

/G

cl

�·�

κS

⊆

cl
/G cl�·�

3.4. Tutte polynomials of group actions

Definition 3.28. To every G-semimatroid S we associate the polynomial

TS(x, y) :=
∑
A∈C

mS(A)(x− 1)rk(ES)−rk(A)(y − 1)|A|−rk(A).

This definition is natural in its own right, as can be seen in Section 10.1 and Sec-
tion 10.2. If the action is centered (so in particular SS is a matroid), we recover 
Definition 1.24 and in particular, in the representable, resp. arithmetic case, Moci’s 
arithmetic Tutte polynomial [29].

Our first result is valid in the full generality of weakly translative actions, and concerns 
the characteristic polynomial of the poset PS: we point, e.g., to [34] for background on 
characteristic polynomials of posets, and to our Section 10.1 for the precise definition.
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Theorem F. Let S be any weakly translative and loopless G-semimatroid, and let χS(t)
denote the characteristic polynomial of the poset PS. Then,

χS(t) = (−1)rTS(1− t, 0).

Proof. The proof is given at the end of Section 10.1 �
Example 3.29. For our running example we have (e.g., from Fig. 8)

TS(x, y) = (x− 1)2 + 5(x− 1) + 16 + 6(y − 1) + (y − 1)2

= x2 + y2 + 3x + 4y + 7

and, from Fig. 9,

χS(t) = t2 − 5t + 11.

An elementary computation now verifies Theorem F in this case. �

The polynomials TS(x, y) associated to translative actions satisfy a deletion–
contraction recursion. Deletion and contraction for G-semimatroids correspond, in the 
representable case, to removing a set of orbits of hyperplanes, respectively considering
the periodic arrangement induced on any (nonempty) intersection of hyperplanes.

Definition 3.30. For every T ⊆ ES, G acts on S \ ∪T . We denote the associated 
G-semimatroid by S \ T and call this the deletion of T . We follow established matroid 
terminology and denote by S[T ] := S \ (S \ ∪T ) the restriction to T .

Remark 3.31. A comparison with Definition 1.11 shows that SS[T ] = SS[T ] and that, 
for every A ⊆ T , mS[T ](A) = mS(A).

Definition 3.32. Recall CS := C/G. For all T ∈ CS define the contraction of S to T by 
choosing a representative T ∈ T and considering the action of stab(T ) on the contraction 
S/T . This defines the stab(T )-semimatroid S/T .

Remark 3.33. Clearly S/T does not depend on the choice of the representative T ∈ T . 
Moreover, for all e ∈ ES we will abuse notation and write S/e as a shorthand for S/{e}.

Remark 3.34. By Proposition 10.7, weak translativity, translativity, normality and arith-
meticity of actions are preserved under taking contractions and restrictions.
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Fig. 10. Illustration for Example 3.35.

Theorem G. Let S be a translative G-semimatroid and let e ∈ ES. Then

(1) if e is neither a loop nor an isthmus2 of SS,

TS(x, y) = TS/e(x, y) + TS\e(x, y);

(2) if e is an isthmus, TS(x, y) = (x − 1)TS\e(x, y) + TS/e(x, y);
(3) if e is a loop, TS(x, y) = TS\e(x, y) + (y − 1)TS/e(x, y).

Proof. The proof is given at the end of Section 10.4. �
Example 3.35. If S is the Z2-semimatroid of our running example, then S \ e is given 
by the induced Z2-action on the semimatroid S \ {ei}i∈Z associated to the periodic 
arrangement of Fig. 2.(a). Moreover, S/e is the Z-semimatroid given by the action of 
stab(e0) = Z 

( 1
0
)
� Z on the finitary semimatroid associated to the periodic arrangement 

of Fig. 2.(b). A picture of the fundamental regions of these two actions is given in Fig. 10, 
from which we can compute

TS\e(x, y) = (x− 1)2 + 4(x− 1) + 11 + 4(y − 1) + (y − 1)2

= x2 + y2 + 2x + 2y + 5

TS/e(x, y) = (x− 1) + 5 + 2(y − 1) = x + 2y + 2

and easily verify that the sum of these polynomials equals TS(x, y) = x2+y2+3x +4y+7
(Example 3.29). �

4. Some examples

Example 4.1 (Reflection groups). Let G be a finite or affine complex reflection group 
acting on the intersection poset of its reflection arrangement. This setting has been 
considered extensively, especially in the finite case (see e.g. the treatment of Orlik and 
Terao [30]). These actions are not translative, and thus fall at the margins of our present

2 See Definition 1.3.
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Table 1
A tabular overview of our setup and our results.
G-semimatroid 
S

Loc. ranked triple 
SS

Multiplicity 
mS

Poset
PS

Polynomial 
TS(x, y)

Modules 
MS

Weakly 
translative

well-defined 
(Theorem A)

χPS
(t) = (−1)rTS(1 − t, 0)

(Theorem F)
Translative Pseudo-arithmetic 

(Proposition 7.28)
Deletion–
contraction 
recursion 
(Theorem G)

Translative and 
normal

Almost-arithmetic (P, A.1.2, A2) 
(Theorem B)

...and SS a 
semimatroid

Activity de-
composition 
(Theorem H)

Arithmetic Arithmetic (Theorem C)
Centered Matroid
Representable 
and centered

Arithmetic matroid dual to that 
of [5]

Poset of 
layers of toric 
arrangement

Arithmetic 
Tutte 
polynomial

Representable 
matroid 
over Z

treatment. Still, we would like to mention them as a motivation for further investigation 
of non-translative actions — e.g., the case where (E, rk) is a polymatroid. �

Example 4.2 (Toric arrangements). The natural setting in order to develop a combina-
torial framework for toric arrangements is that of the group Zd acting by translations 
on an affine hyperplane arrangement on Cd (see Section 2). Such actions will often fail 
to be centered. Therefore we will try to state our results as much as possible without 
centrality assumptions, adding them only when needed in order to establish a link to the 
arithmetic and algebraic matroidal structures appeared in the literature. �

The next examples will refer to Fig. 10 and Fig. 11. These are to be interpreted 
as the depiction of a fundamental region for an action of Z2 by unit translations in 
orthogonal directions (vertical and horizontal) on an arrangement of pseudolines in R2

(see Example 1.7) which, then, can be recovered by “tiling” the plane by translates of the 
depicted squares. Notice that the intersection poset of any arrangement of pseudolines 
is trivially a geometric semilattice, and thus defines a simple semimatroid. We will call 

, , , the orbits of the ai, bi, ci, di, respectively. (Thus, = Ga0 = {ai}i∈Z, etc.)

Example 4.3. The Z2-semimatroid described in Fig. 11 is clearly almost-arithmetic, but 
it cannot be arithmetic because the multiplicity mS({ , , }) = 3 does not divide 
mS({ , }) = 4, violating (A.1.1). �

Example 4.4. One readily verifies that the Z2-semimatroid described at the left-hand side 
of Fig. 10 is arithmetic. However, MS is not a matroid over Z. Indeed, the requirement 
of Definition 1.26 fails for the square
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Fig. 11. Figure for Example 4.3.

MS({ }) ∼= Z
?−−−−→ MS({ , }) ∼= Z2

?
⏐⏐� ⏐⏐�

MS({ , }) ∼= Z4 −−−−→ MS({ , , }) ∼= {0}

where the condition that the maps be surjections with cyclic kernel determines everything 
up to leaving two possibilities for the left-hand side vertical map: neither of these gives 
the required pushout. �

Remark 4.5. Examples where MS is a nonrepresentable matroid over Z can easily be 
generated in a trivial way, e.g. by considering trivial group actions on nonrepresentable 
matroids. We do not know whether there is a periodic pseudoarrangement for which MS

is a nonrepresentable matroid over Z.

Example 4.6 (The representable case). The arrangement on the top left of Fig. 7 is 
a periodic affine arrangement in the sense of Section 2: thus, the associated MS is a 
representable matroid over Z. �

Example 4.7 (Crystallographic root systems). An important family of representable ex-
amples is that of the periodic hyperplane arrangements arising as the reflection arrange-
ments of the affine Coxeter groups associated to crystallographic root systems, where 
the weight lattice acts by translation. In this setting, some enumerative results in terms 
of Dynkin diagrams were obtained by Moci [28]. �

5. Finitary geometric semilattices

In this section we study posets associated to finitary semimatroids. This leads us to 
consider geometric semilattices in the sense of Wachs and Walker [37]. Our goal is to 
prove a finitary version of the equivalence between simple semimatroids and geometric 
semilattices given in [2].
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We start by recalling some basic terminology about partially ordered sets. The reader 
already familiar with poset theory may skip to Definition 5.2. We refer to Stanley’s book 
[34] for a comprehensive introduction to this topic.

A partially ordered set (for short poset) is a set P endowed with a partial order 
relation, i.e., a transitive, antisymmetric and reflexive binary relation which we denote 
by ≤. As is customary, we write p < q if p ≤ q and p 
= q. Given x ∈ P we write 
P≤x := {p ∈ P | p ≤ x} for the set of elements below x, and define P≥x analogously. 
We say that the poset P is bounded below (resp. bounded above) if it possesses a unique 
minimal (resp. maximal) element, that is an element 0̂ ∈ P (resp. 1̂ ∈ P) with P≥0̂ = P
(resp. P≤1̂ = P). If P is bounded below and bounded above, we call it simply bounded.

The join of a subset X ⊆ P, written ∨X, if it exists, is defined by

P≥∨X = {p ∈ P | p ≥ x for all x ∈ X}.

Analogously the meet ∧X, if it exists, is defined by

P≥∧X = {p ∈ P | p ≤ x for all x ∈ X}.

If X = {x, y}, we write x ∨ y := ∨X and x ∧ y := ∧X.
If the meet of any two elements exists, then so does the meet of every finite set of 

elements, and P is called meet-semilattice. Join-semilattices are defined accordingly. If 
P is both a meet- and a join-semilattice, then it is called a lattice.

A chain in P is any totally ordered subset, i.e., any ω = {p1, . . . , pk} ⊆ P such that 
p0 < p1 < · · · < pk. The length of such a chain is �(ω) = |ω| −1. In this paper we assume 
throughout that all posets are chain-finite, i.e., all chains have finite length. The (closed) 
interval between p, q ∈ P is the set

[p, q] := {x ∈ P | p ≤ x ≤ q}.

We say that q covers p if [p, q] = {p, q}. The atoms of a bounded below poset P are the 
elements that cover 0̂. A bounded below poset P is called atomic if every element is a 
join of atoms, i.e., if for every p ∈ P there is a set A of atoms of P such that p = ∨A.

A poset P is called ranked if there is a function rk : P → N such that rk(q) = rk(p) +1
whenever q covers p. If P is bounded below we assume rk(0̂) = 0, and the condition 
above is equivalent to the fact that, for every x ∈ P, all maximal chains of P≤x have 
the same (finite) length. In general, a poset P is called graded if all maximal chains have 
the same (finite) length. A ranked lattice P is called semimodular if, for all x, y ∈ P, 
rk(x ∨ y) + rk(x ∧ y) = rk(x) + rk(y).

Definition 5.1. A geometric lattice is a finite, atomic and semimodular lattice.

A set A of atoms of a ranked, bounded below poset, is called independent if the join 
∨A exists and satisfies rk(∨A) = |A|.
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A morphism of posets is an order preserving map, i.e., a morphism between posets 
(P, ≤) and (Q, �) is a function f : P → Q such that f(p1 ≤ p2) implies f(p1) � f(p2), 
for all p1, p2 ∈ P. An isomorphism of posets is a bijective morphism of posets with 
order-preserving inverse.

Definition 5.2 (See Theorem 2.1 in [37]). A (chain-finite) ranked meet-semilattice L is 
called a finitary geometric semilattice if it satisfies the following conditions.

(G3) There is N ∈ N such that every (maximal) interval in L is a (finite) geometric 
lattice with at most N atoms.

(G4) For every independent set A of atoms of L and every x ∈ L such that rkL(x) <
rkL(∨ A), there is a ∈ A with a � x and such that x ∨ a exists.

Remark 5.3. The definition given in [37] of a finite geometric semilattice is that of a 
finite ranked meet-semilattice which satisfies:

(G1) Every element is a join of atoms.
(G2) The collection of independent sets of atoms is the set of independent sets of a 

matroid.

