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In electronic systems with long-range Coulomb interaction, the nonlocal Fock-exchange term has a band-
widening effect. While this effect is included in combined many-body perturbation theory and dynamical mean
field theory (DMFT) schemes, it is not taken into account in standard extended DMFT (EDMFT) calculations.
Here, we include this instantaneous term in both approaches and investigate its effect on the phase diagram and
dynamically screened interaction. We show that the largest deviations between previously presented EDMFT and
GW+EDMFT results originate from the nonlocal Fock term, and that the quantitative differences are especially
large in the strong-coupling limit. Furthermore, we show that the charge-ordering phase diagram obtained in
GW+EDMFT methods for moderate interaction values is very similar to the one predicted by dual-boson
methods that include the fermion-boson or four-point vertex.

DOI: 10.1103/PhysRevB.95.245130

Dynamical mean field theory (DMFT) [1] self-consistently
maps a correlated Hubbard lattice problem with local inter-
actions onto an effective impurity problem consisting of a
correlated orbital hybridized with a noninteracting fermionic
bath. If the bath is integrated out, one obtains an impurity
action with retarded hoppings. Extended dynamical mean
field theory [2–10] (EDMFT) extends the DMFT idea to
systems with long-range interactions. It does so by mapping a
lattice problem with long-range interactions onto an effective
impurity model with self-consistently determined fermionic
and bosonic baths, or, in the action formulation, an impurity
model with retarded hoppings and retarded interactions.

While EDMFT captures dynamical screening effects and
charge-order instabilities, it has been found to suffer from
qualitative shortcomings in finite dimensions. For example, the
charge susceptibility computed in EDMFT does not coincide
with the derivative of the average charge with respect to a small
applied field [11], nor does it obey local charge conservation
rules [12] essential for an adequate description of collective
modes such as plasmons.

The EDMFT formalism has an even more basic deficiency:
since it is based on a local approximation to the self-energy,
it does not include even the first-order nonlocal interaction
term, the Fock term. The combined GW+EDMFT [13–15]
scheme corrects this by supplementing the local self-energy
from EDMFT with the nonlocal part of the GW diagram,
where G is the interacting Green’s function and W the
fully screened interaction. Indeed, the nonlocal Fock term
[Gv]nonloc is included in the nonlocal [GW ]nonloc diagram. As
described in more detail in Ref. [15] (see also the appendix of
Ref. [16]), the GW+EDMFT method is formally obtained by
constructing an energy functional of G and W , the Almbladh
[17] functional �, and by approximating � as a sum of
two terms, one containing all local diagrams (corresponding
to EDMFT) and the other containing the simplest nonlocal
correction (corresponding to the GW approximation [18]).
This functional construction rules out double counting of local
terms in the self-energy and polarization [15,19]. Even though

it has been introduced under the name GW+DMFT [13] in
the literature, we denote this full scheme by GW+EDMFT to
emphasize that it is based on the EDMFT formalism, and to
distinguish it from simplified implementations without two-
particle self-consistency, which have appeared in the literature
(and which we denote in the following as GW+DMFT).

In a recent implementation of the GW+EDMFT method
(Ref. [15], and related papers [20,21]), the nonlocal Fock
term was omitted [22]. Here, we explore and highlight the
role of this term and its interplay with the local correlations.
We quantify the band-widening effect of the Fock term and
study the consequences of its presence or absence on various
observables, and on the charge-order phase boundary. Our
self-consistent implementation goes beyond previous studies
of the effect of the Fock exchange in realistic calculations,
where it was studied systematically within GW [23] and
GW+DMFT [24], albeit not in a self-consistent way.

The paper is organized as follows: In Sec. I, we recap
the GW+EDMFT equations with special emphasis on the
Fock term and make general statements about the expected
impact. In Sec. II, we show explicit results for the effective
renormalization of the band structure by the instantaneous
Fock contribution within GW+EDMFT, followed by system-
atic comparisons with the results of simplified formalisms in
Sec. III. Section IV discusses the role of the Fock term in the
Mott-insulating phase, where it stays relevant up to very large
values of the on-site interaction. Finally, in Sec. V, we compare
our results with results obtained within the recent dual-boson
method.

