//doc.rero.ch

http

Published in "Cell and Tissue Research 369 (1): 41-51, 2017"

which should be cited to refer to this work.

Insights into autosomal dominant polycystic kidney disease
by quantitative mass spectrometry-based proteomics
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Abstract Autosomal dominant polycystic kidney disease
(ADPKD) is a common monogenetic disorder that is
caused by mutations in the genes PKD/ and PKD?2
encoding polycystin-1 and polycystin-2, respectively.
Polycystin-1 and -2 form a complex, interact with several
proteins involved in signal transduction and localize to
discrete subcellular positions, most importantly the pri-
mary cilium. Whereas the causative mutations leading to
ADPKD are known, the underlying deregulated cellular
pathways are not well understood. In the current review,
we introduce state-of-the-art mass spectrometry (MS)-
based proteomic techniques and summarize their use in
kidney and ADPKD research. Proteomic profiling ap-
proaches, the elucidation of ADPKD-relevant protein-
protein interactions and the regulation of posttranslation-
al modifications are included. We also discuss the use of
MS-based methods for ADPKD prognosis, diagnosis and
disease monitoring by using protein- and peptide-based
biomarkers.
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Autosomal dominant polycystic kidney disease

The human kidney is divided into two major regions: the outer
renal cortex and the inner medulla. Cortex and medulla can be
separated into renal lobes containing a pyramid-shaped part of
the medulla of which the tip, the papilla, reaches into a minor
calyx. Several minor calyces form major calyces finally yield-
ing the renal pelvis from which the ureter emanates.
Numerous small filtering units called nephrons, which are
the basic urine-producing renal functional structures, span cor-
tex and medulla and are each subdivided into the actual filter,
namely the glomerulus situated in the cortex, followed by the
tubule. The glomeruli filter blood, whereas cells and macro-
molecules are retained and generate the primary urine. The
tubules reabsorb the majority of the filtrate, minerals and wa-
ter and excrete additional waste products into the collecting
ducts, which span the cortex and medulla and open out into
the calyx at the papilla releasing urine.

Autosomal dominant polycystic kidney disease (ADPKD)
is the most common inherited kidney disease (1:400—1:1000
births) and the fourth most single cause of end-stage renal
disease (ESRD; Collins et al. 2012). It is characterized by
the development of kidney cysts that generally initiate from
a tubule (Grantham 2008). Cysts fill with fluid and expand in
size leading to a four- to eight-fold expansion of kidney vol-
ume and significant loss of renal function over time (Roitbak
et al. 2004). Mutations in the genes PKDI and PKD?2
encoding the integral membrane glycoproteins polycystin-1
(PC-1) and polycystin-2 (PC-2) cause ADPKD. PC-2, a
calcium-permeable cation channel and its regulatory subunit
PC-1 form a complex that interacts with additional proteins
involved in signal transduction. Both proteins localize to dis-
crete subcellular positions, most importantly the primary cili-
um (Newby et al. 2002; Ong and Harris 2005). The signifi-
cance of the two proteins is reflected by the extensive
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available scientific literature covering them. In a recent bioin-
formatics study, over 24 million PubMed records concerning
cardiovascular, cerebral, hepatic, renal, pulmonary and intes-
tinal research fields were screened, and a small number of
proteins that were ubiquitously investigated across fields
was identified (Lam et al. 2016). To characterize organ/
disease-specific marker proteins, the authors normalized the
system-specific publication counts of a protein by its total
publication count. The top target protein in the renal system,
in both human and mouse, turned out to be PC-1, followed by
PC-2, underlining their importance and disease relevance.