In the finite case, Wachs and Walker prove that this is equivalent to Definition 5.2, which 
we choose to take as our definition because of its more immediate generalization to the 
infinite case. We keep, for consistency, the labeling of the conditions as in [37].

In passing to the infinite case we have added the part of (G3) that is written in italic. 
If the poset is finite, then this addition is redundant, and it does not appear in [37]. 
Notice that Theorem E remains valid if the italic part of (G3) and the requirement 
finite-dimensionality of C in Definition 1.1 are simultaneously dropped (these only play 
a role in the parts of the proof marked by (†)).

Remark 5.4. In view of the proof of Theorem E and for later reference we note that 
finitary semimatroids satisfy the following properties (i.e., a “local” version of (R2) and 
a stronger version of (CR1) and (CR2)).

(R2’) If X ∪ x ∈ C then rk(X ∪ x) − rk(X) equals 0 or 1.
(CR1’) If X, Y ∈ C and rk(X) = rk(X ∩ Y ), then X ∪ Y ∈ C and rk(X ∪ Y ) = rk(Y ).
(CR2’) If X, Y ∈ C and rk(X) < rk(Y ), then X ∪ y ∈ C and rk(X ∪ y) = rk(X) + 1 for 

some y ∈ Y −X.

The proof is analogous to that in the finite case given in [2, Section 2].
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Proof of Theorem E. Let S = (S, C, rkC) be a finitary semimatroid. Recall from Defini-
tion 1.8 the closure operator cl and the poset of flats L(S) of S. We begin by showing 
that L(S) is a geometric semilattice.

– L(S) is a chain-finite ranked meet semilattice. Given flats X, Y of S, the subset 
X ∩ Y is also central and its closure cl(X ∩ Y ) ∈ L(S) is a lower bound of X and Y
in L(S) by Remark 1.9. Now suppose A ∈ L(S) is a lower bound of X, Y in L(S), 
thus A ⊆ X, Y . In particular, this means A ⊆ X ∩Y ⊆ cl(X ∩Y ). Therefore, the set 
cl(X ∩Y ) is the meet of X and Y in L(S). Now, (CR2’) implies that L(S) is ranked 
with rank function rkL := rkC . In particular, an infinite chain in L(S) would violate 
boundedness of the rank function rkC .

– Condition (G3). If X is a maximal flat of S, then in particular rkC is defined for 
every subset of X and satisfies axioms (R1–R3). Thus rkC defines a matroid M on X
whose closure operator coincides with cl (since X is closed, cl restricts to a function 
2X → 2X), and thus the lattice of flats of M is isomorphic to the interval [0̂, X] in 
L(S), proving that this interval is indeed a geometric lattice.
(†) For the bound on the number of atoms of intervals, notice that a top simplex X
of C is a maximal flat of S, hence its cardinality is at least the number of atoms in 
L(S)≤X . Thus, if d is the (finite) dimension of the simplicial complex C, the poset 
L(S) satisfies (G3) with N = d + 1.

– Condition (G4). Now let A be an independent set of atoms in L(S) and X a flat 
of S such that rkC(X) < rkC(∨A) = rkC(cl(∪A)) = rkC(∪A). By (CR2), there is an 
element a ∈ ∪A \X such that X∪a ∈ C. In particular, cl({a}) is an atom from A such 
that cl({a}) � X in L(S). Furthermore, by Remark 1.9 the set X∪cl({a}) is a subset 
of cl(X ∪ a) – and hence central as well. So the join X ∨ cl({a}) = cl(X ∪ cl({a}))
exists and (G4) is satisfied.
This concludes the proof that L(S) is a finitary geometric semilattice.

Conversely, let L be a finitary geometric semilattice. Let SL denote the set of atoms 
of L and set

CL = {X ⊆ SL | ∨X ∈ L}.

Moreover, we define the function

rkCL : CL → N, X �→ rkL(∨X).

Now suppose Y ⊆ X ∈ CL. Then ∨X is an upper bound for Y and thus the join ∨Y

exists (since L is a meet-semilattice). Hence, the collection CL is an abstract simplicial 
complex. (†) Since |X| ≤ |SL ∩ L≤∨X | for all X ∈ CL, the cardinality of any simplex is 
bounded by N ; thus C is finite-dimensional.
We will now show that SL := (SL, CL, rkCL) is a finitary semimatroid with semilattice of 
flats L(SL) isomorphic to L.
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– Axioms (R1)–(R3). For every X ∈ CL, the join ∨X exists and the interval [0̂, ∨X]
is a geometric lattice by (G3). Thus (e.g., by Remark 1.10) it defines a matroid MX

with ground set the atoms in [0̂, ∨X], whose rank function is a restriction of rkL
(hence of rkCL). Thus (R1) holds for X because it holds in MX . Moreover, (R2) 
holds for every X ⊆ Y ∈ CL because it holds in MY , and (R3) holds for every X, Y
with X ∪ Y ∈ CL because it does in MX∪Y .

– Axiom (CR1). Take X, Y ∈ CL with rkCL(X) = rkCL(X ∩ Y ), i.e., rkL(∨X) =
rkL(∨(X ∩ Y )). Since L is a ranked poset, the former rank equality and the evident 
relation ∨(X ∩ Y ) ≤ ∨X imply ∨(X ∩ Y ) = ∨X. So

∨X = ∨(X ∩ Y ) ≤ ∨Y,

that is to say every upper bound of Y is also an upper bound of X. Hence ∨(X∪Y ) =
∨Y and X ∪ Y ∈ C, and (CR1) is satisfied.

– Axiom (CR2). Let X, Y be in CL and such that rkCL(X) < rkCL(Y ). Choose an 
independent set A ⊆ Y with ∨A = ∨Y . Property (CR2) for X and Y now follows 
applying (G4) to X and A.

– There is a poset isomorphism L � L(SL). Let ϕ : L → L(SL) be defined by

ϕ(x) := {a ∈ SL | a ≤ x}. (2)

For ϕ to be well-defined, we must check that, for all x ∈ L, ϕ(x) is a flat of SL. Let 
x ∈ L. First, by (G3) we have ∨ϕ(x) = x and thus ϕ(x) ∈ CL. Now suppose b is an 
element of S such that ϕ(x) ∪{b} ∈ CL and rkCL(ϕ(x) ∪b) = rkCL(ϕ(x)). This means 
that rkL(∨(ϕ(x) ∪ b)) = rkL(∨ϕ(x)), and since clearly ∨(ϕ(x) ∪ b) ≤ ∨ϕ(x) = x, 
from the fact that L is ranked we conclude ∨(ϕ(x) ∪ b) ≤ ∨ϕ(x) = x. In particular, 
b ≤ x, so b ∈ ϕ(x). This proves that the set ϕ(x) is closed, hence a flat of SL.
The function ϕ is injective because L is atomic. To check surjectivity, let Y be a flat 
of SL. We have to find some x ∈ L with ϕ(x) = Y , and indeed x = ∨Y will do.
Moreover, comparing the definition of ϕ in Equation (2) one readily checks the 
following equivalences

ϕ(x) ≤ ϕ(y) ⇔ ϕ(x) ⊆ ϕ(y) ⇔ x ≤ y

Thus, both ϕ and its inverse are order-preserving, and ϕ is the required isomorphism.

The semimatroid SL = (SL, CL, rkCL) is simple by construction. We are left with 
showing that for every simple semimatroid S = (S, C, rk) with a poset-isomorphism

ψ : L(S)
∼=−→ L

we can construct an isomorphism between S and SL.
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Since S is simple, for every x ∈ S the set {x} is closed. Thus, ψ induces a natural 
bijection

ψS : S → SL, {ψS(x)} = ψ({x}).

To see that ψS induces a well-defined function C → CL, consider any X =
{x1, . . . , xk} ∈ C. Then, using the definition of ψS and the fact that ψ is an isomor-
phism,

k∨
i=1
{ψS(xi)} =

k∨
i=1

ψ({xi}) = ψ(
k∨

i=1
{xi}),

hence the right-hand side exists in L, and thus ψS(X) ∈ CL.
An analogous argument using ψ−1

S (together with the fact that ψS is monotone by 
definition) shows that in fact ψS induces an isomorphism of simplicial complexes C ∼= CL.

It remains to show that ψS preserves ranks of central sets. For this consider any 
X = {x1, . . . , xk} ∈ C and compute

rkC(X) = rkL(S)(
∨

i

{xi}) = rkL(
∨

i

ψ({xi})) = rkCL(ψS(X)). �

6. The underlying matroid of a group action

This section is devoted to the proof of Theorem A. Let S be a G-semimatroid as-
sociated to an action of G on a semimatroid (S, C, rk). Recall from Section 3 the set 
ES := S/G of orbits of elements, the family C = {X ⊆ ES | X ∈ C}, and that we only 
consider actions for which ES is finite.

For every A ⊆ ES define

J(A) := {X ∈ C | X ⊆ A}

and write Jmax(A) for the set of inclusion-maximal elements of J(A).

Lemma 6.1. For every X, Y ∈ Jmax(A), rk(X) = rk(Y ).

Proof. By way of contradiction assume rk(X) > rk(Y ). Then with (CR2) we can find 
x ∈ X \ Y with Y ∪ x ∈ C and Y ∪ x ⊆ A, contradicting maximality of Y . �
Definition 6.2. For any A ⊆ ES choose X ∈ Jmax(A) and let rk(A) := rk(X), in agree-
ment with Definition 3.2. Lemma 6.1 shows that this is well-defined and independent on 
the choice of X.
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Remark 6.3. For all A ⊆ ES we have

rk(A) = max{rk(A′) | A′ ⊆ A, A′ ∈ C},

because A′ ⊆ A implies J(A′) ⊆ J(A).

Proposition 6.4. The pair (ES, rk) always satisfies (R2) and (R3), and thus defines a 
polymatroid on ES. Moreover, (ES, rk) satisfies (R1) if and only if the action is weakly 
translative.

Proof.
• (ES, rk) is a polymatroid. Property (R2) is trivial, we check (R3). Consider A, A′ ⊆ ES, 
and choose B0 ∈ Jmax(A ∩A′). By Lemma 6.1,

rk(B0) = rk(A ∩A′). (*)

In particular, B0 ∈ J(A) and thus we can find B1 ∈ J(A) such that

B0 ∪B1 ∈ Jmax(A) (*)

and a maximal B2 ∈ J(A′) such that B0 ∪B1 ∪B2 is in J(A′ ∪A). Then,

B0 ∪B1 ∪B2 ∈ Jmax(A′ ∪A), (*)

because otherwise we could complete it with some B′
2 ∈ J(A) in order to get an element 

of Jmax(A ∪ A′) – but then, B0 ∪ B1 ∪ B′
2 ⊇ B0 ∪ B1 ∈ Jmax(A), thus B′

2 = ∅ by the 
choice of B1. Using the identities (*) and axiom (R3) for (S, C, rk) we obtain

rk(A ∩A′) + rk(A ∪A′)− rk(A) = rk(B0) + rk(B0 ∪B1 ∪B2)− rk(B0 ∪B1)

≤ rk(B0 ∪B2) ≤ rk(A′),

where the last inequality follows from B0 ∪B2 ⊆ A′. This proves that rk satisfies (R3).
• Weakly translative implies (R1)

Suppose that the action is weakly translative. For (R1) we need to show that 0 ≤
rk(A) ≤ |A| for every A ⊆ ES. The left hand side inequality is trivial. Consider A ⊆ ES

and choose X ∈ Jmax(A).

Claim. For every x ∈ X with g(x) ∈ X we have rk(X) = rk(X \ g(x)).

Proof of claim. Using (R3) in (S, C, rk) on the sets X \ g(x) and {x, g(x)}, we obtain

rk(X) + rk(x) ≤ rk(X \ g(x)) + rk({x, g(x)}) = rk(X \ g(x)) + rk(x)
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where in the last equality we used weak translativity of the action. Thus we get rk(X) ≤
rk(X \ g(x)) and, the other inequality being trivial from (R2), we have the claimed 
equality. �

Choose a (central) system X ′ of representatives of the orbits in X. We obtain the 
claimed inequality by computing

rk(A) = rk(X) = rk(X ′) ≤ |X ′| = |X| ≤ |A| (3)

where the second equality holds because of the claim above.
• (R1) implies weakly translative. By contraposition. If the action is not weakly transla-
tive, choose x ∈ S and g ∈ G violating the weak translativity condition, and consider 
A := {Gx}. First notice that x cannot be a loop, since if rk(x) = 0 then rk(g(x)) = 0
and rk({x, g(x)}) must equal 0 (otherwise it would contain an independent set of rank 
1, implying that x is not a loop), thus rk({x, g(x)}) = rk(x) and x would not vi-
olate the weak translativity condition. Hence it must be rk(x) = 1, and we have 
rk(A) ≥ rk({x, g(x)}) > rk(x) = 1 = |{A}|, contradicting (R1). �
Corollary 6.5. If the action is weakly translative, for all X ∈ C we have rk(X) = rk(X).