I. FORMALISM

We aim at solving the extended Hubbard model on the
two-dimensional square lattice by constructing an effective
impurity problem that gives the local part of the self-energy
� and polarization P , and a diagrammatic expansion in
their nonlocal components. The model is defined by the
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Hamiltonian

H = −
∑
ij

tij c
†
i cj + 1

2

∑
ij

vij ninj − μ
∑

i

ni . (1)

Here, tij are the real-space hopping matrix elements, c
(†)
i the

electronic annihilator (creator) on site i, vij the Coulomb
interaction, and ni = c

†
i ci . We restrict ourselves to models

with hoppings and interactions between nearest neighbors and
next-nearest neighbors only,

tij = tδ〈ij〉 + t ′δ〈〈ij〉〉, (2)

vij = Uδij + V δ〈ij〉 + V ′δ〈〈ij〉〉, (3)

where δij is the usual Kronecker delta, δ〈ij〉 (respectively δ〈〈ij〉〉)
is 1 for i and j nearest neighbors (respectively next-nearest
neighbors, along the diagonal of the square lattice) and zero
otherwise. This results in the Fourier transforms

εk = 2t[cos(kx) + cos(ky)]

+ 2t ′[cos(kx + ky) + cos(kx − ky)] (4)

and

vq = U + 2V [cos(qx) + cos(qy)]

+ 2V ′[cos(qx + qy) + cos(qx − qy)]. (5)

The full expression for the self-energy in the GW+EDMFT
approximation is

�(k,iωn) = �imp(iωn) + �nonloc
GWc

(k,iωn) + �nonloc
F (k). (6)

The last two terms correspond to the nonlocal part of the GW

self-energy. They can be expressed as a function of imaginary
time τ and momentum k as follows:

�nonloc
GWc

(k,τ ) = −
∑

q

Gq+k(τ )Wc
q (τ )

+
[∑

q

Gq+k(τ )Wc
q (τ )

]
loc

, (7)

�nonloc
F (k) = −

∑
q

Gq+k(τ = 0+)vq

+
[∑

q

Gq+k(τ = 0+)vq

]
loc

. (8)

Fourier transformations between τ and fermionic [bosonic]
Matsubara frequencies iωn = i(2n + 1)π

β
[iνm = i2mπ

β
] are

assumed where needed (β denotes the inverse temperature).
The “loc” suffix denotes a sum over the first Brillouin zone.
The interacting lattice Green’s function is

Gk(iωn) = [iωn + μ − εk − �(k,iωn)]−1, (9)

and W c is defined as

W c
q(iνm) ≡ vq

1 − vqPq(iνm)
− vq, (10)

with P the polarization function. All results are given in
units of D = 4|t | (which is the half bandwidth when t ′ = 0),
and the momentum discretization is Nk = 32 × 32 points

(0,0)(0,π) (π,π)(0,0)

FIG. 1. Bare dispersion ε(k) (solid black lines), nonlocal Fock
self-energy �nonloc

F (k) (solid blue line), and renormalized dispersion
ε̃(k) (dashed green line) along a high-symmetry path in the Brillouin
zone in the GW+EDMFT method. Inset: Color plot of �nonloc

F (k) in
the first Brillouin zone (U = 2.0 and V = 0.4, β = 100, half filling).

in the first Brillouin zone, unless otherwise stated. We
use the original formulation of the GW+EDMFT scheme
[13], corresponding—within a functional formulation—to a
Hubbard-Stratonovich decoupling of the full interaction term,
dubbed “HS-UV decoupling” in Ref. [15]. As argued there,
this choice has the advantage that it treats local and nonlocal
interactions on the same footing.

The nonlocal Fock term of Eq. (6), which is real valued
and instantaneous, renormalizes the bandwidth. It can become
quite large and momentum dependent. This is illustrated in
Fig. 1 for the parameters U = 2 and V = 0.4 (and t ′ = 0 and
V ′ = 0, which is assumed in the following if not explicitly
stated otherwise). The figure also indicates that for the case of
nearest-neighbor hopping and interaction, the nonlocal Fock
term can be exactly absorbed into the bare dispersion Eq. (4)
by defining a U - and V -dependent hopping

t̃(t ′,U,V,V ′) = t + δt(t ′,U,V,V ′). (11)

This can be understood by looking at the real-space represen-
tation of the Fock term, Eq. (8):

�nonloc
F ij = − Gij (τ = 0+)vij + Gii(τ = 0+)viiδij

= − G〈ij〉(τ = 0+)V δ〈ij〉 − G〈〈ij〉〉(τ = 0+)V ′δ〈〈ij〉〉,
(12)

where the notation 〈ij 〉 (〈〈ij 〉〉) denotes a restriction to nearest-
neighbor (next-nearest-neighbor) interactions.

Thus, for the case of Fig. 1, where V ′ = 0, the Fock term
enters Eq. (9) as a renormalization of the nearest-neighbor
hopping by

δt(t ′,U,V,V ′) = −G〈ij〉(τ = 0+)V. (13)

The Green’s function factor, which is closely related to the
occupation number, has an implicit dependence on all param-
eters of the lattice problem. In the presence of a next-nearest-
neighbor interaction, t ′ also gets renormalized according to

δt ′(t ′,U,V,V ′) = −G〈〈ij〉〉(τ = 0+)V ′. (14)

Note that such a term breaks the particle-hole symmetry of
the lattice. In the particle-hole-symmetric case with t ′ = 0
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FIG. 2. Hopping renormalization δt according to Eq. (13) for
half filling (top) and n = 0.8 (bottom). The solid line with triangles
indicates the phase transition to the charge-ordered phase and the line
with stars the transition to the Mott-insulating phase.

and half filling, the next-nearest-neighbor Green’s function
factor vanishes: G〈〈ij〉〉(τ = 0+) = 0.