In ADPKD, intracellular calcium levels are reduced and
renal cAMP levels are elevated, possibly leading to the ob-
served hyper-proliferative phenotype. Increased cAMP levels
may also stimulate increased fluid secretion into cyst lumens.
Cell proliferation is thought to be further potentiated by in-
creased MTOR kinase activity attributable to perturbed cilia
function (Boehlke et al. 2010). Interestingly, polycystins ap-
pear to inhibit a cilia-dependent signaling pathway that pro-
motes rapid cyst growth (Ma et al. 2013). Hence, current treat-
ments are aimed at reducing (1) cAMP-levels, (2) cell prolif-
eration and (3) fluid secretion (Chang and Ong 2012). To
reduce cell proliferation, the goal of several therapeutic strat-
egies is the reduction of MTOR activity. This approach has
been corroborated by results obtained in rat models of PKD in
which rapamycin treatment led to decreased cyst and kidney
volume and improved renal function (Huber et al. 2011).
However, in contrast to the results obtained in animal studies,
the first placebo-controlled clinical trials in ADPKD involving
the rapamycin analogs sirolimus (Perico et al. 2010; Serra
et al. 2010) and everolimus (Walz et al. 2010) gave different
conflicting outcomes. In two trials, MTOR inhibition slowed
the increase of total kidney volume, whereas in one trial, no
effect was found indicating that disease stage, duration of
treatment and clinical readout have to be carefully re-exam-
ined. Although MTOR activity clearly contributes to cyst
growth in human ADPKD, the therapeutic potential of
MTOR inhibition has still to be explored. Next to MTOR,
additional kinases have been investigated for their role in
ADPKD. A trial with the broad-spectrum tyrosine kinase in-
hibitor (TKI) bosutinib (Winter et al. 2012), which showed
promising results in PKD rodent models (Sweeney et al.
2008), is still ongoing and estimated to finish in 2018.
Further kinase inhibitors, such as the non-selective BRAF
inhibitor sorafenib and activatiors of AMPK, such as metfor-
min, are being tested pre-clinically (Chang and Ong 2012).
Interestingly, the G-protein coupled receptor Vasopressin V2
receptor stimulating adenylate cyclase and regulating urine
concentration in tubules and collecting ducts has also emerged
as a promising drug target halting cyst growth (Gattone et al.
2003). In a placebo-controlled trial, tolvaptan, a receptor an-
tagonist increasing water excretion, slowed the increase of
kidney volume; however, it also led to increased adverse

effects (Torres et al. 2012; see also discussion in Rinschen
et al. 2014a). Thus, whereas the importance of several signal-
ing pathways in PKD has been shown, the functional impli-
cations of their activity in vivo are only poorly understood.

New technical developments may help in addressing open
biological and medical questions in ADPKD and may pave
the way for new causal therapies. Mass spectrometry (MS)-
based proteomics is such a technique that can be employed to
address basic research questions and applied medical prob-
lems. It can also be used as a diagnostic method to monitor
disease progression with the help of biomarkers. In the current
review, we introduce peptide and protein-based state-of-the-
art MS assays and summarize their use in ADPKD and kidney
research.

Quantitative MS-based proteomics

Whereas a proteome is defined as the entire protein content of
a given cell, tissue, organ, or organism at a specific time point,
the term proteomics is nowadays used to define technically
challenging, large-scale analyses of proteins (Aebersold and
Mann 2016; Lossl et al. 2016). These can be detailed analyses
of single proteins or, indeed, studies addressing an entire pro-
teome. MS is by far the most popular and developed analytical
method for performing such proteomic studies. Two basic
MS-based proteomic approaches can be discriminated de-
pending on the nature of the analyte: peptide- and protein-
based analyses (Fig. 1). The most common approach is the
“bottom-up proteomics” analysis of peptides. Proteins are ex-
tracted from samples of interest and proteolytically digested
into peptides prior to MS analysis. Although this approach
increases sample complexity, it is extremely popular because
of its easy automation (Aebersold and Mann 2016). As phys-
icochemical properties of peptides are fairly similar regardless
of the tissue- or protein-of-interest, standard MS methods can
be applied to diverse biological samples. In contrast, “top-
down proteomics” analysis characterizes entire proteins.
This approach allows, among others, the study of posttransla-
tional modification (PTM) crosstalk (Catherman et al. 2014).
However, because of the unique characteristics of each pro-
tein, top-down proteomics is technically rather challenging
and experimental conditions have to be adopted for each
protein-of-interest or each protein group-of-interest.

