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We compute the cohomology ring of the complement of a 
toric arrangement with integer coefficients and investigate 
its dependency from the arrangement’s combinatorial data. 
To this end, we study a morphism of spectral sequences 
associated to certain combinatorially defined subcomplexes of 
the toric Salvetti category in the complexified case, and use 
a technical argument in order to extend the results to full 
generality. As a byproduct we obtain:

– a “combinatorial” version of Brieskorn’s lemma in terms
of Salvetti complexes of complexified arrangements,

– a uniqueness result for realizations of arithmetic matroids
with at least one basis of multiplicity 1.
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1. Introduction

The goal of this paper is to give a presentation of the cohomology ring with integer 
coefficients of the complement of a toric arrangement – i.e., of a family of level sets of 
characters of the complex torus – and to investigate its dependency from the poset of 
layers of the arrangement.
This line of research can be traced back to Deligne’s seminal work on complements 

of normal crossing divisors in smooth projective varieties [13] and has been extensively 
and successfully carried out in the case of arrangements of hyperplanes in complex space, 
where the integer cohomology ring of the complement is a well-studied object with strong 
combinatorial structure. In particular, it can be defined purely in terms of the intersection 
poset of the arrangement, and in greater generality, for any matroid, giving rise to 
the class of so-called Orlik–Solomon algebras. We refer to Yuzvinsky’s survey [38] for a 
thorough introduction and a “tour d’horizon” of the range of directions of study focusing 
on OS-algebras.
Recently, the study of hyperplane arrangements has been taken as a stepping stone 

towards different kinds of generalizations. Among these let us mention the work of 
Dupont [16] developing algebraic models for complements of divisors with hyperplane-like 
crossings and of Bibby [2] studying the rational cohomology of complements of arrange-
ments in abelian varieties. Both apply indeed to the case of interest to us, that of toric 
arrangements.
Besides being a natural step beyond arrangements of hyperplanes in the study of com-

plements of divisors, our motivation for considering toric arrangements stems also from 
recent work of De Concini, Procesi and Vergne which puts topological and combinatorial 
properties of toric arrangements in a much wider context (see [12] or the book [11]) and 
spurred a considerable amount of research aimed at establishing a suitable combinatorial 
framework. This research was tackled along two main directions.
One such direction, from algebraic combinatorics, led Moci [25] to introduce a suitable 

generalization of the Tutte polynomials and then, jointly with d’Adderio [7], to the de-
velopment of arithmetic matroids (for an up-to date account see Brändén and Moci [4]). 
These objects, as well as others like matroids over rings [18], exhibit an interesting struc-
ture theory and recover earlier enumerative results by Ehrenborg, Readdy and Slone [17]
and Lawrence [20] but, as of yet, only bear an enumerative relationship with topological 
or geometric invariants of toric arrangements – in particular, it is not known whether 
these structures characterize their intersection pattern (one attempt towards closing this 
gap has been made by considering group actions on semimatroids [14]).
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The second direction is the study of the combinatorial invariants of the topology and 
geometry of toric arrangements: our work is a contribution in this direction, and there-
fore we now briefly review earlier contributions. The Betti numbers of the complement 
to a toric arrangement were known at least since work of Looijenga [23]. De Concini and 
Procesi [11] related these Betti numbers to the combinatorics of the poset of connected 
components of intersections in the context of their computation of a presentation of the 
cohomology ring over C for unimodular arrangements (i.e., those arising from kernels of 
a totally unimodular set of characters), from which they also deduce formality for these 
arrangements. A first combinatorial model for the homotopy type of complements of toric 
arrangements was introduced by Moci and Settepanella [27] for “centered” arrangements 
(i.e., defined by kernels of characters) which induce a regular CW-decomposition of the 
compact torus pS1qd Ď pC˚qd, and was subsequently generalized to the case of “com-
plexified” toric arrangements (S1-level sets of characters) by d’Antonio and the second 
author [9] who, on this basis, also gave a presentation of the complement’s fundamental 
group. In later work [8], d’Antonio and the second author also proved that complements 
of complexified toric arrangements are minimal spaces (i.e., they have the homotopy of 
a CW-complex where the i-dimensional cells are counted by the i-th Betti number): in 
particular, the integer cohomology groups are torsion-free and are thus determined by 
the associated arithmetic matroid. This raises the question of whether, as is the case with 
the OS-Algebra of hyperplane arrangements, the integer cohomology ring is combinato-
rially determined. The work of Dupont [16] and Bibby [2] mentioned earlier, although 
more general in scope, does include the case of toric arrangements but falls slightly short 
of our aim in that on the one hand it uses field coefficients1 and on the other hand 
computes only the bigraded module associated to a filtration of the cohomology algebra 
obtained as the abutment of a spectral sequence. Moreover, Deshpande and Sutar [15], 
by an explicit study of the Gysin sequence, gave a sufficient criterion for the complex 
cohomology algebra of a toric arrangement to be generated in first degree and to be 
formal.
After a first version of this paper De Concini and Gaiffi [10] constructed projective 

wonderful compactifications for complements of toric arrangements, improving on pre-
vious (non-projective) models described by Moci [26].
In this paper we pair the (by now standard) spectral sequence argument with a very 

explicit combinatorial analysis of the toric Salvetti complex and can thus compute the 
full cohomology algebra over the integers of general complexified toric arrangements. The 
generalization to non-complexified case relies then on a technical argument. We give two 
presentations of the cohomology algebra and discuss its dependency from the poset of 
connected components of intersections. In the case of arrangements defined by kernels 
of characters there is also an associated arithmetic matroid and in this case we prove 
that when the defining set of characters contains an unimodular basis the arithmetic 

1 A recent private conversation with Clément Dupont indicated that at least parts of his methods could 
be generalized to integer coefficients.
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matroids determine the integer cohomology algebra. The precise results will be stated in 
Section 2, together with a brief survey of the architecture of the remainder of our work.

2. Overview and statement of results

2.1. Main definitions

Let T “ pC˚qd be the complex torus and let Tc “ pS1qd be the compact subtorus 
of T .
A toric arrangement is a finite set

A “ tY1, ¨ ¨ ¨ , Ynu

where, for every i “ 1, . . . , n,

Yi :“ χ´1
i paiq

with χi P HompT, C˚q and ai P C˚. The arrangement A is called complexified if ai P S1

for every i.
A layer of A is a connected component of a non-empty intersections of elements of A. 

The rank of a layer L is its codimension as a complex submanifold in T . We order layers 
by reverse inclusion: L ď L1 if L1 Ď L. Let C be the poset of layers associated to A and 
let Cq be the subset of C given by the layers L P C with rkpLq “ q.
The complement of a toric arrangement A is the space

MpAq :“ T z
ď

A.

Remark 2.1.1. A toric arrangement is called essential if the layers of minimal dimen-
sion have dimension 0 (equivalently, the rank of CpAq as a poset equals the dimension 
of T ). Notice that for any nonessential toric arrangement A there is an essential toric 
arrangement A1 with MpAq “ pC˚qr ˆ MpA1q, where r “ rkpCpAqq, see [9, Remark 4].

As in the case of an hyperplane arrangement, we define the rank of a toric arrangement 
rkpAq :“ rkpCpAqq.
To every toric arrangement A corresponds a periodic affine hyperplane arrangement 

Aæ in the universal cover Cd of the complex torus. The hyperplane arrangement Aæ is 
complexified exactly when A is.

Definition 2.1.2. For a toric arrangement A define the hyperplane arrangement

A0 :“ tY æ
1 , . . . , Y æ

n u

where, for i “ 1, . . . , n, Y æ
i is the translate at the origin of any hyperplane of Aæ lifting Yi.
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Given a layer L P CpAq, define then

ArLs :“ tY æ
j P A0 | L Ď Yju.

Remark 2.1.3. It is immediate to see that the intersection lattice of the hyperplane 
arrangement ArLs is poset-isomorphic to CďL.

