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Methodological advents for the calculation of the multiplet energy levels arising from multiple-open-shell

2p53dn+1 electron configurations, with n = 0, 1, 2,. . . and 9, are presented. We use the Ligand-Field

Density Functional Theory (LFDFT) program, which has been recently implemented in the Amsterdam

Density Functional (ADF) program package. The methodology consists of calculating the electronic

structure of a central metal ion together with its ligand coordination by means of the Density Functional Theory

code. Besides, the core-hole effects are treated by incorporating many body effects and corrections via the

configuration interaction algorithm within the active space of Kohn–Sham orbitals with dominant 2p and 3d

characters of the transition metal ions, using an effective ligand-field Hamiltonian. The Slater–Condon integrals

(F2(3d,3d), F4(3d,3d), G1(2p,3d), G3(2p,3d) and F2(2p,3d)), spin–orbit coupling constants (z2p and z3d) and

parameters of the ligand-field potential (represented within the Wybourne formalism) are therefore determined

giving rise to the multiplet structures of systems with 3dn and 2p53dn+1 configurations. The oscillator strengths of

the electric-dipole allowed 3dn - 2p53dn+1 transitions are also calculated allowing the theoretical simulation of

the absorption spectra of the 2p core-electron excitation. This methodology is applied to transition metal ions in

the series Sc2+, Ti2+,. . ., Ni2+ and Cu2+ but also to selective compounds, namely SrTiO3 and MnF2. The

comparison with available experimental data is good. Therefore, a non-empirical ligand-field treatment of

the 2p53dn+1 configurations is established and available in the ADF program package illustrating the

spectroscopic details of the 2p core-electron excitation that can be valuable in the further understanding

and interpretation of the transition metal L2,3-edge X-ray absorption spectra.

Introduction

LFDFT is the acronym for Ligand-Field Density Functional
Theory. It is a quantum chemistry based method that calculates
the electronic structure and properties associated with multiple-
open-shell electron configurations in metal ions. Initiated in
Fribourg in Switzerland,1–3 its development was successful due
to the contribution and expertise of many scientists from
many European workplaces.1–15 LFDFT is a fully non-empirical

method, in which the ligand-field parameters (Slater–Condon
integrals, spin–orbit coupling constants and ligand-field potential)
are extracted from the output of a conceptual theoretical
procedure.1–15 LFDFT results are achieved with two important
steps: first theoretical calculation based on a molecular cluster
system by means of the Density Functional Theory code (DFT);
and second post-computational analysis with our ligand-field
module, which employs tools established using the crystal-/
ligand-field model16–19 and molecular orbital theory. By means
of LFDFT, the multiplet energy levels associated with a given
electron configuration are determined, important for further
description of the magnetic and optical properties of metal
compounds. Based on very encouraging LFDFT results obtained
for the last two decades (a non-exhaustive list of reportable
applications could be found in ref. 1–15 and 20–25), we have
implemented the LFDFT method into the Amsterdam Density
Functional (ADF) program package (ADF2017.103),26–28 with
relevance for calculation of the electronic fine structure of
systems with pn, dn, fn and fnd1 electron configurations, for an
integer value of n.
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In this work, the scope of LFDFT is extended to account for
the final electronic states of metal compounds under core-electron
excitation processes. An aspect of materials characterization is
nowadays obtained using core-electron excitation analysis,
popularized by analytical tools such as X-ray absorption spectro-
scopy and electron energy-loss spectroscopy. For instance, X-ray
absorption spectroscopy has become considerably popular because
of its remarkable advantages, including element specificity and local
geometric and electronic structure probing.29 Then, the use of X-ray
absorption spectroscopy goes well beyond the academic interest as
it offers an experimental tool capable of fundamentally under-
standing atoms, molecules and condensed matter.29 The X-ray
absorption experiments are frequently performed at the K- and
L2,3-edges for transition metal elements.29–31 They correspond
to the processes in which incident X-ray photons are absorbed
by promoting one electron from the 1s and 2p core-orbitals,
respectively, to the valence ones. In the spectra, strong features
are often observed,29,32 which represent the interaction of the
core-electron with the valence ones governed by electric-dipole
moment selection rules.

It is noteworthy that many theoretical methods33–40 are fre-
quently used for the simulation of the X-ray absorption spectra of
metal compounds. Some of those methods33,34 a priori utilize the
principles of crystal-/ligand-field theory to solve multiplet structure
problems and to simulate optical transitions in the samemanner as
provided by the LFDFT approach. The advantage of those methods
resides with the aspects of a semi-empirical solution, which is
especially developed on induction from experimental findings. But
the improvement that is brought by LFDFT in the ADF program
package26–28 is a parameter-free ligand-field concept, in which the
DFT code in ADF and our ligand-field module are merged in the
perspective of a fully non-empirical ligand-field consideration of
the electron transition processes. Herein, we present for the first
time the LFDFT results for the 2p core-electron excitation in transi-
tion metal compounds. The LFDFTmethodology is described. Then
the results are presented with respect to the calculation of the
multiplet energy levels arising from the 2p53dn+1 electron con-
figurations, with n = 0, 1, 2,. . . and 9 of divalent transition metal
ions and selective compounds. The oscillator strengths of the
3dn - 2p53dn+1 transitions are also calculated, allowing for a
non-empirical simulation of the absorption spectra that could
represent the transition metal L2,3-edge X-ray absorption or
electron energy loss spectra. Future works include the LFDFT
calculation of core 4d and 4f excitations in lanthanide and
actinide compounds, which will be presented and incorporated
into the ADF program package.26–28 They are important for the
understanding and characterization of the lanthanide N4,5- and
actinide N6,7-edge X-ray absorption spectra.

Methodology

In this work, we use the effective ligand-field Hamiltonian in
eqn (1) to calculate the multiplet energy levels arising from a
multiple-open-shell electron configuration. Eqn (1) sum up the
quantum effects related to the electron-electron repulsion and

exchange (HER), spin–orbit coupling interaction (HSO) and
ligand field splitting (HLF):

H = H0 + HER + HSO + HLF (1)

where the matrix elements of H are expressed on the basis of
single determinants of spin–orbitals (Slater-determinants),
which belong to a multiple-open-shell electron configuration.
More practically, we are restricted to 3dn and 2p53dn+1, with
n = 0, 1,. . . and 9, which can represent the ground and excited
electron configurations of transition metal ions in compounds
under X-ray irradiation.