II. EFFECTIVE BAND STRUCTURE

In the simplest case of nearest-neighbor interaction V , the
nearest-neighbor hopping renormalization δt determines the
band widening [see Eq. (13)]. Since the half bandwidth is D =
4|t |, the widening will be δD = 4δt . Figure 2 illustrates this
effect throughout the homogeneous part of the phase diagram
for the particle-hole-symmetric (t ′ = 0) half-filled case. The
most obvious feature is the increase with V , which is expected
from Eq. (13), and the decrease close to the Mott-insulating
phase. δt nonetheless remains significant even at very high
values of U , a property that is further investigated in Sec. IV.

Away from half filling, where the Mott-insulating phase
does not exist, the corresponding suppression of δt disappears,
but otherwise the dependence on V and U is very similar to
the half-filled case; see the bottom panel of Fig. 2.

To study a model with broken particle-hole symmetry, we
introduce a nearest-neighbor hopping t ′ = t/

√
2 and fix the

filling at 〈n〉 = 0.8 as well as the nearest-neighbor interaction
V . We then calculate δt as a function of the next-nearest-
neighbor interaction V ′. As shown in Fig. 3, the main effect
on the hopping renormalization comes from the (essentially
linear) dependence on V . The qualitative effect of V ′ is to
slightly reduce the renormalization.

In order to make the connection to realistic electronic
structure calculations, we note as a side remark that there the
situation is slightly more subtle. The band-widening effect is
indeed relative to the reference point. Let us consider three ref-
erence Hamiltonians: (i) the Kohn-Sham Hamiltonian HKS of

FIG. 3. Dependence of the nearest-neighbor hopping parameter
renormalization δt on the next-nearest-neighbor interaction V ′ for
fixed U = 2.0, t ′ = 1/

√
2, and 〈n〉 = 0.8. Inset: Color plot of �F(k)

in a calculation with 32 × 32 k-points for the V = 0.4, V ′ = 0.2 case.

density functional theory (DFT); (ii) the Hartree Hamiltonian
H0 = HKS − V [vxc(r)], where vxc(r) denotes the Kohn-Sham
exchange-correlation potential, which is local in the electronic
structure sense [that is, “local” denotes a function depending
only on one space variable f (r), while “nonlocal” denotes
a function depending on two variables f (r,r′)]; and (iii)
the nonlocal exchange Hamiltonian H F

xc = H0 + V [vF
xc(r,r′)],

where vF
xc(r,r′) denotes an exchange-correlation potential

including the “nonlocal” Fock exchange. Then the hierarchy
of the bandwidths in a metallic system is

H0 > H F
xc > HKS. (15)

Thus, H F
xc indeed widens the band with respect to density

functional theory calculations. The question of the relative
bandwidth changes thus implies a question on the starting
band structure. We refer the interested reader to Ref. [25] for
a systematic construction of explicit low-energy many-body
Hamiltonians.

Here, we only comment on the specific point of the
Hartree and Fock terms, in order to put our work on the
extended Hubbard Hamiltonian into perspective with respect
to realistic electronic structure calculations. Indeed, as argued
in Ref. [25], in realistic electronic structure calculations one
needs to avoid double counting of interactions at the one- and
two-particle level. Let us consider first the case of the Hartree
terms: Standard electronic structure techniques (e.g., a DFT
calculation) produce a band structure including the Hartree
contribution. This one-body potential contribution is then
already part of the effective hopping parameter determined
from this band structure. Reference [25] explains how to avoid
double counting by including—at the level of the many-body
calculation—only terms beyond Hartree. Here, we do not need
to address this point in detail, since a Hartree term included in
the model calculation would cancel out with the corresponding
shift of the chemical potential, since the particle number
eventually determines the energetic level of the single orbital
included in the present model.

Let us now move to the analogous question for the Fock
term: One may examine the relevance of excluding it at
the level of the many-body calculation, and keeping it at
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the level of the electronic structure calculation instead. The
answer is based on several elements: The first point to note
is that standard DFT calculations do treat exchange in a
local approximation (where “local” here means again “local
in the electronic structure sense”; see above), which relies
on an error-cancellation effect with part of the correlation
contribution (see, e.g., Ref. [26]) and is not relevant here. The
next question is, therefore, Why not start from a Hartree-Fock
calculation in the continuum in the full energy range of
the Coulomb Hamiltonian? Such a treatment would neglect
the crucial screening of the bare interaction by high-energy
degrees of freedom (typically, matrix elements of the bare
Coulomb interaction in the relevant Wannier functions are
of the order of several tens of electron volts, while the
effective Hubbard interactions are usually a few electron
volts). Therefore, what is relevant here is indeed the exchange
term calculated using the effective bare interaction of the
low-energy Hamiltonian. For realistic electronic structure
calculations, this interaction should correspond to a partially
screened interaction, where screening by high-energy degrees
of freedom is taken into account (as done, e.g., in the screened
exchange + DMFT scheme [27,28]). We refer the interested
reader to Refs. [25–27] for details.