Proof. This is a consequence of Equation (3) in the previous proof, and of the discussion 
preceding it. �
Remark 6.6. The matroid (ES, rk) is, in some sense an ‘artificial’ construct, although in 
some cases useful. For instance, when (S, C, rk) is the semimatroid of a periodic arrange-
ment of hyperplanes in real space associated to a toric arrangement A , then (ES, rk) is 
the matroid of the arrangement A0 which plays a key role in [6,11,12].

Proposition 6.7. Let S be weakly translative. Then SS := (ES, C, rk) is a locally ranked 
triple satisfying (CR2).

Proof. Proposition 6.4 implies that (R1), (R2), (R3) hold.
For (CR2), let A, B ∈ C with rk(A) < rk(B) and choose X ∈ �A�C and Y ∈ �B�C . 

Then, by Corollary 6.5, rk(X) < rk(Y ). Using (CR2’) in S (cf. Remark 5.4) we find 
y ∈ Y \X with X∪y ∈ C and rk(X∪y) > rk(X). Set b := {Gy}. Then, A ∪b = X ∪ y ∈ C
and b ∈ B \ A (otherwise b ∈ A, thus – using Corollary 6.5 – rk(X ∪ y) = rk(A ∪ b) =
rk(A) = rk(X), a contradiction). �
7. Translative actions

We now proceed towards establishing Theorem B. The main idea in this section is to 
associate a diagram of finite sets and injective maps to every molecule of the quotient 
triple SS (see Example 7.24 below). In the representable case, this structure specializes 
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to the inclusion pattern of integer points in semiopen parallelepipeds as well as to that 
of layers of the associated toric arrangement. In general, these diagrams will allow us 
in later sections to extend to the general (nonrepresentable, non-arithmetic) case some 
combinatorial decompositions given in [9] for representable arithmetic matroids, most 
notably Theorem H.

Recall the definitions in Section 3 and, in particular, that S denotes a G-semimatroid 
corresponding to the action of a group G on a semimatroid S = (S, C, rk). In this section 
we suppose this action always to be cofinite and translative. In particular, we can consider 
the associated locally ranked triple SS = (ES, C, rk) with multiplicity function mS.

7.1. Maps between sets of “central orbits”

Definition 7.1. Given A ∈ C and a0 ∈ A define

wA,a0 : �A�C → �A \ a0�C , X �→ X \ a0, (4)

and notice that, since it is G-equivariant, it induces a function

wA,a0 : �A�C/G → �A \ a0�C/G. (5)

Remark 7.2. When wA,a0 is injective then wA,a0 also is. This can be seen in many ways 
– for instance, by noting that any injective map of G-sets is a split monomorphism (e.g., 
see [40]), and the splitting G-map induces a splitting of wA,a0 .

Lemma 7.3. Let S be translative.

(a) If x0 ∈ X ∈ C with rk(X) = rk(X \ x0) + 1, then Y ∪ g(x0) ∈ C for all g ∈ G and 
all Y ∈ C with Y = X \ x0.

(b) If a0 ∈ A ∈ C with rk(A) = rk(A \ a0) + 1, then wA,a0 is surjective and, for any 
choice of x0 ∈ a0, a right inverse of wA,a0 is given by

ŵA,a0 : �A \ a0�C → �A�C, Y �→ Y ∪ x0. (6)

Moreover, wA,a0 is surjective. In particular, mS(A) ≥ mS(A \ a0).
(c) If a0 ∈ A ∈ C with rk(A) = rk(A \ a0), then wA,a0 is injective and thus mS(A) ≤

mS(A \ a0).

Proof.

(a) Let X, x0 be as in the claim. For all g ∈ G consider the central set g(X) of rank 
rk(g(X)) = rk(X) > rk(X \ x0). By (CR2) there is some y ∈ g(X) \ (X \ x0) with 
y ∪ (X \ x0) ∈ C and rk(y ∪ (X \ x0)) = rk(X). This y must be g(x0) because 
every other element y′ ∈ g(X) \ (X ∪ g(x0)) is of the form y′ = g(x′) (/∈ X) for 
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some x′ ∈ X, thus y′ ∪ (X \ x0) ∈ C would imply {x′, g(x′)} ∈ C which, since by 
construction x′ 
= g(x′), is forbidden by the fact that the action is translative. Thus 
(X \ x0) ∪ g(x0) ∈ C for all g ∈ G. Now consider any Y with Y = X \ x0 and notice 
that with Lemma 6.1 we have the first equality in the following expression

rk(Y ) = rk(X \ x0) < rk(X) = rk((X \ x0) ∪ g(x0))

(where the inequality holds by assumption and the last equality derives from the 
choice of y = g(x0) above). Thus by (CR2) there must be x ∈ (X \ x0) ∪ g(x0) with 
Y ∪ x ∈ C and rk(Y ∪ x) = rk(Y ) + 1. Since Y consists of translates of elements of 
X, as above the fact that the action is translative forces x = g(x0).

Towards (b) and (c), choose any X ∈ �A�C and let x0 ∈ X be a representative of 
a0. By the definition of rk (Definition 6.2) and since translativity allows us to apply 
Corollary 6.5, we conclude that rk(X \ x0) = rk(X) if and only if rk(A \ a0) = rk(A).

(b) Suppose rk(A \ a0) = rk(A) − 1. Part (a) ensures that the function ŵA,a0 is well-
defined. Clearly, it is injective and wA,a0 ◦ ŵA,a0 = id. In particular, wA,a0 is 
surjective. Moreover, if we fix a representative Y O of every element O ∈ �A \a0�C/G

we see that the assignment

�A \ a0�C/G → �A�C/G, O �→ GŵA,a0(Y O) (7)

defines a (noncanonical) section of wA,a0 . This proves surjectivity of wA,a0 , which 
implies the stated inequality.

(c) Suppose now rk(A \ a0) = rk(A) and consider X1, X2 ∈ �A�C . Since the action is 
translative the sets X1∩a0 and X2∩a0 each consist of a single element, say x0,1 and 
x0,2 respectively. If moreover wA,a0 maps both X1, X2 to the same Y = X1 \ a0 =
X2 \ a0, then Y ∪ x0,1 and Y ∪ x0,2 are both central and of the same rank, equal to 
the rank of Y . By (CR1) then Y ∪ {x0,1, x0,2} ∈ C, thus {x0,1, x0,2} ∈ C and since 
the action is translative we must have x0,1 = x0,2, hence X1 = X2. This proves that 
wA,a0 is injective and, with Remark 7.2, the stated inequality. �

Remark 7.4. More generally, for every A ∈ C and every A′ ⊆ A we can consider

wA,A′ : �A�C → �A \A′�C , X �→ X \ ∪A′

and the associated map wA,A′ : �A�C

G → �A\A′�C

G .
Notice that, given any enumeration a′

1, . . . , a′
l of A′, we have

wA,A′ = wA,a′
1
◦ · · · ◦ wA,a′

l
, wA,A′ = wA,a′

1
◦ · · · ◦ wA,a′

l
.
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Corollary 7.5. For every molecule (R, F, T ) of SS,

(a) wR∪F ∪T,T and wR∪F ∪T,T are injective,
(b) wR∪F ∪T,F and wR∪F ∪T,F are surjective.

7.2. Labeling orbits

The purpose of this section is to provide the groundwork for proving that the objects 
that will be introduced in Section 7.3 are well-defined. Our main task will be to specify 
canonical representatives for orbits supported on a given molecule, in order for Equation 
(6) to induce a well-defined function between sets of orbits. The reader wishing to acquire 
a general view of our setup without delving into technicalities may skip this section with 
no harm.

Again, we consider throughout a G-semimatroid S defined by an action on S =
(S, C, rk), and we assume translativity.

Assumption-Notation 7.6. For this section we fix a molecule m := (R, F, T ) of SS and a 
linear extension ≺ of the partial order defined by inclusion on 2F , the set of subsets of 
F .3 (In particular, I ⊆ I ′ ⊆ F implies I � I ′.)

Definition 7.7. We choose representatives X(1)
R , . . . , X(kR)

R of the orbits in �R�C/G and 
extend ≺ to a total order on the index set {(i, I) | i = 1, . . . , kR, I ∈ 2F } via

(i, I) ≺ (i′, I ′) ⇔
{

i < i′,

or i = i′ and I ≺ I ′.
(8)

Moreover, choose and fix an element xf ∈ f for every f ∈ F . Then, for all F ′ ⊆ F

define XF ′ = {xf | f ∈ F ′}.

We now can recursively define the blocks of an ordered partition of �R ∪ F �C/G as 
follows.

Definition 7.8. Set Y (1,∅) := {G(X(1)
R ∪XF )}, and for each (i, I) � (1, ∅) let

Y (i,I) :=
{
O ∈ �R ∪ F �C

G

∣∣∣∣∣ (i) O /∈
⋃

(j,J)≺(i,I) Y (j,J)

(ii) X
(i)
R ∪XF \I ⊆ Y for some Y ∈ O

}
.

Choose an enumeration

Y (i,I) = {O1, . . . ,Oh(i,I)}

3 E.g., represent the elements of 2F as ordered zero-one-tuples and take the lexicographic order.
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thereby defining the numbers h(i,I) (and setting h(i,I) = 0 if Y (i,I) = ∅).

Remark 7.9. The sets Y (i,I) do partition �R ∪ F �C/G. First, (i) ensures that they have 
trivial intersections. Moreover, for every O ∈ �R ∪ F �C/G consider the unique i with 
X

(i)
R ⊆ Y for some Y ∈ O. Now let I be ≺-minimal such that the expression in part (ii) 

holds, and we have O ∈ Y (i,I).

Remark 7.10. Let O ∈ Y (i,I). If XF \J ⊆ Y for some Y ∈ O then J  I. In particular, 
J � I implies XF \FJ

� Y for all Y ∈ O.

Now we are ready to define representatives for orbits in �R ∪ F �C/G.

Definition 7.11. Define the set

ZR,F := {(i, I, j) | i = 1, . . . , kR; I ∈ 2F ; j = 1, . . . , h(i,I)}

and consider on it the total ordering � given by

(i, I, j) � (i′, I ′, j′) ⇔
{

(i, I) ≺ (i′, I ′) or
(i, I) = (i′, I ′) and j < j′.

For every (i, I, j) ∈ ZR,F consider the corresponding orbit Oj ∈ Y (i,I) and choose a 
representative Y (i,I,j)

R∪F of Oj with

X
(i)
R ∪XF \I ⊆ Y

(i,I,j)
R∪F ∈ Oj (9)

(such a representative exists by requirement (2) of Definition 7.8).

Lemma 7.12. We have Y (i,I,j)
R∪F ∩XF = XF \I .

Proof. Let J be such that Y (i,I,j)
R∪F ∩XF = XF \J . Then J ⊆ I by Equation (9). Moreover, 

if J � I then J ≺ I, a contradiction to Remark 7.10. Hence I = J as desired. �
For each F ′ ⊆ F we now fix representatives of the orbits in �R ∪ F ′�C/G.

Definition 7.13. Given F ′ ⊆ F , for every O ∈ �R ∪ F ′�C/G let

z(O) := min� {z ∈ ZR,F | O ≤ GY z
R∪F in CS}

and let Y O
R∪F ′ ∈ O be the (unique) representative with

Y O
R∪F ′ ⊆ Y

z(O)
R∪F .
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With these choices, let

ŵR∪F,F \F ′ : �R ∪ F ′�C/G → �R ∪ F �C/G

O �→ G(Y O
R∪F ′ ∪XF \F ′). (10)

Lemma 7.14. Let F ′′ ⊆ F ′ ⊆ F . Then

(a) for every O ∈ �R ∪ F ′�C/G

Y
z(O)

R∪F = Y O
R∪F ′ ∪XF \F ′ ;

(b) for every O ∈ �R ∪ F ′′�C/G

Y
G(Y O

R∪F ′′ ∪XF ′\F ′′ )
R∪F ′ = Y O

R∪F ′′ ∪XF ′\F ′′ .

