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Data quality and budget are two primary concerns in urban-scale mobile crowdsensing. Traditional research

on mobile crowdsensing mainly takes sensing coverage ratio as the data quality metric rather than the overall

sensed data error in the target-sensing area. In this article, we propose to leverage spatiotemporal correlations

among the sensed data in the target-sensing area to significantly reduce the number of sensing task assign-

ments. In particular, we exploit both intradata correlations within the same type of sensed data and interdata

correlations among different types of sensed data in the sensing task. We propose a novel crowdsensing task

allocation framework called SPACE-TA (SPArse Cost-Effective Task Allocation), combining compressive sens-

ing, statistical analysis, active learning, and transfer learning, to dynamically select a small set of subareas

for sensing in each timeslot (cycle), while inferring the data of unsensed subareas under a probabilistic data

quality guarantee. Evaluations on real-life temperature, humidity, air quality, and traffic monitoring datasets

verify the effectiveness of SPACE-TA. In the temperature-monitoring task leveraging intradata correlations,

SPACE-TA requires data from only 15.5% of the subareas while keeping the inference error below 0.25◦C in

95% of the cycles, reducing the number of sensed subareas by 18.0% to 26.5% compared to baselines. When

multiple tasks run simultaneously, for example, for temperature and humidity monitoring, SPACE-TA can

further reduce ∼10% of the sensed subareas by exploiting interdata correlations.
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1 INTRODUCTION

Mobile crowdsensing (MCS) has become a promising sensing paradigm for urban monitoring ap-

plications such as noise, air pollution, and traffic monitoring [15, 55, 60]. When an MCS task is

conducted, quality and budget are two primary concerns of MCS organizers—while an MCS task

requires high-quality sensed data that can well represent the whole target-sensing area, the orga-

nizer also aims to minimize the cost of recruiting participants and collecting data.

Existing work usually uses coverage ratio, that is, how many subareas (cells) of the target

area have been covered, as a major data quality metric to measure whether sufficient sensed

data has been collected from participants [2, 10, 18, 42, 49, 50, 56]. Since higher coverage ratio

generally means better quality of the target-sensing map, previous research primarily takes full

coverage [42, 50] or high probabilistic coverage as constraint [2, 18, 49, 56]. However, this means

that an organizer has to collect at least one sensing value from each/most of the cells in the target

area [49, 50]. As a consequence, data collection cost may still be high, especially when organizers

carry out MCS campaigns at a large scale.

To further reduce sensing cost, one question arises: is it possible to obtain a high-quality sensing

map of the target area when only a small portion of the area is covered by the participants’ contributed

data? To address this question, we first study the characteristics of the data collected in MCS tasks.

We find that for a variety of sensing tasks, there are often certain data correlations in practice.

In urban temperature or noise monitoring, for instance, there often exists a high spatiotemporal

correlation [27, 34, 62]. In addition, different types of data may also have correlations with each

other. For example, the humidity generally decreases when temperature increases [3], while PM2.5

and PM10 usually rise and drop together [28]. Such intradata (within the same type of data) and

interdata (between different types of data) correlations render the high-accuracy data inference

feasible, which, in turn, sheds light on the solution to achieving a high-quality sensing map from

only sparsely sensed areas in MCS.

With these insights in mind, we propose to use inference error, rather than coverage ratio, to

measure the data quality. By exploiting intradata and interdata correlations in data inference, we

design an MCS task allocation framework, which aims at minimizing the number of the collected

sensing values while ensuring that the inference error is lower than a predefined bound.

Actually, the proposed metric, inference error, is a more direct and practical quality measure-

ment than coverage ratio. Although high coverage ratio generally means high quality, it is still

an indirect quality measurement—even if an organizer has a particular data precision requirement

for the task, there is no clear guideline for the organizer to decide how much coverage ratio is

needed. In comparison, the organizer can easily set the inference error bound directly according

to expectations on the data quality. Then, the organizer does not need to bother deciding how

much coverage ratio is required; our task allocation framework would try to reduce the coverage

ratio, that is, the data collection budget, while ensuring the organizer’s data quality requirement

is satisfied.

Despite the advantages, designing an inference-error-based task allocation framework would

face the following challenges.
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(1) Data Inference:How to exploit intradata and interdata correlations to infer missing

data accurately? An inference algorithm is the core of our task allocation framework. The key

to designing an effective inference algorithm is to efficiently incorporate various intradata and

interdata correlations into the algorithm. Due to the sophisticated correlations among different

kinds of data in reality, this is a nontrivial issue.

(2) Quality Assessment: How to quantitatively measure the inference error without

knowing the true sensing values of unsensed cells? Accurately measuring the current in-

ference error is also critical in our framework, as it decides whether the task allocation process

can be stopped with a satisfactory data quality. If we stop too early, the quality requirement will

not be reached; if we stop too late, we will sense more data than necessary. This is challenging, as

we cannot compute the inference error directly by comparing the inferred value with the unknown

ground truth.

(3) Cell Selection: Which cells should be chosen for sensing? To save the budget while

ensuring the quality requirement for an MCS task, the organizer needs to select a minimum set of

the cells for sensing. In order to choose this minimum cell combination, we need to identify the

salient cells whose sensing values, if collected, can reduce the inference error to the desired extent.

However, as we cannot know the true sensing value of a cell in advance, it is hard to predict how

much that value can help decrease the inference error if collected.

With the aforementioned research objective and challenges, our main contributions are:

(1) We propose a novel practical MCS task allocation mechanism, called SPACE-TA (SPArse

and Cost-Effective Task Allocation), including three steps: cell selection, data inference, and

quality assessment. These steps are seamlessly integrated to achieve cost-efficient task

allocation with a data inference quality guarantee for the first time in MCS, as far as we

know. Compared to our conference version [47] for the single-task scenario, the journal

version adds the multitask scenario and enhances the single-task solution to more MCS

applications, such as traffic monitoring.

(2) Effective methods are carefully designed for each step of SPACE-TA. As quality assess-

ment has not been studied extensively to date, we propose three novel methods for

three common types of inference errors, respectively: (1) Gaussian-distribution mean

absolute error, (2) non-Gaussian-distribution mean absolute error, and (3) Bernoulli-

distribution classification error with statistical analysis. To address the issues in data

inference and cell selection stages, we adapt the techniques from compressive sensing,

transfer learning, and active learning into both single-task and multitask MCS scenarios

according to the real MCS applications’ intradata and interdata correlations. With the

three steps systematically integrated, SPACE-TA can iteratively select best cells for

sensing, infer the unsensed data, and ensure that the inference quality meets a predefined

requirement.

(3) We conduct extensive evaluations on real-life temperature [21], humidity [21], air qual-

ity [61], and traffic [40] monitoring datasets to verify the effectiveness of SPACE-TA.

Specifically, leveraging the intradata correlations, for the temperature-monitoring task,

SPACE-TA collects data from only 15.5% of the cells, on average, and can ensure the in-

ferred mean absolute error below 0.25◦C in 95% of the sensing cycles, while baseline ap-

proaches need to sense 18.0% to 26.5% more cells. When multiple MCS tasks run simulta-

neously, for example, for temperature and humidity sensing, by additionally considering

interdata correlations, SPACE-TA further reduces the sensing cells by ∼10% compared to

the single temperature/humidity-monitoring task.
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Fig. 1. Two MCS tasks, temperature and humidity monitoring, run at an urban area in one sensing cycle.

2 PROBLEM STATEMENT

In this section, we first illustrate a use case to motivate our research problem. We then define the

key concepts, clarify the assumptions, and formulate the research problem.

2.1 Motivated Use Case

Figure 1 shows a use case to illustrate the basic process of our proposed framework: suppose that an

MCS organizer launches two MCS tasks for environment monitoring: temperature and humidity.

The target urban area has already been divided into cells according to the organizer’s require-

ment. The organizer needs to update the full temperature/humidity-sensing map once every hour

(sensing cycle); the data-quality requirement is that the mean absolute error for the whole area

should be less than 0.25◦C (temperature) and 1.5% (humidity). To meet the data-quality require-

ment while minimizing the data-collection cost, the organizer actively selects a subset of the cells

to sense temperature/humidity, where the sensed data is expected to reduce the inference error to

the maximum extent. Based on the sensed temperature and humidity values, the temperature and

humidity of the rest cells are inferred, exploiting both intradata and interdata correlations.