III. SIMPLIFIED VARIANTS OF GW+EDMFT

In the following, we study the effect of this V -dependent
bandwidth renormalization on local observables as well as the
critical value of the nearest-neighbor repulsion for the tran-
sition into the charge-ordered phase. We call GWc+EDMFT
the formula implemented in Ref. [15] (which contains only
the GWc term; see Ref. [22]), and GW+EDMFT the formula
with the self-energy expression (6). For comparison, we also
show results for Gv+EDMFT, a scheme where � is the sum
of the impurity self-energy and of the nonlocal Fock term only
[the first and third terms of Eq. (6)]. In all three schemes, the
polarization is the sum of the impurity polarization with the
nonlocal part of the interacting bubble (as described in steps
(5)(a) and (5)(b) of Sec. V in Ref. [15]).

In Fig. 4, we plot the self-energy and polarization obtained
from the three schemes at different momenta, and we compare
the results to the local EDMFT self-energy and polarization.
All these results are for half filling. One can observe the
following trends:

(i) While the imaginary part of the self-energy in
GWc+EDMFT is larger than in EDMFT, the opposite is true
for GW+EDMFT; i.e., the GW+EDMFT self-energy is less
correlated than the EDMFT self-energy.

(ii) The GW+EDMFT result is more strongly correlated
than Gv+EDMFT.

(iii) At small Matsubara frequencies, the polarization is
overall larger in the GW /Gv+EDMFT method than in the
GWc+EDMFT.

The trend in the self-energy (i.e., less correlated in
GW+EDMFT than EDMFT) can be understood easily from
the broadening effect of the nonlocal Fock term on the
band: When the (effective) bandwidth gets larger, so does
the polarization P , and hence screening effects are more
important, interactions are more screened, and, as a result,

FIG. 4. Im�(k,iω) (left) and Re�(q,iν) (right) (black lines
for EDMFT, magenta lines for GWc+EDMFT, red lines for
GW+EDMFT, and blue lines for Gv+EDMFT). Circles, squares,
and triangles show results for the (0,0), (0,π ), and (π,π ) points,
respectively. Top, U = 2.0 and V = 0.4; bottom, U = 3.0 and
V = 1.0 (β = 100, n = 1).

the imaginary part of the Matsubara self-energy is smaller in
absolute magnitude.

Less trivial is the comparison between GW+EDMFT and
Gv+EDMFT. Here, the band-widening effect is included in
both calculations, and it turns out that the additional nonlocal
GW contributions to the self-energy lead to stronger corre-
lations. This is consistent with the conclusions of Ref. [15],
which compared GWc+EDMFT to EDMFT.

In the top panels of Fig. 5, we replot Figs. 15(a) and
15(b) of Ref. [15], and we show, in the bottom panels, the
same observables for U = 3 and V = 1. One sees that the
deviation of the GW+EDMFT and Gv+EDMFT results from
the EDMFT result is very small for U = 2 and V = 0.4, but
sizable for larger interaction values (U = 3 and V = 1).

In Fig. 6, we plot the corresponding spectral functions (the
EDMFT and GWc+EDMFT results are identical to Fig. 2(b) of
Ref. [20]). As a logical consequence of the above observations,
the GW+EDMFT and Gv+EDMFT spectra are close to each
other and slightly less correlated than the EDMFT spectrum,
in the sense that the integrated weight of the quasiparticle peak
is larger in those methods.

We next consider the phase diagram in the U -V plane. In
Fig. 7, we plot the dependence of the inverse charge suscep-
tibility χ−1

q=π,π (iνm = 0) on the nearest-neighbor repulsion V ,
with χ defined by

χq(iνm) = −�q(iνm)

1 − �q(iνm)vq
. (16)

When the inverse susceptibility vanishes, the charge suscep-
tibility diverges, signaling a transition to a charge-ordered
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FIG. 5. ImGloc(iω) (left) and ReWloc(iν) (right) (black lines
for EDMFT, magenta lines for GWc+EDMFT, red lines for
GW+EDMFT, and blue lines for Gv+EDMFT). The top panels
are for U = 2.0 and V = 0.4, and the bottom panels for U = 3.0 and
V = 1.0 (β = 100, n = 1).

phase with a checkerboard pattern. The corresponding phase
diagram is shown in Fig. 8, where we plot the results from
Fig. 5 of Ref. [15] together with the phase boundaries for the
GW+EDMFT and Gv+EDMFT methods.