(c) Furthermore,

ŵR∪F,F \F ′ ◦ ŵR∪F ′,F ′\F ′′ = ŵR∪F,F \F ′′ .

Proof. In this proof, given any O ∈ �R ∪ F ′�C/G let us for brevity call Z (O) the set 
over which the minimum is taken in Definition 7.13 in order to define z(O).

(a) It is enough to show that XF \F ′ ⊆ Y
z(O)

R∪F . In order to prove this, we consider

Y ′ := (Y z(O)
R∪F \X ′) ∪XF \F ′

where X ′ ∈ �F \F ′�C is defined by X ′ ⊆ Y
z(O)

R∪F (notice that |X ′| = |XF | since Y z(O)
R∪F ∈

�R ∪ F �C and the action is translative). The set Y ′ is central by Lemma 7.3.(a), 
because rk(Y z(O)

R∪F ′) = rk(Y z(O)
R∪F \X ′) + |X ′|. Moreover, GY ′ ≥ O in CS since Y O

R∪F ⊆
Y ′.
If XF \F ′ ⊆ Y

z(O)
R∪F , then Y ′ = Y

z(O)
R∪F and we are done. We will prove that if this is not 

the case, then z(O) 
= min Z (O), reaching a contradiction. Suppose then XF \F ′ �

Y
z(O)

R∪F , and write z(O) = (i, I, j). By Lemma 7.12, we have I = {f | xf /∈ Y
z(O)

R∪F }. 
Hence, setting

IY ′ := {f | xf /∈ Y ′}

we have that IY ′ = I ∩ F ′ ⊆ I, where the last containment is strict (otherwise 
Y ′ = Y

z(O)
R∪F , hence XF \F ′ ⊆ Y

z(O)
R∪F , contrary to our assumption). By definition, 

IY ′ � I implies IY ′ ň I. Moreover, for z′ = (i, I ′, j′) defined by GY ′ = Oj′ ∈ Y (i,I′)

we have in fact by Remark 7.10 that I ′ � IY ′ . Therefore, I ′ � IY ′ ň I. This implies 
that z′ = (i, I ′, j′) � (i, I, j) = z(O) and z′ 
= z(O). Thus, GY z′

R∪F ∈ Z (O) but z′

strictly precedes z(O), and we reach the announced contradiction.
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(b) Let O be as in the claim, and set U := G(Y O
R∪F ′′ ∪XF ′\F ′′). Then O ≤ U in CS, thus 

Z (O) ⊇ Z (U) and therefore z(O) � z(U). Now, since Y z(O)
R∪F = Y O

R∪F ′′ ∪XF \F ′′ by 

part (a), we see that U ≤ GY
z(O)

R∪F in CS, thus z(U) �z(O). In summary, z(U) = z(O)
and, as a subset of Y O

R∪F ′′∪XF \F ′′ , we see that Y U
R∪F ′ = Y O

R∪F ′′∪XF ′\F ′′ as claimed.
(c) For every O ∈ �R ∪ F ′′�C/G we compute

ŵR∪F,F \F ′ ◦ ŵR∪F ′,F ′\F ′′(O) = ŵR∪F,F \F ′(G(Y O
R∪F ′′ ∪XF ′\F ′′))

= G(Y G(Y O
R∪F ′′ ∪XF ′\F ′′ )

R∪F ′ ∪XF \F ′) = G(Y O
R∪F ′′ ∪XF \F ′′) = ŵR∪F,F \F ′′(O),

where in the third equality we used (b) and all other equalities hold by definition. �
Corollary 7.15. For every F ′ ⊆ F , the function ŵR∪F,F \F ′ is injective.

Proof. Let f1, . . . , fm be an enumeration of the elements of F \ F ′ and for every j =
1, . . . , m set Fj := F ′ ∪ {f1, . . . , fj}. Then by Lemma 7.14.(c)

ŵR∪F,F \F ′ = ŵR∪F,fm
◦ ŵR∪Fm−1,fm−1 · · · ◦ ŵR∪F2,f1

and each of the functions on the right-hand side is injective because it is an instance of 
the function described in Equation (7). The latter is used as a left-inverse to prove the 
surjectivity claim of Lemma 7.3.(b) and, as such, is injective. �
Definition 7.16. Given F ′ ⊆ F , T ′ ⊆ T , as a representative of the orbit O ∈ �R ∪ F ′ ∪
T ′�C/G we choose

Y O
R∪F ′∪T ′ := w−1

R∪F ′∪T ′,T ′(Y
wR∪F ′∪T ′,T ′ (O)

R∪F ′ ), (11)

and we let Y O
T ′ := Y O

R∪F ′∪T ′ \ Y
wR∪F ′∪T ′,T ′ (O)

R∪F ′ .

Remark 7.17. In order to prove that Y O
R∪F ′∪T ′ is well defined, we have to show that the 

right-hand side of Equation (11) is not empty; uniqueness will then follow from injectivity 
of wR∪F ′∪T ′,T ′ (see Corollary 7.5). To see this, it is enough to notice that the function 
wR∪F ′∪T ′,T ′ is onto when restricted to wR∪F ′∪T ′,T ′(O): in fact, the latter is by definition 
wR∪F ′∪T ′,T ′(O), hence part of the image of wR∪F ′∪T ′,T ′ .

Example 7.18. We go back to our running example (Example 1.7), for which we depict in 
Fig. 12 a piece of the associated periodic arrangement, and consider there the molecule 
(∅, F, ∅), where F = {fa, fb} is the set of orbits of the diagonal lines (drawn orange and 
green in the web version).

Choose representatives xa = a0 for the “northwest to southeast” (orange) lines, xb =
b0 for the “southwest to northeast” (green) lines and denote their (0, k)-translate by ak

(resp. bk).
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Fig. 12. An illustration for Example 7.18.

By Definitions 7.8 and 7.11, we get the following partition of �F �C/G,

Y (1,∅) = {O0}, Y (1,{2}) = {O1,O2,O3}, Y (1,{1}) = Y (1,{1,2}) = ∅,

with representatives

Y
(1,∅,1)

F = {a0, b0}, Y
(1,{2},1)

F = {a0, bk1}, Y
(1,{2},2)

F = {a0, bk2}, Y
(1,{2},3)

F = {a0, bk3},

where k1 
= 0 mod 4; k2 
= 0, k1 mod 4; and k3 
= 0, k1, k2 mod 4. Without loss of 
generality, one could assume k1 = 1, k2 = 2, k3 = 3, and we get the situation depicted 
in Fig. 12. Moreover, by Definition 7.13 we get Y Oa

a = a0 (where �fa�C/G = {Oa}), 
Y Ob

b = b0 (where �fb�C/G = {Ob}), and Y ∅
∅ = ∅ where �∅�C/G = {∅}.

Thus,

ŵF,F (∅) = ŵF,fb
(ŵfa,fa

(∅)) = ŵF,fa
(ŵfb,fb

(∅)) = G(a0b0) = O0.

Notice that an accurate choice of representatives is of the essence. For example, choos-
ing Y Oa

a = a0 and Y Ob

b = b1 as representatives of Oa, resp. Ob,

im ŵF,fb
= G(a0xb) = G(a0b0) 
= G(a0b1) = G(xab1) = im ŵF,fa

. �
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Lemma 7.19. For every F ′ ⊆ F and T ′ ⊆ T ,

ŵR∪F,F \F ′ ◦ wR∪F ′∪T ′,T ′ = wR∪F ∪T ′,T ′ ◦ ŵR∪F ∪T ′,F \F ′ .

Proof. We check equality on every O ∈ �R ∪ F ′ ∪ T ′�C . On the right-hand side, using 
the definitions (Definition 7.1 and Definition 7.13), we find

wR∪F ∪T ′,T ′(ŵR∪F ∪T ′,F \F ′(O))

= wR∪F ∪T ′,T ′(G(Y O
R∪F ′∪T ′ ∪XF \F ′)) = G((Y O

R∪F ′∪T ′ \ ∪T ′) ∪XF \F ′)

while on the left-hand side we compute

ŵR∪F,F \F ′(wR∪F ′∪T ′,T ′(O))

= G(Y wR∪F ′∪T ′,T ′ (O)
R∪F ′ ∪XF \F ′) = G((Y O

R∪F ′∪T ′ \ ∪T ′) ∪XF \F ′)

where the last equality uses Definition 7.16. �
7.3. Orbit count for molecules

Definition 7.20. Given a molecule (R, F, T ) of a ranked triple, define the following 
(boolean) poset

P [R, F, T ] := {(F ′, T ′) | F ′ ⊆ F, T ′ ⊆ T} with order

(F ′, T ′) ≤ (F ′′, T ′′) ⇔ F ′ ⊆ F ′′, T ′ ⊇ T ′′.

Thus, the maximal element is (F, ∅) and the minimal element (∅, T ).

Definition 7.21. Let S be a translative G-semimatroid and m := (R, F, T ) be a molecule 
of SS. By composing the above functions we obtain, for every (F ′, T ′) ∈ P [R, F, T ], 
a function

fm
(F ′,T ′) := ŵR∪F,F ′ ◦ wR∪F ′∪T ′,T ′ . (12)

Remark 7.22. Explicitly (cf. proof of Lemma 7.19),

fm
(F ′,T ′) : �R ∪ F ′ ∪ T ′�C/G → �R ∪ F �C/G,

O �→ G((Y O
R∪F ′∪T ′ \ ∪T ′) ∪XF \F ′).

Remark 7.23. The functions fm
(F ′,T ′) are injective by Corollary 7.5 and Corollary 7.15. 

In particular, with A := R ∪ F ′ ∪ T ′,

mS(A) =
∣∣∣∣�R ∪ F ′ ∪ T ′�C

G

∣∣∣∣ = | im fm
(F ′,T ′)|.
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Fig. 13. The Hasse diagram of the poset P [∅, {a, b}, ∅] in the context of Example 1.7 and, on the right-hand 
side, the associated diagram of sets.

Example 7.24. In the context of our running example, Example 1.7, we have that m :=
(∅, {a, b}, ∅) is a molecule of SS. Fig. 13 depicts the associated poset and maps. �

Lemma 7.25. Let S be translative and consider a molecule m := (R, F, T ) of SS.

(a) For (F ′, T ′), (F ′′, T ′′) ∈ P [R, F, T ] we have

im(fm
(F ′,T ′)∧(F ′′,T ′′)) = im(fm

(F ′∩F ′′,T ′∪T ′′))

= im fm
(F ′,T ′) ∩ im fm

(F ′′,T ′′).

(b) In particular,

im fm
(F ′,T ′) ⊆ im fm

(F ′′,T ′′) if (F ′, T ′) ≤ (F ′′, T ′′).

(c) The function

mS : P [R, F, T ] → N, (F ′, T ′) �→ mS(R ∪ F ′ ∪ T ′)

is (weakly) increasing.

Proof. Part (b) is an immediate consequence of (a) and by Remark 7.23 it implies (c). 
Thus it is enough to prove part (a), where the first equality is the definition of greatest 
lower bound in P [R, F, T ]. We turn then to the second equality and consider the following 
diagram, where we write F ∗ := F ′ ∩ F ′′ and T ∗ := T ′ ∪ T ′′.

�R∪F ∗∪T ∗�C

G
�R∪F ′∪T ′�C

G

�R∪F ′′∪T ′′�C

G
�R∪F �C

G

ŵR∪F ′,F ′\F ′′ ◦wR∪F ∗∪T ∗,T ′′\T ′

fm
(F ′,T ′)

ŵR∪F ′′,F ′′\F ′

◦wR∪F ∗∪T ∗,T ′\T ′′

fm
(F ′′,T ′′)

fm
(F ′∩F ′′,T ′∪T ′′)
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This diagram is commutative by Lemma 7.19 and Remark 7.4, and we conclude 
that im(fm

(F ′∩F ′′,T ′∪T ′′)) ⊆ im fm
(F ′,T ′) ∩ im fm

(F ′′,T ′′). For the reverse inclusion let O ∈
im fm

(F ′,T ′) ∩ im fm
(F ′′,T ′′) and choose O′ ∈ �R∪F ′∪T ′�C

G , O′′ ∈ �R∪F ′′∪T ′′�C

G such that 
O = fm

(F ′,T ′)(O′) = fm
(F ′′,T ′′)(O′′). In particular,

Y O = Y O′ \ Y O′
T ′ ∪XF \F ′ = Y O′′ \ Y O′′

T ′′ ∪XF \F ′′ .