The diagonalization of H yields eigenvalues also known as
multiplet energy levels that can be used to characterize the
electronic fine structure of the systems under investigation. The
term for the electron–electron repulsion and exchange in eqn (1)
is based on the central-field approximation and perturbation
theory of Slater:41,42

HER ¼
X
k¼2;4

Fkð3d; 3dÞfkðddÞ þ F2ð2p; 3dÞ f2ðpdÞ

þ
X
k¼1;3

Gkð2p; 3dÞgkðpdÞ
(2)

where the matrix elements of HER are constructed in terms of
the Slater–Condon F and G integrals representing the Coulomb
and exchange interactions, respectively; and the angular coefficients
f and g.41,42

In LFDFT, the Slater–Condon F and G integrals are calculated
non-empirically with the radial functions R3d and R2p extracted
from the Kohn–Sham orbitals with dominant 2p and 3d characters
of the transition metal ions (eqn (3)–(5)).

Fkð3d; 3dÞ ¼
ð1
0

ð1
0

rko
rkþ1
4

R3d
2 r1ð ÞR3d

2 r2ð Þr12r22dr1dr2 (3)

F2ð2p; 3dÞ ¼
ð1
0

ð1
0

ro2

r43
R2p

2 r1ð ÞR3d
2 r2ð Þr12r22dr1dr2 (4)

Gkð2p; 3dÞ ¼
ð1
0

ð1
0

rko
rkþ1
4

R2p r1ð ÞR3d r2ð ÞR3d r1ð ÞR2p r2ð Þr12r22dr1dr2
(5)

The radial functions are conventionally expanded with respect
to Slater-type orbital (STO) functions in the ADF program
package (see also Fig. 1).26–28 In eqn (3)–(5), ro and r4 are the
lesser and greater of the distances r1 and r2 of two electrons
from the nucleus.

Note that in eqn (2), the terms corresponding to the zeroth-
order Slater–Condon integrals (F0(2p,3d), F0(2p,2p) and F0(3d,3d))
are dropped, because they are engulfed in the term H0 in eqn (1),
which can be represented with a diagonal matrix:

H0 ¼
IN 3dnð Þ � 0 ð0Þ

ð0Þ IN 2p53dnþ1ð Þ � D

 !
(6)

where, the parameter D corresponds to the difference of the
configuration-average energies between 2p53dn+1 and 3dn; IN is
an identity matrix of rank N; and N represents the dimension of
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the Hilbert space given by the total number of single determinants
of spin–orbitals arising from the multiple-open-shell electron
configuration. N is analytically expressed by the mathematical
combinatorial formula in terms of the integer n:

N 3dnð Þ ¼
10

n

 !
(7)

and

N 2p53dnþ1
� � ¼ 6

5

 !
10

nþ 1

 !
(8)

In LFDFT, the parameter D is calculated as follows:

D = EDFT(2p53dn+1) � EDFT(3dn) (9)

where, EDFT(2p53dn+1) and EDFT(3dn) are the total electronic
energies obtained from the DFT calculations for the system
having 2p53dn+1 and 3dn electron configurations of the transition
metal ions. Aside from the zeroth-order inter-electronic repulsion
interaction parameters (F0(2p,3d), F0(2p,2p) and F0(3d,3d)), D in
principle combines many quantities, for instance: the one-
electron terms corresponding to the kinetic energy background
and nuclear-electron attraction; as well as the parameters B00
(2p,2p) and B00(3d,3d) for the ligand field potential, which will
be discussed in another paragraph. Note however that all these
quantities cannot be discriminated separately from the LFDFT
calculations.

The term for the spin–orbit coupling interaction in eqn (1) is
represented by a sum of one-electron spin–orbit contributions,
which describes the interaction of the spin of an electron i on
the atom, only with the angular momentum of its own orbital:

HSO ¼
X
i

zni li rið Þ li � sið Þ (10)

where znl(r) is an operator that describes the radial part of the
spin–orbit coupling; li�si describes the coupling of the angular
momenta of the spin and orbit, respectively.

Owing to the fact that the radial part can be factored out in
eqn (10), the spin–orbit coupling constant znl can be obtained
in two different ways. We use the first calculation route in
LFDFT, using the radial functions Rnl as follows:

znl ¼
a2

2

ð1
0

1

r

dV

dr

� �
RnlðrÞj j2r2dr (11)

where, a is the fine structure constant; and V is the central-field
potential-energy function, which is approximated here with a
simple coulomb potential (�2Z/r). The second calculation route
will be described later in eqn (14).

The term for the ligand-field splitting in eqn (1) represents
the contribution of the chemical environment (ligands) to the
electronic structure of the transition metal ion. This is para-
meterized within the Wybourne formalism,43 where the matrix
elements of the ligand-field splitting Hamiltonian are obtained
as the product of the Wybourne-normalized crystal field para-
meters B and the spherical harmonic tensor operator C acting
on the 2p and 3d orbitals (eqn (12)).

HLF ¼
X
k¼0;2

Xk
q¼�k

Bk
qð2p; 2pÞCðkÞ

q þ
X

k¼0;2;4

Xk
q¼�k

Bk
qð3d; 3dÞCðkÞ

q

þ
X
k¼1;3

Xk
q¼�k

Bk
qð2p; 3dÞCðkÞ

q

(12)

The effect of the ligand field splitting Hamiltonian is with
respect to symmetry constraints according to the spatial
arrangement of the ligand system in the coordination sphere
of the transition metal ions. In LFDFT, the parameters B are
determined from the eigenfunctions and eigenvalues of the
Kohn–Sham orbitals with dominant 2p and 3d characters using
mathematical least squares fit.

The ultimate goal of the LFDFT program consists of producing
non-empirical ligand-field parameters using a single-point DFT
calculation: i.e. the Slater–Condon integrals by means of eqn (3)–
(5); the spin–orbit coupling constants by means of eqn (11); the
ligand-field potential by means of eqn (12) and the energy gap D
(eqn (9)). Then these parameters are used to compute the
multiplet energy levels that are susceptible to represent the
electron configuration systems (i.e. 3dn and 2p53dn+1) from
which eqn (1) operates.

Computational details

The LFDFT calculations have been carried out by means of
the Amsterdam Density Functional (ADF) program package
(ADF2017.103).26–28 Three levels of approximation for the
exchange and correlation DFT functional were used: the local
density approximation (LDA) SVWN,44 the generalized gradient
approximation (GGA) PBE45 and the hybrid B3LYP.46 The
molecular orbitals were expanded using triple-zeta Slater-type
orbital (STO) functions plus one polarization extra function
(TZP)47 for the transition metal elements and double-zeta STO
functions plus one polarization extra function (DZP)47 for other

Fig. 1 Graphical representation of the 3d radial functions of Mn2+ (in
blue), Mn3+ (in red) and Mn4+ (in green) within the 3dn (solid curve) and
2p53dn+1 (dashed curve) electron configurations, with n = 5, 4 and 3. The
grey curves represent three Slater-type orbital functions from which the
radial functions are expanded.
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elements. The self-consistent field (SCF) was set-up to take into
account all electrons. The relativistic corrections were treated
with the Zeroth-order Regular Approximation (ZORA) of the
Dirac equation method as implemented in the ADF program
package.26–28 The scalar and spin–orbit parts of the ZORA
Hamiltonian were used to provide an accurate description of
both the spin-independent and spin-dependent relativistic
effects. The results were achieved using the recently available
‘‘LFDFT’’ and ‘‘LFDFT_TDM’’ keywords in the ADF program
package,26–28 which enable calculation of multiplet energy levels
and oscillator strengths of electronic transitions.