At low and intermediate U , GW+EDMFT and
GWc+EDMFT yield quantitatively similar critical nonlocal

FIG. 6. Local spectral functions obtained by MaxEnt [29,30]
analytical continuation (black lines for EDMFT, red lines for
GWc+EDMFT, magenta lines for GW+EDMFT, and blue lines for
Gv+EDMFT). The top panels are for U = 2.0 and V = 0.4, and the
bottom panels for U = 3.0 and V = 1.0 (β = 100, n = 1).

FIG. 7. χ−1(ππ,ω = 0) as a function of V for (from top to
bottom) U = 0, U = 2, U = 3, and U = 4 (black lines for EDMFT,
magenta lines for GWc+EDMFT, red lines for GW+EDMFT, and
blue lines for Gv+EDMFT). The dashed lines are an estimate of the
critical Vc (β = 100, n = 1).

interactions Vc for the transition to the charge-ordered phase
over a wide range of the local interactions. More importantly,
they capture the expected GW behavior at low U that EDMFT
misses due to its local self-energy. In the strong-coupling limit,
the value of Vc is substantially reduced (middle and bottom
panels) when going from EDMFT to GW+EDMFT or even
only Gv+EDMFT (GWc+EDMFT is very close to EDMFT).

IV. INSIDE THE MOTT PHASE

In the large-interaction regime of the phase diagram (Fig. 8),
the nonlocal Fock term has a significant effect. The schemes
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FIG. 8. EDMFT, GW+EDMFT, and Gv+EDMFT phase dia-
grams. The black lines are EDMFT results reproduced from Fig. 5 of
Ref. [15]. The GWc+EDMFT phase boundaries, magenta triangles,
are very close to the EDMFT phase boundaries. Red triangles show
the GW+EDMFT result, blue squares the Gv+EDMFT result. The
dashed grey line corresponds to the interaction energy estimate of Vc,
V int

c = U/4 (see text) (β = 100, n = 1).

which lack this instantaneous contribution, EDMFT and
GWc+EDMFT, yield a larger and steeper phase boundary
than the schemes that take the Fock term into account
(Gv+EDMFT and GW+EDMFT).

The exact phase boundary in the Mott phase is difficult to
predict a priori. It can be computed in the classical (tij → 0)
and zero-temperature limit of the extended Hubbard model by
exact Monte Carlo simulations, as, e.g., in Ref. [31], and is
given by the analytical expression

V int
c = U/4, (17)

where 4 corresponds to the number of nearest neighbors. This
is plotted as a dashed grey line in Fig. 8. This result can
be obtained by a simple comparison between the interaction
energies of the Mott-insulating phase and of the checkerboard
phase. In the full-fledged model, finite temperature and
quantum tunneling have to be taken into account. In the
low-temperature regime (T = 0.01) of Fig. 8, the deviation
between the classical solution and the solution to the full
quantum problem comes mostly from the quantum-tunneling
kinetic term.

To guess the influence of the quantum-tunneling term, one
may observe that the effect of temperature in the classical
problem is to enhance the value of Vc, i.e., to disfavor the
charge-ordered phase over the Mott phase [31]. Since the
quantum tunneling (hopping) has a physical effect similar to
temperature in classical systems [32], namely, to delocalize the
particles, one may speculate that it will also lead to a higher
Vc in the quantum case.

In fact, this feature is present by construction in the
EDMFT and GW+EDMFT schemes. The denominator in
the susceptibility [Eq. (16)] imposes that the charge-ordering
transition should occur for negative values of vq, since the
polarization �q is always negative (for the parameters studied
here). For the square lattice, this implies Vc > U

4 , which

is the classical energy estimate [Eq. (17)]. Therefore, by
construction, in GW+EDMFT schemes, introducing hopping
on the lattice will always favor the disordered phase. This is
indeed what is seen in all variants. We also observe that the
method including most diagrams, GW+EDMFT, has a phase
boundary which is much closer to the classical limit than the
comparatively cruder EDMFT approximation.

In order to gain a better qualitative understanding of the
large-U behavior, we have performed an analytical self-
consistent estimation of the value of the band-widening
effect δt [defined in Eq. (13)] coming from the Fock term.
Approximating the self-energy as the sum of the atomic limit
(in the spirit of the Hubbard-I approximation [33]) and of the
Fock self-energy, as described in more detail in the Appendix,
we obtain

δt = tV

2U − V
. (18)

Thus δt may become arbitrarily large if the nonlocal interaction
coefficient exceeds twice the value of the local one. However,
even disregarding the fact that the generic case is certainly
the opposite one (local interactions in general exceed nonlocal
ones), one should be aware of the fact that in that case the
Hubbard-I approximation, which is justified in the strong-
coupling limit, would no longer be appropriate.