2.2 Definitions

With the previous use case in mind, we now define the key concepts used throughout this article.

Definition 1. Full Sensing Matrix. For an MCS task involvingm cells and n sensing cycles, its full
sensing matrix is denoted as Fm∗n , where each entry F [i, j] denotes the true sensed data of cell i in
cycle j.

Definition 2. Cell-Selection Matrix. In a cell-selection matrix Sm∗n , each entry S[i, j] denotes
whether or not the corresponding entry in the full sensing matrix F [i, j] is selected for sensing: if
cell i is selected for sensing in cycle j, S[i, j] = 1; otherwise, S[i, j] = 0.
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Definition 3. Collected Sensing Matrix. A collected sensing matrix Cm∗n records the actual col-

lected data:

C = F ◦ S,
where ◦ denotes the element-wise product of two matrices.
Definition 4. Sensing Matrix Inference Algorithm. A sensing matrix inference algorithm R at-

tempts to reconstruct a full sensing matrix F̂m∗n from the collected sensing matrix Cm∗n :

R (Cm∗n ) = F̂m∗n ≈ Fm∗n .
Definition 5. Inference Error. It quantifies the difference between the inferred sensing matrix F̂

and the true sensing matrix F . In this article, we focus on the inference error of each sensing cycle

separately. For sensing cycle k , the inference error is defined as:

Ek = error (F̂ [:,k], F [:,k]),
where F [:,k] is the kth column of F , that is, the true sensing values of all them cells in cycle k , and
F̂ [:,k] contains the corresponding inferred sensing values by using the inference algorithm R.
Note that the specific error () function depends on the type of sensed data. In this article, we

focus on two popular metrics: mean absolute error (for continuous values, e.g., temperature [4]),

and classification error (for classification labels, e.g., air quality index (AQI) descriptors [61]).

Mean Absolute Error:

error (F̂ [:,k], F [:,k]) =

∑m
i=1 |F̂ [i,k] − F [i,k]|

m
(1)

Classification Error:

error (F̂ [:,k], F [:,k]) = 1 −
∑m

i=1 I (ψ (F̂ [i,k]),ψ (F [i,k]))

m
, (2)

whereψ () is the function to map a value to its classification label; I (x ,y) = 1 if x = y, otherwise 0.

Definition 6. (ϵ,p)-quality. For an MCS task lasting for n cycles, it satisfies (ϵ,p)-quality, iff

|{k |Ek ≤ ϵ, 1 ≤ k ≤ n}| ≥ n · p,
where ϵ is a predefined inference error bound, and p is a predefined probability threshold to quan-
tify the minimum fraction of the cycles whose errors should be lower than the bound ϵ .

Ideally, for a predefined error bound ϵ , we expect that an MCS task can keep the inference error
lower than ϵ in all (p = 1) cycles. However, it is intractable for a real-life MCS task to satisfy (ϵ, 1)-
quality because we cannot know the accurate inference error Ek thus have to estimate it (as the
ground truth F is not known in advance). Thus, we focus on the cases in which p is relatively high
(e.g., 0.9 or 0.95) to guarantee the inference error bounded by ϵ in most cycles. This relaxation

allows us to use the techniques from probability and statistics theory to tackle the problem, which

will be illustrated later.

2.3 Assumptions

We make the following assumptions in this article.

Assumption 1. Fixed Micropayment Incentive. For each task, a user gets a fixed amount of mone-

tary incentive upon completion of one microtask allocated to that user and uploads the corresponding

sensed data to the server.
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Assumption 1 means that the incentive is equal across different participants for each sample of

sensed data of the same task. While it is a simple incentive mechanism, it is verified to be effective

in many real-life MCS campaigns [36].

Assumption 2. High-Quality Sensing. Every participant returns an accurate sensing value if a

task is allocated to the participant.

Assumption 2 also appears in other existing research work [52, 63]. We note that in real life,

it is not always true due to possible issues such as sensor error or varying conditions. With an

attractive incentive scheme in place, however, this assumption can be reasonable.

Assumption 3. Not Moving Out During Sensing. After a participant receives a sensing task in a

cell, the participant will not move out of the cell before completion of sensing.

Assumption 3 ensures that if we allocate a sensing task to a participant in cell i, the participant’s

returned sensing value will actually represent cell i. This assumption can usually be satisfied if the

sensing task does not consume much time. For example, with an embedded ambient temperature

sensor, a smartphone can obtain the temperature reading in a few seconds;1 for air-quality mon-

itoring, usually the sensor needs 30s to 60s to be prepared to start sensing and then the sampling

cycle is 2s to 10s [12, 19].

In summary, these assumptions are made for the following reasons:

• Assumption 1 transforms our objective of minimizing data collection cost for each MCS task

to minimizing the total number of selected sensing cells.

• Combining assumptions 2 and 3, for any MCS task t , we need to recruit only one participant
in cell i during cycle j in order to get the true sensed data of task t from cell i in cycle j.

2.4 Problem Formulation

Based on the previous definitions and assumptions, next, we define our research problem if only

one MCS task is conducted; then, we extend it to the multitask scenario.

Single-Task Scenario. We first formulate the research problem for the single-task scenario:

Given an MCS task with m cells and n cycles and a sensing matrix inference algorithm R,
we attempt to select a minimal subset of sensing cells during the whole sensing process

(minimize the number of nonzero entries in the cell-selection matrix S), while ensuring that

the inference errors of at least n · p cycles are below the predefined bound ϵ (satisfy (ϵ,p)-
quality):

min

m∑
i=1

n∑
j=1

S[i, j]

s .t ., |{k |Ek ≤ ϵ, 1 ≤ k ≤ n}| ≥ n · p
where Ek = error (F̂ [:,k], F [:,k])

F̂ = R (C ), C = F ◦ S
Multitask Scenario. When an organizer launches multiple tasks simultaneously, it is natural

to extend the above problem formulation of a single task to multiple tasks with the objective of

minimizing the number of selected cells for each task (suppose totally z tasks; for each task

1The response time of the temperature/humidity sensor SHTC1 of Galaxy S4 is about 8s [1].
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Fig. 2. Workflow of SPACE-TA for each MCS task in one cycle.

t , the quality requirement is (ϵt ,pt )-quality):

min

m∑
i=1

n∑
j=1

St [i, j] t = 1...z

s .t ., ∀t , |{k |Et,k ≤ ϵt , 1 ≤ k ≤ n}| ≥ n · pt
where Et,k = error (F̂t [:,k], Ft [:,k])

F̂t = Rt (Ct ), Ct = Ft ◦ St
Note that this is a multiobjective optimization problem. In this article, we try to optimize the

task allocation process for each single task in parallel. The parallel mechanism is able to provide

time-efficient task allocation, which is particularly important for large-scale MCS tasks.2

For both single- and multiple-task scenarios, as we cannot foresee the full sensing matrix Ft
for any MCS task t , as it is impossible to obtain the optimal cell selection matrix St in reality. To
overcome the difficulties, we propose SPACE-TA, which leverages an iterative process to select

sensing cells in each cycle for each MCS task. Details are provided in the next section.

3 DESIGN OF SPACE-TA

In this section, we will elaborate on the algorithms used in the three stages of SPACE-TA: data

inference, quality assessment, and cell selection. Before the detailed algorithm description, we first

present an overview of the workflow of SPACE-TA to see the relationship among the three stages.

3.1 Overview

Figure 2 shows the workflow of the SPACE-TA for each running MCS task. In each cycle, SPACE-

TA iteratively selects the next salient cell for sensing (cell selection) and waits for recruiting a

participant present in that cell to get the sensed data, until the estimated data quality satisfies the

predefined (ϵ,p)-quality requirement (quality assessment). Then, the task allocation stops and

missing data values of the unsensed cells are inferred (data inference).