2.2. Background on hyperplane arrangements

The fact that the cohomology ring of an arrangement’s complement is combinatorial 
can be made precise as follows.
Let A be an arrangement of hyperplanes in Cd. The main combinatorial invariant of 

A is the poset

LpAq :“ tXK | K Ď Au

partially ordered by reverse inclusion: X ě Y if X Ď Y . Notice that L contains a unique 
minimal element that we call 0̂, corresponding to the intersection over the empty set. 
When A is central (i.e. XA ‰ H), this poset is a geometric lattice and thus defines a 
(simple) matroid associated to the arrangement.
The j-th Betti number of the complement MpAq :“ Cdz Y A can be stated in terms 

of L as

βjpMpAqq “
ÿ

xPLj

μLp0̂, xq

where μL denotes the Möbius function of L and Lj is the set of elements of L of rank j.
Brieskorn [6] proved that the cohomology of MpAq is torsion-free, thus the additive 

structure of H˚pMpAq; Zq is determined by L. Moreover, we have the following fun-
damental result expressing the cohomology of A in terms of the top cohomology of 
subarrangements of the form

AX :“ tH P A | X Ď Hu for X P LpAq. (1)

Lemma 2.2.1 (Brieskorn Lemma [30]). Let A be an arrangement of hyperplanes. For 
all k the map à

XPL,rkpXq“k

HkpMpAXq,Zq Ñ HkpMpAq;Zq

induced by the inclusions MpAq ãÑ MpAXq is an isomorphism of groups.

Definition 2.2.2. Given a hyperplane arrangement A and an intersection X P L, we will 
denote by bk : HkpMpAXq; Zq Ñ HkpMpAq; Zq the map given by inclusion into the 
X-summand in the decomposition given in Brieskorn’s Lemma.
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As far as the algebra structure is concerned, Orlik and Solomon defined an abstract 
algebra in terms of the matroid associated to A, then proved it isomorphic to the coho-
mology algebra using induction on rank via the deletion–restriction recurrence, i.e., the 
exact sequence

0 Ñ HkpMpA1q;Zq Ñ HkpMpAq;Zq Ñ Hk´1pMpA2q;Zq Ñ 0 (2)

valid for all k ą 0, which, given any H0 P A, connects the cohomology of the complement 
of the deleted arrangement A1 :“ AztH0u and the cohomology of the complement of the 
restricted arrangement A2 :“ tH X H0 | H P A1u.
The abstract presentation given by Orlik and Solomon is the following.

Definition 2.2.3 (Orlik–Solomon algebra of a hyperplane arrangement). Consider a central 
arrangement of hyperplanes A “ tH1, . . . , Hnu and let E˚ denote the graded exterior 
algebra generated by n elements e1, . . . , en in degree 1 over the ring of integers. Define 
an ideal J pAq as generated by the set:�BeX

ˇ̌
X Ď rns; codim

č
iPX

Hi ă |X|(
where, for X “ ti1, . . . , iku P rns, we write BeX :“ ei1 ¨ ¨ ¨ eik

and define

BeX “
kÿ

j“1
p´1qj´1eXztij u.

The Orlik–Solomon algebra of A is then defined as the quotient

OS˚pAq :“ E˚{J pAq.

Theorem 2.2.4 (Orlik and Solomon [29]). For every central arrangement of hyper-
planes A, there is an isomorphism of graded algebras

OS˚pAq » H˚pMpAq;Zq.

2.3. Results

We now briefly formulate our main results. The remainder of the paper will be then 
devoted to the proofs. Let us consider a toric arrangement A, writing C for the poset of 
layers of A.

2.3.1. The algebra ApAq

Definition 2.3.1. Let L : C Ñ tZ-algebrasu be the diagram defined by

L ÞÑ LL :“ H˚pL;Zq b H˚pMpArLsq;Zq
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and

L1 ď L ÞÑ LL1ďL “ i˚ b b : LL1 Ñ LL,

where

i˚ : H˚pL1;Zq Ñ H˚pL;Zq

is the natural morphism induced by the inclusion L iãÑ L1 and b denotes the map of 
Definition 2.2.2.

The algebra LL can be graded with the graduation induced by H˚pMpArLsq; Zq, 
hence we have

L q
L “ H˚pL;Zq b HqpMpArLsq;Zq.

Definition 2.3.2. We define the algebra ApAq as the direct sum
à
LPC

L
rkpLq
L

with multiplication map defined as follows. Let L, L1 P C be two layers. Consider two 
classes α P L

rkpLq
L and α1 P L

rkpL1q
L1 . We define the product

ppαq Ź pα1qqL2

:“
#

LLďL2 pαq Y LL1ďL2 pα1q if L X L1 ď L2 and rkpL2q “ rkpLq ` rkpL1q;
0 otherwise.

Notice that the product structure depends on the maps LL1ďL from Definition 2.3.1, 
hence on both i˚ and b. While it is known that the map b is combinatorially determined 
(see [30, §5.4]), the map i˚ is not combinatorial.

Theorem A. There is an isomorphism of algebras

H˚pMpAq;Zq » ApAq.

Example 2.3.3. As a first example we can consider the following arrangement in the 
2-dimensional complex torus T “ pC˚q2 with coordinates z1, z2.

A “ tH, H 1u

where H “ tpz1, z2q P T | z1 “ 1u, H 1 “ tpz1, z2q P T | z1z
2
2 “ 1u and their intersection 

is given by the points p “ p1, 1q and q “ p1, ́ 1q.
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Fig. 1. The toric arrangement of Example 2.3.3 and its poset of layers.

The arrangements has poset of layers described in Fig. 1.
The local arrangements are the following: ArT s is the empty arrangement in dimen-

sion 0, ArHs and ArH 1s are isomorphic to a one-point arrangement in C, Arps and Arqs
are isomorphic to a two-lines arrangement in C2.

• The ring L 0
T “ H˚pT ; Zq is an alternating algebra generated in degree 1 by x1, x2.

• The free Z-module

L 1
H “ H˚pH;Zq b H1pMpArHsq;Zq » H˚pH;Zq b H1pC˚;Zq

is generated in degree 1 by i˚px2q and in degree 2 by i˚px2q b w1, where i is the 
inclusion H iãÑ T . Moreover, we have i˚px1q “ 0.
Analogously, the free Z-module L 1

H1 » H˚pH 1; Zq bH1pC˚; Zq is generated in degree 
1 by i1 ˚px2q and in degree 2 by i1 ˚px2q b w2, where i1 is the inclusion H 1 i1

ãÑ T . 
Moreover, i1 ˚px1q “ 2i1 ˚px2q.

• Both L 1
p and L 1

p are isomorphic to H2ppC˚q2; Zq, and are generated respectively 
by wp

1w
p
2 and ω “ wq

1w
q
2 where wp

i (resp. wq
i ) is the image in Lp̊ (resp. Lq̊ ) of 

the class wi with respect to the map H1pMpArHsq; Zq Ñ H1pMpArpsq; Zq (resp. 
H1pMpArH 1sq; Zq Ñ H1pMpArqsq; Zq) induced by the Brieskorn decomposition.

Hence the cohomology ring H˚pMpAq; Zq is an alternating algebra generated by x1, x2, 
w1, w2 in degree 1 and ω in degree 2, with relations

x1w1 “ 0, px1 ´ 2x2qw2 “ 0, and ωxi “ ωwi “ 0 for all i.

In particular rkH1pMpAq; Zq “ 4, rkH2pMpAq; Zq “ 5.

2.3.2. The algebra BpAq

Definition 2.3.4. Let α be an element in the direct sum 
À

LPC LL. We say that α is 
coherent if for every integer q and for every L P Cąq we have that
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ÿ
L1PpCďLqq

LL1ďLpαq
L1 q “ αq

L

where αq
L (resp. α

q
L1) is the component of αL (resp. αL1) in L q

L (resp. L
q
L1).

Coherent elements in 
À

LPC L q
L generate a subgroup, in fact they form a subalgebra 

(see Proposition 5.2.7) that we call BpAq (see Definition 5.2.8).

Theorem B (see Proposition 5.2.10). The algebras ApAq and BpAq are isomorphic.

2.3.3. Combinatorial aspects
After obtaining a grasp on the cohomology algebra it is natural, especially in compar-

ison with the case of hyperplane arrangements, to ask the question of whether (and in 
what sense) it is combinatorially determined. The most natural combinatorial structure 
to consider in this context is of course the poset of layers C, both because this is the 
direct counterpart of the intersection poset of a hyperplane arrangement and because 
we already know it determines the Betti numbers and hence (by torsion-freeness) the 
cohomology groups. As an additional element of similarity, we prove in §7.1 that just 
as in the case of hyperplane arrangements the cohomology groups can be obtained as 
the Whitney homology of C. When the arrangement is centered (i.e., defined by kernels 
of characters), another associated structure is the arithmetic matroid of the defining 
characters [4]. While for hyperplane arrangements the two counterparts – (semi)lattice 
of flats and (semi)matroid – are equivalent combinatorial structures, in our situation it 
is still true that in the centered case C determines an arithmetic matroid, but it is not 
known at present how to construct C from the associated abstract arithmetic matroid. 
Thus the question is the following.