The LFDFT method consists of performing a single-point
DFT calculation with the average of the configuration (AOC)
scheme1,14,15 for the electron population in order to represent
the systems of electron configurations under investigation: 3dn

and 2p53dn+1, with n = 0, 1, 2,. . ., and 9 in transition metal ions.
It is a restricted SCF calculation, without symmetry constraint,
where the Kohn–Sham orbitals assimilated with dominant 2p
and 3d characters are populated with fractional electrons
controlled via the ‘‘OCCUPATION’’ keyword available in the
ADF program package.26–28 For example: a DFT calculation with
a 3dn configuration is achieved by occupying with n/5 electrons

the five-fold Kohn–Sham orbitals assimilated with a dominant
3d character; on the other hand, a DFT calculation with the
2p53dn+1 configurations is achieved by occupying with 5/3 and
(n + 1)/5 electrons the Kohn–Sham orbitals assimilated with
dominant 2p and 3d characters, respectively. Thus, the electron
density belongs to the totally symmetric representation under
which the operating effective ligand-field Hamiltonian (eqn (1))
is invariant. Besides, the concept of LFDFT consists of treating
explicitly the near degeneracy correlation using the configuration
interaction algorithm within the restricted active subspace of the
Kohn–Sham orbitals constructed earlier from DFT,1,14,15 by means
of the effective ligand-field Hamiltonian.

Results and discussion

It is important to start this section with discussion about the
radial functions of atomic orbitals, from which the Slater–Condon
integrals and spin–orbit coupling constants are calculated in
LFDFT using eqn (3)–(5) and (11), respectively. Fig. 1 shows
examples of calculated radial functions corresponding to the 3d
Kohn–Sham orbitals of Mn ions. The calculations are performed

Table 1 LFDFT parameters (in eV) corresponding to the 3dn (GS) and 2p53dn+1 (ES) electron configurations of free Ca2+, Ti4+, Sc2+, Ti2+, V2+, Mn4+, Cr2+,
Mn3+, Mn2+, Fe2+, Co2+, Ni2+ and Cu2+ ions, with n = 0, 0, 1, 2, 3, 3, 4, 4, 5, 6, 7, 8 and 9, respectively, by means of DFT calculation employing the LDA,
GGA and hybrid functional; together with some reference values (Ref.) taken from the literature

GS ES

F2(3d,3d) F4(3d,3d) z3d D F2(3d,3d) F4(3d,3d) G1(2p,3d) G3(2p,3d) F2(2p,3d) z2p z3d

Ca2+ GGA — — — 350.37 — — 2.024 1.161 3.389 2.521 0.011
Ref.a — — — 350.37 — — 2.51 1.42 3.79 2.4 0.011

Ti4+ GGA — — — 464.40 — — 3.961 2.268 5.396 3.948 0.035
Ref.a — — — 464.81 — — 4.62 2.63 6.30 3.78 0.032

Sc2+ GGA — — 0.014 402.10 7.274 4.523 2.909 1.650 4.124 3.171 0.020
Ref.b,c — — 0.010

Ti2+ GGA 7.784 4.827 0.020 457.28 8.279 5.143 3.384 1.923 4.725 3.917 0.028
Ref.b,c,d 6.644 4.107 0.015 9.214 5.744 3.378 1.917 4.850 3.776 0.032

V2+ GGA 8.560 5.304 0.027 515.76 9.112 5.654 3.768 2.149 5.259 4.792 0.036
Ref.b,c,d 7.132 4.460 0.021 9.876 6.153 3.795 2.155 5.352 4.650 0.031

Mn4+ LDA 10.928 6.857 0.060 648.22 11.083 6.960 5.291 3.031 7.086 7.011 0.071
GGA 10.931 6.859 0.059 648.86 11.086 6.962 5.241 3.002 7.045 7.022 0.070
Hybrid 10.852 6.807 0.058 659.02 11.005 6.908 5.153 2.952 6.956 7.074 0.070
Ref.c,d 13.177 8.299 5.776 3.288 7.658 6.845 0.066

Cr2+ GGA 8.970 5.561 0.035 577.77 9.327 5.792 3.931 2.248 5.537 5.840 0.044
Ref.b,c,e 8.020 5.359 0.029 10.522 6.552 4.024 2.388 5.841 5.668 0.041

Mn3+ LDA 10.755 6.718 0.053 644.79 11.088 6.933 4.887 2.798 6.698 7.016 0.063
GGA 10.749 6.715 0.052 645.44 11.085 6.932 4.839 2.770 6.657 7.027 0.063
Hybrid 10.646 6.647 0.052 655.15 10.996 6.873 4.766 2.728 6.579 7.079 0.063
Ref.b,c,d 10.116 5.741 0.044 12.201 7.649 5.179 3.288 6.988 6.845 0.066

Mn2+ LDA 10.000 6.197 0.046 642.32 10.652 6.614 4.464 2.555 6.226 7.020 0.056
GGA 9.997 6.197 0.045 642.97 10.648 6.613 4.417 2.527 6.186 7.029 0.056
Hybrid 9.880 6.120 0.046 652.28 10.561 6.556 4.359 2.494 6.120 7.082 0.057
Ref.b,c,d 8.719 5.195 0.043 11.155 6.943 4.606 2.618 6.321 6.846 0.053

Fe2+ GGA 10.615 6.572 0.061 710.82 11.231 6.9608 5.018 2.864 6.761 8.408 0.075
Ref.b,c,d 9.814 6.095 0.051 11.779 7.327 5.004 2.844 6.793 8.200 0.067

Co2+ GGA 11.255 6.967 0.077 782.33 11.880 7.361 5.424 3.096 7.236 9.955 0.093
Ref.b,c,e 10.564 6.821 0.066 12.396 7.708 5.397 3.069 7.260 9.748 0.092

Ni2+ GGA 11.560 7.154 0.095 857.19 12.021 7.446 5.684 3.245 7.541 11.689 0.113
Ref.b,c,e 10.779 7.548 0.081 5.787 3.291 7.721 11.507 0.102

Cu2+ GGA — — 0.116 935.52 — — — — — 13.668 —
Ref.b,c — — 0.103 — — — — — —

a In the ES columns, the reference values were taken from ref. 49. b In the GS columns, the reference values were taken from ref. 52. c Some
sections were left blank because we have not found relevant data. d In the ES columns, the reference values were taken from ref. 50. e In the ES
columns, the reference values were taken from ref. 51.
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at the scalar ZORA relativistic level of theory employing DFT
functional parameterization using the LDA, GGA and hybrid
formalisms. But only the results obtained with the GGA functional
are shown in Fig. 1, for clarity. The Mn atom is represented with
STO basis sets, in which the 3d orbitals are expanded with respect
to three STO functions with screening constants of 5.95, 2.85 and
1.32.47 These three STO primitives are also graphically represented
in Fig. 1. The influence of the degree of oxidation of the Mn ion on
R3d is reflected by the contraction of the tails of the radial
functions toward zero (the position of the nucleus), in line with
previous theoretical observations.48 Besides, R3d also becomes
sharper upon modifying the electron configuration from 3dn

to 2p53dn+1 (Fig. 1), due to the presence of 2p core-hole in the
Mn ions.