Figure 3 shows an example of the task allocation process of SPACE-TA in one sensing cycle for

one task. Suppose that the target-sensing area contains five cells and the fifth sensing cycle starts

2The parallel solution may have some limitations in minimizing the total costs of different tasks, especially when the tasks

have significantly different costs. We will discuss this in Section 6.3.
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Fig. 3. A running example of SPACE-TA.

currently. In the beginning, no sensing data is collected in cycle 5 (Figure 3-1). SPACE-TA works

as follows:

(1) SPACE-TA selects the first salient cell (cell 3) and allocates a sensing task to one participant

appearing in cell 3 (cell selection algorithm is elaborated in Section 3.4). This participant

performs the sensing task and returns the sensing data (Figure 3-2).

(2) Then, given the sensing data already collected, SPACE-TA decides if the data quality

satisfies the predefined (ϵ ,p)-quality requirement (the quality assessment algorithm is

described in Section 3.3). If the data quality does not meet the quality requirement,

SPACE-TA selects the next cell for sensing (cell 5 in Figure 3-3). In this way, SPACE-TA

continues allocating tasks to new cells and collects sensing data, until the data quality of

already collected sensing data satisfies the quality requirement.

(3) Given the collected sensing values, SPACE-TA infers the sensing values of remaining un-

selected cells (Figure 3-4; data inference algorithm is illustrated in Section 3.2).

Next, we elaborate the three stages in SPACE-TA, respectively.

3.2 Data Inference

To infer the full sensingmatrix from the partially collected sensing values,Compressive Sensing (CS)

is commonly used in the literature [27, 63]. In this section, we first introduce the basic idea of CS,

and then illustrate an enhanced version of CS, called Spatiotemporal Compressive Sensing (STCS),

which considers the spatial and temporal correlations among the environmental data explicitly

to further improve the inference performance [27, 58]. We use STCS to infer missing values in

SPACE-TA, given its improved inference accuracy over normal CS and the other methods [27].

3.2.1 CS: Compressive Sensing. Given a partially collected sensingmatrixC , compressive sensing

infers the full sensing matrix F̂ based on the low-rank property:

min rank (F̂ )

s .t ., F̂ ◦ S = C (3)
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Directly solving this problem is hard because it is nonconvex. Based on the singular value

decomposition, that is, F̂ = LRT , and compressive sensing theory [6, 13, 35], existing works have
theoretically proved that minimizing the rank of F̂ is equivalent to minimizing the sum of L and
R’s Frobenius norms under certain conditions [58]:

min | |L| |2F + | |R | |2F
s .t ., LRT ◦ S = C . (4)

In practice, while real-life collected data often contain some noises, the above optimization

problem is usually converted as follows [27, 58, 63]:

min λ( | |L| |2F + | |R | |2F ) + | |LRT ◦ S −C | |2F , (5)

where λ is used to make a trade-off between rank minimization and accuracy fitness. To get the

optimal F̂ , we use an alternating least squares [27, 58, 63] procedure to estimate L and R iteratively
(F̂ = LRT ).

3.2.2 STCS: Spatiotemporal Compressive Sensing. As environment data such as temperature

usually exhibits strong spatial and temporal correlations, explicit spatiotemporal correlations have

been introduced into compressive sensing in recent work [27, 58], called spatiotemporal compres-

sive sensing, which focuses on the optimization function below:

min λr ( | |L| |2F + | |R | |2F ) + | |LRT ◦ S −C | |2F
+ λs | |S(LRT ) | |2F + λt | |(LRT )TT | |2F ,

(6)

where S and T are spatial and temporal constraint matrices, respectively; λr , λs , and λt are chosen
to balance the weights of different elements in the optimization problem.

Similar to the CS optimization problem in Equation (5), the above STCS optimization problem in

Equation (6) could be solved by using alternating least squares [27, 58]. We elaborate below on our

strategies of choosing the temporal and spatial constraint matrices.

Temporal constraint matrix (T): As in [27, 58], we choose the temporal constraint matrix T

as Toeplitz (0, 1,−1)n∗n (total n sensing cycles), which considers the temporal correlation in the

following manner—for a specific cell, its sensing values in two continuous sensing cycles should

be similar.

Spatial constraint matrix (S): The spatial constraint matrix S is used to express the correlations

between the sensed data from different cells. How to construct this matrix is dependent on specific

MCS tasks. In this article, we apply two commonly used strategies in the literature [27, 58]. For

environment monitoring, we use physical distance [27] to model the correlation between cell i
and j, ci, j , as 1/distance (celli , cell j ); for traffic monitoring, we conduct a correlation analysis on

historical traffic data [58] to model ci, j . Finally, we get the spatial constraint matrix as

Si,i = −1; Si, j = ci, j/
∑
k�i

ci,k , if i � j .

3.2.3 CoSTCS: Collective STCS. When anMCS organizer conducts multiple crowdsensing tasks

to collect different types of data simultaneously, it is possible that the inference performance of

one type of data can be boosted by considering the collected data of another type, because differ-

ent types of data—for example, temperature/humidity [3], PM2.5/PM10 [28]—may present some

inherent correlations. Thus, we propose a method called collective spatiotemporal compressive sens-

ing (CoSTCS) to simultaneously infer themissing values for different types of data considering such

interdata correlations. Specifically, CoSTCS is inspired by the collective matrix factorization tech-

nique [43] in the transfer learning research area [31]. Collective matrix factorization supposes that
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Fig. 4. Illustration of collective matrix factorization (assume the spatial factor matrix L is the shared factor).

during the matrix decomposition process, different matrices share one particular factor matrix that

encodes the common dynamics from multiple types of data. Recall that in STCS, we decompose

the inferred sensing matrix F̂ into two factor matrices L and R. Then, in CoSTCS, for each MCS
task t , its sensing matrix F̂t is decomposed into Lt and Rt , and we assume that one of the two
factor matrices is the same for all the tasks’ sensing matrices. Without loss of generality, here we

assume that for all the tasks, Lt is the same, that is, ∀t , Lt = L. Inferring the missing values of k
MCS tasks is formalized as the following optimization problem:

min

k∑
t=1

(λr ( | |L| |2F + | |Rt | |2F ) + | |LRTt ◦ St −Ct | |2F
+ λs | |S(LRTt ) | |2F + λt | |(LRTt )TT | |2F ).

(7)

With traditional collective matrix factorization, we have to select only one from L and R to fix.
As shown in Figure 4, L is the spatial factor matrix and R is the temporal factor matrix; with only
one of them fixed, we can consider only one type of interdata correlation. However, in reality,

sometimes both spatial and temporal interdata correlations exist for multitasks. Then, how can we

incorporate both interdata correlations into inference?

To address this issue, we solve the problem in Equation (7) twice, each time fixing L or R, and
thus obtain two inferred sensing matrices for each task t , denoted as F̂t,L and F̂t,R , respectively.
Then, we use a weighted averaging method to aggregate the two inferred matrices to exploit both

spatial and temporal interdata correlations in multitask data inference:

F̂t = wF̂t,L + (1 −w )F̂t,R , (8)

wherew can be set according to the extent of spatial and temporal interdata correlations observed

in real applications.

3.3 Quality Assessment

In SPACE-TA, for each sensing cycle, assessing the inference error and accordingly deciding when

to stop task allocation is critical. If we stop too early, the server might not collect enough data to

achieve the predefined (ϵ,p)-quality; if we stop too late, the server might collect redundant data,
which would lead to the waste of the organizer’s budget. In this article, we focus on two widely
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Fig. 5. An illustrative example of LOO-SA method.

used error metrics, mean absolute error (MAE; see Equation (1)) and classification error (CE; see

Equation (2)).

We propose the Leave-One-Out Statistical-Analysis (LOO-SA) method to assess inference error

and decide the stopping criterion for each sensing cycle. First, LOO-SA uses the leave-one-out

resampling method to obtain a set of reinferred sensing data with the corresponding true collected

data. Then, comparing the reinferred data to the true collected data, Bayesian or Bootstrap analysis

is leveraged to assess whether the current data quality can satisfy the predefined (ϵ,p)-quality
requirement.

3.3.1 Leave-One-Out Resampling. In statistics, leave-one-out is a popular resampling method

to measure the performance for many prediction and classification algorithms [23]. Suppose that

we havem true observations, the basic idea of leave-one-out is that for each time, we leave one

observation out and using the otherm − 1 observations (as training data set) to make a prediction
for the excluded observation. By running this process on allm observations, we getm predictions

accompanying them true observations, which can be used to estimate the prediction error.