Question 2.3.5. Is the isomorphism type of the integer cohomology ring of the complement 
of a complexified toric arrangement determined by the poset of layers?

The strongest affirmative result we can prove at the moment is that for centered toric 
arrangements which possess a unimodular basis the poset C does determine the coho-
mology algebra. Indeed, in this case the arithmetic matroid determines the arrangement 
itself: our Theorem 7.2.1 shows that if an arithmetic matroid with a unimodular basis is 
representable, then the representation is unique up to sign reversal of the vectors.
We cannot at this moment solve Question 2.3.5 in the general (non-centered, without 

unimodular bases) case, and will close our work with an example that we hope will 
illustrate some of the delicacy of the situation, namely: even if two cohomology rings are 
isomorphic, there needs not be a “natural” isomorphism.

Remark 2.3.6. In the following sections we will consider only complexified toric arrange-
ments. The extension of our results to general, non-complexified toric arrangement will 
be given in Section 6.
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2.4. Structure of the paper

Given a complexified toric arrangement A (defined in §2.1), our combinatorial model 
for the homotopy type of the complement of A is the toric Salvetti complex SalpAq, in 
the formulation given in [8], in particular as the nerve of an acyclic category obtained as 
homotopy colimit of a diagram of posets. In Section 3 we review some basic facts about 
the combinatorics and topology of acyclic categories and establish some facts about the 
combinatorial topology of Salvetti complexes of complexified hyperplane arrangements. 
In particular,

(a) we identify maps between poset of cells of Salvetti complexes which induce the 
Brieskorn isomorphisms (Proposition 3.3.3, which we call a “combinatorial Brieskorn 
Lemma” for complexified arrangements).

The next step is carried out in Section 4, where

(b) for every connected component L of an intersection of elements of A we define a 
subcomplex

SL ãÑ SalpAq (3)

with the homotopy type of the product L ̂ MpArLsq, where ArLs is the arrangement 
of hyperplanes in Cd defined by A in the tangent space to pC˚qd at any generic point 
in L and MpArLsq :“ Cdz 

Ť
ArLs.

(c) Moreover, using (a) we can identify, and study at the level of cell complexes, the 
maps that are induced in cohomology by the inclusions (3) and between H˚pSLq
and H˚pSL1 q for L Ď L1.

Section 5.1 is devoted to the inspection of the spectral sequence pEp,q
r for SalpAq coming 

from the formulation of the toric Salvetti complex as a homotopy colimit (see Segal [33]) 
(which is indeed equivalent to the Leray spectral sequence of the inclusion of MpAq into 
the torus) and the (trivial) spectral sequences LEp,q

r for SL coming from projection on 
the torus factor. These spectral sequences all degenerate at the second page.

(d) The map of spectral sequences induced by the inclusions (3) leads us to consider the 
following commuting diagram (of groups).

H˚pSalpAqq ÝÝÝÝÑ H˚pš
L SLq§§đ §§đpEp,q

2 ÝÝÝÝÑ À
L LEp,q

2

“ À
L H˚pLq b H˚pMpArLsqq
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After some preparation in Section 5.2, the gist of our proof is reached in Section 5.3, 
where we use the (explicit) bottom map (of groups) to prove injectivity and to 
characterize, via (c), the image of the top map (of rings). We do this by present-
ing the image as an algebra ApAq obtained by defining “the natural product” on À

L H˚pLq b HcodimLpMpArLsqq (Definition 2.3.2) as well as an algebra BpAq of 
“coherent elements” of 

À
L H˚pLq b H˚pMpArLsqq (Definition 2.3.4).

In Section 6 we extend our results to general (non-complexified) toric arrangements, 
using a deletion–restriction type argument which allows us to reduce to the complex-
ified case. We then close with Section 7 where we investigate the dependency of the 
cohomology ring structure from the poset C of connected components of intersections, 
trying to identify similarities and differences with the case of hyperplane arrangements, 
where this cohomology structure is completely determined by the poset of intersections. 
We will show that the cohomology groups are, as in the hyperplane case, obtained as 
Whitney homology of the intersection poset (§7.1), and we prove that C determines the 
cohomology ring of every toric arrangement which is defined as the set of kernels of a 
family of characters which contains at least one unimodular basis (Theorem 7.2.1). We 
conclude by giving two examples (§7.3) which illustrate the subtle relationship of the 
combinatorics of the poset of layers with the ring structure of the cohomology. First, 
we present two (centered) arrangements in pC˚q2 with isomorphic posets of layers which 
do indeed have isomorphic cohomology rings, but no ‘natural’ isomorphism exists (i.e., 
no isomorphism which fixes the image of the injections in cohomology obtained from in-
cluding the complements into the full complex torus). Last, we give another arrangement 
(also in rank 2) which shows that a “natural” condition for the cohomology ring to be 
generated in degree 1 is not sufficient.

3. Preparations

3.1. Categories and diagrams

Given a category C, we will denote by |C| the geometric realization of the nerve of C
(in particular, this is a polyhedral complex in the sense of [19]). A functor F : C1 Ñ C2
induces a cellular map |F | between the geometric realizations. We will for brevity say 
that two categories are ‘homotopy equivalent’ meaning that their nerves are.
A kind of categories of special interest for us are face categories of polyhedral com-

plexes. We refer e.g. to [8, Section 3] for a precise definition and here only recall that 
the face category FpKq of a polyhedral complex K has the cells of K as objects, and 
one morphism P Ñ Q for every attachment of the polyhedral cell P to a face of the 
polyhedral cell Q.
It is a standard fact that, if K is a polyhedral complex, |FpKq| can be embedded into 

K as its barycentric subdivision (see [35] for a thorough investigation of this situation).
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Face categories of polyhedral complexes are examples of categories where the identity 
morphisms are the only invertible morphisms, as well as the only endomorphisms. Such 
categories are called scwols (for “small categories without loops”) in the terminology 
of [5] or “acyclic categories”, e.g., in [19].
It is standard to consider a partially ordered set pP, ďq as a scwol P with set of objects 

ObpPq “ P and | MorPpp, qq| ď 1 for all p, q P P , with | MorPpp, qq| “ 1 if and only if 
p ď q: in this case we will simply speak of “the morphism p ď q”.
A diagram over a category I (which in our case will always be a scwol) is a functor

D : I Ñ X

where, in this paper, X can be the category Top of topological spaces, Scwol of scwols, 
or the categories of Abelian groups or Z-algebras. A morphism between diagrams D1, D2
over the same index category I is a family α “ pαi : D1piq Ñ D2piqqiPOb I of morphisms 
of X that commute with diagram maps – that is, such that, for every morphism i Ñ j

of I, αj ˝ D1pi Ñ jq “ D2pi Ñ jq ̋ αi.

3.1.1. X “ Top
There is an extensive literature on diagrams of spaces, in particular studying their 

homotopy colimits. We content ourselves with listing some facts we’ll have use for and 
refer to [37] or [19] for an introduction to the subject and proofs.

Lemma 3.1.1. Let α be a morphism between two diagrams D1, D2 over the same index 
category I. If every αi is a homotopy equivalence, then α induces a homotopy equivalence 
of homotopy colimits

hocolimD1 Ñ hocolimD2.

That there is a canonical projection

π : hocolimD Ñ |I|.

The Leray spectral sequence of this projection then can be used to compute the 
(co)homology of the homotopy colimit. It is equivalent to the spectral sequence studied 
by Segal [33] and has second page

Ep,q
2 “ Hpp|I|, H qpπ´1;Zqq ñ H˚phocolimD ;Zq.

3.1.2. X “ Scwol
The topological spaces we will be studying will come with a natural combinatorial 

stratification and can therefore be written as nerves of acyclic categories. Recall from [36, 
Definition 1.1] the Grothendieck construction

ş
D associated to a diagram D : I Ñ Scwol. 

This is the category with object set consisting of all pairs pi, xq with i P ObpIq and 
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x P ObpDpiqq, and with morphisms pi1, x2q Ñ pi2, x2q corresponding to pairs pf, μq, 
f P MorIpi1, i2q and μ P MorDpi2qpfpi1q, i2q, composed in the obvious fashion.