Table 1 lists the calculated Slater–Condon integrals corres-
ponding to the 3dn and 2p53dn+1 electron configurations for
Mn2+, Mn3+ and Mn4+ as well as selective transition metal ions.
In the series Mn2+, Mn3+ and Mn4+, the parameters increase as
the radial functions shrink (see Fig. 1). The LFDFT parameters
are not impacted by the changes in the DFT functional along the
calculations (Table 1). In the 3dn configuration, the mean
deviation between the calculated and experimental deduced
Slater–Condon integrals is relatively small (Table 1), showing
good estimation of the experiments by DFT. In the 2p53dn+1

configurations, the agreement between the calculated and
reference Slater–Condon integrals is also good (Table 1). Note
however that the reference values for 2p53dn+1 are not based on
the fit to experiments but rather the results of scaled-down
theoretical values from Hartree–Fock calculations.42,49–51 The
scaling factors range from about 80% or 85% reduction of the
Hartree–Fock values, as often reported in the literature.49–51 The
results of the calculation of the spin–orbit coupling constants
do strongly depend upon the level of approximation chosen: i.e.
the Pauli relativistic approach (eqn (11)) versus the ZORA spin–
orbit method (eqn (14), vide infra). Fig. 2 shows the calculated
z3d and z2p values for transition metal ions in the series Ca2+,
Sr2+, Ti2+. . . and Cu2+. They are compared with existing experi-
mental data.49,50–52 Using the radial functions R2p and R3d in
eqn (11), the parameters are overestimated if compared to the
experiments as general trends in the transition metal series
(Fig. 2). On average, this overestimation is accompanied by
factors of 1.75 and 1.10 vis-à-vis the experimental data (see
Fig. 2) for the 3d and 2p electrons, respectively. The spin–orbit
coupling constants can alternatively be calculated using the
ZORA spin–orbit method. This is the second calculation route
pointed out in the Methodology section. The ZORA Hamiltonian
is shown in eqn (13). It results from the zeroth-order regular
expansion in e/(2c2 � V) of the Dirac equation53 which in general
gives very accurate results in atomic calculations, i.e. eigen-
functions and eigenvalues of core and valence orbitals.54,55 The
expression in eqn (13) is implemented in the ADF program
package26–28 and already combines the operator terms dedicated
to both scalar relativistic and spin–orbit coupling.53,54

�V þ s:p
c2

2c2 � V
s:p

� �
FZORA ¼ eZORAFZORA (13)

The spin–orbit coupling constants for any open-shell electrons
can be determined using the following relationship:

zZORAnl ¼ 2

2l þ 1
eZORA
nl;j¼lþ1

2

� eZORA
nl;j¼l�1

2

� �
(14)

where, enl,j=l+1/2 and enl,j=l�1/2 are eigenvalues of eqn (13) belonging
especially to the atomic orbitals with a dominant nl character, for
instance 2p and 3d.

Fig. 2 shows the spin–orbit coupling constants (z3d and z2p)
obtained by means of the ZORA spin–orbit method (eqn (14))
for the series of divalent transition metal ions. The parameters
are also listed in Table 1. It is seen that the deviation of the
parameters vis-à-vis the experiments is clearly smaller for both
3d and 2p electrons (Fig. 2). Note that in the actual version
of the LFDFT program in ADF,26–28 the spin–orbit coupling
constants are still calculated by eqn (11). A newer version using
eqn (14) is under construction, but one can manually scale
down the parameters with correction factors. These correction
factors in principle take values in between 0 and 1 and allow
decreasing the magnitude of the overestimated spin–orbit
coupling interaction in LFDFT. They have to be specified in
the input of the calculation with motivation that they will not
impinge into the ultimate goal of the LFDFT approach, i.e. a
non-empirical ligand-field calculation. Thus, the correction
factors are the ratio between the parameters calculated from
eqn (14) to the solution obtained from eqn (11). For systems
with divalent transition metal ions, our results indicate that the

Fig. 2 Calculated spin–orbit coupling constants z3d (up) and z2p (down) in
the series Ca2+, Sc2+, . . . and Cu2+, obtained using the radial functions Rnl

(in blue) and ZORA spin–orbit relativistic method (in red), together with
available experimental data (in black).
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correction factors are in average 0.65 and 0.91 for the 3d and 2p
electrons, respectively.

Fig. 3 shows the LFDFT results of the multiplet energy levels
of the 2p53dn+1 electron configurations together with the cal-
culated intensity of the 3dn - 2p53dn+1 transitions for metal
ions in the series Ca2+, Sr2+, Ti2+,. . . and Cu2+. The multiplet
levels are listed in Table 2, with respect to Russel-Saunders
coupling and spin–orbit coupling schemes together with the
dimension of the effective ligand-field Hamiltonian calculated
by means of eqn (7) and (8). The intensity calculations are
obtained within the electric-dipolar approximation. They are
normalized to one, in order to facilitate the comparison
between different electron configuration systems.