To run the leave-one-out resampling, in each iteration, LOO-SA temporarily removes one piece

of collected data of the current cycle k and then runs the inference algorithm R to reinfer the

removed data. After enumerating all the collected data in cycle k , we finally get two vectors x

and y: x stores the true collected data for the current cycle k , while y stores the corresponding

reinferred data by using leave-one-out. Suppose that we have already collected data fromm′ cells,
then:

x = 〈x1,x2, . . . ,xm′ 〉, y = 〈y1,y2, . . . ,ym′ 〉
where xi is the ith ground truth data collected in cycle k , and yi is the corresponding reinferred
data by leaving xi out of the collected data.
Figure 5(a) illustrates an example of the leave-one-out method when the data of five cells have

been collected. Then, for each cell ci with collected data, we use the data collected from the other

four cells and the data collected in previous cycles (not shown in the figure) to infer the data of

ci . We repeat this for five cells and get five inferred data 〈y1,y2, . . . ,y5〉 and their corresponding
ground truth collected data 〈x1,x2, . . . ,x5〉. Based on the ground truth set x and the leave-one-out
reinferred set y, the next section will discuss how to assess whether (ϵ,p)-quality is satisfied.

3.3.2 Statistical Analysis for Quality Estimation. To assess whether (ϵ,p)-quality is satisfied,

based on the leave-one-out x and y, we conduct a statistical analysis to estimate the probability

distribution of the inference error E (MAE or CE) for the current cycle. We use an example

to demonstrate why the inference error probability distribution can help quality assessment.

Figure 5(b) shows the cumulative probability distribution of the estimated MAE for a temperature

MCS task. We can see that the probability of the inference error Ek ≤ 0.5◦C is larger than 0.9,

which is expected to satisfy (0.5◦C, 0.9)-quality.
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With this example in mind, the problem of assessing whether a task can satisfy (ϵ,p)-quality
can be converted to calculate the probability of Ek ≤ ϵ , that is, P (Ek ≤ ϵ ), for the current cycle
k . If P (Ek ≤ ϵ ) > p can hold for every cycle k , then (ϵ,p)-quality is expected to be satisfied. Next,
we propose leveraging two statistical analysis methods for estimating P (Ek ≤ ϵ ): Bayesian [16]

and Bootstrap [14] analysis. Bayesian analysis can address the scenario in which the error metric

is normal-distributed MAE and CE, while Bootstrap analysis can address the scenario in which

MAE does not follow normal distribution. In SPACE-TA, if the estimated P (Ek ≤ ϵ ) is larger than p,
we stop the task allocation for the current cycle; otherwise, we continue selecting more cells for

collecting data (Section 3.4).

(1) Bayesian Analysis. In Bayesian analysis, we see Ek as an unknown parameter with a prior
probability distribution д(Ek ).3 Based on our observation θ (obtained from the leave-one-out re-

inferred data, which will be explained later), we update the probability distribution of Ek , getting
the posterior probability distribution д(Ek |θ ) according to the Bayes’s Theorem:

д(Ek |θ ) = f (θ |Ek )д(Ek )∫ ∞
−∞ f (θ |Ek )д(Ek )dEk ,

(9)

where f (θ |Ek ) is the likelihood function that represents the conditional probability of observing
θ given Ek .
The posterior д(Ek |θ ) is thus the estimated probability distribution of Ek , based on which we

can approximate P (Ek ≤ ϵ ):

P (Ek ≤ ϵ ) ≈
ϵ∫

−∞
д(Ek |θ )dEk . (10)

If P (Ek ≤ ϵ ) ≥ p, then SPACE-TA stops the task allocation for the current cycle k and waits for
the start of the next cycle; otherwise, SPACE-TA continues selecting a new cell to collect sensing

data.

Next, we describe how to compute the posterior д(Ek |θ ) for two widely used error metrics,

MAE (for continuous value, e.g., temperature [4]) and CE (for classification label, e.g., AQI de-

scriptor [61]).

Bayesian Analysis for Mean Absolute Error. When Ek is defined as MAE (Equation (1)), we use

the absolute difference of y (leave-one-out reinferred data) and x (true collected data) as the ob-

servation θ (suppose thatm′ sensing values have been collected in the current cycle):

θ = 〈θ1,θ2, . . . ,θm′ 〉 = abs (y − x) (11)

= 〈|y1 − x1 |, |y2 − x2 |, . . . , |ym′ − xm′ |〉. (12)

After inspecting our evaluation temperature dataset (which will be described in detail later in the

evaluation), we find that the MAE in each sensing cycle follows the normal distribution. Figure 6

shows the histogram of the standardized MAE (i.e., MAE divided by the standard deviation of

MAE in each cycle) when 10% of the cells are sensed and the remaining 90% are inferred. Thus,

by assuming that the sampled absolute errors satisfy the normal distribution around mean Ek and
variance σ 2, we get the likelihood function:

f (θ |Ek ) : θi = |yi − xi | ∼ N (Ek ,σ 2).

3The prior distribution is often selected as a noninformative probability distribution (such as uniform distribution) if we

do not have specific prior knowledge about Ek .
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Fig. 6. Histogram of mean absolute error with fitted normal curve (temperature, following the normal dis-

tribution).

Calculating the posterior д(Ek |θ ) from the above likelihood function and observation is a classic

Bayesian statistics problem: inferring normal mean with unknown variance, which can be solved by

fixing the variance σ 2 to the sample variance s2 and then directly calculating the posterior д(Ek |θ )
by t-distribution [5]. For the prior д(Ek ), we select the Jeffreys’ flat prior [24]: д(Ek ) = 1, ∀Ek .
Then, the posterior д(Ek |θ ) satisfies the following (m′-1) degree-of-freedom t-distribution:

д(Ek |θ ) ∼ tm′−1 (θ̄ , s2), (13)

where θ̄ is the sample mean of the values in θ .

Bayesian Analysis for Classification Error. We now show how we use Bayesian analysis to esti-

mate the posterior distribution for CE Ek (Equation (2)). First, as our data inference algorithm R
deals with continuous values, we map x and y to their corresponding classification labels using

the mapping functionψ () in Equation (2), for example, for the PM2.5 AQI value between 0 and 50,
we map it into the AQI descriptor label “Good.” Then, we use the I () function onψ (x) andψ (y) to
get our observation θ :

θ = 〈θ1,θ2, . . . ,θm′ 〉 = I (ψ (x),ψ (y))
= 〈I (ψ (x1),ψ (y1)), I (ψ (x2),ψ (y2)), . . . , I (ψ (xm′ ),ψ (ym′ ))〉.

I (ψ (xi ),ψ (yi )) is either 1 (success, ψ (xi ) = ψ (yi )) or 0 (failure, ψ (xi ) � ψ (yi )), and Ek is exactly

the failure ratio. Suppose that each θi is independent, then it satisfies the Bernoulli distribution

with the probability of 1 − Ek :
f (θ |Ek ) : θi = I (ψ (xi ),ψ (yi )) ∼ Bernoulli (1 − Ek ).

Then, the problem to infer the posterior д(Ek |θ ) is converted to a classic Bayesian statistics prob-
lem, Coin Flipping [5, 16]. We choose the uniform prior for Ek : д(Ek ) = 1 for 0 ≤ Ek ≤ 1. Then,
the posterior for Ek follows Beta distribution [5, 16]:

д(Ek |θ ) ∼ Beta(m′ − z + 1, z + 1) (14)

where z =
∑m′

i=1 θi , that is, the number of successes.

(2) Bootstrap Analysis. While Bayesian analysis can deal with the normal-distributed MAE,

the MAE of some MCS tasks may not follow the normal distribution well. For example, in the

traffic speed monitoring dataset (elaborated later in the evaluation), the MAE of inferred traffic

speed of unsensed roads (suppose that 90% of roads are unsensed) is seriously right skewed, as

shown in Figure 7. For such a scenario, the previous Bayesian analysis cannot work, as the normal-

distribution assumption does not hold.
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Fig. 7. Histogram of mean absolute error with fitted normal curve (traffic speed, not following the normal

distribution).