MS as such is only a semi-quantitative method as the signal
intensity detected by a mass spectrometer depends on the ion-
ization properties of proteins/peptides to be analyzed. Hence,
signal intensities of distinct proteins/peptides cannot be direct-
ly compared with each other. To allow truly quantitative MS
studies, relative and absolute quantification approaches have
been developed (Bakalarski and Kirkpatrick 2016). Several
depend on distinct stable isotope labels, commonly employing
13C and '°N, which allow quantification in single MS
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Fig. 1 Mass spectrometry (MS)-based proteomic workflows. MS is p

employed to study proteins and peptides. Top-down protein analysis (/ef?)
preserves information about posttranslational modification (PTM)
crosstalk and dependency. Its implementation is challenging as chroma-
tography and ionization parameters have to be adjusted for each (group
of) protein(s). Bottom-up peptide analysis (right) depends on the proteo-
lytic generation of peptides. Trypsin is the most commonly used protease
in proteomic research. The technical implementation of bottom-up prote-
omics is easier as the physicochemical properties of distinct peptides are
more similar compared with those of proteins. However, PTM crosstalk
information is lost and sample complexity is increased (LC liquid chro-
matography, m mass, PLRP-S polystyrene-divinylbenzene, RP reversed-
phase, z elementary charge). Figure produced by using Servier Medical
Art (Www.servier.com)

analyses. Labels can be introduced chemically after tissue/cell
lysis or metabolically by organismal or cellular labeling ap-
proaches (Fig. 2). Both approaches have pros and cons and
have been discussed in detail in recent reviews (Bakalarski
and Kirkpatrick 2016). Next to label-based approaches,
label-free quantification algorithms have been developed that
allow an almost as accurate quantification (Tyanova et al.
2016). Whereas they are easy to implement, they increase
MS analysis time, as each sample has to be analyzed separate-
ly. Notably, parallel sample processing is absolutely critical
for obtaining accurate quantification results by label-free
approaches.

Proteomic experiments can also be discriminated by dis-
covery and targeted MS analyses. In kidney research,
discovery-driven experiments are still in the majority: exper-
iments are performed to generate new biological/medical
knowledge without a priori knowledge of all protein targets.
On the contrary, targeted MS analyses are employed to study a
set of pre-defined proteins/peptides under specific biological/
medical conditions or over time. Targeted approaches, like all
facets of selected reaction monitoring (SRM; Bourmaud et al.
2016), may also be employed in prognostic and diagnostic
settings to follow disease biomarkers. Targeted proteomic ex-
periments are in concurrence to classic immunobiological ap-
proaches, i.e., enzyme-linked immunosorbent assays
(ELISAs). Importantly, being equally as sensitive and specific
as antibody-based analyses, they are independent of matching
antibody/antigen pairs (Zahedi et al. 2014). Up to now, the
knowledge of the proteotyptic peptides of potential biomarker
candidate proteins to be used in targeted MS analyses has been
limited, making the development of targeted proteomic assays
time- and labor-intensive. Two recent impressive large-scale
studies have defined protein-specific peptides for the entire
human proteome to be used in targeted MS approaches
(Kusebauch et al. 2016; Matsumoto et al. 2016). With these
resources available, the development of targeted MS assays
should be less time-consuming boosting their implementation
in basic and translational research and in clinical diagnostics.
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Fig. 2 Quantitative MS-based proteomic approaches. A Metabolic label-
ing. The most well-known metabolic labeling approach is stable isotope
labeling by amino acids in cell culture (SILAC). Commonly, '*C- and
'*N-labeled arginine and lysine variants are employed. Compared with
other labeling methods, samples can be combined early in the experimen-
tal procedure minimizing quantification errors. Colored dots in spectra
represent the respective SILAC label. B Chemical labeling. The most
commonly used chemical labeling approaches are TMT (Tandem Mass
Tag) and iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)
labeling by, which up to eight samples can be compared. A labeling