I ¼
XN 2p53dnþ1ð Þ

i¼1

2p53dnþ1;Gi

� ��r 3dn;G0j i�� ��2 gi
p hn þ E0 � Eið Þ þ gi2ð Þ

(15)

In the right-hand side of eqn (15), the first term designates the
oscillator strength calculation (i.e. transition probability) of the

3dn(G0) - 2p53dn+1(Gi) transition in the electric-dipolar
approximation. In Fig. 3, it is illustrated by bar diagrams placed
above the representation of the multiplet energy levels. The
term |3dn, G0i refers to the ground state of the 3dn electron
configuration (see Table 2) with E0 as the LFDFT eigenvalue.
The term |2p53dn+1, Gii refers to the whole manifold of the
multiplet states of the 2p53dn+1 electron configurations (see
Table 2) with Ei as LFDFT eigenvalues. The term r stands for the
electric-dipole moment operator, which is expanded in terms of
spherical harmonics of order l = 1. The second term in eqn (15)
represents a Lorentzian function, which is used for the broadening
of the oscillator strengths to account for intrinsic effects related to
the finite lifetime of the core-hole |2p53dn+1, Gii states and, to a
lesser extent, to the finite experimental resolution. It is also
graphically represented in Fig. 3. The term hn represents the
energy of the absorbed photon; and the parameter gi is the half-
width at half-maximum of the Lorentzian function (eqn (15)). A
comparative view of the intensity plot for Mn2+, Mn3+ and Mn4+

ions is available in the ESI,† Fig. S1.
Note that the parameter gi (eqn (15)) is not deduced from

theoretical calculations in LFDFT but rather imposed by educated
guess.56 In Fig. 3, the oscillator strengths are convoluted with the
Lorentzian function with a constant value for the half-width
at half-maximum parameter (i.e. gi = g = 0.20 eV). It is observed
that only atomic spectral terms (|2p53dn+1, Gii) assimilated with
DJ = 0, � 1 vis-à-vis |3dn, G0i possess non-zero transition
probabilities fulfilling the electric-dipole moment selection rules,
with exception for Ca2+ and Cr2+ where the selection rule DJ = 0
does not hold. Since the values of the spin–orbit coupling
constants dedicated to the 2p electrons are particularly large
(Table 1) for systems with the 2p53dn+1 configurations, the
multiplet levels in Fig. 3 are mainly composed of final states
with different representations in Table 2. For example in Ca2+

ions (Fig. 3), the three atomic multiplets with non-zero transition
probabilities originate from a linear combination of final states
with 1P1,

3D1 and 3P1 representations belonging to the 2p53d1

configuration (see Table 2). For the atomic multiplet with the
highest intensity, the fractional parentages are 61.15%, 32.67%
and 6.18%, respectively, for 1P1,

3D1 and
3P1. Note also that we

obtain a relatively large D value in the LFDFT calculations
employing the hybrid functional (Table 1), which in the present
work leads to a red shift in the energy scale of the multiplet
energy levels (see also the ESI,† Fig. S2). The overestimation of
this parameter may originate from misrepresentation of the
exchange potential at long-range interactions, which is often
reported in the literature to induce errors for excitation energies
to Rydberg excited states.57,58 However, we must point out that
hybrid functionals are often valuable in calculations involving
the TDDFT model of core-electron excitation.59

The impacts of the ligand-field splitting interaction (eqn (12))
are illustrated with two examples for applications: SrTiO3 and
MnF2. The motivation of these examples is the local atomic
environments of the transition metal ions, which possess a
regular and a distorted octahedron for SrTiO3 and MnF2,
respectively. Furthermore, Ti and Mn L2,3-edge X-ray absorption
spectra are available for comparison and validation of the

Fig. 3 LFDFT multiplet energy levels of the 2p53dn+1 electron configuration
(in blue) and oscillator strengths of the electric-dipole allowed 3dn- 2p53dn+1

transitions (in black) for Ca2+, Sr2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+ and
Cu2+, with n = 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively (from bottom to top).
The grey curve represents the Lorentzian convolution of the oscillator
strengths with gi = 0.2 eV. In the ordinate, the intensity plot is given in arbitrary
units. The LFDFT parameters are listed in Table 1.
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theoretical results.60,61 SrTiO3 crystallizes in the cubic perovskite
structure type.62 The Ti4+ ion is surrounded by six O2� ligands
with Oh symmetry. The DFT calculation is performed on the
molecular (TiO6)

8� cluster with a Ti–O bond length of 1.950 Å, in
line with the experimental data.62 An external electrostatic
potential is also introduced via a set of point charges, which
allow simulation of the Madelung potential representing the
long-range interaction due to the periodicity of the SrTiO3

crystal structure. Namely, we use point charges located in the
lattice positions of Sr (with Q = +2), Ti (with Q = +4) and O (with
Q = �2) around the molecular (TiO6)

8� cluster. MnF2 crystallizes
in a distorted rutile structure type,62,63 where the Mn2+ center
is surrounded by six F� ligands with C2h coordination. The
deviation of the structure from ideal Oh symmetry is due to
tetragonal plus rhombic distortions. The tetragonal distortion is
responsible for the appearance of two non-equivalent bond
lengths: de and da, which are formed by Mn2+ with the four
equatorial and two axial F� ligands, respectively. The rhombic
distortion implies y a 901, which is the bond angle formed by
F–Mn–F in the equatorial plane. The DFT run is performed on
the molecular (MnF6)

4� cluster with de = 2.131 Å, da = 2.104 Å
and y = 781, in line with the experimental data.63,64 An external
electrostatic potential is also introduced using a similar procedure
to that described earlier for SrTiO3.

In (TiO6)
8�, the fivefold 3d orbitals of Ti4+ split into three

lower energy and two upper energy molecular orbitals, usually
designated as t2g* (with dominant 3dxy, 3dxz, 3dyz characters)
and eg* (with dominant 3dz2, 3dx2�y2 characters), respectively,
which are shown in the molecular orbitals diagram in Fig. 4.
The threefold 2p orbitals remain degenerate and belong to t1u
irreps. The ligand field potential in eqn (12) is parameterized by
only B40(3d,3d) and B44(3d,3d). The term Bkq(2p,3d) in eqn (12)
vanishes because of the inversion center in the Oh point group,
which ensures forbidden mixtures between functions assimilated
with opposite parity.65,66 In (MnF6)

4�, the degeneracy of 3d is
completely lifted in C2h. But the energy splitting resembles the Oh

pattern, since we obtain three molecular orbitals with lower energy
(see Fig. 4): ag* (with dominant 3dxy character), bg* (3dyz) and bg*
(3dxz) and two molecular orbitals with higher energy: ag* (with
dominant 3dz2 character) and ag* (3dx2�y2). The degeneracy of the
2p orbitals is also lifted in C2h, obtaining three distinct molecular
orbitals: au (with dominant 2pz character), bu (2py) and bu (2px).
The calculated parameters for the ligand-field potential for
(TiO6)

8� and (MnF6)
4� are listed in Table 3, which are in

agreement with the reported values in the literature.40,51,67 They
are obtained from DFT calculations employing the GGA functional.
Note that the resulting energy splitting of the 2p orbitals in (MnF6)