To address this issue, we propose using Bootstrap to estimate P (Ek ≤ ϵ ). Similar to Bayesian
analysis, Bootstrap [14] is another widely used method to infer the unknown statistic of a popula-

tion in which the observations are sampled. The advantage of Bootstrap is that no assumption on

the distribution of the observations needs to be made. The basic idea of Bootstrap is to construct

a number (usually several thousand) of resamples from the observations with replacement, and

the size of each resample is equal to the original observations. Then, the unknown statistic of the

population, e.g., mean, can be inferred from the bootstrapping resamples. Note that in Bootstrap,

to get a good estimation of P (Ek ≤ ϵ ), the size of the original observations cannot be too small.
According to [9], a reasonable size of the observations should be larger than ten.4

Specifically, to estimate the MAE for an MCS task such as traffic-speed monitoring, we first ob-

tain the observationsθ in the sameway as for Bayesian analysis (Equation (11)). Then, we construct
n bootstrapping resamplesθ ∗1,θ

∗
2, . . .θ

∗
n , by resamplingθ with replacement, and size (θ

∗
i ) = size (θ ).

A direct method to estimate the probability of P (Ek ≤ ϵ ) is to see how many resamples’ means

are not larger than ϵ , that is, |{i |mean(θ ∗i ) ≤ ϵ }|/n, which is called the percentile confidence interval
of Bootstrap. While the percentile confidence interval shows a rough idea of Bootstrap analysis, a

more theoretically sound method, called bias-corrected and accelerated Bootstrap (BCa), is able to

reduce the bias in the percentile confidence interval and boost the convergence speed (i.e., using

smaller n to a convergent result). In SPACE-TA, for time efficiency, we adopt a state-of-the-art

method to approximate BCa analytically, called approximation bootstrap confidence interval (ABC).

ABC uses Taylor Series Expansions to approximate the Bootstrap resampling results thus avoiding

the large number of Bootstrap replications. This approximation requires that the estimated statis-

tic μ (θ ) is defined smoothly in θ ; fortunately, the “mean” considered in MAE estimation satisfies
this requirement. Interested readers can refer to Chapters 14 and 22 in [14] for more details about

BCa and ABC.

Computation Complexity of LOO-SA. As there are two phases for the computation of LOO-

SA, we discuss the computation complexity of both phases. First, to use leave-one-out to estimate

the sensing error, LOO-SA needs to run the inference algorithm R form′ times, wherem′ is the
number of the already collected sensing values in the current cycle. This time consumption dom-

inates the runtime so that the computation complexity is O (m′ ·TR ) for the leave-one-out part,
whereTR is the complexity of the inference algorithm R. For the second part of Bayesian analysis,
recalling Equation (13) and Equation (14), we can simply use two distributions, t-distribution and

4In our evaluation, when using Bootstrap, we set the minimum number of sensing cells in each cycle to 10 and then start

quality assessment. This performs well on traffic monitoring. For other MAE scenarios (e.g., temperature), usually less than

10 sensed values per cycle are needed to ensure the quality and their MAE follows the normal distribution well. We thus

adopt Bayesian analysis for them.
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Beta distribution respectively, to calculate the posterior for MAE and CE, which is much faster

than the leave-one-out part; for the ABC method used in Bootstrap analysis, it also runs pretty

fast as it is an analytic method, not needing Bootstrap resampling for several thousand times. In

summary, the computation complexity of LOO-SA is dominated by the leave-one-out part, which

is O (m′ ·TR ). If m′ is large, sequentially executing LOO-SA might consume much time. Fortu-

nately, though we need to run R for m′ times, each run is independent; thus, LOO-SA can be

easily parallelized to accelerate as needed.

3.4 Cell Selection

When the estimated data quality of LOO-SA does not satisfy the predefined requirement, SPACE-

TA will continue selecting more cells where at least one participant is present for sensing. During

this process, selecting some salient cells for sensing may reduce the overall sensing error more sig-

nificantly; for example, the missing values of some cells might incur more inference errors and are

thus more uncertain. If SPACE-TA can identify these salient cells, the number of the allocated tasks

can possibly be reduced to make the data quality satisfy the predefined (ϵ,p)-quality requirement
earlier, compared to other simple cell selection methods such as random selection.

Based on recent research advances in active learning on matrix completion, we use a method

proposed in [8], called Query by Committee (QBC), to select the salient cell to allocate the next task

(committee here refers to a set of various data inference algorithms). QBC attempts to use each

algorithm in the committee to infer the full sensing matrix. Then, it allocates the next task to the

cell with the largest variance among the inferred values of different algorithms [8]. If the cell with

the largest variance has no participants, then the second largest is selected, and so forth.

In SPACE-TA, the committee includes CS, STCS, CoSTCS (for the multitask scenario), KNN-S,

and KNN-T. CS, STCS, and CoSTCS have been described previously, and KNN-S and KNN-T use the

classic K-Nearest Neighbors (KNN) [11] method to interpolate missing values. For a missing value,

KNN uses a weighted average of the values of the k nearest neighbors. In sensing matrix inference,

we can perform KNN on columns or rows, that is, using spatial (KNN-S) or temporal (KNN-T) K

nearest neighbors. Specifically, for a missing value F [i, j] (cell i in cycle j), KNN-S attempts to find
K nearest spatial neighbors F [i ′, j] (weight ∝ 1/distance (celli , celli′ )), while KNN-T attempts to

find K nearest temporal neighbors F [i, j ′] (weight ∝ 1/|j − j ′|).
In the multitask scenario, for each type of sensed data, we select the next salient cell indi-

vidually. In SPACE-TA, considering the runtime efficiency, the selection processes for different

tasks are conducted in parallel (i.e., cell selection is sequential within one task, while parallel be-

tween different tasks). It is worth noting that, in terms of the data quality, this parallel selec-

tion method may not be as good as the sequential method, in which we select the {task, cell}

pair alternatively (e.g., in temperature–humidity monitoring, {tem, cell1,t } → {hum, cell1,h } →
{tem, cell2,t } → {hum, cell2,h } → · · · ). The reason is that, using the parallel method, the data col-
lected for individual tasks in the same iteration is obtained at the same time and thus cannot help

each other in data inference. In contrast, as the sequential method alternately gets the sensed data,

it can immediately leverage the data collected for one task to improve the inference for other tasks.

However, the sequential method is not practically scalable with a relatively large number of tasks

running simultaneously.5 Our future work will explore a more effective and scalable way of cell

5Later in the evaluation, we will see that the runtime of SPACE-TA to select one cell is roughly 10s. Then, by assuming the

time for a participant to return data as 10s, SPACE-TA can get data from ∼180 cells/h sequentially. While this number is

probably enough for one MCS task, it does not seem sufficient for a moderate number of simultaneous tasks. For example,

when 10 tasks run simultaneously, each task can only get data from 18 cells/h.
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Table 1. Statistics of Three Evaluation Datasets

SensorScope U-Air TaxiSpeed

City Lausanne (Switzerland) Beijing (China) Beijing (China)

Data temperature, humidity PM2.5, PM10 traffic speed

Cell size 50m*30m 1km*1km one road segment

Number of cells 57 36 100

Cycle length 0.5h 1h 1h

Duration 7d 11d 4d

Error metric mean absolute error classification error mean absolute error

Mean± Std. 6.04± 1.87 ◦C (temperature) 79.11± 81.21 (PM2.5)
13.01± 6.97 m/s

84.52± 6.32 % (humidity) 63.12± 48.56 (PM10)

selection in the multitask scenario, especially referring to the recent advances in the interdisci-

plinary research area of active learning and transfer learning, such as in [59].

Computation Complexity of QBC. The runtime of the QBCmethod is primarily spent on us-

ing all the algorithms in the committee to infer the sensingmatrix. Suppose that, for each inference

algorithm Ri in the committee, the computation complexity isTRi ; then the complexity of QBC is

O (
∑

i TRi ). If the committee contains more algorithms, then, running QBC sequentially will cost

more time. Like LOO-SA, since the executions of different inference algorithms are independent,

QBC can also be parallelized to improve runtime performance.