Lemma 3.1.2 (Theorem 1.2 of [36]). Given a diagram D : I Ñ Scwol, we have a natural 
homotopy equivalence

hocolim |D | » | ş
D |.

Remark 3.1.3. In this case the canonical projection of the homotopy colimit on the nerve 
of the index category becomes the map of polyhedral complexes induced by the evident 
functor

ş
D Ñ I; pi, xq ÞÑ i.

3.2. Arrangements of hyperplanes

Let A be a locally finite arrangement of hyperplanes in Cd. We will write

MpAq :“ Cdz
ď

A

for its complement.
Recall the definitions of Section 2.2 and, given X P LpAq, the arrangement AX :“

tH P A | X Ď Hu (Equation (1)). If A is complexified, the associated real arrangement 
AR induces a polyhedral cellularization of Rd with poset of faces FpAq, ordered by 
inclusion, whose maximal elements (the maximal cells) are called chambers of A. We 
write T pAq for the set of all chambers of A.
Notice that every G P FpAq is contained in a unique (relatively open) face of AX , that 

we denote by GX . One readily checks that this defines a poset map FpAq Ñ FpAXq, 
since F1 ě F2 implies pF1qX ě pF2qX .

3.2.1. Sign vectors and operations on faces
A standard way of dealing with such polyhedral subdivisions is by choosing a real 

defining form �H for every H P A and thus defining H` :“ tx P Rd | �Hpxq ą 0u, 
H´ :“ tx P Rd | �Hpxq ă 0u, H0 :“ H. Each face F is then identified by its sign vector
γF : A Ñ t`1, ́ 1, 0u with γF pHq :“ σ if and only if F Ď Hσ. If we consider the set 
t`1, ́ 1, 0u partially ordered according to `1 ą 0, ´1 ą 0 and `, 1, ́ 1 incomparable 
we see that, with our notation, for any F, G P FpAq we have

F ď G if and only if, for all H P A, γF pHq ď γF pHq.

Also, for every X P L we have that γFX
is the restriction of γF to AX . Given chambers 

C1, C2 P T pAq, recall the set
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SpC1, C2q “ tH P A | γC1 pHq “ ´γC2 pHq ‰ 0u

of hyperplanes separating C1 from C2.
For F P FpAq we let AF :“ A|F |, where |F | denotes the affine span of F . This will 

then mean that H P AF if and only if γF pHq “ 0.

Definition 3.2.1. Given F, G P FpAq, we define GF P FpAq to be the face uniquely 
determined by pGF q|F | “ G|F | and GF ě F .
In particular, there is an inclusion

iF : FpAF q Ñ FpAq

where in terms of sign vectors we have

γGF
pHq :“

#
γF pHq if H R AF

γGpHq if H P AF

and

γiF pGqpHq :“
#

γF pHq if H R AF

γGpHq if H P AF .

The following are some properties that show that the above objects are well-defined, 
and which we list as a lemma for later reference. Their proof is a straightforward check 
of sign vectors.

Lemma 3.2.2.

(1) piF pGqq|F | “ G, hence iF maps bijectively onto FpAqěF .
(2) If G1 ě G2 P FpAF q, then iF pG1q ě iF pG2q.
(3) pGF1 qF2 “ GF1F2

for all G, F1, F2 P FpAq.
(4) FG “ F if F ě G.

Definition 3.2.3. Let A be a complexified real central arrangement, X Ă A and σ P
t˘1, 0u. Define

ΔσpA;X q :“ tF P FpAq | γF pHq “ σ if H P Xu.

For disjoint (possibly empty) subsets N, Z, P Ď A define then

ΔpA;N, Z, P q :“ Δ´1pA;Nq XΔ0pA;Zq XΔ`1pA;P q.

We will have occasional use for the following result.
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Lemma 3.2.4 (See Proposition 4.3.6 of [3]). Let A be a nonempty, central complexified 
arrangement. The subposet ΔpA; N, Z, P q, if not empty, is contractible.

Proof. If N “ P “ H, the posets under consideration contain the unique minimal ele-
ment XA thus are contractible. Otherwise, our ΔpA; N, Z, P q corresponds to the poset 
of cells in the interior of the shellable PL-ball denoted by Δ´

NYZ XΔ`
P YZ in [3, Propo-

sition 4.3.6.], and we conclude with the general fact that the order complex of the poset 
P of cells of the interior of a PL-ball B is contractible. This last fact can be proved as 
follows: the order complex of P is the maximal subcomplex of all cells of ΔpFpBqq that 
are disjoint from the (full) subcomplex ΔpFpBqzPq (which triangulates the boundary 
of B). Hence ΔpPq is a retract of the interior of B and, as such, contractible. l

3.3. A combinatorial Brieskorn lemma

The data of FpAq can be used to construct a regular CW-complex due to Salvetti [32]
which embeds in MpAq as a deformation retract. This complex is called Salvetti complex
of A and denoted SalpAq. Its face category (in fact, a poset) SpAq :“ FpSalpAqq can be 
described as follows:

SpAq “ trF, Cs P FpAq ˆ T pAq | F ď C in FpAqu
rF, Cs ě rF 1, C 1s if F ď F 1, CF 1 “ C 1.

Definition 3.3.1. From now in this section we will assume that the arrangement A is 
central, i.e., that XA ‰ H. Then, letting P :“ XA, the complex SalpAq can be decom-
posed as a union of (combinatorially isomorphic) closed polyhedral cells of dimension d, 
corresponding to the pairs rP, Cs with C P T pAq. We define subposets

SC :“ SďrP,Cs for C P T pAq

corresponding to the faces of the closure of the maximal cells rP, Cs.

Our next goal will be to offer a combinatorial version of Lemma 2.2.1, i.e., to express 
Brieskorn’s map as induced by poset maps between Salvetti complexes.

Definition 3.3.2. Given X P LpAq define

bX : SpAq Ñ SpAXq, rG, Cs ÞÑ rGX , CX s.

Moreover, for every F P FpAq we have the following natural inclusion of posets, well-
defined by Lemma 3.2.2.(2).

jF : SpAF q Ñ SpAq, rG, Cs ÞÑ riF pGq, iF pCqs.
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The following is then a combinatorial version of Brieskorn’s Lemma.

Proposition 3.3.3 (Combinatorial Brieskorn Lemma). Let A be a central complexified 
arrangement of hyperplanes and for every X P LpAq choose an F pXq P FpAq with 
|F pXq| “ X.

The maps of posets jF pXq, bX induce an injective map bX̊ : H˚pSalpAXqq Ñ
H˚pSalpAqq and a surjective map j˚

F pXq : H˚pSalpAqq Ñ H˚pSalpAF qq, such that 
jF̊ ˝ b̂X “ idH˚pSalpAX qq.

Then for all k the inclusion

jkp“ \rkpXq“kjF pXqq :
ğ

rkpXq“k

SpAF pXqq Ñ SpAq

induces the Brieskorn isomorphism

pbkq´1 : HkpSpAqq Ñ à
rkpXq“k

HkpSpAF pXqqq “ à
rkpXq“k

HkpSpAXqq.

In particular, the map induced in cohomology by jF pXq does not depend on the choice of 
F pXq among the maximal cells of its affine span.