4�

is relatively small, in the magnitude of 10�3 eV. Note also that, the

Table 2 Spectral terms notation of the atomic multiplet structure (G) arising from the 3dn and 2p53dn+1 electron configurations (Config.) representing
the ground (GS) and excited (ES) states of transition metal ions, with n = 0, 1, 2, . . . and 9, under investigation in this work. N stands for the total number of
single determinants belonging to the electron configuration system

n

GS ES

Config. Na Gb,c Config. Na Gb

0 3d0 1 [1S0] 2p53d1 60 1P1,
1D2,

1F3,
3P0,1,2,

3D1,2,3 and
3F2,3,4

1 3d1 10 2D[3/2],5/2 2p53d2 270 3 � 2P1/2,3/2, 3 � 2D3/2,5/2, 3 � 2F5/2,7/2, 2 � 2G7/2,9/2,
2H9/2,11/2,

4S3/2,
4P1/2,3/2,5/2, 2 � 4D1/2,3/2,5/2,7/2,

4F3/2,5/2,7/2,9/2 and
4G5/2,7/2,9/2,11/2

2 3d2 45 1S0,
1D2,

1G4,
3P0,1,2 and

3F[2],3,4 2p53d3 720 1S0, 3 � 1P1, 4 � 1D2, 4 � 1F3, 3 � 1G4, 2 � 1H5,
1I6,

2 � 3S1, 4 � 3P0,1,2, 6 � 3D1,2,3, 5 � 3F2,3,4, 4 � 3G3,4,5,
2 � 3H4,5,6,

3I5,6,7
5S2,

5P1,2,3, 2 � 5D0,1,2,3,4,
5F1,2,3,4,5 and

5G2,3,4,5,6
3 3d3 120 2P1/2,3/2, 2 � 2D3/2,5/2,

2F5/2,7/2,
2G7/2,9/2,

2H9/2,11/2,
4P1/2,3/2,5/2

and 4F[3/2],5/2,7/2,9/2

2p53d4 1260 2 � 2S1/2, 7 � 2P1/2,3/2, 8 � 2D3/2,5/2, 9 � 2F5/2,7/2, 7 � 2G7/2,9/2,
5 � 2H9/2,11/2, 2 � 2I11/2,13/2,

2K13/2,15/2, 2 � 4S3/2, 4 � 4P1/2,3/2,5/2,
6 � 4D1/2,3/2,5/2,7/2, 5 � 4F3/2,5/2,7/2,9/2, 4 � 4G5/2,7/2,9/2,11/2,
2 � 4H7/2,9/2,11/2,13/2,

4I9/2,11/2,13/2,15/2,
6P3/2,5/2,7/2,

6D1/2,3/2,5/2,7/2,9/2 and
6F1/2,3/2,5/2,7/2,9/2,11/2

4 3d4 210 2 � 1S0, 2 � 1D2,
1F3,

1I6, 2 � 1G4,
2 � 3P0,1,2,

3D1,2,3, 2 � 3F2,3,4,
3G3,4,5,

3H4,5,6 and
5D[0],1,2,3,4

2p53d5 1512 1S0, 5 � 1P1, 6 � 1D2, 7 � 1F3, 5 � 1G4, 4 � 1H5, 2 � 1I6,
1K7,

2 � 3S1, 7 � 3P0,1,2, 9 � 3D1,2,3, 10 � 3F2,3,4, 7 � 3G3,4,5, 5 � 3H4,5,6,
2 � 3I5,6,7,

3K6,7,8,
5S2, 3 � 5P1,2,3, 3 � 5D0,1,2,3,4, 3 � 5F1,2,3,4,5,

2 � 5G2,3,4,5,6,
5H3,4,5,6,7 and

7P2,3,4
5 3d5 252 2S1/2,

2P1/2,3/2, 3 � 2D3/2,5/2, 2 � 2F5/2,7/2,
2 � 2G7/2,9/2,

2H9/2,11/2,
2I11/2,13/2,

4P1/2,3/2,5/2,
4D1/2,3/2,5/2,7/2,

4F3/2,5/2,7/2,9/2,
4G5/2,7/2,9/2,11/2 and [6S5/2]

2p53d6 1260 2 � 2S1/2, 7 � 2P1/2,3/2, 8 � 2D3/2,5/2, 9 � 2F5/2,7/2, 7 � 2G7/2,9/2,
5 � 2H9/2,11/2, 2 � 2I11/2,13/2,

2K13/2,15/2, 2 � 4S3/2, 4 � 4P1/2,3/2,5/2,
6 � 4D1/2,3/2,5/2,7/2, 5 � 4F3/2,5/2,7/2,9/2, 4 � 4G5/2,7/2,9/2,11/2,
2 � 4H7/2,9/2,11/2,13/2,

4I9/2,11/2,13/2,15/2,
6P3/2,5/2,7/2,

6D1/2,3/2,5/2,7/2,9/2

and 6F1/2,3/2,5/2,7/2,9/2,11/2
6 3d6 210 2 � 1S0, 2 � 1D2,

1F3,
1I6, 2 � 1G4,

2 � 3P0,1,2,
3D1,2,3, 2 � 3F2,3,4,

3G3,4,5,
3H4,5,6 and

5D0,1,2,3,[4]

2p53d7 720 1S0, 3 � 1P1, 4 � 1D2, 4 � 1F3, 3 � 1G4, 2 � 1H5,
1I6, 2 � 3S1,

4 � 3P0,1,2, 6 � 3D1,2,3, 5 � 3F2,3,4, 4 � 3G3,4,5, 2 � 3H4,5,6,
3I5,6,7

5S2,
5P1,2,3, 2 � 5D0,1,2,3,4,

5F1,2,3,4,5 and
5G2,3,4,5,6

7 3d7 120 2P1/2,3/2, 2 � 2D3/2,5/2,
2F5/2,7/2,

2G7/2,9/2,
2H9/2,11/2,

4P1/2,3/2,5/2 and
4F3/2,5/2,7/2,[9/2]

2p53d8 270 3 � 2P1/2,3/2, 3 � 2D3/2,5/2, 3 � 2F5/2,7/2, 2 � 2G7/2,9/2,
2H9/2,11/2,

4S3/2,
4P1/2,3/2,5/2, 2 � 4D1/2,3/2,5/2,7/2,

4F3/2,5/2,7/2,9/2 and
4G5/2,7/2,9/2,11/2

8 3d8 45 1S0,
1D2,

1G4,
3P0,1,2 and

3F2,3,[4] 2p53d9 60 1P1,
1D2,

1F3,
3P0,1,2,

3D1,2,3 and
3F2,3,4

9 3d9 10 2D3/2,[5/2] 2p53d10 6 2P1/2,3/2
a The values of N are determined by means of eqn (7) and (8) for GS and ES, respectively. b For all entries in Table 1, the notation of multiplets uses
the quantum S, L and J numbers (i.e. 2S+1LJ) and the number in front of the multiplets (e.g. 2 � 1S0) denotes the multiple occurrence of the term 1S0
in this electron configuration system. c The ground states of the 3dn configuration are put in square brackets.
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elongation and compression of the Ti–O or Mn–F bond lengths
are the factors that influence the parameters, as tested in
our work.