4 EVALUATION

In this section, based on three real-life sensing datasets, we evaluate SPACE-TA on various MCS

applications, including temperature, humidity, air quality, and traffic monitoring. The evaluation

is carried out following two steps. First, we verify that a single MCS task can run well under

the SPACE-TA framework by considering intradata correlations. Second, we demonstrate that if

several correlated MCS tasks run simultaneously, SPACE-TA can further reduce the number of

sensed cells by considering the interdata correlations.

4.1 Experiment Setup

To evaluate the real-world applicability of our work, we use three real-life sensing datasets, Sensor-

Scope [21], U-Air [61], and TaxiSpeed [40], which include various types of sensed data in represen-

tative MCS applications, such as temperature, air quality, and traffic speed. While the SensorScope

and U-Air datasets are collected by sensor networks and static stations, respectively, the MCS par-

ticipants can also obtain the data using smartphones (as in [12, 19]). The summary statistics of the

three datasets are listed in Table 1.

SensorScope [21]: The SensorScope dataset contains various environment readings, for example,

temperature and humidity, from a sensor network deployed in the EPFL campus (500m × 300m).
For our evaluation, we divide the target area into 100 cells (each cell is 50m × 30m), and find that
57 cells are deployed with valid sensors. We use the MAE (Equation (1)) to evaluate the quality of

the environment readings in this dataset.

U-Air [61]: The U-Air dataset consists of PM2.5, PM10, and NO2 AQI values reported by 36 air-

quality monitoring stations in Beijing. For our evaluation, as in [61], we split the Beijing urban

area into 1km × 1km cells and use only the cells where the stations are situated. To measure the

data quality for AQI values, we follow the methods used in [61]—each AQI value is classified to

a range called a descriptor, which is used as the basis for computing the CE (Equation (2)). Six
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Fig. 8. Inference error (with standard deviation) on three single-task scenarios.

Table 2. Fraction of the Cycles Whose Errors are Lower than the Error Bound ϵ

Temperature PM2.5 Traffic Speed

ϵ 0.25◦C 0.30◦C 6/36 9/36 2.0m/s 2.5m/s
p = 0.90 0.915 0.919 0.904 0.912 0.895 0.895
p = 0.95 0.943 0.949 0.944 0.965 0.987 0.953

levels of descriptors are defined: Good (0–50), Moderate (51–100), Unhealthy for Sensitive Groups

(101–150), Unhealthy (150–200), Very Unhealthy (201–300), and Hazardous (>300).
TaxiSpeed [40]: The TaxiSpeed dataset includes the speed information for road segments in Bei-

jing for 4 days (September 12 through 15, 2013) based on 33,000 taxis’ GPS trajectories. According

to [63], we refer to each road segment as a cell, and select a target area that has 100 road segments

with valid speed values. We use the MAE as the metric for speed inference.

4.2 Single-Task Scenario

In the evaluation of the single-task scenario, we focus on three individual MCS applications from

three datasets, respectively: temperature (SensorScope), PM2.5 (U-Air), and traffic speed (TaxiSpeed).

4.2.1 Inference Error. First, we aim to verify the effectiveness of STCS in inferring missing val-

ues for temperature, PM 2.5, and traffic speed compared to the other state-of-the-art matrix infer-

ence algorithms described before, including CS, KNN-S, and KNN-T. The parameters of STCS and

CS are selected as in [27].

Figure 8 shows the inference error (with standard deviation) of different algorithms on tem-

perature, PM2.5, and traffic-monitoring scenarios, respectively. In this experiment, we iteratively

consider each sensing cycle k as the latest cycle, infer the full sensing matrix based on the collected

sensing matrix from cycle 1 to k, and calculate the inference error for the cycle k. The x axis, that

is, sparsity ratio, denotes the fraction of unsensed entries in the collected sensing matrix. Similar

to the literature [27, 58], our evaluation results also show the improved accuracy of STCS over the

other methods, verifying that compressive sensing is effective in inferring themissing data, such as

temperature, air quality, and traffic speed, especially when the explicit spatiotemporal correlations

are incorporated.

4.2.2 Quality Requirement Satisfaction. Then, we evaluate the effectiveness of the quality

assessment algorithm LOO-SA to see whether it can satisfy the predefined quality requirement.

We use various settings of (ϵ,p)-quality to see what fraction of sensing cycles can actually keep
the inference error less than ϵ . Table 2 shows the results for three single-task scenarios. For p,
we purposely set it to a large value as 0.90 and 0.95, that is, ensuring most (90% or 95%) sensing
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Table 3. Fraction of the Cycles Whose Errors are Lower than

0.25◦C (Temperature), 9/36 (PM2.5) or 2m/s (Traffic Speed) for
Different Approaches

SPACE-TA RAND-TA FIX-TA-k
Temperature

p = 0.9 0.915 0.900 0.911 (k = 9)
p = 0.95 0.943 0.943 0.949 (k = 12)
PM2.5

p = 0.9 0.912 0.916 0.884 (k = 16)
p = 0.95 0.965 0.969 0.961 (k = 18)
Traffic Speed

p = 0.9 0.895 0.908 0.908 (k = 24)
p = 0.95 0.987 0.974 0.960 (k = 28)

cycles’ error to be less than the predefined error bound ϵ , which we think is a more reasonable

and realistic scenario than small p for MCS organizers. For ϵ , we vary it from 0.25◦C to 0.30◦C for

the temperature, 6/36 to 9/36 for the PM2.5, and 2m/s to 2.5m/s for the traffic speed, respectively.
Note that for PM25, the error bound X/36 represents that to satisfy this error bound, more than
36 − X cells have the correct AQI level.

From Table 2, we see that for any predefined error bound ϵ , the actual fraction of the cycles

whose errors are less than ϵ is quite similar to the p predefined in (ϵ,p)-quality. Even though the
actual fractions sometimes are slightly less than the predefined p due to the intrinsic probabilistic
characteristics of our algorithm, the values are still quite near the predefined p (in our settings, the
largest gap between the predefined p and the actual fraction is only 0.007 = 0.95 − 0.943). Based
on these results, we verify that, by using LOO-SA as the quality assessment algorithm, SPACE-TA

can adequately satisfy the predefined (ϵ,p)-quality.

4.2.3 Number of Sensed Cells. After selecting the best inference algorithm and verifying the

effectiveness of the quality assessment algorithm, now we focus on analyzing the research

objective—how many sensed cells could SPACE-TA reduce while ensuring a certain data quality?

To compare with SPACE-TA, we use the following baselines:

• FIX-TA-k fixes the selected cell number k in each sensing cycle while still using QBC to ac-

tively select cells for sensing. Compared to FIX-TA-k , SPACE-TA shows the benefit brought

by LOO-SA, which helps the organizer decide when to stop the task allocation, thus adap-

tively adjusting the number of the sensed cells for different cycles.

• RAND-TA randomly selects the next cell for sensing, but still uses LOO-SA as the data

quality assessment method. Compared to RAND-TA, SPACE-TA shows the advantage of

applying QBC to select the salient cells for sensing.

In the temperature-monitoring scenario, for the predefined (ϵ,p)-quality, we set the error bound
ϵ as 0.25◦C and p as 0.9 or 0.95. Before comparing the number of sensed cells, we need to ensure
that all methods can achieve a similar task quality. While SPACE-TA has already been verified to

be able to satisfy (ϵ,p)-quality in the previous section, now we need to check the two baselines.

Table 3 shows the results. We can see that RAND-TA can also satisfy (ϵ,p)-quality well, as it adopts
LOO-SA to assess quality like SPACE-TA. For FIX-TA-k , we tune k to achieve a similar task quality,
which leads to k = 9 for p = 0.9 and k = 12 for p = 0.95.
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Fig. 9. Number of sensed cells on three single-task scenarios.

Fig. 10. Number of sensed cells in temperature sensing with different quality requirements.