The kidney proteome

Inventories or atlases of proteins are indispensable tools for
researchers. They define a ground state and highlight those
proteins that might be present and, thus, potentially detectable
in specific systems or under specific conditions. Accordingly,
considerable resources have been expended in defining organ-
and cell-type-specific proteomes. Maps of human tissue

experiment performed at the peptide level is depicted. However, proteins
can also be labeled. In contrast to the other labeling approaches, TMT-
and iTRAQ-based approaches rely on quantification in the MS/MS mode.
The peptide marked by a yellow dot is selected for fragmentation. In the
MS/MS fragment spectrum, distinct labels become observable and quan-
tifiable (marked by colored dots). C Label-free quantification. In label-
free quantification, each sample is analyzed separately and quantification
is performed at the MS level. Colored dots mark a differentially distrib-
uted peptide. Figure produced by using Servier Medical Art (www.
servier.com)

proteomes have been published as part of the Human Protein
Atlas (Fagerberg et al. 2014; Uhlen et al. 2015). Several
subproteomes such as the secretome, the membrane proteome
and the druggable proteome have been assayed by
transcriptomic expression analysis in complex tissue homog-
enates, including various cell types, in concert with the precise
localization of the proteins by microarray-based immunohis-
tochemistry. The kidney proteome has also been defined in
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this enormous dataset. Transcriptomic data imply that 65% of
all human genes is expressed in the kidney. Of these, 325 genes
show an increased expression level in the kidney compared
with other human tissues; they include several aquaporins,
solute carriers and NPHS2 (podocin). Respective proteins
are part of the glomerular filtration diaphragm and transport
proteins responsible for the excretion and adsorption of vari-
ous small molecules and water in distinct parts of the tubule.
As in all of the analyzed tissues, the elevated genes in the
kidney can be clearly linked to the overall function of the
organ. Moreover, MS-based analyses have been performed
to map the kidney proteome. Next to organ-centric studies
(Magdeldin et al. 2014; Wilhelm et al. 2014), cell-type-
specific proteomes for tubular and for glomerular cells have
been defined (Boerries et al. 2013; Konvalinka et al. 2013).

To improve our understanding of proteome alterations un-
der pathological conditions, methods have been developed to
analyze formalin-fixed paraffin-embedded (FFPE) tissues
specimens by MS analyses (Ostasiewicz et al. 2010; for
detailed technical information, see also Gustafsson et al.
2015; Maes et al. 2013). FFPE tissue specimens represent
preserved clinical material that is a unique protein source for
studying human disorders and for the identification of disease
biomarkers. Their wide distribution and resolution of tissue
holds great promise. As the concentration of low-abundant
disease-related proteins is significantly higher inside the dis-
eased compared with the non-affected tissue, tissue-based pro-
teomics of FFPE sections is often preferred when insights into
disease-related processes are required (Tanca et al. 2014). In
particular, no standard procedures are generally used for the
freezing and storage of fresh samples (=20 °C, —80 °C, or
liquid nitrogen) and thus, the analysis of FFPE samples is
thought to be an appropriate alternative to the analysis of
freshly frozen material (Bronsert et al. 2014).

Unique features of MS-based proteomic studies compared
with any other “omic” approach are the unbiased large-scale
analyses of protein-protein interactions (Diedrich et al. 2017)
and of PTMs of proteins (Rigbolt et al. 2014) giving insights
into the activity and regulation of specific proteins. As PTM
analyses are often based on single peptide identifications, they
are more error-prone than protein studies. To identify potential
sources of wrongly assigned PTMs in kidney disease proteo-
mics, formalin-induced alterations in FFPE samples compared
with freshly frozen samples of human kidney tissue have been
characterized in a label-free proteomic approach (Zhang et al.
2015). In an open modification search, the authors found +12,
+14, +16, +30 and +58 Da mass shifts on various amino acid
residues of peptides isolated from FFPE samples, shifts that
were not present in freshly frozen samples. The major modi-
fication found was a +14 Da additive representing a methyla-
tion of lysine residues. Luckily, the overall number of peptides
containing a formalin-induced methylation was in an accept-
able low range (2—6%). However, since methylations on

histone lysines often play a crucial role in the regulation of
gene expression and chromatin remodeling, this formalin-
induced artifact should be taken into account when studying
methylation events in renal FFPE specimens (Zhang et al.
2015).