By inspecting the phase diagram in Fig. 8, we can
parametrize the phase boundary in the large-U limit as a
constant slope, i.e., Vc = aU + b. [Within the U range that
we can simulate (we performed measurements up to U =
8.0), we can estimate a = 1.25 and b = −2.5.] With this
parametrization, we obtain

δtc = t(aU + b)

2U − aU − b
. (19)

Hence, the bandwidth renormalization (proportional to δt)
stays relevant in the vicinity of the charge-ordering transition
even at large U .

V. BEYOND GW+EDMFT: COMPARISON TO DUAL
BOSONS AND TRILEX

As mentioned in the introduction, the EDMFT formalism
suffers from certain conceptual problems, such as the lack
of thermodynamic consistency and an unreliable description
of collective modes. These shortcomings are alleviated in
the recently developed dual-boson (DB) method [34], which,
in its full-fledged implementation [35,36], computes the
susceptibility [11,12] after resumming an infinite number of
ladder diagrams built from local impurity four-leg vertices.

These four-leg vertices, which are also central to the dynam-
ical vertex approximation [37–42] (which was recently shown
to be a simplified version of the QUADRuply Irreducible Local
EXpansion (QUADRILEX), a method consisting of an atomic
approximation of the four-particle irreducible functional [43]),
can nonetheless only be obtained at a considerable computa-
tional expense and require a proper parametrization and treat-
ment of their asymptotic behavior [44–47]. Consequently, it is
not possible to use them routinely in multiorbital calculations
(see, however, Refs. [48,49]), and lightweight improvements
on EDMFT, especially with realistic applications in mind, are
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FIG. 9. Comparison of the U -V phase diagrams with results from
Ref. [52] using different variants of the dual-boson scheme (orange
lines). The dashed grey line is the mean field estimate V = U/4.
Bottom panel: Zoom on the low-U region, and additional comparison
to the dynamical cluster approximation (DCA) results of Ref. [57]
(cyan pentagons; Nc = 8, obtained via a linear extrapolation [57]).
For all results, β = 50, n = 1.

desirable. Recent attempts to forgo the computation of four-leg
vertices include the TRiply Irreducible Local EXpansion
(TRILEX) method [50,51] and simplified dual-boson schemes
such as DB+GW or DB+GWγ [52]. Whether they retain
the above-mentioned conserving properties, however, is yet
unclear.

In fact, the results obtained in the simplified “dual”
approaches that include at least the electron-boson vertex γ are
similar to those obtained by the GW+EDMFT method, which
is conceptually and practically simpler than dual methods
and has hence already been applied to realistic materials in
a number of works [53–56].

In Fig. 9, we compare the phase diagram for model (1) ob-
tained from various simplified variants [52] of the dual-boson
scheme and compare it to GWc+EDMFT, GW+EDMFT,
and the (self-consistent) GW approximation. We restrict this
comparison to values of U below the Mott transition, for lack
of available dual-boson results in the Mott-insulating phase.

Let us start with the small-U limit. For U < 1.5, the phase
boundaries obtained in all the GW+EDMFT as well as GW

alone are almost indistinguishable. The GW transition is a
straight line for all shown values, and the variants with an im-
purity polarization have varying degrees of upward curvature,

with the GW+EDMFT line in between the GWc+EDMFT
and the Gv+EDMFT line. For Gv+EDMFT it is notable that
the U → 0 limit does not reproduce the GW value.

The dual-boson lines start with a similar upwards trend,
with the exception of the DB-GW line, which follows
essentially the HS-V variant of GW+EDMFT [more properly
denoted as GD + second-order perturbation theory (SOPT) +
EDMFT] as shown in Ref. [52], and discussed in detail at the
end of this section. Yet, the dual-boson variants start out with
a lower slope, indicating stronger ordering tendencies already
for the lowest values of U , while all GW+EDMFT variants
follow the slope of the “weak-coupling” GW boundary in the
vicinity of U = 0.1 Interestingly, a very recent cluster-EDMFT
study [57] reports a similarly reduced slope in the weak-U
regime. We also note that only the full DB critical line is
above the U/4 line (dashed grey line, discussed in Sec. IV),
while the (non-self-consistent) DB-GW and DB-GWγ results
are not (the latter only slightly so). Further comparisons of DB
with GW+EDMFT (in the HS-V decoupling) can be found in
Ref. [52].

For U > 2, the phase boundary for GW+EDMFT is below
the dual-boson phase boundary, while GW is even a bit lower.
For GWc+EDMFT, the U = 2.5 point already falls in the
Mott-insulating phase and is not shown in the comparison.
The too-low Mott-transition line for GWc+EDMFT is not
surprising, since it lacks the band widening of the nonlocal
Fock term.