As all methods can satisfy similar task quality, we compare their numbers of selected cells in

Figure 9 (leftmost part). When p = 0.9, SPACE-TA can allocate 11.1% fewer tasks than RAND-TA

and 18.0% fewer tasks than FIX-TA-9; when p = 0.95, SPACE-TA outperforms RAND-TA and FIX-

TA-12 by assigning 18.0% and 26.5% fewer tasks, respectively. Specifically, SPACE-TA allocates

tasks to only 12.9% (15.5%) cells, on average, while ensuring that the inference error is below

0.25◦C in 90% (95%) of the cycles. To further study how the change of (ϵ , p)-quality will impact the
evaluation results, we conduct more experiments on temperature sensing, as shown in Figure 10,

by varyingp and ϵ . Generally, with a higher quality requirement (i.e., largerp or smaller ϵ), SPACE-
TA can gain better performance improvement over RAND-TA. This is probably due to the fact that

when the data quality requirement is high, our cell selection strategy has more space (i.e., more

data is needed) to optimize the task allocation for reducing the sensing costs.

For the other two single-task scenarios, we get similar observations (Table 3 and Figure 9). For

the PM2.5 and traffic monitoring, SPACE-TA allocates 7.5% to 31.9% and 11.9% to 28.5% fewer tasks

than the baseline methods, respectively, under the same data quality.

In the previous experiments, we assume that there always is at least one participant in the se-

lected cell. Here, we investigate how the performance of SPACE-TA will change if some cells do

not have participants. Figure 11 shows the number of sensed cells in temperature sensing when

some selected cells may not have any participants. If probability of no-participant cells is 0.1, it

means that in one cycle, each cell in the target area has 10% probability without a participant. Gen-

erally, with the increase of this probability, the average number of sensed cells slightly increases.

Even with the increase, the required cell number remains at a low level (smaller than RAND-TA
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Fig. 11. Number of sensed cells in temperature sensing if some cells do not have participants (ϵ = 0.25◦C ,
p = 0.9).

Fig. 12. Interdata correlations in multitask scenarios.

Table 4. Interdata Pearson Correlation P-values

(Value Significant at the Level of 0.05 is Bold)

P-Values

Temporal Spatial

Temperature–Humidity 0.009 0.233

PM2.5-PM10 0.000 0.013

when every cell always has participants), meaning that SPACE-TA is robust to the condition when

certain cells do not have any participants.

4.3 Multitask Scenario

In multitask scenarios, we use SensorScope and U-Air datasets, as they contain multiple types of

sensed data. Specifically, we focus on two multitask cases: Temperature–Humidity (SensorScope)

and PM2.5–PM10 (U-Air).

4.3.1 Inference Error. Existing literature has pointed out that a negative correlation exists be-

tween temperature and relative humidity [3], while a positive correlation appears between PM2.5

and PM10 [28]. An empirical study on our evaluation dataset also complies with the literature,

as shown in Figure 12. A significance test of the Pearson correlation shows which type of inter-

data correlation (spatial or temporal) dominates in our applications: for temperature and humidity,

the temporal interdata correlation is generally significant while the spatial one is not; for PM2.5

and PM10, both spatial and temporal interdata correlations are significant (Table 4). To this end,

for the temperature–humidity scenario, we only keep the temporal collective matrix factorization
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Fig. 13. Inference error (with standard deviation) of STCS and CoSTCS for the temperature–humidity sce-

nario.

Fig. 14. Inference error (with standard deviation) of STCS and CoSTCS for the PM2.5–PM10 scenario.

result in CoSTCS (w = 0 in Equation (8)); for the PM2.5–PM10 scenario, we keep both spatial and
temporal collective matrix factorization results in CoSTCS (w = 0.5 in Equation (8)).
To incorporate the negative correlation between temperature and humidity into CoSTCS, we

build the humidity-sensing matrix using the complementary value of the original humidity h%,
that is, (100 − h)%. To normalize temperature to the same scale as humidity (0–1) when running
CoSTCS, we divide the original temperature value by 12, as the temperature values range from 0

to 12◦C in the evaluation dataset.

Figure 13 plots the inference error in the temperature–humidity scenario using STCS and

CoSTCS, which shows that by considering the interdata correlations, CoSTCS can further reduce

the inference error by around 10% to 15% for both temperature and humidity under different spar-

sity settings. Similarly, CoSTCS also outperforms STCS in the PM2.5 to PM10 scenario, as shown

in Figure 14. These results verify that the interdata correlations exploited in CoSTCS can boost the

inference accuracy.

Note that to get such inference performance improvement, theweight in Equation (8) needs to be

carefully tuned according to the real-life spatial or temporal interdata correlation. Figure 15 shows

for the temperature–humidity case how weight w impacts the inference accuracy. As mentioned

previously, the interdata correlations in the temperature–humidity scenario is dominated by the

temporal one. We verify that the inference error is actually the smallest when w is set to 0 (only

considering temporal interdata correlation), and gradually increases when increasing w . Setting
w to 1, that is, considering only the spatial interdata correlation, results in the highest inference

error (even larger than STCS without considering any interdata correlations).
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Fig. 15. Inference error for the temperature–humidity scenario with different w in Equation (8) (sparsity is

0.9;w = 0 refers to only temporal interdata correlation, andw = 1 refers to only spatial interdata correlation).

Table 5. Number of Sensed Cells for SPACE-TA with STCS and CoSTCS

Temperature–Humidity PM2.5–PM10

temperature (ϵ = 0.25◦C) humidity (ϵ = 1.5%) PM2.5 (ϵ = 9/36) PM10 (ϵ = 9/36)
STCS CoSTCS STCS CoSTCS STCS CoSTCS STCS CoSTCS

p = 0.9 7.4 (0.915) 6.9 (0.891) 7.6 (0.923) 7.0 (0.899) 10.9 (0.912) 10.5 (0.898) 12.5 (0.894) 11.7 (0.902)
p = 0.95 8.8 (0.943) 8.0 (0.946) 8.8 (0.942) 7.6 (0.942) 13.5 (0.965) 12.4 (0.949) 13.7 (0.979) 12.6 (0.943)

Note: The results of CoSTCS are in bold and the values in brackets are the actual fraction of sensing cycles whose errors

are below the bound ϵ .

Table 6. Runtime for Each Stage of SPACE-TA

Temperature PM2.5 Traffic Speed

Data Inference 0.45s 0.39s 0.71s

Quality Assessment 4.43s 4.75s 7.99s

Cell Selection 1.04s 0.91s 1.29s

4.3.2 Number of Sensed Cells. AsCoSTCS is able to improve the inference accuracy inmultitask

scenarios, we expect that the total number of sensed cells of SPACE-TA can also be decreased by

leveraging CoSTCS while the data quality is still guaranteed.

Table 5 shows the number of the sensed cells for the multitask scenarios. In the temperature–

humidity scenario, we set the error bound ϵ to 0.25◦C for temperature and 1.5% for humidity; in the
PM2.5 to PM10 scenario, we set ϵ to 9/36 for both tasks. From Table 5, we first see that the actual

fraction of the cycles whose inference errors below ϵ is close to the predefined p, verifying that the
(ϵ,p)-quality is well satisfied. Then, we can also observe that the number of sensed cells of SPACE-
TA with CoSTCS is consistently smaller than that with STCS. Specifically, in the temperature–

humidity scenario, the number of sensed cells is reduced by 5% to 13%; while in the PM2.5 to

PM10 scenario, the reduction is 4% to 8%.

4.4 Runtime Analysis

Finally, we study the runtime of SPACE-TA. As SPACE-TA can inherently deal with multiple

tasks in parallel on different CPUs, our performance evaluation is conducted assuming that one

CPU (computer) runs one task. We run the experiments on a laptop (Intel Core i7-3612QM, 8GB

RAM, Windows 7) with Python 2.7. Table 6 shows the runtime for different parts of SPACE-TA.