Proof. For the first part of the claim, notice (e.g., by a check of sign vectors) that the 
composition bX ˝ jF pXq is the identity on SpAF pXqq. For the second part we prove that, 
in fact, the map bX is homotopic to the inclusion MpAq Ď MpAXq.
First of all, notice that the radial map ρ : z ÞÑ z{|z| defines a homotopy between the 

inclusion MpAq Ď MpAXq and the inclusion SzA Ď SzAX , where S denotes the unit 
sphere in Cd » R2d.
We follow [30, Chapter 5] and consider the arrangements A and AX as framed by the 

arrangement

H “ A1 Y A2 :“ tH ˆ Rd | H P ARu Y tRd ˆ H | H P ARu

in R2d. This defines, as usual, a cellularization of R2d with poset of faces FpHq »
FpAq ˆ FpAq (product of posets, see e.g. [34, Section 3.2]) and, after barycentric sub-
division, a triangulation TH of the sphere S realizing the order complex of FpHqzt0̂u. 
The intersection S X Ť

A (resp. S X Ť
AX) is a full subcomplex NA (resp. NAX

) of TH, 
thus NAX

Ď NA as a full subcomplex. Let MHpAq be the biggest subcomplex of TH
which is disjoint to NA, and similarly for MHpAXq. Then, MHpAq Ď MHpAXq is a full 
subcomplex.
It is a standard fact (see e.g. [28, Lemma 70.1]) that THz 

Ť
AX deformation retracts 

onto MHpAXq (say, by a retraction fX) and MHpAXqzA deformation retracts onto 
MHpAq (say, by f). We then have that the inclusion MHpAq Ď MHpAXq is homotopic 
to the original inclusion MpAq Ď MpAXq.
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Now notice that the simplicial complexes MHpAXq, MHpAq are in fact realizations of 
the order complexes of the posets

MHpAXq “ tpF, Gq P FpAq ˆ FpAq | AF X AG X AX “ Hu
MHpAq “ tpF, Gq P FpAq ˆ FpAq | AF X AG “ Hu

and the inclusion of complexes is induced by the inclusion of posets ι : MHpAq Ñ
MHpAXq. We summarize by saying that the following diagram commutes up to homo-
topy

MpAq ρ|MpAqÝÝÝÝÝÑ THzNHpAq fXÝÝÝÝÑ MHpAXqzNHpAq fÝÝÝÝÑ MHpAq
Ď

§§đ Ď
§§đ Ď

§§đ |ι|
§§đ

MpAXq ρÝÝÝÝÑ THzNHpAXq fXÝÝÝÝÑ MHpAXq MHpAXq
In order to study the map |ι| further, it is enough to argue at the level of posets.
In [30, Chapter 5] it is proved that the map

φ :MHpAq Ñ SpAqop, pF, Gq ÞÑ rF, GF s

is a homotopy equivalence.
We define a map

ψ :MHpAXq Ñ SpAXqop, pF, Gq ÞÑ rFX , pGF qX s

so that, by definition, the following diagram commutes:

MHpAq φÝÝÝÝÑ SpAqop

ι

§§đ bX

§§đ
MHpAXq ψÝÝÝÝÑ SpAXq

Now it is enough to prove that ψ is a homotopy equivalence, and we will then have 
proved that the geometric map |bX | induced by bX is homotopic to |ι|, which in turn is 
homotopic to the inclusion MpAq Ď MpAXq.
To prove that ψ is a homotopy equivalence, consider some rF, Cs P SpAXqop and 

pF 1, Gq P MHpAXq such that ψpF 1, Gq ě rF, Cs in SpAXqop. This is the case exactly if 
F 1

X ě F in FpAq and pGF 1 qX “ CpF 1qX
.

In terms of sign vectors, this will be verified exactly if:

• γF 1 pHq ě γF pHq for all H P AX ;
• γGpHq “ γCpHq for all H P AX X AF 1 ;
• AF 1 X AX X AG “ H,
where the last condition just ensures that indeed pF 1, Gq P MHpAXq.
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Going back, we see that, under the isomorphism pFpAqq2 » FpHq these pF 1, Gq are 
exactly the faces pF of H with

γ pF pH ˆ Rdq “ γF pHq for H P AXzAF , γ pF pRd ˆ Hq “ γCpHq for H P AX ,

and thus ψ´1pSpAXqěrF, Csq is a subposet of FpHq consisting of all faces with prescribed 
sign on a certain set of hyperplanes. This set is of the form ΔpH; N, Z, P q, nontrivial 
because X ‰ 0̂ and nonempty because it contains pF, Cq, and their order complex is thus 
contractible by Lemma 3.2.4. l

We next prove a proposition which expresses, in the language of posets, the fact that 
given any face F of a central arrangement, the union of the cells rP, Cs with C running 
through all chambers adjacent to F is a subcomplex of SalpAq homotopy equivalent to 
MpAF q.

Definition 3.3.4. Let A be a central, complexified arrangement of hyperplanes, and write 
P for the minimal element of FpAq. We define a subposet of SpAq as

SF pAq :“
ď

CěF

SC

(where we view SC as a subposet of SpAq as in Definition 3.3.1), consider the restriction

jF
0 : SpAF q Ñ SF pAq

of the map jF of Definition 3.3.2 and define

ξF : SF pAq Ñ SpA|F |q, rG, Cs ÞÑ rG|F |, C|F |s.

Proposition 3.3.5. The poset maps jF
0 , ξF are homotopy inverse to each other.

The proof of this proposition will rest on some technical facts about the maps ξF that 
we prove as separate lemmas for later reference.

Lemma 3.3.6. Let F P FpAq, C, G P FpA|F |q with C a chamber. Then

ξ´1
F prG, Csq “ trK, iF pCqKs P SC | K|F | “ Gu.

Proof. We first prove the right-to-left inclusion. For K such that K|F | “ G we have

ξF prK, iF pCqKsq “ rK|F |, piF pCqKq|F |s “ rK|F |, iF pCqK|F | s “ rK|F |, CGs “ rG, Cs

where in the second equality we used Lemma 3.2.2.(3) and in the last equality simply 
the fact that by definition C ě G.
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Now to the left-to-right inclusion. Consider K P FpAq and R P T pAq with K ď R

and such that ξF prK, Rsq “ rG, Cs. Immediately by definition we have KF “ G, and we 
are left with proving that R “ iF pCqK . For that, we check the definitions.

– If γKpHq ‰ 0, γiF pCqK
pHq “ γKpHq and, since R ě K, γKpHq “ γRpHq.

– If γKpHq “ 0,

γiF pCqK
pHq “

#
γF pHq if γF pHq ‰ 0,
γiF pCqpHq “ γRpHq else, because C “ R|F |.

It remains to see that γF pHq “ γRpHq when γKpHq “ 0 and γF pHq ‰ 0. In-
deed, since rK, Rs P SF pAq, it must be R “ pC 1qK (hence γRpHq “ γC1 pHq when 
γKpHq “ 0) for some C 1 ě F (thus γC1 pHq “ γF pHq whenever γF pHq ‰ 0). l

Corollary 3.3.7. For every S P SpA|F |q, the poset ξ´1
F pSq is contractible.

Proof. The expression given in Lemma 3.3.6 shows that ξ´1
F prG, Csq is poset-isomorphic 

to the order dual of the subposet of FpAq consisting of all K P FpAq with K|F | “ G: in-
deed, given two such K1, K2 with K1 ě K2, then piF pCqK1 qK2 “ iF pCqK1K2

“ iF pCqK1 , 
hence rK1, iF pCqK1 s ď rK2, iF pCqK2 s, and the reverse implication is trivial.
Now, the K P FpAq with K|F | “ G are exactly those in the subposet

ΔpA, AF X γ´1
G p´1q, AF X γ´1

G p0q, AF X γ´1
G p`1qq,

which is nonempty thus contractible by Lemma 3.2.4. l

Lemma 3.3.8. Let A be a central, complexified arrangement of hyperplanes. For every 
F P FpAq and every rG, Cs P SpAF q, the poset ξ´1

F pSpAF qďrG,Csq is contractible.

Proof. Consider an element rG, Cs P SpAF q (thus G ě F and C ě G in FpAq) and 
consider the preimage of

SpAF qďrG,Cs “ trG1, C 1s|G1 ě G, CG1 “ C 1u

with respect to ξF .
By Lemma 3.3.6, this preimage is the subposet of SF consisting of elementsď

G1ěG
C1“CG1

trK, C 1
Ks | K|F | “ G1u “ trK, RKs | K|F | ě G, R “ iF pCG1 q “ iF pCK|F | qu

which is isomorphic, as in the proof of Corollary 3.3.7 to the subposet of FpAq given 
by
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P :“ tK P FpAq | K|F | ě Gu “ ΔpA;AF X G´;H;AF X G`q,

which is nonempty (it contains e.g. iF pGq), hence contractible by Lemma 3.2.4. l

Proof of Proposition 3.3.5. The composition ξF ˝ jF
0 equals obviously the identity. We 

prove that jF
0 ˝ ξF is homotopic to the identity on SF . To this end consider

α : ΔpSF q Ñ 2|SF |, αpσq :“ |ξ´1
F pSpAF qďmax ξF pσqq|.