One of the most widely analyzed PTMs is protein phos-
phorylation (Rigbolt and Blagoev 2012), which may influ-
ence protein localization, activation, interaction and stability.
In 2014, the first atlas of phosphorylated residues of murine
glomerular proteins employing a label-free
phosphoproteomic approach was generated.
Phosphopeptides were enriched from freshly isolated murine
glomeruli by using immobilized metal ion affinity chroma-
tography (IMAC) to gain a comprehensive dataset of in vivo
phosphorylations. Phosphorylations of podocyte-specific
proteins were further analyzed and synaptopodin was iden-
tified as the protein carrying the highest number of phos-
phorylation sites. Most proline-directed phosphorylation
sites were observed in their C-terminal region, which is
one of the major interaction sites of «-actinin-4 regulating
podocyte cytoskeletal dynamics. Proline-directed kinases
such as ERK, CDKI, —2, or =5 may be involved in the
modulation of the podocyte cytoskeleton. Moreover, previ-
ously undescribed phosphorylation sites on the slit dia-
phragm proteins KIRREL, NPHS1, NPHS2, CD2AP and
TRPC6 were discovered. The sites were found exclusively
in acidic amino acid motifs indicating that acidic kinases
such as casein kinases are responsible (Rinschen et al.
2014b). To prioritize and identify physiologically meaning-
ful phosphorylation sites, a cross-species comparability of
glomerular phosphorylation sites between cow and rat was
performed (Rinschen et al. 2015). The acidic site motifs
were indeed conserved in NPHSI and CD2AP and further
evidence considering the C-terminal phosphorylation of
NPHS2 was gathered. NPHS2 phosphorylation regulated
its affinity to both CD2AP and NPHS1. CD2AP was de-
scribed to interact with PC-2, being expressed at lower
levels in renal tubular epithelial cells of the mature kidney,
while being up-regulated during kidney differentiation
(Lehtonen et al. 2000). Thus, the interaction of PC-2 and
CD2AP might also be regulated phosphorylation-dependent-
ly. However, this mechanism awaits experimental proof.

Proteomic insights into ADPKD

As early as 1996, mice deficient for «331 integrin were found
to show abnormal lung and kidney development with de-
creased branching of the medullary collecting ducts, although
the numbers of nephrons remained normal. As a consequence,
the proximal tubules became microcystic and glomerular de-
velopment was affected by wider capillary lumina (Kreidberg
et al. 1996). In a follow-up study, the same group
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demonstrated a role of «3(31 integrin in sequestering mouse
CBL into the Golgi apparatus, preventing MET from becom-
ing ubiquitinated and resulting in hyperactive MTOR on a
Pkdl™"~ background (Qin et al. 2010). Whereas the first two
studies were performed based on classic mouse genetics and
cell biology, the same group observed an interesting result
concerning «3f31 integrin glycosylation by employing MS.
PkdI™"" and Pkd "~ mouse kidney epithelial cells were isolat-
ed and an anti-&3 integrin immunoprecipitation was per-
formed, followed by LC-MS/MS analysis at the peptide level
(Zhang et al. 2014). Several types of glycans were found at-
tached to the four known sites within the C-terminal domain
of the o3 integrin subunit. Asn937 exclusively showed the
high-mannose type, whereas Asn971 showed either the com-
plex or the hybrid type of glycan trees. No difference in abun-
dance of glycosylation was detected between knock-out or
wild-type cells at these sites. However, at sites Asn925 and
Asn928, the authors found significant site-specific differences
in glycan structure between Pkdl™"* and Pkd /~ cells. An
unusual disialic acid glycan was identified in Pkd ’~ cells; this
was not present in wild-type cells. Both sites were glycosyl-
ated with glycans of the hybrid-type. Sialic acid is a negatively
charged acidic sugar creating a local negative charge on mem-
branes and may cause repulsion between cells. The authors
hypothesized that the conformation of integrin receptors
might be altered because of the unusual glycosylation pattern
containing more negatively charged glycans, which may fur-
ther influence receptor recognition and ligand-binding affini-
ty. In ADPKD, «331 integrin can lose contact with the extra-
cellular matrix (ECM) and disialic-acid-supported repulsion
of tubular cells might contribute to cyst formation. Whereas
this hypothesis still has to be established, the study nicely
highlights that MS-based proteomics can be employed in an
unbiased way to generate new disease-relevant hypotheses.