Thus, the set

Ŷ := (Y O′ \ Y O′
T ′ ) ∩ (Y O′′ \ Y O′′

T ′′ )

is a subset of Y O, hence it is a central set and generates an orbit

Ô := GŶ ∈ �R ∪ (F ′ ∩ F ′′)�C

G
.

Since Y O = Ŷ ∪XF \(F ′∩F ′′), Lemma 7.14.(a) implies z(O) = z(Ô′), hence Ŷ = Y Ô by 
definition of preferred representatives.

Now notice that Y Ô ∪ Y O′
T ′ is central because it is a subset of Y O′ . Similarly, also 

Y Ô ∪ Y O′′
T ′′ ⊆ Y O′′ is central. Moreover, rk(Y Ô ∪ Y O′

T ′′ ) = rk(Y Ô) = rk(Y Ô ∪ Y O′
T ′ ) and 

thus, by (CR1) (see Definition 1.1), Y Ô ∪ Y O′
T ′ ∪ Y O′′

T ′′ is central, and we can compute

fm
(F ′∩F ′′),(T ′∪T ′′)(G(Y Ô ∪ Y O′

T ′ ∪ Y O′′
T ′′ )) = G(Y Ô ∪XF \(F ′∩F ′′)) = GY O = O

proving O ∈ im fm
(F ′∩F ′′),(T ′∪T ′′), as was to be shown. �

Definition 7.26. Let m := (R, F, T ) be a molecule of SS. For every (F ′, T ′) ∈ P [R, F, T ]
define the sets

Zm(F ′, T ′) := im fm
(F ′,T ′), Z

m(F ′, T ′) := Zm(F ′, T ′) \
⋃

(F ′′,T ′′)<(F ′,T ′)

Zm(F ′′, T ′′),

and let

nm(F ′, T ′) := |Zm(F ′, T ′)|.

The following equality holds then by Lemma 7.25.(a) and Remark 7.23.

mS(R ∪ T ′ ∪ F ′) = | im fm
(F ′,T ′)| =

∑
p≤(F ′,T ′)

nm(p) (13)

Lemma 7.27. If S is translative, then for every molecule m := (R, F, T ) in SS we have

ρ(R, R ∪ F ∪ T ) = nm(F, ∅).
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Proof. Let (R, F, T ) be a molecule in SS and in this proof let us write P for P [R, F, T ]. 
We start by rewriting the expression in Definition 1.21 as a sum over elements of P .

ρ(R, R ∪ F ∪ T ) := (−1)|T | ∑
R⊆A⊆R∪F ∪T

(−1)|R∪F ∪T |−|A|mS(A)

=
∑

F ′⊆F

∑
T ′⊆T

(−1)|F \F ′|+|T ′|mS(R ∪ F ′ ∪ T ′)

The poset P has rank function rk(F ′, T ′) = |F ′| + |T \ T ′|, and by Möbius inversion 
(where we call μP the Möbius function of P ) we can write explicitly the value of nm(F, ∅)
from Equation (13).

nm(F, ∅) =
∑

(F ′,T ′)∈P

μP ((F ′, T ′), (F, ∅))mS(R ∪ F ′ ∪ T ′)

=
∑

(F ′,T ′)∈P

(−1)|F |+|T |−|F ′|−|T \T ′|mS(R ∪ F ′ ∪ T ′)

=
∑

F ′⊆F

∑
T ′⊆T

(−1)|F \F ′|+|T ′|mS(R ∪ F ′ ∪ T ′)

= ρ(R, R ∪ F ∪ T ) �
Since the function nm is – by definition – never negative, as an easy corollary we 

obtain the following.

Proposition 7.28. If S is translative, then the pair (SS, mS) satisfies property (P) of 
Definition 1.21 (and is thus called “pseudo-arithmetic”).

Definition 7.29. Fix A ⊆ ES. Recall the poset PS from Definition 3.21, the function κS

from Definition 3.27, and define

ηA : CS → N, ηA(O) := |{a ∈ A | a ≤PS
κS(O)}|.

Proposition 7.30. Let (R, ∅, T ) be a molecule. Then,

∑
L⊆T

ρ(R ∪ L, R ∪ T )x|L| =
∑

O∈�R�C/G

xηT (O).

Remark 7.31. Notice that, in terms of the poset PS,

ηT (O) = |{t ∈ T | κS(t) ≤PS
κS(O)}|.

Thus, in the representable case we recover the number defined in [5, Section 6].
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Proof of Proposition 7.30. Consider a molecule m := (R, ∅, T ). First notice that, for 
every L ⊆ T , mL := (R ∪ L, ∅, T \ L) is also a molecule, and that by Equation (12) we 
have immediately

fm
(∅,L∪L′) = fm

(∅,L) ◦ fmL

(∅,L′)

for every L′ ⊆ T \L. Therefore, with Lemma 7.25.(b) and Lemma 7.27 we can write the 
following

ρ(R ∪ L, R ∪ T ) =

∣∣∣∣∣∣�R ∪ L�C/G

∖ ⋃
t∈T \L

im fmL

(∅,{t})

∣∣∣∣∣∣
=

∣∣∣∣∣∣im fm
(∅,L)

∖ ⋃
t∈T \L

im fm
(∅,L∪{t})

∣∣∣∣∣∣ = |Zm(∅, L)|

where the second equality follows from injectivity of the functions fm and fmL .

Claim. For all O ∈ �R�C/G, if O ∈ Z
m(∅, L) then

{t ∈ T | t ≤CS
κS(O)} = L.

In particular, we have that ηT (O) = |L|.
Proof. Let O ∈ Z

m(∅, L). Then for every t ∈ T we have O ∈ im fm
(∅,t) if and only if there 

is a representative XR of O and some xt ∈ t such that XR ∪ xt ∈ C. Since we 
know that rk(R∪ t) = rk(R), the latter is equivalent to saying that xt ∈ clC(XR), 
i.e., t ≤ κS(O) in CS. Now, by Lemma 7.25.(a) we have

im fm
(∅,L) =

⋂
t∈L

im fm
(∅,t)

and thus we see that t ≤ κS(O) if and only if t ∈ L. �
We can now return to the statement to be verified and write∑

L⊆T

ρ(R ∪ L, R ∪ T )x|L| =
∑
L⊆T

|Zm(∅, L)|x|L| =
∑
L⊆T

∑
O∈Z

m(∅,L)

x|L|

=
∑

O∈�R�C/G

xηT (O)

where the last equality uses the Claim we just proved. �
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8. Almost-arithmetic actions

We now turn to what we call “almost-arithmetic” actions (see Definition 3.12). The 
name is reminiscent of the fact that one additional condition on top of translativity (i.e., 
normality) already ensures that the multiplicity function satisfies “almost all” of the 
requirements for arithmetic matroids (see Definition 1.21): this is the gist of the main 
result of this section (Proposition 8.6).

We keep the notation S to signify a G-semimatroid arising from an action on a 
semimatroid S = (S, C, rk).

Lemma 8.1. Let S be almost-arithmetic and let X ∈ C. Then

(a) for all X ′ ∈ �X�C we have stab(X) = stab(X ′),
(b) if x0 ∈ X and rk(X \ x0) = rk(X), then stab(X) = stab(X \ x0).

Proof. Item (a) is an immediate consequence of normality. In the claim of item (b), 
the inclusion stab(X) ⊆ stab(X \ x0) is evident. For the reverse inclusion, consider 
g ∈ stab(X \ x0). Then X \ x0 ⊆ gX ∩X, which justifies the first inequality in

rk(X \ x0) ≤ rk(gX ∩X) ≤ rk(X), (∗)

where the second inequality holds by (R2). Since by assumption rk(X) = rk(X \ x0), 
equality must hold throughout (∗) above, proving that rk(X) = rk(gX ∩X). By (CR1), 
the latter implies X ∪ g(X) ∈ C and, in particular, {x0, g(x0)} ∈ C. Translativity of the 
action then ensures g ∈ stab(x0) and thus g ∈ stab(X). �
Definition 8.2. Given X1, . . . , Xk ∈ C define

θX1,...,Xk
: G →

k∏
i=1

Γ(Xi), g �→ ([g]X1 , . . . , [g]Xk
).

Remark 8.3. By Lemma 8.1.(a), in an almost-arithmetic G-semimatroid this map does 
not depend on the choice of the Xi in �Xi�C for i = 1, . . . , k.

Lemma 8.4. Given an almost-arithmetic G-semimatroid S, consider A ⊆ ES and 
a1, . . . , ak ∈ ES with rk(A ∪ {a1, . . . , ak}) = rk(A) + k. For every choice of X ∈ �A�C

and of xi ∈ ai, i = 1, . . . , k,

mS(A ∪ {a1, . . . , ak})
mS(A) = [Γ(X)×

k∏
i=1

Γ(xi) : θX,x1,...,xk
(G)]
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Proof. Let A and a1, . . . , ak be as in the statement and, in this proof, let us write 
A′ := A ∪{a1, . . . , ak}. Since the action is translative, with Lemma 7.3.(a) we obtain the 
following equality of sets.

�A′�C = �A�C ×
k∏

i=1
�ai�C

The projection

pA : �A′�C → �A�C , Y �→ Y \
k⋃

i=1
ai

maps each of the mS(A′) orbits of the action of G on �A′�C to one of the mS(A) orbits of 
the action on �A�C. Thus, it is enough to prove that the number of �A′�C-orbits mapped 
to a fixed �A�C-orbit equals the right-hand side of the equation in the claim.

To this end, choose X ∈ �A�C and consider the set of orbits in �A′�C which project 
to GX, i.e., the orbits of the action of G on

p−1
A (GX) = {(g(X), x1, . . . , xk) | g ∈ G, ∀i = 1, . . . , k : xi ∈ �ai�C}.

Notice that for every a ∈ ES and every x ∈ a we have an equality a = Gx = �a�C and 
a natural bijection of this set with Γ(x). In fact, any choice of xi ∈ �ai�C for i = 1, . . . , k
and X ∈ �A�C fixes a bijection p−1

A (GX) → Γ(X) ×
∏k

i=1 Γ(xi), and under this bijection 
the action of G on the right-hand side is given by composition with elements of the 
subgroup θX,x1,...,xk

(G) defined above. Therefore we have a bijection

p−1
A (GX)/G → (Γ(X)×

k∏
i=1

Γ(xi))/θX,x1,...,xk
(G).

By Lemma 8.1.(a) and Remark 8.3, the group on the right hand side does not depend 
on the choice of X ∈ �A�C and xi ∈ ai. This concludes the proof. �
Lemma 8.5. The multiplicity function associated to an almost-arithmetic G-semimatroid 
S satisfies

mS(R)mS(R ∪ F ∪ T ) = mS(R ∪ T )mS(R ∪ F )

for every molecule (R, F, T ) of SS.

Proof. We choose XR∪T ∈ �R ∪ T �C and let XR := XR∪T \ ∪T , so that XR ∈ �R�C . 
Moreover, write F = {f1, . . . , fk} and choose xi ∈ fi for all i = 1, . . . , k. From Lemma 8.4
we obtain the following equalities.
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m(R ∪ F )
m(R) =

[
Γ(XR)×

k∏
i=1

Γ(xi) : θXR,x1,...,xk
(G)

]
m(R ∪ T ∪ F )

m(R ∪ T ) =
[
Γ(XR∪T )×

k∏
i=1

Γ(xi) : θXR∪T ,x1,...,xk
(G)

]
Since rk(R ∪ T ) = rk(R), by Lemma 8.1.(b) we have stab(XR) = stab(XR∪T ), so (e.g., 
by inspection of Definition 3.15) the two right-hand sides are equal. �
Proposition 8.6. If S is an almost-arithmetic action on a semimatroid, then mS satisfies 
properties (P), (A.1.2) and (A2) with respect to SS.

Proof. This follows combining Lemma 7.28, Lemma 8.4 and Lemma 8.5. �
We close the section on almost-arithmetic actions with a proposition about molecules 

of the form (R, F, ∅), as a counterpart to Proposition 7.30 above.

Definition 8.7. Let S be an almost-arithmetic G-semimatroid. Given a molecule m :=
(R, F, ∅) of SS, choose an orbit O ∈ �R�C/G and fix a representative XR ∈ O. For every 
F ′ ⊆ F let X (F ′) ⊆ �R ∪ F ′�C/G denote the subset consisting of orbits of the form GY

with XR ⊆ gY for some g ∈ G, i.e.,

X (F ′) := (�R ∪ F ′�C/G)≥O ⊆ CS.