The most time-consuming part is the quality assessment step, which needs ∼8s, on average, in

22

ht
tp
://
do
c.
re
ro
.c
h



traffic-speed monitoring. As described previously, the quality assessment method, LOO-SA, is

suitable for being parallelized, which can help improve its performance if more than one CPU

can be used for one task. In summary, on our experimental setup, SPACE-TA spends ∼10s to do
one allocation iteration, that is, estimating the inference quality once and, if it cannot meet the

predefined (ϵ,p)-quality, finds the next sensing cell. Thus, for the data requiring a few seconds to

sense, for example, temperature, if we can find a participant and receive the participant’s data in

10s, SPACE-TA can collect data from ∼180 cells in an hour; even for the air quality sensing that
needs 60s to get a valid reading [12, 19], SPACE-TA can allocate tasks to ∼50 cells in an hour. We

believe that this efficiency can meet most real-life MCS scenarios, especially with more powerful

servers in a SPACE-TA deployment environment and more efficient smartphone-equipped sensors

in the future. Furthermore, if an MCS task does need faster runtime speed, we can accelerate

SPACE-TA by letting it select more than one salient cell for sensing in each iteration. This may

incur redundant collected data, however, which could increase the budget. Our future work will

study this trade-off between runtime speed and budget saving in more detail.

5 RELATEDWORK

We review the related work from four perspectives: (1) task allocation in MCS, (2) compressive

sensing applications, (3) active learning for matrix completion, and (4) transfer learning for matrix

completion. Finally, we discuss the differences of this article from the previous conference version

of this work [47].

5.1 MCS Task Allocation Mechanisms

Existing work about the task allocation for MCS applications mainly uses the coverage ratio of

the target area as the major quality metric. In early work on this topic, Reddy et al. [37] attempted

to recruit a predefined number of participants to maximize spatial coverage. Later, various work

attempts to extend this type of coverage-maximization participant recruitment to different con-

siderations, for example, participants’ reverse auction incentive mechanism [22] and travel time

budget [20]. On the other hand, work such as [2, 18, 42, 50, 51, 56] attempts to minimize the incen-

tive budget and/or energy consumption under a full or high probabilistic spatial and/or temporal

coverage constraint. Recently, the coverage-based task allocation studies are also extended to mul-

tipleMCS task scenarios [17, 30, 45, 46]. Compared to the existingwork, we do not use the coverage

ratio as the quality metric. Instead, we use a more essential metric, that is, inference error, to rep-

resent data quality, based on which we attempt to reduce the number of sensed cells to help the

MCS organizers lower the budget.

In this article, our incentive model adopts a micropayment style, which is verified effective in

real MCS campaigns [36]. Many MCS studies also design more complicated incentive models used

in task allocation, such as auction based [29] and game-theory based [53]. Interested readers can

find a comprehensive study of existing MCS incentive mechanisms in [57].

5.2 Compressive Sensing Applications

Compressive sensing theory [6, 13, 35] is increasingly becoming a powerful tool to reconstruct a

sparse vector or matrix based on the sparsity property of vector or low rank property of matrix.

Thus, a large number of applications based on compressive sensing have appeared, such as

network traffic reconstruction [58], environmental data recovery [27, 33, 34], road traffic monitor-

ing [63], and face recognition on smartphones [41]. While the above work primarily focuses on

designing the effective algorithms to minimize the reconstruction error under different scenarios,

our objective is to minimize the number of the allocated tasks and meet a predefined data quality

requirement, thus opening up the possibility of using any suitable inference techniques. Indeed,
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in SPACE-TA, the compressive sensing algorithms proposed in the above work, for example,

STCS [27, 58], is just one possible implementation for inferring the missing values of the unsensed

cells. Recently, assuming that a fixed number of data need to be collected in each cycle and

different sensing data require different costs, Xu et al. [52] study the trade-off between total costs

and overall data quality in compressive sensing. In contrast to [52], instead of fixing the number

of data collected in each cycle, we aim to minimize the number of data collected in each cycle

while still ensuring the data quality.

Besides compressive sensing, there are still other state-of-the-art methods to infer missing val-

ues for unsensed cells, such as multichannel singular spectrum analysis [26] and expectation max-

imization [38]. As existing work [27, 63] shows that compressive sensing outperforms these meth-

ods, we currently do not explore them in SPACE-TA.

5.3 Active Learning for Matrix Completion

The key idea behind active learning is to make a machine-learning algorithm achieve higher ac-

curacy with less training data, if it is allowed to select the training data from which the algorithm

learns [39]. To solve the problem of choosing the best cells for sensing, the recent techniques on

active learning for matrix completion [8, 25, 44], which employ different criteria to actively choose

the entry in a matrix, are all applicable. Currently, we use QBC in SPACE-TA due to its easy im-

plementation and good performance, which has been shown in [8].

5.4 Transfer Learning for Matrix Completion

For the multitask MCS scenario, different types of sensed data may have certain inter-correlations

that can facilitate the missing data inference. To leverage such correlations to improve inference

accuracy, state-of-the-art techniques in transfer learning [31] for matrix completion are poten-

tially useful. As a representative technique in transfer learning, collective matrix factorization [43]

is powerful tool for inferring missing values for multiple matrices by jointly factorizing several

matrices with the constraints of sharing certain latent features. The idea has been widely used

and extended to various applications, such as link prediction [7], item recommendation [32], and

music source separation [54], especially when there are data sources in heterogeneous domains.

Like these works, we adopt collective matrix factorization to improve inference accuracy in the

multitask scenario.

5.5 Difference from Our Previous Work

Compared with the previous conference version [47], this article has made two distinct improve-

ments. First, to increase task allocation efficiency when multiple MCS tasks run simultaneously,

based on matrix cofactorization [43], we propose a collective spatiotemporal compressive sensing

method to boost inference accuracy by considering the interdata correlations between different

tasks, and evaluate its efficiency on two multitask scenarios, temperature–humidity and PM2.5 to

PM10. Second, to apply SPACE-TA to an MCS task whose MAE of inferred sensing values do not

follow normal distribution, we design a new data quality assessment method based on Bootstrap [9,

14], and verify its effectiveness on theMCS task of traffic-speedmonitoring. Furthermore, this arti-

cle is also a detailed technical contribution to the research direction of sparse mobile crowdsensing,

which was proposed in our perspective paper [48].

6 DISCUSSIONS

6.1 Cell Size Configuration

In our evaluation, the setting of the cell size follows existing literature for specific applications

such as air quality [61] and traffic-speed [63] monitoring. Generally, the smaller the cell size, the
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higher the sensing map precision can be achieved, but it will also incur higher costs. Therefore,

the selection of cell size depends primarily on the MCS organizers’ quality needs and budget.

In addition, adaptive cell size configuration may be an interesting research direction, where the

cell size can be set differently across the whole sensing area. The basic idea is that for the area

where the sensing data values vary significantly, the cell size could be set a bit smaller, and

vice-versa.

6.2 Different Incentives for the Same Task

In this work, we assume that for one task, the incentive costs for collecting each sample of data

are always the same, regardless of where and who contributes the data. In practice, the incentive

mechanism could be more complex, as the data from different cells may not cost the same. For

example, the costs may be inversely proportional to the number of participants in that cell [30],

or the network signal strength of the cell [52]. In such a case, the cell selection method needs to

be revised to take the diverse cell costs into consideration.

6.3 Further Cost Optimization Opportunities in Multitask Scenario

Our current solution tries to select the sensing cells for multiple tasks in parallel. This mechanism

has good runtime efficiency but, due to its parallelism, it has certain limitations in minimizing

total costs when different tasks have significantly different costs. Consider a scenario that sensing

PM2.5 costs $1 while PM10 costs $10. Our current solution selects PM2.5 and PM10 simultaneously

and may result in collecting data from 5 cells for both PM2.5 and PM10, leading to $55. However,

with the interdata correlations, we may be able to reduce the costs by sensing more PM2.5 and

less PM10 with the same quality guarantee, for example, 10 cells for PM2.5 and 3 cells for PM10,

leading to $40. Our future work may consider how to design a more cost-efficient task allocation

strategy in such a scenario.

7 CONCLUSION

In this article, while ensuring a certain data quality, we attempt to reduce the number of the sens-

ing cells in MCS tasks by considering both intradata and interdata correlations. To that end, we

propose a novel task allocation framework, SPACE-TA, combining the state-of-the-art compressive

sensing, statistical analysis, active learning, and transfer learning techniques to select a small set of

sensing cells in each cycle while inferring the missing values of the remaining cells and ensuring

the inference error below a predefined bound. Evaluation results on real-world temperature,

humidity, air-quality and traffic-monitoring datasets show the effectiveness and applicability of

SPACE-TA.
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