PC-2 was also identified as being glycosylated and respec-
tive sites were mapped by MS (Hofherr et al. 2014).
Glycosylation and the trimming of the glycan tree by glucosi-
dase II was critical for efficient surface expression of PC-2.
Interestingly, mutations in genes encoding glucosidase II fam-
ily members have been linked to autosomal dominant poly-
cystic liver disease. Thus, independent groups have identified
altered glycosylation patterns on ADPKD-relevant proteins
and an altered glycan structure might contribute to ADPKD
pathology.

By analyzing protein-protein interactions by MS, PC-1 was
identified to interact with the trimeric G-protein subunit Goc12
via its cytoplasmatic tail and Pdk/ deletion led to increased
activity of Gel12 (Yuasa et al. 2004). By using MDCK cells
that inducibly overexpressed Ga12, shed E-cadherin was
identified in cell-conditioned medium by LC-MS/MS, the
shedding probably being mediated by the protease
ADAMI0 (Xu et al. 2015). Like integrins, E-cadherin is a
member of adherens junctions and is critical for proper

epithelial cell-cell adhesion and maintenance of planar polar-
ity (Leckband and de Rooij 2014). Thus, several reports indi-
cate that the loss of PC-1 and PC-2 influences cell-cell and
cell-matrix interactions, which probably contribute to cyst for-
mation in ADPKD.

ADPKD biomarkers

Next to the analysis of potential disease mechanisms, MS has
been used to develop prognostic and diagnostic biomarkers
for ADPKD. The easier the accessibility of respective
markers, the better their routine implementation. In the case
of ADPKD, urine was tested extensively as a potential source
of biomarkers. Urine is an easily accessible body fluid and
harbors biologically and medically meaningful information
in the form of peptides, proteins, or extracellular vesicles
(EV) originating from the renal system (Rodriguez-Suarez
etal. 2014). Several studies have described the use of the urine
peptidome and proteome as a source of markers for urogenital
diseases (Meguid El Nahas and Bello 2005; Schaub et al.
2004; Wittke et al. 2005). To define a particular biomarker,
as being specific for a disease, molecules in the urine should
be carefully discriminated regarding their origin. Urinary pro-
teins can originate from the kidney, ureter, or the urinary blad-
der. Databases listing urinary proteins (Marimuthu et al.
2011), exosomal urinary proteins (Gonzales et al. 2009;
Pisitkun et al. 2004) and ureter (Magdeldin et al. 2016), uri-
nary bladder, prostate and kidney (Cui et al. 2013; Pinto et al.
2014; Wilhelm et al. 2014) proteins may help in identifying
tissue-specific proteins.

In ADPKD, several urinary (and plasma) markers have
been recently reported, e.g., NGAL, CCL2 (MCP-1), CD14,
AVP (copeptin) and HAVCR1 (KIM-1; Bolignano et al. 2007;
Kuehn et al. 2007; Meijer et al. 2010, 2011; Zheng et al.
2003). However, these markers have not made it into the clinic
as yet and have also been reported to overlap with acute kid-
ney injury patients and healthy controls thus raising concerns
regarding their specificity (Kistler et al. 2013).

Urinary EVs represent a rich source of potential biomarkers
and their concentration and their changing protein composi-
tion might uncover disease states. Indeed, changes in the pro-
tein content of urinary EVs during the progression of ADPKD
and the accumulation of villin-1, periplakin and envoplakin
have been observed (Salih et al. 2016). By using chemical
labeling, urinary EVs have also been analyzed by comparing
ADPKD patients and ADPKD patients under tolvaptan treat-
ment (Pocsfalvi et al. 2015). Of the identified proteins, 1%
have been characterized as novel urinary proteins and almost
70% of the quantified proteins have been found to be signif-
icantly altered relative to those of the healthy control group.
Such a high degree of change is surprising and raises ques-
tions concerning data normalization and statistical analysis.
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As positive controls, PC-1, PC-2 and other calcium-binding
proteins related to ciliary pathways are significantly depleted
in EVs from ADPKD patients. Additionally, late stage
ADPKD patients, with a lower glomerular filtration rate than
the tolvaptan-treated group, show a higher number of differ-
entially abundant proteins. GO term enrichment analysis of
the data revealed upregulated proteins involved in
membrane-to-membrane docking, the establishment or main-
tenance of apical/basal cell polarity and microtubule polymer-
ization. Moreover, proteins involved in cytoskeletal organiza-
tion are significantly upregulated in EVs of ADPKD patients.
This agrees with the observation that cytoskeletal re-
organization and polarity defects are often observed in
cystogenesis.