Two possible decouplings were previously discussed in
the literature: “HS-UV ” (giving rise to GW+EDMFT) and
“HS-V ” (resulting in a combined “GD+SOPT+EDMFT”
scheme, where D is the screened nonlocal interaction; see
Ref. [15]). We emphasize that, contrary to the HS-UV variant
and, e.g., the random-phase approximation (RPA), the HS-V
variant does not resum, in the nonlocal part of the self-energy,
the local (U ) and nonlocal (V ) parts of the interaction to the
same order. (They are resummed, respectively, to second and
infinite order.) This arbitrary inconsistency raises questions
concerning the soundness of the HS-V scheme, as already
pointed out in Ref. [15].

Recent works have indeed confirmed the deficiency of HS-
V . For instance, all the GW+EDMFT–related variants shown
in Fig. 7 of Ref. [52], which were obtained in an HS-V flavor,
yield phase boundaries which are much lower than either DB
or the GW+EDMFT results in Fig. 9 (which correspond to the
HS-UV variant of the decoupling of the interaction). The only
additional outlier is the simplest DB type of approximation, the
DB-GW variant, for which Ref. [52] showed that it is formally
similar to an HS-V calculation. More recently, Ref. [57] used
cluster dynamical mean field theory to study the extended
Hubbard model, which allows a control on errors by increasing
the size of the cluster (but neglecting intercluster interactions,
which in the case of EDMFT and GW+EDMFT are treated via
the retarded impurity interactions). These cluster results were
shown to be in poor agreement with HS-V , but very close to the
full-fledged DB method. In the lower panel of Fig. 9, we show

1Note that the dual-boson variants and HS-V calculations of
Ref. [52] have been executed as a single lattice self-consistency
iteration on top of the converged EDMFT solution.
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that the GW+EDMFT (HS-UV ) method yields a critical Vc

in agreement (with a 20% accuracy or better) with the cluster
results, a remarkable result in view of the reduced numerical
cost of this method compared to cluster DMFT. Comparisons
for the larger U values in Fig. 9 would be of great interest.

We end this section by examining two further questions,
namely the influence of spin fluctuations and the impact
of local vertex corrections. One can expect that neither is
important for the charge-ordering instability under study, since
(i) this is an instability in the charge channel, not the spin
channel, and (ii) as V increases towards charge ordering, the
effective static interaction U(ω = 0) decreases to zero [15],
making the system behave more and more like a weakly
correlated metal, where vertex corrections are expected to be
small.

In all previous implementations of the GW+EDMFT
method, the interaction was formally decoupled in the charge
channel only, neglecting the possible influence of spin fluctua-
tions. Furthermore, in GW+EDMFT, the influence of the local
vertex on the nonlocal self-energy is included only through
the nonlocal Green’s function. In the TRILEX approximation,
both charge and spin fluctuations are taken into account, as
well as local vertex corrections to the nonlocal self-energy.

We can thus answer both questions of interest by imple-
menting the TRILEX method for the extended Hubbard model.
We refer the reader to Refs. [50,51] for implementation details.
The only difference with respect to the application to the
Hubbard model is that Eq. (41) of Ref. [51] must be modified to
also describe nonlocal interactions, which means that Eq. (61b)
of that publication becomes

Wη(q,i�) = vη(q)

1 − vη(q)P η(q,i�)
, (20)

where η denotes the charge (ch) or spin (sp) channel and

vch(q) = U ch + 2V [cos(qx) + cos(qy)], (21)

vsp(q) = U sp, (22)

and the bare on-site interactions in the charge and spin channels
are parametrized, in the so-called Heisenberg decoupling [51],
by a parameter α:

U ch = (3α − 1)U, U sp = (α − 2/3)U. (23)

In Fig. 10, we show TRILEX results for two characteristic
points of the phase diagram, namely U = 1 (characteristic
of the metallic phase) and U = 3 (characteristic of the Mott
phase). First, we observe that the critical Vc (computed by
looking for a vanishing inverse static susceptibility, shown
in the left panels) is quite close to that of GW+EDMFT,
justifying our a priori intuition. This agreement is quite
remarkable, since GW+EDMFT has only charge fluctuations,
while TRILEX has both charge and spin fluctuations. Second,
Vc only mildly depends on the ratio of the charge to spin
fluctuations, as can be seen in the right panels, where quite
large variations of U ch (and correspondingly U sp) lead to
comparatively small variations in Vc.

Taking inspiration from the comparison of the cluster
extension of TRILEX with exact benchmark results for the
two-dimensional Hubbard model [58] (there, one observes that

FIG. 10. Inverse static charge susceptibility at Q = (π,π ) (left
column) and dependence of the critical V on the decoupling (right
column) for U = 1 (top row) and U = 3 (bottom row) within single-
site TRILEX.

whenever the TRILEX solution is close to the exact solution,
the dependence on the decoupling is weak), this stability
(compared to charge-only GW+EDMFT, and with respect
to α) can be used as a proxy for the quantitative robustness of
the present GW+EDMFT results.