Fix a numbering of the elements of F and, recalling Definition 7.26, let

Z̃m
F (F ′) := Z

m(F ′, ∅) ∩ X (F ).

The sets {Z̃m
F (F ′)}F ′⊆F partition X (F ). Thus, for every O ∈ X (F ) we can consider the 

unique F ′ ⊆ F for which O ∈ Z̃m
F (F ′) and define the number

ι(O) := |F | − |F ′|.

Lemma 8.8. Let S be an almost-arithmetic G-semimatroid and let m := (R, F, ∅) be a 
molecule of SS. Then for all F ′ ⊆ F we have

|Z̃m
F (F ′)| = ρ(R, R ∪ F ′)

mS(R) .

In particular, this cardinality does not depend on the choice of the representative XR and 
of the numbering of the elements of F .

Proof. By construction, |Zm(F ′, ∅) ∩X (F )| =
∑

(F ′′,∅)≤(F ′,∅) |Z̃m
F (F ′′)|. Hence (following 

the notation of [34], to which we refer for basics about Möbius transforms), |Z̃m
F (F ′)| =

(μΨ)(F ′, ∅), i.e., the evaluation at (F ′, ∅) of the Möbius transform of the function
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Ψ : P [R, F ′, ∅] → Z, (F ′′, ∅) �→ |Zm(F ′′, ∅) ∩ X (F )| = mS(R ∪ F ′′)/mS(R)

(where the equality holds by Lemma 8.4). By the same computation as in the proof of 
Lemma 7.27, the Möbius transform (μΨ) then satisfies

(μΨ)(F ′, ∅) = ρ(R, R ∪ F ′)/mS(R)

whence the claim. �
Proposition 8.9. Let S be almost-arithmetic and let m := (R, F, ∅) be a molecule of SS. 
Then, with the notations of Definition 8.7,

∑
F ′⊆F

ρ(R, R ∪ F ′)
mS(R) x|F \F ′| =

∑
O∈X (F )

xι(O).

Proof. The proof reduces to the following direct computation, where the first equality 
is Lemma 8.8 and the second holds by the discussion after Definition 8.7.∑

F ′⊆F

ρ(R, R ∪ F ′)
mS(R) x|F \F ′| =

∑
F ′⊆F

|Z̃m
F (F ′)|x|F \F ′|

=
∑

F ′⊆F

∑
O∈Z̃m

F (F ′)

x|F \F ′| =
∑

O∈X (F )

xι(O) �

9. Arithmetic actions

In this section we assume that the actions under consideration are arithmetic. A glance 
back at Definition 3.18 will remind the reader that this assumption is much more re-
strictive (and more algebraic in nature) than almost-arithmetic.

Lemma 9.1. Let S be an arithmetic G-semimatroid and consider A ⊆ ES. Then, for any 
two X, Y ∈ �A�C,

(i) Γ(X) = Γ(Y ), (ii) ΓX = ΓY .

Proof. Fix two sets X, Y ∈ �A�C as in the claim. By Lemma 8.1.(a), stab(X) = stab(Y ), 
hence (i) follows immediately. Moreover, since every arithmetic action is translative, X
and Y contain exactly one element xa resp. ya of every orbit in A: in fact, X = {xa |
a ∈ A}, Y = {ya | a ∈ A}. In order to prove (ii), we recall Definition 3.15 and compute

ΓX def==
∏

a∈A Γ(xa) =
∏

a∈A Γ(ya) def== ΓY ,

where the equality in the middle is part (i) applied to X = {xa}, Y = {yb}. �
In particular, for arithmetic actions we can simplify Definition 3.15 as follows.
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Definition 9.2. Given A ∈ C, choose X ∈ �A�C and write

ΓA := ΓX , Γ(A) := Γ(X).

By Lemma 9.1, these are well-defined and independent from the choice of X.

Lemma 9.3. Let S be an arithmetic G-semimatroid, consider A ∈ C and pick any two 
X, Y ∈ �A�C. Then,

(i) W (X) and W (Y ) are conjugated subgroups of ΓA.
(ii) mS(A) = [W (X) : hX(G)]

Proof.

(i) For every a ∈ A choose ga ∈ G with xa = ga(ya); with this, define the A-tuple 
γY X := ([ga])a∈A ∈ ΓA. We have immediately

(∗) X = γY X .Y , hence (∗∗) γY X ∈ W (Y ).

Claim. W (X) = γY XW (Y )γ−1
Y X , thus W (X) and W (Y ) are conjugate in ΓA.

Proof. By symmetry, it is enough to show γY XW (Y )γ−1
Y X ⊆ W (X). Let, thus, 

γ ∈ W (Y ). For arithmetic actions multiplication is well defined in the group 
W (Y ), thus (∗∗) implies γY Xγ ∈ W (Y ). With this,

(γY XγγY X
−1).X (∗)= (γY Xγ).Y ∈ C

and therefore (γY XγγY X
−1) ∈ W (X). �

(ii) The choice of X fixes a function

bX : �A�C → W (X), {gxx | x ∈ X} �→ ([gx]x)x∈X (14)

which is bijective by definition of W (X). Moreover, for every g ∈ G and Y ∈ �A�C ,

bX(gY ) = hX(g)bX(Y ). (15)

Thus bX induces a bijection of sets �A�C/G → W (X)/hX(G) mapping an orbit GY

to the coset hX(G)bX(Y ). We now compute

mS(A) = |�A�C/G| = |W (X)/hX(G)| = [W (X) : hX(G)]. �
Definition 9.4. Let S be an arithmetic G-semimatroid, and consider A ∈ C. Choose 
X ∈ �A�C and x0 ∈ X. The projection ΓX → ΓX\x0 induces a group homomorphism

wX,x0 : W (X) → W (X \ x0), ([gx]x)x∈X �→ ([gx]x)x∈X\x0 .
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Remark 9.5. Let S be arithmetic. Consider A ∈ C and a0 ∈ A, choose X ∈ �A�C , and 
let x0 ∈ a0 ∩X. The following diagram is commutative

�A�C bX−−−−→ W (X) hX←−−−− G

wA,a0

⏐⏐� wX,x0

⏐⏐� ∥∥∥
�A \ a0�C bX\x0−−−−→ W (X \ x0)

hX\x0←−−−− G

(16)

where the maps b∗ are defined in Equation (14).

9.1. Arithmetic matroids

Theorem C follows from the next lemma, which proves that arithmetic actions induce 
the last of the defining properties of arithmetic matroids which was not fulfilled by 
almost-arithmetic actions (Example 4.3 shows that this difference is nontrivial).

Lemma 9.6. Let S be a G-semimatroid associated to an arithmetic action. Then mS

satisfies property (A.1.1) of Definition 1.21.

Proof. Consider A ∈ C and a0 ∈ A such that rk(A \ a0) = rk(A). Choose X ∈ �A�C and 
x0 ∈ a0 ∩X. Using Lemma 9.3.(ii) we have mS(A \ a0) = [W (X \ x0) : hX\x0(G)].

By Lemma 7.3, the condition on the ranks implies that wA,a0 is injective. Commu-
tativity of the left-hand side square in Diagram (16) implies that wX,x0 is injective. 
Therefore (using again Lemma 9.3) we can write

mS(A) = [W (X) : hX(G)] = [im(wX,x0) : hX\x0(G)].

Now the claim follows from multiplicativity of the index in the chain of subgroups 
hX\x0(g) ⊆ im(wX,x0) ⊆ W (X), which allows us to write

mS(A \ a0) = [W (X \ x0) : im(wX,x0)]mS(A)

proving in particular that mS(A) divides mS(A \ a0), as claimed. �
9.2. Matroids over rings

We now outline a link to the theory of matroids over rings. We will give a direct 
combinatorial interpretation of some matroids over Z arising from group actions on 
semimatroids (and, in particular, from toric arrangements).

With this in mind, from now we will let S denote an arithmetic G-semimatroid and 
consider the following condition.

(Cyc) For every e ∈ ES, Γ{e} is a cyclic group.
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Remark 9.7. An immediate consequence of (Cyc) is that, for every A ⊂ ES, the group 
ΓA is abelian. In particular, Lemma 9.3.(i) implies W (X) = W (Y ) and hX = hY for all 
X, Y ∈ �A�C .

Definition 9.8. Let S denote an arithmetic G-semimatroid. Then, for every A ⊆ ES and 
every a0 ∈ A we have the following canonical group homomorphisms.

(i) gA,a0 : Γ(A) → Γ(A \ a0), induced by the inclusion stab(A) ⊆ stab(A \ a0).
(ii) πA,a0 : ΓA → ΓA\a0 , the canonical projection along the a0-coordinate.

When (Cyc) holds and if A ∈ C, with Remark 9.7 we can set W (A) := W (X) and 
hA := hX (see Definition 3.15), where X is any element X ∈ �A�C . We then have more 
canonical homomorphisms.

(iii) wA,a0 : W (A) → W (A \a0), induced by πA,a0 and equal to the map of Definition 9.4
(see Remark 9.9.(a) below).

(iv) jA : Γ(A) → ΓA and j′
A : Γ(A) → W (A), induced respectively by h′

A and hA (see 
Remark 9.9.(b) below).

Remark 9.9.

(a) The maps wA,a0 defined in (iii) above should be regarded as the natural “enriched” 
version of their namesakes from Definition 7.1. In fact, as maps of sets, the two 
correspond via the natural bijections bA : �A�C → W (A) (cf. Equation (14)). More 
precisely the following diagram (of sets) commutes.

�A�C �A \ a0�C

W (A) W (A \ a0)

wA,a0

Definition 7.1

bA bA\a0

wA,a0

Definition 9.8.(iii)

(b) The homomorphisms jA and j′
A of Definition 9.8.(iv) are well defined and injective. 

In fact, since ker hA = ker h′
A = stab(A), both hA and h′

A factor uniquely by injective 
maps through the quotient q : G → Γ(A). We summarize with the following diagram.

G W (A)

Γ(A) ΓA

hA

q

h′
A

ι

jA

j′
A
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Definition 9.10. Given an arithmetic G-semimatroid S satisfying (Cyc) define, for every 
A ⊆ ES such that Ac ∈ C, an abelian group

MS(A) := ΓAc

/ im(h′
Ac).

Moreover, for every a0 ∈ ES let μA,a0 : MS(A) → MS(A ∪ a0) be the unique group 
homomorphism that makes the following diagram of short exact sequences commute.

0 Γ(Ac) ΓAc

MS(A) 0

0 Γ(Ac \ a0) ΓAc\a0 MS(A ∪ a0) 0

jAc

gAc,a0
πAc,a0 μA,a0

jAc\a0
(17)

Lemma 9.11. Let S be arithmetic, suppose that (Cyc) holds, and recall Definition 9.8. 
Then, for every A ⊆ ES and every a0 ∈ ES,

(i) gA,a0 is surjective with cyclic kernel;
(ii) πA,a0 is surjective with cyclic kernel;

(iii) μA,a0 is surjective with cyclic kernel.

Proof. Part (ii) is clear from (Cyc). Surjectivity of gA,a0 is also evident from the defi-
nition. With these preliminary remarks we can complete the diagram in Definition 9.10
with the kernels and cokernels of the vertical maps, obtaining the diagram in Fig. 14. We 
first check that the bottom row (dashed) is exact and thus we obtain coker(μA,a0) = 0. 
Then, the nine lemma implies that the top row is exact: since we know that ker(πAc,a0)
is cyclic, we can thus deduce cyclicity of ker(gAc,a0) and ker(μA,a0). This concludes the 
proof of (i) and (iii). �

Fig. 14. Diagram for the proof of Lemma 9.11.
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Lemma 9.12. Let S be arithmetic and suppose that (Cyc) holds. Then, for every A ⊆ ES

such that Ac ∈ C and every a0, b0 ∈ ES, the following is a pushout square.

MS(A) MS(A ∪ {a0})

MS(A ∪ {b0}) MS(A ∪ {a0, b0})

μA,a0

μA,b0 μA∪{a0},b0

μA∪{b0},a0

Proof. The morphism of short exact sequences defining the maps μ∗,∗ described in Di-
agram (17) can be fit together to a square of short exact sequences as follows, where 
for simplicity we write A1 := A ∪ {a0}, A2 := A ∪ {b0}, A3 := A ∪ {a0, b0}, so that the 
right-hand side square is indeed the square appearing in the claim.