Clearly, the carrier map α carries the identity. Moreover, an easy check shows that

pξF ˝ jF
0 ˝ ξF qpσq “ ξF pσq

and thus

pjF
0 ˝ ξF qpσq Ď ξ´1pSpAF qďmax ξF pσqq,

hence α carries both the identity and jF
0 ˝ ξF . We conclude by the Carrier Lemma [24, 

Proposition II.9.2] and Lemma 3.3.8. l

4. Combinatorial topology of toric arrangements

4.1. The toric Salvetti category

Let A be a complexified toric arrangement. One way to obtain an analogue of Salvetti’s 
complex is to notice that the canonical embedding of SalpAæq into MpAæq is equivariant 
with respect to the action of the rank-d integer lattice on Cd as the group of deck trans-
formations of the universal cover of T . This leads us to look for a convenient description 
of the quotient of the Salvetti complex, as was first done in [27] in the case where the 
resulting complex is again simplicial. In general, one sees that this action restricts to an 
action on FpAæq, and the face category FpAq is isomorphic to the quotient

FpAq – FpAæq{Zd, with covering functor Q : FpAæq Ñ FpAq.

This action induces an action on SpAæq via

grF, Cs :“ rgF, gCs (4)

for every F, C P FpAæq with C ě F , and hence to a cellular action on SalpAæq. In [9], 
taking advantage of the generality of acyclic categories, a description of the quotient cat-
egory SpAæq{Zd is given, together with the proof that indeed |SpAæq{Zd| » |SpAæq|{Zd »
MpAq.
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Fig. 2. A pictorial representation of the notations introduced here. The “abstract” arrangements ArF s serve 
as a model for the localizations Aæ

F æ , and the map im is induced at the abstract level by the inclusion 
defined by a(ny) lift of the morphism m to FpAæq.

In fact, much of the notation of the previous section has been introduced in [9,8] in 
order to describe the relationships involved in these covering morphisms. For instance, 
if F P FpAq, the arrangement ArF s is an ‘abstract’ copy of every Aæ

F æ with QpF æq “ F

for which we can choose linear forms according to those defining Aæ. Then, there are 
canonical isomorphisms

FpAæqěF æ – FpAæ
F æ q “ FpArF sq, SalpAæ

F æ q – SalpArF sq, (5)

given by the identical mapping of sign vectors. If m : F Ñ G is a morphism of FpAq, then 
ArGs “ ArF sG0 where G0 is the intersection of all hyperplanes of ArF s that correspond 
to hypertori containing G. Moreover, for any choice of F æ P Q´1pF q there is exactly one 
face Gæ such that QpF æ ď Gæq “ m: we call Fm the corresponding face of ArF s under 
the isomorphism of Equation (5) (notice that |Fm| “ G0). Following [9] we define

im : FpArGsq ãÑ FpArF sq

to be the map corresponding to the inclusion FpAæqěGæ Ď FpAæqěF æ . For an illustration 
of these definitions see Fig. 2.

Remark 4.1.1. In terms of sign vectors, the map im is determined as follows:

γimpKqpHq :“
#

γFm
pHq if H R ArGs

γKpHq else.

In particular, if X is a flat of both ArGs and of ArF s, then impKqX “ KX for all 
K P FpArGsq.

The order relation F æ ď Gæ also defines an inclusion

jrF æ ď Gæs : SalpAæ
Gæ q ãÑ SalpAæ

F æ q,
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i.e., the map induced on complexes by the inclusion jG of Definition 3.3.2 with respect 
to the “ambient” arrangement Aæ

F .
Given a morphism m : F Ñ G of FpAq, there is a corresponding inclusion induced 

by im (see also [8, Definition 5.9]),

jm : SpArGsq ãÑ SpArF sq, rK, Cs ÞÑ rimpKq, impGqs.

We can now re-state the following definition from [8].

Definition 4.1.2. Let A be a complexified toric arrangement, recall the notations of Def-
inition 2.1.2 and, for F P FpAq, write ArF s :“ Ar|F |s, where |F | denotes the smallest 
dimensional layer that contains F . Define a diagram

D : FpAqop Ñ Scwol
F ÞÑ SpArF sq

m : F Ñ G ÞÑ jm : SpArGsq ãÑ SpArF sq.

In [8] it is proved that | colimD | is homotopy equivalent to MpAq. For our purposes 
we need to prove another connection between D and the homotopy type of MpAq.

Theorem 4.1.3. hocolim |D | » MpAq.

Proof. We will prove that hocolim |D | is homotopy equivalent to the quotient of SalpAæq
by the induced Zd-action.
Write Zd for the one-object category (we write ˚ for this object) representing the 

group. We then write the quotient SalpAæq as the colimit of the diagram

S : Zd Ñ Top

˚ ÞÑ SalpAæq
g ÞÑ g : SalpAæq Ñ SalpAæq

where the action of some g P Zd on SalpAæq is described in Equation (4).
Now notice that by construction SalpAæq is covered by the subcomplexes SalpAæ

F q and 
is thus the colimit of

E : FpAæqop Ñ Top, F ÞÑ SalpAæ
F q, F ď G ÞÑ jrF ď Gs : SalpAæ

Gq Ñ SalpAæ
F q,

where jrF ď Gs denotes the map induced on complexes by the inclusion jG of Defini-
tion 3.3.2 with respect to the “ambient” arrangement Aæ

F . Consider now the push-forward 
Ê of E along the functor Q : FpAæq Ñ FpAq (and thus with colim E “ colim Ê ). We 
have the following explicit form.
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Ê : FpAqop Ñ Top

F ÞÑ
ğ

F æPQ´1pF q
SalpAæ

F æ q

m : F Ñ G ÞÑ \pF æďGæqPQ´1pmqjrF æ ď Gæs : pS, Gæq ÞÑ pjrF æ ď GæspSq, F æq.

Notice that, for g P Zd and any morphism F æ ď Gæ of the (poset-) category FpAæq, 
we have g ˝ jrF æ ď Gæs “ jrgpF æ ď Gæqs, where we write g for the automorphism of 
FpAæq defined by g. With this, the following diagram describing the action of Zd on Ê
is well-defined.

Ĝ : Zd ˆ FpAqop Ñ Top

p˚, F q ÞÑ Ê pF q
pg, m : F Ñ Gq ÞÑ g ˝ Ê pmq.

Claim 1. colimFpAq Ĝ “ S .

Proof. We check the equality pointwise. On object(s) we have

pcolimFpAq Ĝ qp˚q “ colim Ê “ colim E “ SalpAæq.

The morphism pcolimFpAq Ĝ qpgq : pcolimFpAq Ĝ qp˚q Ñ pcolimFpAq Ĝ qp˚q is induced by 
the natural transformation Ĝ pg, id´q : Ĝ p˚, ́ q ñ Ĝ p˚, ́ q which acts over objects as

Ĝ pg, idF æ q : Ĝ p˚, F q Ñ Ĝ p˚, F q,
pS, F æq ÞÑ pg ˝ idF qpS, F æq “ pgpSq, gpF æqq.

(6)

Now one checks explicitly that this induces the map S ÞÑ gpSq on colim Ê “ SalpAæq, 
as required. l

Claim 2. colimZd Ĝ – |D |.

Proof. Again we can verify the isomorphism pointwise using the fact that preimages 
under the functor Q are exactly orbits of the action of Zd on FpAæq. For every F P
ObpFpAqq, with Equation (6) we have

colimZd Ĝ p´, F q “ Ê pF q{Zd – SalpArF sq – |DpF q|,

where the last two congruence symbols denote isomorphism of complexes and homeo-
morphism (by barycentric subdivision), and on morphisms m P MorpFpAqq:

colimZd Ĝ p´, mq “ Ê pmq{Zd – |jm|. l
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With these two claims the Theorem will follow, because then we have

SalpAæq{G “ colimZd S “ colim Ĝ

“ colimFpAq colimZd Ĝ “ colim |D | » hocolim |D |,

where the last homotopy equivalence is given by the Projection Lemma [37, Proposi-
tion 3.1]. l

Corollary 4.1.4. MpAq » | ş D |.

Proof. Immediate with the Theorem above and Lemma 3.1.2. l

This prompt us to deviate from the conventions of [8] and to define the Salvetti 
complex of a complexified toric arrangement as follows.

Definition 4.1.5. For every complexified toric arrangement A let

SpAq :“ ş
D ; SalpAq :“ |SpAq|.

Remark 4.1.6. We have immediately SalpAq » MpAq. Moreover, with Remark 3.1.3 we 
have a cellular map

π : SalpAq Ñ |FpAq| » Tc

induced by the canonical projection from hocolim |D |.