In a complementary study, less than 0.5% of the urinary
EV proteins differed significantly in abundance in samples
of patients with a PKDI mutation (Hogan et al. 2015). This
might be attributable to the set of included patients, as only
young individuals (< 40 years) diagnosed with the PKDI
mutation were compared with healthy individuals by a
label-free MS approach. The patients still demonstrated nor-
mal filtration rates. Young individuals with minor disease
symptoms were chosen to limit the influences of fibrosis,
inflammation and infection. Whereas PC-1 and PC-2 were
both decreased in the individuals with the PKDI mutation,
transmembrane protein 2 (TMEM2), a homolog of
fibrocystin, showed a more than two-fold higher abundance.
Thus, the PC1/TMEM?2 ratio of urinary EVs was inversely
correlated with the height-adjusted kidney volume and the
authors suggested that this could be used as a diagnostic tool
for monitoring ADPKD.

Hypertension develops early in patients with ADPKD and
is associated with the progression of the disease (Schrier
2009). Partial or complete loss of PKDI or PKD?2 expression
is attended by abnormal vascular structure and function
(Boulter et al. 2001). Further, PKDI ™"~ cells are unable to
transduce extracellular shearing into intracellular Ca** signal-
ing and NO synthesis (Nauli et al. 2008). In ADPKD, the
renin-angiotensin-aldosterone system (RAAS) is activated
as a result of decreased NO production, cyst expansion and
intrarenal ischemia (Chapman et al. 2010). With disease pro-
gression, further RAAS activation occurs and blood pressure
increases. Treatments that block RAAS (ACE blockers) have
been shown to slow down ADPKD progression (Jafar et al.
2005) but also have severe side effects (Mann et al. 2008).
Thus, to study the effects of RAAS activation on primary
human proximal tubular cells, the proteomes of angiotensin-
IT (Ang-II)-treated and -nontreated cells were compared by
using metabolic labeling in combination with MS
(Konvalinka et al. 2013); 83 proteins were identified as dif-
ferentially regulated in a SILAC-based proteomic approach,
the most upregulated protein being heme oxygenase-1. In a
follow-up study, SRM assays for the quantification of Ang-II-

regulated proteins were developed that could potentially be
used to monitor Ang-II activity in patients with chronic kid-
ney disease (Konvalinka et al. 2016). Sample processing had
to be optimized to counteract protein losses and to ensure
proper protein digestion. In addition, protein/peptide modifi-
cations occurring either in vivo or as sample processing arti-
facts had to be taken into account. Interestingly, the authors
found that the urine of ADPKD patients harbored fewer po-
tential biomarkers compared with those of chronic kidney
disease patients and a healthy control group, although
mRNAs of respective target proteins were increased in renal
cysts. They concluded that the cysts might have lost their
contact and communication with tubules and thus, the respec-
tive proteins were not excreted to the same extent that they
were produced.

Capillary electrophoresis (CE)-MS analysis of over 10,000
individual urine samples collected within the Consortium of
Radiologic Imaging of Polycystic Kidney Disecase (CRISP;
https://www.niddkrepository.org/studies/crisp/) identified
distinctive changes in urinary collagen-derived peptides,
which could potentially be used as ADPKD biomarkers
(Kistler et al. 2013). The authors speculated that cyst forma-
tion leads to a reorganization of the renal extracellular matrix
and a decrease in regular collagen breakdown, finally
resulting in a significant decrease of collagen-derived peptides
in the urine of ADPKD patients. In agreement, this reduction
is negatively correlated with the height-adjusted total kidney
volume of respective individuals. Interestingly, peptides from
fibrinogen alpha chain and keratin are more abundant in
ADPKD samples, which is in agreement with the observations
that fibronectin and keratin 19 accelerate renal cystogenesis
and are associated with ADPKD (Mrug et al. 2008; Schieren
et al. 2006).