The molecular orbitals with dominant 2p and 3d characters
of Ti4+ and Mn2+ (see Fig. 4) are associated with radial functions
with different shapes. This depends on the interaction (bonding
regime and covalency) of each component of 2p and 3d with the
ligand orbitals. This is illustrated in Fig. 5 for the 3d orbitals of
Ti4+. The two radial functions with different shapes, namely
R3d,eg and R3d,t2g (Fig. 5), are attributed to the splitting of the 3d
orbitals into t2g* and eg* under the effect of the Oh ligand-field
in the 2p53d1 configuration. A similar situation occurs for Mn2+

ions in (MnF6)
4�, which can be seen in the ESI,† Fig. S3. The

phenomenology of the nephelauxetic effect of Jørgensen69,70 is
reflected in Fig. 5 and Fig. S3 (ESI†). In particular, the shape of
R3d varies from a free ion to a molecular cluster because of the
expansion of the electron clouds towards the positions of the
ligands. The nephelauxetic effect denotes the reduction of
the values of the inter-electronic repulsion and spin–orbit coupling
parameters obtained for the molecular cluster if compared to the
free ion. However, within the ligand-field scheme, there is no ml
dependency for the atomic basis functions. That is, the electrons
are supposed to move in a central field. Thus, we construct
artificial radial functions, which complies with the fundamental
concept of ligand-field theory,16–19 as follows:

Rnl;av ¼ 1

2l þ 1

X2lþ1

i

Rnl;i (16)

where, Rnl,i is the radial function obtained for the component i of
the Kohn–Sham orbitals with a dominant nl character, expanded
in terms of STO functions47 or projected on a numerical grid;68

Rnl,av is the artificial radial function from which the Slater–Condon
parameters are calculated using eqn (3)–(5).

For the 3d orbitals of Ti4+, R3d,av is also graphically represented
in Fig. 5. The calculated Slater–Condon integrals are listed in
Table 3 for systems with (TiO6)

8� and (MnF6)
4�, obtained from

DFT calculation employing the GGA functional and the ZORA

Fig. 4 Energies of the molecular orbitals with dominant 3d characters of
Ti4+ (up) and Mn2+ (down) in (TiO6)

8� and (MnF6)
4�, calculated for the 3dn

and 2p53dn+1 configurations, with n = 0 and 5, respectively. Note that in
LFDFT, the trace of the ligand-field potential is zero (i.e. B0

0(3d,3d) = 0).

Table 3 LFDFT parameters (in eV) for systems with (TiO6)
8� and (MnF6)

4�

having 3dn (GS) and 2p53dn+1 (ES) configurations of Ti4+ and Mn2+, with
n = 0 and 5, respectively, obtained from DFT calculations using the GGA
functional. The parameter b (in [—]) represents the nephelauxetic ratio

(TiO6)
8� (MnF6)

4�

GGA b GGA b

GS
F2(3d,3d) 0 — 8.404 0.841
F4(3d,3d) 0 — 5.176 0.835
z3d 0 — 0.041 0.911
B40(3d,3d) 0 — 2.140 —
B41(3d,3d) 0 — 0 —
B42(3d,3d) 0 — 0.257i —
B43(3d,3d) 0 — 0 —
B44(3d,3d) 0 — 1.418 —
B20(3d,3d) 0 — 0.323 —
B21(3d,3d) 0 — 0 —
B22(3d,3d) 0 — 0.390i —

ES
F2(3d,3d) 0 — 8.233 0.773
F4(3d,3d) 0 — 5.084 0.769
G1(2p,3d) 2.986 0.754 3.813 0.863
G3(2p,3d) 1.707 0.753 2.181 0.863
F2(2p,3d) 4.286 0.794 5.346 0.864
z2p 3.915 0.992 7.027 1.000
z3d 0.027 0.771 0.048 0.857
D 460.11 0.991 642.63 1.000
B20(2p,2p) 0 — 0.023 —
B21(2p,2p) 0 — 0 —
B22(2p,2p) 0 — 0.020i —
B40(3d,3d) 3.473 — 1.963 —
B41(3d,3d) 0 — 0 —
B42(3d,3d) 0 — 0.222i —
B43(3d,3d) 0 — 0 —
B44(3d,3d) 2.076 — 1.314 —
B20(3d,3d) 0 — 0.325 —
B21(3d,3d) 0 — 0 —
B22(3d,3d) 0 — 0.322i —

Fig. 5 Radial functions of the Kohn–Sham orbitals with dominant 3d
character of Ti4+ obtained for the 2p53d1 electron configuration in the
free ion (in black) and in (TiO6)

8� embedded in SrTiO3 (in red and blue). The
magenta curve represents the artificial 3d radial function used in the LFDFT
calculation (see the text for details).
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scalar relativistic method. The calculated spin–orbit coupling
constants are also listed in Table 3. The parameters are obtained
for the ground 3d0 and 3d5, configurations of the Ti4+ and Mn2+

ions, respectively, as well as the excited 2p53d1 and 2p53d6. The
reduction of the parameters vis-à-vis the free ion is expressed by
the constant b of Jørgensen,69 which is calculated and listed in
Table 3 for Ti4+ and Mn2+ in the molecular (TiO6)

8� and (MnF6)
4�

cluster systems.
Fig. 6 and 7 show the calculated multiplet energy levels

corresponding to the 2p53d1 and 2p53d6 electron configurations of
Ti4+ and Mn2+ in the systems (TiO6)

8� and (MnF6)
4�, respectively.

The simulated absorption spectra of the 2p core-electron excitation
are also shown. The LFDFT calculations are restricted to the 3d0-
2p53d1 for Ti4+ and 3d5 - 2p53d6 transitions for Mn2+. In the
intensity calculations (see eqn (15)), the initial state represents the
ground states of the 3d0 and 3d5 configurations of Ti4+ and Mn2+

in the respective molecular cluster. On the other hand, the final
states are composed of the whole manifold of the multiplet
structure of the 2p53d1 for Ti4+ (see Fig. 6) and 2p53d6 transitions
for Mn2+ (see Fig. 7).

The Ti4+ ion has a non-degenerate multiplet ground state
because of the 3d0 configuration. That is, the ground state is 1S0
(see Table 2), i.e. G1 in Bethe notation, taking into account the
octahedral ligand-field splitting. In the 2p53d1 configuration,
with inclusion of the octahedral ligand-field splitting, the
atomic multiplet terms assimilated with J = 0 (Table 2) is
transformed into the G1 irreps of the O* double group.