4.2. Inclusions

The goal of this section will be to associate to every layer L a subcomplex of SalpAq
homotopy equivalent to the product of L times the complement of the (hyperplane) 
arrangement ArLs. We will do this in a way that is compatible with the projection to 
the compact torus and so that the maps induced in cohomology by the inclusions of 
these subcomplexes satisfy a Brieskorn-type compatibility condition which will be the 
stepping stone towards a presentation of the cohomology algebra.

Definition 4.2.1. Given a layer L P C we write Lc for the intersection L X Tc of L with 
the compact torus.

Definition 4.2.2. Let AL denote the complexified toric arrangement defined in the torus 
L by all hypertori not containing L, that is the arrangement of all hypertori appearing 
as a connected component of an intersection L X K for K P A, L Ę K.

Notice that the cellularization |FpAq| of Tc restricts to a cellularization |FpALq| of Lc

(i.e., there is a cellular homeomorphism h : Tc Ñ |FpAq| with |FpALq| “ |FpAq| XhpLq).
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Theorem 4.2.3. For every layer L P C and every chamber B0 P T pA0q adjacent to 
L0 :“ XArLs P LpA0q, let F0 :“ B0 X L0. Then, there is a subcomplex SF0 of the toric 
Salvetti complex SalpAq satisfying

(1) under the canonical projection SalpAq Ñ Tc, SF0 maps to the layer Lc;
(2) there is a homotopy equivalence ΘF0 : SF0 Ñ |F pALq| ̂ SalpArLsq;
(3) the first component of ΘF0 is the projection from (1).

We keep the notations of the theorem’s claim (F0, B0, L0) split the proof in multiple 
steps for easier understanding and later reference.

Definition 4.2.4. Recall Definition 2.1.2: F0 is a face of A0 and we can define

BpF0q :“ tC P T pA0q | C ě F0 in FpA0qu,

the set of all chambers of A0 that are adjacent to F0. Moreover, for every F P FpALq
define

μF : T pA0q Ñ T pArF sq;μF pCq Ě C.

Lemma 4.2.5.

(a) For every morphism m : F Ñ G in FpAq and every C P T pA0q,

SpμF pCq, impμGpCqqq X ArGs “ H.

(b) For all F P FpALq we have F0 P FpArF sq, and

μF pBpF0qq “ tC P T pArF sq | C ě F0 in FpArF squ.

Proof. For part (a) notice that C Ď μF pCq Ď μGpCq, thus for H P ArGs clearly 
γμGpCqpHq “ γμF pCqpHq, and moreover with Remark 4.1.1 we have γimpμGpCqqpHq “
γμGpCqpHq whenever H P ArGs. For part (b) notice first that μF maps chambers to 
chambers, thus it is enough to check that for C P BpF0q we have μF pCq ě F0. But the 
definition of μF is that γμF pCqpHq “ γCpHq for all H P ArF s, thus F0 ď C in A0 implies 
F0 ď μF pCq in ArF s. l

Definition 4.2.6. We now define the following diagram:

DF0 : FpALqop ÑScwol

F ÞÑ
ď

BPBpF0q
SpArF sqμF pBq

and the maps are defined as restrictions of the corresponding maps of the diagram D .
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Lemma 4.2.7. The diagram is well-defined, and

DF0 pF q “ SF0 pArF sq.

Proof. The diagram is well-defined because, by Lemma 4.2.5.(a) and [8, Remark 5.13], for 
every m : F Ñ G in FpALq and every C P T pA0q the inclusion jm : SpArGsq Ñ SpArF sq
restricts to an inclusion SμF pCq Ñ SμGpCq (compare [8, Lemma 5.12]). The second claim 
follows from Lemma 4.2.5.(b). l

Definition 4.2.8. Define

SF0 :“ | ş
DF0 |.

Remark 4.2.9. Since 
ş
DF0 is a subcategory of 

ş
D , SF0 is a subcomplex of SalpAq.

Notation 4.2.10. We will form now on use a ‘column’ notation for the Grothendieck 
construction. For a diagram D : I Ñ Scwol we will write 

“ x
i

‰
for the object of 

ş
D

associated to i P Ob I and x P ObDpiq, and

“ x1
i1

‰ ” μ
f

ı
ÝÝÝÑ “ x2

i2

‰
for the morphism corresponding to f P MorIpi1, i2q and μ P MorDpi2qpDpfqpx1q, x2q.

Lemma 4.2.11. The canonical projection π : SalpAq Ñ |FpAq| restricts to πL : SF0 Ñ
|FpALq|.

Proof. This is a check of the definitions, e.g. with Remark 4.2.9. l

Definition 4.2.12. Let KL be the constant diagram

KL : FpALqop ÑScwol

F ÞÑSpArLsq
m ÞÑid.

Definition 4.2.13. Given F P FpALq let

ξrF sF0
: SF0 pArF sq Ñ SpArF s|F0|“Lq “ SpArLsq

denote the map described in Definition 3.3.4 referred to the ‘ambient’ arrange-
ment ArF s.
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Lemma 4.2.14. The maps ξrF sF0 of Definition 4.2.13 induce a natural transformation

DF0 ñ KL

and thus a functor

ΞF0 :
ş
DF0 Ñ ş

KL

which, moreover, induces homotopy equivalence of nerves.

Proof. In order to check that the diagram

DF0 pF q
ξrF sF0 SpArLsq

DF0pGq
jm

ξrGsF0

SpArLsq
“

commutes it is enough to see that, for every K P FpArGsq, impKq|F0| “ K|F0|, as is proved 
in Remark 4.1.1. Thus, the maps ξrF sF0

induce a well-defined natural transformation, 
and thereby the required functor ΞF0 , acting on objects 

“
K
F

‰
and morphisms 

“ ě
m

‰
(notice 

that every DF0pF q is indeed a poset), as

ΞF0

“
K
F

‰ “
”

ξrF sF0
pKq

F

ı
, ΞF0

” ě
m

ı
“

” ě
m

ı
.

Since each map ξrF sF0 is a homotopy equivalence (by Lemma 3.3.8 via Quillen’s 
Theorem A [31]), the homotopy theorem [37, Proposition 2.3] ensures that the natu-
ral transformation induces homotopy equivalence between homotopy colimits, thus also 
between the Grothendieck constructions, as claimed. l

We consider nerves as simplicial sets, and thus denote cells in the geometric realization 
of a category by the corresponding chain of morphisms.

Lemma 4.2.15. A cell of SF0 has the form

σ “
”

D0
G0

ı ” ě
m1

ı
ÝÝÝÝÑ

”
D1
G1

ı
¨ ¨ ¨

”
Dk

Gk

ı
where Gi P ObpFpAlqq, mi : Gi´1 Ñ Gi P MorpFpALqq, Di P SpArGisq and Di´1 ě
jmi

pDiq.
Then the function mapping σ to

σ ÞÑ pG0
m1ÝÑ G1 ¨ ¨ ¨ mkÝÑ Gk, {ξF0D0 ě . . . ě {ξF0Dkq
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(where for D P SpArGisq we write pD :“ jmi˝¨¨¨˝m1 pDiq P SpArG0sq) induces a homotopy 
equivalence ΘF0 : SF0 Ñ |FpALq| ̂ |SpArLsq|.

Proof. Notice that there is an evident equivalence of categories 
ş
KL – FpALqop ˆ

SpArLsq – thus we see that

ΘF0 “ ΣL ˝ |ΞF0 |,

the composition of the homotopy equivalence induced by ΞF0 and the canonical (“reverse-
subdivision”, see e.g. [19, 4.2.2]) homeomorphism ΣL : |FpALqopˆSpArLsq| Ñ |FpALq| ̂
|SpArLsq|. l

Definition 4.2.16. We now fix for every layer L a face F0 “ F0pLq of A0 with |F0| “ L

and a chamber B0 of A0 adjacent to F0, and define

DL :“ DF0 , SL :“ SF0 , ΘL :“ ΘF0 , ΞL :“ ΞF0 .

We call ϕL the inclusion map SL ãÑ SalpAq from Theorem 4.2.3.

Our next goal is the following theorem, which will justify the idea of coherent element 
given in Definition 2.3.4.

Theorem 4.2.17. Fix an integer q and let L be a layer with rkpLq ą q. Consider the set 
pCďLqq of all the layers L1 such that L Ď L1 and q “ rkpL1q. The following diagram of 
groups is commutative.