The same source of samples and data were later used to
identify a predictive peptidomic pattern for ADPKD and
ESRD (Pejchinovski et al. 2016). Employing CE-MS, the
authors detected 2247 urinary peptides in more than 40% of
patients reaching ESRD and in respective controls. Twenty
peptides were significantly altered in the excretion of ESRD
cases versus controls. By LC-MS/MS, the amino acid se-
quence of 16 of these peptides could be identified, which were
then used in a support vector machine-based approach to gen-
erate a prognostic biomarker model. The model managed to
classify patients into low- or high-risk groups for ESRD. In
silico analyses of potential proteolytic pathways involved in
generating the prognostic peptides revealed nine proteases: in
addition to cathepsins D, E and L, the following proteins were
found: meprin A, MMP2, 3, 8 and 9 and pepsin A. MMPs are
potentially involved in ADPKD by contributing to ECM turn-
over during cyst expansion (Berthier et al. 2008; Nakamura
et al. 2000; Obermuller et al. 2001). Moreover, a shift in ac-
tivity from cathepsin L to D and E was detected. Reduced
proteolytic processing of Cuxl by decreased cathepsin L



//doc.rero.ch

http

activity is thought to contribute to cyst growth in murine
PkdI™" cells (Alcalay et al. 2008). Cux!, the murine homolog
of human CDP, is a homeobox gene that represses the cyclin
kinase inhibitors p21 and p27.

Although several potential ADPKD biomarkers have been
identified by MS-based proteomics, to our knowledge, none
of them is currently used in routine clinical diagnostics. Urine
is widely appreciated to be a rich source for markers in renal
diseases and individual peptides and proteins may mirror dis-
case states. However, the discrimination of their origin, their
availability and their exclusiveness to a particular phenome-
non remains crucial. In most ADPKD studies, whether the
suggested peptide/protein markers are ADPKD-specific or
rather generally indicate renal injury remains unclear, e.g.,
the few studies that directly compared acute and chronic kid-
ney injury identified similar sets of deregulated proteins. Next
to disease specificity, the provision of technically robust SRM
assays for biomarker quantification is a prerequsite, starting
from sample generation and storage, in order to use them on a
routine basis in clinical diagnostics. Current studies do con-
sider the entire workflow and we are optimistic that robust
assays will be available in the future.

Concluding remarks

Whereas the causative genes for ADPKD have been identi-
fied, the molecular mechanisms responsible for its clinical
manifestation are still under debate. So far, the direct contri-
bution of MS-based proteomic approaches to the identifica-
tion of new molecular players in ADPKD has been humble.
Altered glycan structures and perturbed cell-cell and cell-
matrix interactions have been described. However, because
of profound technical innovations, such as more sensitive in-
struments and streamlined sample processing protocols prior
to LC-MS/MS analysis, we can expect increased input by MS-
based approaches. In particular, the characterization of altered
signaling events in ADPKD can massively benefit from state-
of-the-art proteomic approaches.

In addition, improvements in the disease and therapy mon-
itoring of ADPKD can be expected with the use of new MS
developments. One of the greatest challenges remains the
characterization of ADPKD-specific biomarkers. So far, the
clinical implementation of potential biomarkers identified by
MS has been rather disappointing. This is probably because of
a lack of sensitivity and a restricted dynamic range of MS
equipment, which only allows the routine identification and
characterization of a limited number of proteins in single mea-
surements. Moreover, the idea that a single protein might be
sufficient to monitor a disease state is retrospectively rather
naive. In contrast, new instruments allow the robust quantifi-
cation of several thousand proteins in single measurements,
even of low-abundant signal transducers. Thus, the

characterization of robust biomarker panels comprising sever-
al proteins can be expected in the near future.
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