Similarly, the atomic multiplet terms with J = 1 (see Table 2)
is transformed into G4; J = 2 to G3 and G5; J = 3 to G2, G4 and G5;
J = 4 to G1, G3, G4 and G5. The final states of the 2p core-electron
excitation form the basis of the following representations of the
O* double group: 2 � G1, 3 � G2, 5 � G3, 7 � G4 and 8 � G5.
Within the electric-dipolar approximation, G4 only does possess
non-zero transition probability, i.e. we obtain in total seven

multiplet levels with allowed transitions. More particularly, this
is illustrated in the calculated absorption spectrum in Fig. 6.
Two multiplets have the highest intensities. They lie at energies
of 460 eV and 466 eV (see Fig. 6) and they are also visible in the
free ion spectrum. Five other multiplets have smaller absorption
coefficients and mainly result from the redistribution of the
intensity due to the octahedral ligand-field splitting. In the
experimental Ti4+ L2,3-edge X-ray absorption spectrum, the bands
observed for SrTiO3

60 are in good agreement with the theoretical
results in terms of energies and relative intensities.

Within the 3d5 configuration, the Mn2+ ion undergoes a
system with 252 � 252 elements in the configuration interaction
matrix (see Table 2). The ground state is the high-spin 6S5/2, whose
energy is split by zero-field splitting into three Kramers doublets
with inclusion of the C2h ligand-field splitting in the molecular
(MnF6)

4� cluster. The energy separation between these three
Kramers doublets is nonetheless very small, in the magnitude of
10�5 of eV as a result of our LFDFT calculations. In the 2p53d6

configuration, the atomic mulitplet terms assimilated with J values
of 3/2, 5/2 and 7/2 in Table 2 have non-zero transition probabilities,
fulfilling the electric-dipole moment selection rules. The difference
in the absorption spectra of Mn2+ in the free ion and in the
molecular cluster is due to the splitting of these atomic multiplet
terms into the Kramers doublet belonging all to the G3 repre-
sentation of the C2* double group. The calculated absorption
spectrum for (MnF6)

4� is also in agreement with the experi-
mental Mn L2,3-edge X-ray absorption spectrum of MnF2.

61

Conclusions

The purpose of this work was to present methodological
advents for the theoretical consideration of the electronic
structure and optical properties arising from 2p core-electron
excitation in transition metal ions and compounds. In this

Fig. 6 LFDFT results of the multiplet energy levels (in blue) of the 2p53d1

configuration of Ti4+ in the molecular (TiO6)
8� cluster embedded in

SrTiO3. The oscillator strengths of the 3d0 - 2p53d1 transitions are shown
with bar diagrams placed above the multiplet energies (in black). The grey
curves represent the Lorentzian convolution of the oscillator strengths
with a half-width at half-maximum g = 0.2 eV. In the ordinate, the intensity
plot is given in arbitrary units.

Fig. 7 LFDFT results of the multiplet energy levels (in blue) of the 2p53d6

configuration of Mn2+ in the molecular (MnF6)
4� clusters embedded in

MnF2. The oscillator strengths of the 3d5 - 2p53d6 (down) transitions are
shown with bar diagrams placed above the multiplet energies (in black).
The grey curves represent the Lorentzian convolution of the oscillator
strengths with a half-width at half-maximum g = 0.2 eV. In the ordinate,
the intensity plot is given in arbitrary units.
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context, we have used a theoretical methodology in the LFDFT
program, which utilizes the concept from the crystal-/ligand-
field model complemented with a first principles DFT calculation.
We have calculated the multiplet energy levels arising from the
2p53dn+1 electron configurations, with n = 0, 1, 2,. . . and 9, of
divalent transition metal ions. The ligand-field parameters such as
Slater–Condon integrals, spin–orbit coupling constants and
ligand-field potential were determined non-empirically from the
DFT calculations. The change of the DFT functional along the
LFDFT calculation was analyzed, but the impact of different basis
set expansion of the radial functions was not considered. Further-
more, two examples for applications were explicitly treated:
(TiO6)

8� and (MnF6)
4�, which are selectively cut from the crystal

structure of SrTiO3 andMnF2, respectively. The oscillator strengths
of the 3dn - 2p53dn+1 transitions are also calculated allowing a
theoretical simulation of the absorption spectra. A qualitative
agreement with respect to the experiment is observed. The
energies and intensities of the measured absorption bands are
reproduced with details, which are not always visible in the
experimental spectral profile, enabling a better understanding
of the optical effect induced by the 2p core-electron excitation
and a good connection between spectroscopy studies and
theoretical investigations in materials science. A newer version
of LFDFT in ADF is under preparation, ensuring a more precise
calculation of spin–orbit coupling constants.
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B. Herden, M. Suta, C. Wickleder, W. Urland and C. Daul,
Inorg. Chem., 2015, 54, 8319.

26 G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca-
Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Zigler,
J. Comput. Chem., 2001, 22, 931.

27 C. Fonseca-Guerra, J. G. Snijders, G. te Velde and
E. J. Baerends, Theor. Chem. Acc., 1998, 99, 391.

28 E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, O. Baseggio,
D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M.
Boerrigter, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai,
L. Deng, R. M. Dickson, J. M. Dieterich, D. E. Ellis, M. van
Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini,
A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. Goez,
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P. Wernet and M. Odelius, J. Phys. Chem. Lett., 2012, 3, 3565.
36 M. G. Brik, J. Phys. Chem. Solids, 2008, 69, 2568.
37 M. Stener, G. Fronzoni and M. de Simone, Chem. Phys. Lett.,

2003, 373, 115.
38 J. Fernandez-Rodriguez, B. Toby and M. van Veenendaal,

J. Electron Spectrosc. Relat. Phenom., 2015, 202, 81.
39 H. Ikeno, T. Mizoguchi and I. Tanaka, Phys. Rev. B: Condens.

Matter Mater. Phys., 2011, 83, 155107.
40 M. W. Haverkort, M. Zwierzycki and O. K. Andersen, Phys.

Rev. B: Condens. Matter Mater. Phys., 2012, 85, 165113.
41 J. C. Slater, Phys. Rev., 1929, 34, 1293.
42 R. D. Cowan, The Theory of Atomic Structure and Spectra,

University of California Press, Berkeley, 1981.
43 B. G. Wybourne, Phys. Rev., 1966, 148, 317.
44 S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980,

58, 1200.
45 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,

1996, 77, 3865.
46 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch,

J. Phys. Chem., 1994, 98, 11623.
47 E. Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003,

24, 1142.
48 F. Neese and E. I. Solomon, Inorg. Chem., 1998, 37, 6568.
49 F. M. F. de Groot, J. C. Fuggle, B. T. Thole and G. A. Sawatzky,

Phys. Rev. B: Condens. Matter Mater. Phys., 1990, 41, 928.
50 T. Uozumi, K. Ojkada, A. Kotani, R. Zimmermann, P. Steiner,
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