0 Γ(Ac) ΓAc MS(A) 0

0 Γ(A1
c) ΓA1

c MS(A1) 0

0 Γ(A2
c) ΓA2

c MS(A2) 0

0 Γ(A3
c) ΓA3

c MS(A3) 0

By part (i) and (ii) of Lemma 9.11, by exactness of the rows and with Definition 9.10, the 
part of the diagram drawn with solid arrows satisfies the assumptions of Lemma 10.8, 
which allows us to conclude that the right-hand side square is a pushout square, as was 
to be shown. �
Proposition 9.13. Let S be a centered, arithmetic G-semimatroid satisfying (Cyc). Then 
MS is a representable matroid over Z.

Proof. This follows combining Lemma 9.11.(iii) and Lemma 9.12. �
Lemma 9.14. Let S be an arithmetic G-semimatroid such that all groups Γa are infinite 
cyclic. Then for all A ∈ C the rank of W (A) as a Z-module is

rankZ(W (A)) = rk(A)

Proof. Let F ⊆ A be a maximal independent set in A, i.e., one with |F | = rk(A). In 
particular, such an F satisfies |F | = rk(F ) and thus, by Lemma 7.3 and Definition 3.15

W (F ) = ΓF � Z|F |. (18)
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Moreover, since rk(F ) = rk(A), by Lemma 7.3 and Remark 9.9.(a), the group homomor-
phism wA,A\F : W (A) → W (F ) is injective and, by the additivity theorem for ranks, we 
have

rankZ(W (F )) = rankZ(W (A)) + rankZ

(
W (F )

wA,A\F (W (A))

)
(19)

Claim. rankZ

(
W (F )

wA,A\F (W (A))

)
= 0.

Proof. We have Γ(F ) = Γ(A) by Lemma 8.1.(i), and the subgroup j′
F (Γ(F )) ⊆ W (F ) is 

contained in wA,A\F (W (A)). We thus obtain an isomorphism

W (F )
wA,A\F (W (A)) �

W (F )/j′
F (Γ(F ))

wA,A\F (W (A))/j′
F (Γ(F )) .

The cardinality of W (F )/j′
F (Γ(F )) equals mS(F ) and is, in particular, finite. 

Thus both groups above are finite and have rank zero as Z-modules. �
With the claim we can conclude by the following computation (where we use Equation 
(18), Equation (19) and the definition of F ).

rankZ(W (A)) = rankZ(W (F )) = |F | = rk(A) �
Corollary 9.15. Let S be a centered arithmetic G-semimatroid such that all groups Γa

are infinite cyclic. Then for every A ∈ C the rank of MS(Ac) as a Z-module is

rankZ(MS(Ac)) = |A| − rk(A)

Proof. First, notice that Remark 9.9.(b) implies exactness of the sequence

0 Γ(A) W (A) W (A)/j′
A(Γ(A)) 0j′

A

Since the group W (A)/j′
A(Γ(A)) has finite cardinality (equal to mS(A)), the additivity 

theorem for ranks of abelian groups implies

rankZ(W (A)) = rankZ(j′
A(Γ(A))).

In particular, using the definitions, Lemma 9.14 and Remark 9.9 we conclude

rankZ(MS(Ac)) = rankZ(ΓA/jA(Γ(A)))

= rankZ(ΓA)− rankZ(jA(Γ(A))) = |A| − rk(A). �
Corollary 9.16. Let S be a centered arithmetic G-semimatroid such that all groups Γa

are infinite cyclic. Then the underlying matroid of MS is the dual to (ES, rk).
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Proof. By Remark 1.27 and Corollary 9.15 the rank function rk of the underlying matroid 
satisfies

rk(ES)− rk(A) = rankZ(MS(A)) = |Ac| − rk(Ac)

For all A ⊆ ES. Thus rk(Ac) = rk(A) −|Ac| −rk(ES), proving that (ES, rk) and (ES, rk)
are dual (see, e.g., [31, Proposition 2.1.9]). �

We end by describing a situation where the torsion elements of the modules MS can 
be interpreted combinatorially.

Proposition 9.17. Let S be a centered arithmetic G-semimatroid such that all groups Γa

are infinite cyclic and consider A ⊆ ES. If W (A) is a pure subgroup of ΓA, then

MS(A) � Z|Ac|−rk(A) ⊕W (A)/hA(G)

Proof. Consider the following diagram.

0 0 ker(ϕ)

0 Γ(A) ΓA MS(A) 0

0 W (A) ΓA L(A) 0

C(A) 0 coker(ϕ) 0

j′
A

jA

= ϕ

ε

By the snake lemma we have an isomorphism ker(ϕ) � W (A)/j′
A(Γ(A)). Moreover, 

exactness of the second row at L(A) implies that the last row is exact at coker(ϕ), and 
the latter is thus trivial. Summarizing, we have the following exact sequence.

0 W (A)/j′
A(Γ(A)) MS(A) L(A) 0

The purity assumption on W (A) means that L(A) is a free abelian group and implies 
that this sequence splits. Remark 9.9.(b) then shows j′

A(Γ(A)) = hA(G), proving the 
claimed isomorphism. �
Corollary 9.18. Recall Remark 1.27. With the assumptions of Proposition 9.17, the un-
derlying arithmetic matroid of MS is the dual to (ES, rk, mS).

Proof. After Corollary 9.16 we only have to show that mS(A) equals the cardinality of 
the torsion part of MS(ES \A), which is a direct consequence of Lemma 9.3.(ii). �
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Remark 9.19. The map bX of Equation (14) induces a bijection between �A�C/G and 
the group C(A) defined in the diagram for the proof of Proposition 9.17. We regard the 
group structure thus induced from C(A) as additional data that can be extracted from 
S. Recent results in the topology of toric arrangements [6, Example 7.3.2] show that 
this additional data has an algebraic-topological significance.

10. Tutte polynomials of group actions

In this section we study the Tutte polynomial associated to a group action on a 
semimatroid and, as an application, we extend to the generality of group actions on 
semimatroids (in particular, beyond the representable case) two important combinatorial 
interpretations of Tutte polynomials of toric arrangements.

Recall our standard setup, e.g., from Section 3. We let S denote the action of a group 
G on a finitary semimatroid S = (S, C, rk). Write L = L(S) for the geometric semilattice 
of flats of S, and let PS denote the quotient poset of L (see Definition 3.21). Moreover, 
recall the set CS of orbits of the action on C and the “underlying” locally ranked triple 
SS = (ES, C, rk)

We will make use of standard terminology about posets (see Section 5 for a review).

10.1. The characteristic polynomial of PS

Remark 10.1. Since G acts on L by rank-preserving maps, the poset PS is ranked. With 
slight abuse of notation we will call rk the rank function on PS, which satisfies

rk(p) = rk(xp) if p = Gxp.

We can thus define the characteristic polynomial of PS (e.g., following [34, §3.10]) as

χS(t) :=
∑

p∈PS

μPS
(0̂, p)tr−rk(p),

where r is the rank of SS and μS is the Möbius function of PS (notice that PS has a 
unique minimal element corresponding to the empty subset of ES).

Lemma 10.2. Let S be weakly translative. Then, for every x ∈ L, the intervals [0̂, Gx]
in PS and [0̂, x] in L are poset-isomorphic. In particular, intervals in PS are geometric 
lattices.

Proof. Choose xp ∈ L, set p := Gxp ∈ PS and consider any q ∈ [0̂, p]. Since q ≤PS
p, 

by definition there is xq ∈ q with xq ≤L xp.
Every other x′

q ∈ q with x′
q ≤L xp has the form x′

q = gxq for some g ∈ G. Then, for 
every atom xa of L with xa ≤L xq ≤L xp, gxa ≤L xp. In particular, for every s ∈ xa, 
{s, gs} ∈ C and by weak translativity rk{s, gs} = 1. Thus gxa ⊆ clC xa = xa and, by 
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symmetry, xa = gxa. This is true for all atoms xa ≤L xp and hence, because the interval 
[0̂, xp] is atomic, we have xq = x′

q.
Therefore the mapping

[0̂, p]PS
→ [0̂, xp]L, q �→ xq

is well-defined and order preserving. So is clearly its inverse

[0̂, xp]L → [0̂, p]PS
, x �→ Gx

and thus the two intervals are poset-isomorphic. �
Proof of Theorem F. Let us first consider some p ∈ PS with p > 0̂. By Hall’s theorem 
[34, Proposition 3.8.5] the number μPS

(0̂, p) is the reduced Euler characteristics of the 
“open interval” [0̂, p] \ {0̂, p}.

By Lemma 10.2, the interval [0̂, p] is a geometric lattice with set of atoms A(p), and 
thus it induces a matroid structure on the set ∪A(p) ⊆ ES (with rank function rk). Let 
clp denote the associated closure operator.

Following [39], the reduced Euler characteristics of [0̂, p] can be computed by means 
of the atomic complex: this is the simplicial complex on the vertex set A(p) and with set 
of simplices Δp = {B ⊆ A(p) | ∨B < p}. We obtain

μPS
(0̂, p) =

∑
A∈Δp

(−1)|A|−1 =
∑

A∈Dp

(−1)|A|,

where Dp := {A ⊆ A(p) | ∨A = p} and the second equality is derived from the boolean 
identity 

∑
A⊆A(p)(−1)|A| = 0. Moreover, setting

D̃p := {Ã ⊆ ES | clp(Ã) = p}

and using the fact that S loopless implies SS loopless, we can compute∑
Ã∈D̃p

(−1)|Ã| =
∑

A∈Dp

∑
Ã=

∐
a∈A Xa

clp(Xa)=a

(−1)|Ã|

=
∑

A∈Dp

∏
a∈A

⎡⎣ ∑
∅�=Xa⊆a

(−1)|Xa|

⎤⎦ =
∑

A∈Dp

(−1)|A| = μPS
(0̂, p).

Notice that the equality 
∑

Ã∈D̃p
(−1)|Ã| = μPS

(0̂, p), which we just proved for p > 0̂, 
holds trivially for p = 0̂. Moreover, Ã ∈ D̃p implies in particular rk(Ã) = rk(p). We can 
rewrite
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χS(t) =
∑

p∈PS

μPS
(0̂, p)tr−rk(p) =

∑
p∈PS

∑
Ã∈D̃p

(−1)|Ã|tr−rk(p)

=
∑
Ã∈C

(−1)|Ã| ∑
p∈P

Ã

tr−rk(Ã)

where for every Ã ∈ C we let

PÃ := {p ∈ PS | Ã ∈ D̃p} = �Ã�C/G,

which is a set with exactly mS(Ã) elements (see Definition 3.9). Thus,

χS(t) =
∑
A∈C

(−1)|A|mS(A)tr−rk(A)

= (−1)r
∑
A∈C

mS(A)(−1)|A|−rk(A)(−t)r−rk(A)

= (−1)rTS(1− t, 0)

where, as above, r denotes the rank of SS. �
10.2. The corank-nullity polynomial of CS

The corank-nullity polynomial of the poset CS is

s(CS; u, v) =
∑

GX∈CS

u(r−rk(X))v(|X|−rk(X)).

Proposition 10.3. If S is translative,

TS(x, y) = s(CS; x− 1, y − 1).

Proof. When S is translative, for every X ∈ C we have |X| = |X|. Moreover, by Corol-
lary 6.5, rk(X) = rk(X). Then,

s(CS; u, v) =
∑

GX∈CS

u(r−rk(X))v(|X|−rk(X)) =
∑
A∈C

∑
GX∈CS

X=A

u(r−rk(A))v(|A|−rk(A))

and the claim follows by setting u = x − 1 and v = y − 1. �
10.3. Activities

We now turn to a generalization and new combinatorial interpretation of the basis-
activity decomposition of arithmetic Tutte polynomials as defined in [5].
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Remark 10.4. Since we will not need details here, but only the statement of the next 
lemma, we refer to Ardila [2] for the definition of internal and external activity of bases 
of a finite semimatroid.

Lemma 10.5 (Proposition 9.11 of [2]). Let S = (S, C, rk) is a finite semimatroid with set 
of bases B and let a total ordering of S be fixed. For every basis B ∈ B let E(B), resp. 
I(B), denote the set of externally, resp. internally active elements with respect to B and 
write RB := B \ I(B). Then, (RB , I(B), E(B)) is a molecule, and

C =
⊎

B∈B
[RB , B ∪ E(B)]

We use this decomposition, which generalizes that for matroids proved in [8], in order 
to rewrite the sum in Definition 3.28 as a sum over all bases.