VI. CONCLUSION

In conclusion, we have shown that the nonlocal Fock term
has a significant influence on the description of the charge
fluctuations in the GW+EDMFT method, especially in the
strong-coupling limit. By effectively enhancing the bandwidth,
it lowers the critical value of the nonlocal interaction for
the charge-ordering transition. We have also shown that the
differences between the EDMFT and GW+EDMFT phase
diagrams are to a large extent a consequence of the nonlocal
Fock term, which is not included in EDMFT.

Another interesting result is that the simple extension from
EDMFT to a Gv+EDMFT formalism yields results similar
to the full-fledged GW+EDMFT method. This suggests the
possibility of studying complex multiband materials, where
a full GW+EDMFT computation would be too costly, using
techniques in the spirit of the recent screened exchange +
dynamical DMFT (SEx+DDMFT) method [26,27,59]. In
realistic materials, the simple single-band description is not
sufficient, and substantial screening effects resulting from the
presence of higher-energy degrees of freedom must be taken
into account [60–62].

Performing a self-consistent calculation of the screening
by these higher-energy states is, however, computationally
expensive, even within a multitier approach [56], where the
updates are restricted to an intermediate energy window.
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A scheme which combines a properly renormalized band
structure with a self-consistent treatment of screening effects
within the low-energy subspace may provide a good basis for
tractable, but still accurate, first-principles electronic structure
methods for correlated electron materials.
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APPENDIX: ESTIMATION OF THE BANDWIDTH
WIDENING WITH COMBINED HUBBARD-I

AND FOCK TREATMENT

In this Appendix we discuss a simple Hubbard-I (plus
Fock)–type treatment of the U -V model. These arguments
are not meant to be exact or comprehensive; most notably we
ignore the effect of the nearest-neighbor interaction on the
local self-energy and any nonlocal screening, but they provide
useful insights into the nontrivial nature of the large-U and
large-V limit.

We start with an approximation to the self-energy which
follows the spirit of the Hubbard-I approximation by taking
the atomic U 2

4z
self-energy locally, but goes beyond it by taking

also the instantaneous nonlocal Fock contribution into account:

�(k,z) = U 2

4z
+ 2δt(cos kx + cos ky).

The corresponding Green’s function reads

G(k,z) = 1

z − ε̃k − U 2

4z

with ε̃k denoting the effective dispersion including the Fock
term,

ε̃k ≡ 2(t + δt)(cos kx + cos ky). (A1)

Thus, we can write

G(k,z) = z

[z − z+(k)][z − z−(k)]
(A2)

with

z±(k) =
ε̃k ±

√
ε̃2

k + U 2

2
. (A3)

As expected, in the atomic limit (ε̃k → 0), the function has
two peaks at ±U/2, corresponding to the two Hubbard bands.

We can decompose the expression of Eq. (A2) as

G(k,z) = A+(k)

z − z+(k)
+ A−(k)

z − z−(k)
(A4)

with

A±(k) ≡ 1

2

⎛
⎝1 ± ε̃k√

ε̃2
k + U 2

⎞
⎠. (A5)

A+ and A− are the weights of the upper and lower Hubbard
bands, respectively. Using Eq. (A4), one writes the spectral
function as

A(k,ω) = A+(k)πδ(ω − z+(k)) + A−(k)πδ(ω − z−(k)).

Under the assumption that the Hubbard bands are well
separated (U large enough), only the lower Hubbard band
contributes to the occupancy (at T = 0 for simplicity):

nk =
∫ 0

−∞

dω

π
A(k,ω) ≈ A−(k) ≈ 1

2

(
1 − ε̃k

U

)
. (A6)

In the second equality, we have again used the fact that U

is large enough (to neglect ε̃2
k in the square root).

On the other hand, the occupancy is related to G(k,τ = 0+)
in the following way:

nk = 1 + Gk(τ = 0+). (A7)

Lastly, δt [in Eq. (A1)] is also known, in the Fock
approximation, as a function of Gij (τ = 0+) [see Eq. (13)]:

δt = −V G〈ij〉(τ = 0+). (A8)

Putting Eqs. (A6)–(A8) together and Fourier transforming,
one gets

G〈ij〉(τ = 0+) = 1

2

(
− t − V G〈ij〉(τ = 0+)

U

)
. (A9)

Solving for G〈ij〉(τ = 0+), one gets

G〈ij〉(τ = 0+) = − t

2U − V
(A10)

and

δt = tV

2U − V
. (A11)

This expression is used in Sec. IV.
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