Theorem H. Let S be an almost-arithmetic G-semimatroid such that SS is a semima-
troid. Let BS denote the set of bases of SS and fix a total ordering of ES. For B ∈ BS

let E(B), resp. I(B) denote the set of externally, resp. internally active elements with 
respect to B, and write RB := B \ I(B). Then

TS(x, y) =
∑

B∈BS

⎛⎝ ∑
p∈Z(B)

xι(p)

⎞⎠⎛⎝ ∑
c∈�RB�C/G

yηE(B)(c)

⎞⎠
where

ηE(B)(c) is the number of e ∈ E(B) with e ≤ κS(c) in CS (Definition 7.29),
Z(B) denotes the set X (I(B)) associated to the molecule (RB , I(B), ∅) in Defini-

tion 8.7 and, accordingly,
ι(p) is the number defined in Definition 8.7.

In particular, the theorem holds when S is centered, in which case it extends [9, Theo-
rem 6.3] to the nonrepresentable (and non-arithmetic) case.

Proof. First, using Lemma 10.5 we rewrite

TS(x, y) =
∑
B∈B

∑
A∈μ(B)

mS(A)(x− 1)rk(SS)−rk(A)(y − 1)|A|−rk(A)

and then, using [5, Lemma 4.3] (whose proof only uses axiom (A2)) we obtain

TS(x, y) =

∑
B∈B

⎛⎝ ∑
F ⊆I(B)

ρ(RB , RB ∪ (I(B) \ F ))
m(RB) x|F |

⎞⎠⎛⎝ ∑
T ⊆E(B)

ρ(RB ∪ T, RB ∪ E(B))y|T |

⎞⎠ .
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Here, in every summand the right-hand side factor is ready to be treated with Propo-
sition 7.30 applied to the molecule (RB, ∅, E(B)), while the left-hand side factor equals 
the claimed polynomial by Proposition 8.9 applied to the molecule (RB, I(B), ∅). �
10.4. Deletion–contraction recursion

We have seen (Section 3) that the matroid operations of contraction and deletion 
extend in a natural way to the context of G-semimatroids. In this section we study 
these operations, showing that the Tutte polynomial of a translative action decomposes 
as a weighted sum of the polynomial of any single-element contraction and that of the 
corresponding deletion.

Recall the definitions and notations from Section 1.1 and Section 3. In the following, 
given a locally ranked triple S we will write C(S) for its associated simplicial complex 
(the triple’s “second component”).

Lemma 10.6. Let S : G � (S, C, rk) be a weakly translative G-semimatroid, and fix 
e ∈ ES. Then,

(1) there is a surjection φ : C(SS/e) → C(SS/e) with rkS(φ(A) ∪e) −rkS(e) = rkS/e(A)
which, if the action is translative, also satisfies |φ(A)| = |A|;

(2) PS/e = (PS)≥e.

Moreover,

(3) mS(A ∪ e) =
∑

A′∈φ−1(A)

mS/e(A′).

Proof. Let us choose a fixed representative xe ∈ e. In order to prove (1), we start by 
recalling that, by definition,

C(S/e) = (C/xe
)/ stab(xe).

From now, throughout this proof, we write H := stab(xe). Recall also the natural order 
on CS (Remark 3.5) and define

φ̃ : CS/e → (CS)≥e, H{x1, . . . , xk} �→ G{x1, . . . , xk, xe}.

The function φ̃ is a bijection, because the assignment

G{x1, . . . , xk, gxe} �→ H{g−1x1, . . . , g−1xk}

determines a well-defined inverse to φ̃.
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In order to prove (2) we notice that φ̃ commutes with the relevant closure operators, 
i.e.,

φ̃ ◦ κS/e = κS ◦ φ̃.

Bijectivity of φ̃ implies then that PS/e = κS((CS)≥e), and the latter is easily seen to 
equal (PS)≥e. Thus, (2) holds.

Consider now the map

φ : C/xe
→ C/e; {Hx1, . . . , Hxk} �→ {Gx1, . . . , Gxk}

and the following diagram (recall Remark 3.9)

CS/e
φ̃−−−−→ (CS)≥e

�·�
⏐⏐� ⏐⏐��·�\{e}

C/xe

φ−−−−→ C/e

where commutativity is evident once we evaluate all maps on a specific argument as 
follows.

H{x1, . . . , xk} G{x1, . . . , xk, xe}

{Hx1, . . . , Hxk} {Gx1, . . . , Gxk}

Now, for every A ∈ C/e the map φ̃ gives a bijection between the �·� \ {e}-preimage of A
and the �·�-preimage of φ−1(A), which proves (3). Claim (1) follows by inspecting the 
definition of the rank and, for the claim about cardinality, by noticing that if Hx1 
= Hx2
and gx1 = x2 for some g ∈ G, then {x1, gx1} ∈ C and by translativity x1 = gx1 = x2, a 
contradiction. �
Proposition 10.7. Let S denote a G-semimatroid and fix e ∈ ES. If S is weakly transla-
tive – resp. translative, normal, arithmetic –, then so are S/e and S \e as well. Moreover, 
if S is weakly translative and cofinite, then S/e and S \ e are also cofinite.

Proof. The treatment of S \ e is trivial: indeed, the same group acts on a smaller set of 
elements with the same constraints. We will thus examine the case S/e. Choose xe ∈ e

and let H := stab(xe).

– S weakly translative. To check weak translativity for S/e consider some y ∈ S/xe
and 

suppose {y, hy} ∈ C/xe
for some h ∈ H. This means by definition that {y, hy, xe} ∈ C, 
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thus {y, hy} ∈ C and, by weak translativity of S, we have rkC({y, hy}) = rkC({y}). 
Now by (R3) we know

rkC({y}) + rkC({y, hy, xe}) ≤ rkC({y, xe}) + rkC({y, hy}).

By subtracting rkC({y}) from both sides we obtain the inequality
rkC({y, hy, xe}) ≤ rkC({y, xe}) and, by (R2), rkC({y, hy, xe}) = rkC({y, xe}). We 
are now left with computing

rkC/xe
({y, hy}) def.= rkC({y, hy, xe})− rkC({xe})

= rkC({y, xe})− rkC({xe})
def.= rkC/xe

({y})

– S translative. As above, consider some y ∈ S/xe
and suppose {y, hy} ∈ C/xe

for some 
h ∈ H. This means that {y, hy, xe} ∈ C, thus {y, hy} ∈ C and, by translativity of S, 
hy = y as required.

– S normal. Let X ∈ C/xe
then stabH(X) = stabG(X) ∩H is normal in G because it 

is the intersection of two normal subgroups. A fortiori it is normal in H.
– S arithmetic. Let X = {x1, . . . , xk} ∈ C/xe

. For all i there is a natural group homo-
morphism

ωi : Γ/e(xi) = H/ stabH(xi) ↪→ G/ stabG(xi) = Γ(xi)

and these induce a natural group homomorphism

ω : ΓX
/e → ΓX∪xe , (γ1, . . . , γk) �→ (id, ω1(γ1), . . . , ωk(γk)).

Now consider γ, γ′ ∈ W/e(X). Then clearly ω(γ), ω(γ′) ∈ W (X ∪ xe) and, by arith-
meticity of S,

ω(γ)ω(γ′) = (id, ω1(γ1)ω1(γ′
1), . . .) = (id, ω1(γ1γ′

1), . . .) ∈ W (X ∪ xe).

Now, this means that ω(γγ′).(X ∪ xe) = γγ′.X ∪ {xe} ∈ C, hence γγ′.X ∈ C/xe
thus 

by definition γγ′ ∈ W/e(X).
– S (weakly translative and) cofinite. Cofiniteness of S \ e is trivial, and that of S/e

is a consequence of Lemma 10.6.(3). �
We can now state and prove the desired recursion for Tutte polynomials of transla-

tive G-semimatroids, generalizing the corresponding result of [5] for the arithmetic and 
centered case.

Proof of Theorem G. In this proof for greater clarity we will write rkS, resp. rkS/e for 
the rank functions of SS, resp. SS/e (in particular, rkS corresponds to what we called 
rk previously).
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We follow [2, Proposition 8.2], where the analogous results for semimatroids are 
proved, and start by rewriting the definition.

TS(x, y) : =
∑
A∈C

mS(A)(x− 1)r(SS)−rkS(A)(y − 1)|A|−rkS(A)

=
∑

A∈C, e/∈A︸ ︷︷ ︸
i.e., A∈C\e= C(SS\e)

mS(A)(x− 1)r(SS)−rkS(A)(y − 1)|A|−rkS(A)

+
∑

A∪e∈C
mS(A ∪ e)(x− 1)r(SS)−rkS(A∪e)(y − 1)|A∪e|−rkS(A∪e)

The second summand can be rewritten as follows by Lemma 10.6.

∑
A∈C/e

∑
A′∈φ−1(A)︸ ︷︷ ︸

A′∈C(SS/e)

mS/e(A′)(x− 1)r(SS/e)−rkS/e(A′)(y − 1)|A′|+1−rkS/e(A′)−rkS(e)

If e is neither a loop nor an isthmus, by Remark 3.31 and Lemma 10.6 we have rk(SS) =
rk(SS\e) and rkS(e) = 1, thus the two summands are exactly TS\e(x, y) and TS/e(x, y), 
respectively. If e is an isthmus, rk(SS) = rk(SS\e) −1 (and rkS(e) = 1) and thus we have 
TS(x, y) = (x − 1)TS\e(x, y) + TS/e(x, y). Finally, when e is a loop we have rkS(e) = 0
(but still rk(SS) = rk(SS\e)) and we easily get the claimed identity. �
Appendix A. An algebraic lemma

We give the proof of the following auxiliary lemma for completeness’ sake and in order 
not to clutter the exposition in the main text.

Lemma 10.8. Consider the following commutative diagram of abelian groups with exact 
rows and where the arrows � denote epimorphisms.

B0 C0

B1 C1

A2 B2 C2

A3 B3 C3

If the square of the Bi is a pushout square, then so is the square of the Ci.
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Proof. We name the arrows in the diagram as below and we verify the pushout property 
by considering a co-cone of the diagram spanned by C0, C1, C2, which consists of a group 
H and two arrows h1, h2 such that h1 ◦ ĉ1 = h2 ◦ ĉ2. One verifies that the group H with 
the morphisms ĥ1 := h1 ◦ ε1, ĥ2 := h2 ◦ ε2 defines a co-cone on the diagram spanned by 
B0, B1, B2. Since by assumption the Bi span a pushout square, there is a unique arrow 
ϕ with

ϕ ◦ b1 = ĥ1 = h1 ◦ ε1, ϕ ◦ b2 = ĥ2 = h2 ◦ ε2

B0 C0

B1 C1

A2a B2 C2

A3 B3 C3

H

ĉ1

ĉ2ε1

j2 ε2

b2 c2
j3

b1

ε3

c1

0

∃!ϕ h1 h2

Notice that

ϕ ◦ j3 ◦ a = ϕ ◦ b2 ◦ j2 = ĥ2 ◦ j2 = h2 ◦ ε2 ◦ j2︸ ︷︷ ︸
=0

= 0 = 0 ◦ a

and, since a is an epimorphism, by right cancellation we obtain

ϕ ◦ j3 = 0.

Exactness of the bottom row, by the universal property of cokernels, shows that there 
exist a unique g with g ◦ ε3 = ϕ.

Claim. For every g′ : C3 → H and every i = 1, 2,

g′ ◦ ci = hi is equivalent to g′ ◦ ε3 = ϕ.

Proof. By right cancellativity of epimorphisms, g′ ◦ ci = hi is equivalent to

g′ ◦ ci ◦ εi = hi ◦ εi.
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By commutativity of the diagram, the left-hand side of this equation equals g′ ◦ ε3 ◦ bi. 
By the definition of ϕ, the right-hand side equals ϕ ◦ bi. Again, by right-cancellativity of 
the epimorphism bi we obtain the claimed equivalence. �

Using the claim we see immediately that our g satisfies g ◦ c1 = h1 and g ◦ c2 = h2. 
Moreover, for every g′ with the same commutativity properties the claim implies that 
g′ ◦ ε3 = ϕ, and by the uniqueness in the definition of g we must have g′ = g. This 
concludes the proof that the square of the Ci is a pushout. �
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