H˚pSalpAq;Zq

ϕ˚
L

À
L1PpCďLqq

ϕ˚
L1 À

L1PpCďLqq

HqpMpArL1sq;Zq b H˚pL1;Zq
ř

L1PpCďLqq

LpL1ďLq

HqpMpArLsq;Zq b H˚pL;Zq

Lemma 4.2.18. The map

CL : Fp|FpALq| ˆ |SpArLsq|q Ñ | ş
DL|, x ÞÑ Θ´1

L pxq

is a contractible carrier map (in the sense of [24, Chapter II]).

Proof. Let us consider a cell x as in the claim, say

x “ |pFk
mk´1ÝÑ Fk´1 ¨ ¨ ¨ m1ÝÑ F1q| ˆ |pSl ě ¨ ¨ ¨ ě S1q|.
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Since x is a cell in a product of two regular trisps (see [19, p. 153]), its embedding 
is homeomorphic to a closed ball. Also, since ΘL “ ΣL ˝ |ΞL|, we first compute the 
subcomplex Σ´1

L pxq. This is the union of all cells that triangulate x, hence it consists 
(see e.g. [19, p. 169]) of the subcomplex generated by the following union of cells (i.e., 
these cells and every cell in their boundaries).

Σ´1
L pxq “

ď
f,g

ˇ̌pFfprq, Sgprqq pnpfqr´1,ěqÝÑ ¨ ¨ ¨ pFfp1q, Sgp1qqˇ̌ Ď |FpALqop ˆ SpArLsq|

where r :“ k ` l and the union ranges over all pairs pf, gq, where
$’&’%

f : rrs Ñ rks and g : rrs Ñ rls are order-preserving surjections,

and the morphisms npfqi are defined as npfqi “
#

mfpiq if fpi ` 1q ‰ fpiq,
id else.

(7)

This subcomplex is then, by construction, a triangulation of a closed ball. The preim-
age under |ΞL| of Σ´1

L pxq can be seen as being covered by subcomplexes of the form 
|ΞL|´1pyq, where y is a cell of Σ´1

L pxq. The face poset of the complex Σ´1
L pxq is the nerve 

of this covering, and thus by the generalized Nerve Lemma [19, Theorem 15.24] Θ´1
L pxq

has the homotopy type of the homotopy colimit of the associated nerve diagram [19, 
15.4.1]

Nx : FpΣ´1
L pxqq Ñ Top, y ÞÑ |ΞL|´1pyq

with maps being inclusions. Now we claim that it is enough to prove that the spaces of 
Nx are contractible. Indeed, in that case the diagram maps of Nx will be inclusions of 
contractible subcomplexes into contractible complexes, and thus in particular they will be 
homotopy equivalences. The quasifibration lemma [37, Proposition 3.6] then applies and, 
because the index category of Nx is contractible (it is the face poset of a triangulation 
of a closed ball), will say that hocolimNx has the same homotopy type of any of the 
spaces Nxpyq – and hence will be contractible as required.
To conclude the proof it is thus enough to prove the following.

Claim. For any y P FpΣ´1
L pxqq, the complex |ΞL|´1pyq is contractible.

Proof. Fix such an y, say y “ |σ| for a chain

σ “ pFk, Skq pmk´1,ěqÝÑ ¨ ¨ ¨ pF1, S1q

in FpAqop ˆ SpArLsq. The cells of | ş DL| which map to y under |ΞL| are all and only 
those of the form
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” rSk

Fk

ı „ ě
mk´1

j
ÝÝÝÝÝÝÑ . . .

” rS1
F1

ı
with rSj P ξrFjs´1

F0
pSjq. Now, those are exactly the cells that make up the trisp | ş G |, 

where

G : σop Ñ Scwol,
”

Si

Fi

ı
ÞÑ ξrFis´1

F0
pSiq, mi Ñ jmi

now, | ş G | is contractible because by Corollary 3.3.7 the spaces are contractible, hence 
the diagram morphisms are homotopy equivalences (inclusions of contractible subcom-
plexes in contractible subcomplexes) and – since the index category is contractible – the 
homotopy colimit of |G | is contractible. This completes the proof of our claim, hence the 
Lemma. l

Scholium 4.2.19. Given a cell x “ |Fk
mk´1ÝÑ FK´1 ¨ ¨ ¨ m1ÝÑ F1| ˆ |Sl ě ¨ ¨ ¨ ě S1|, the 

explicit expression for CLpxq is as the subcomplex consisting of the following cells

ˇ̌̌̌ ” rSgprq
Ffprq

ı „ ě
npfqr´1

j
ÝÝÝÝÝÝÝÑ ¨ ¨ ¨

” rSgp1q
Ffp1q

ı ˇ̌̌̌

where rSgpjq P ξrFfpjqs´1
F0

pSgpjqq and f, g, npfqi are defined in (7).

Proof of Theorem 4.2.17. We consider the following diagram.

SL1 “ | ş
DL1 |

ϕL1

homeq

ΘL1 |FpAL1 q| ˆ |SpArL1sq|

SalpAq |FpALq| ˆ |SpArL1sq|
ιˆid

idˆjF 1
0

SL “ | ş
DL|

ϕL

ΘL

homeq
|FpALq| ˆ |SpArLsq|

where F 1
0 is the face associated to L1 (Definition 4.2.16) and jF 1

0
is as in Definition 3.3.2.

Now, using the Carrier Lemma [24, Proposition II.9.2] and Lemma 4.2.18 choose maps 
JL and JL1 carried by CL resp. CL1 . The explicit form of CL given before shows that 
both carrier maps ΘL ˝ CL and CL ˝ΘL carry the identity map. This proves – again, by 
the Carrier Lemma, that JL is a homotopy inverse to ΘL (and similarly for JL1 and ΘL1). 
Consider then the following diagram.
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SL1 “ | ş
DL1 |

ϕL1

|FpAL1 q| ˆ |SpArL1sq|
JL1

homeq

SalpAq |FpALq| ˆ |SpArL1sq|
ιˆid

idˆjF 1
0

SL “ | ş
DL|

ϕL

|FpALq| ˆ |SpArLsq|
JL

homeq

(8)

Again by Lemma 4.2.18 the map CL1 ˝ pι ˆ idq is a contractible carrier map which 
carries JL1 ˝pι ̂ idq. In the next claim we will prove that the same carrier map carries also 
JL ˝ pidˆ jF 1

0
q. By the contractible carrier Lemma [24, Proposition II.9.2] then the two 

compositions in the diagrams are homotopic – thus in particular the diagram commutes 
in cohomology.

Claim. CL1 ˝ pι ̂ idq carries JL ˝ pidˆ jF0 q.

Proof. We know that CL ˝ pid ˆ jF0 q carries JL ˝ pid ˆ jF0 q. It is then enough to prove 
that, for every cell τ of |FpALq| ̂ |SpArL1sq|,

CLppidˆ jF 1
0
qp|τ |qq Ď CL1 ppι ˆ idq. (9)

To this end, we refer to the explicit description of these complexes given in Scho-
lium 4.2.19 and see that, for a given τ , the composable chains indexing maximal cells 
of the two subcomplexes are completely determined by the ‘S-components’ of the ob-
jects – since the F -components and the morphisms are completely determined by the 
F -component of τ and the fact that SpArLsq and SpArL1sq are posets.
Thus to prove (9) it is enough to prove that, for every cell S of SpArL1sq and every 

F P FpALq,

ξrF s´1
F0

pjF 1
0
pSqq Ď ξrF s´1

F 1
0

pSq. (10)

This is now a computation. Write S “ rG, Ks and recall the definition of jF 1
0
(Def-

inition 3.3.2). Then jF 1
0
prG, Ksq “ riF 1

0
pGq, iF 1

0
pKqs and, with the expression given in 

Lemma 3.3.6, we need to verify

ξrF sF 1
0
ptrR, iF 1

0
pKqRs | R|F0| “ iF 1

0
pGquq “ trG, Ksu.

Now, if R|F0| “ iF 1
0
pGq, then

R|F 1
0| “ pR|F0|q|F 1

0| “ piF 1
0
pGqq|F 1

0| “ G
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(the first equality because |F0| Ď |F 1
0|, the second by assumption, the third by 

Lemma 3.2.2.(1)) and the condition on R is also satisfied. So we only need to show 
that piF 1

0
pKqRq|F 1

0| “ K.
Again, we compute

γpiF 1
0

pKqRq|F 1
0| pHq “

#
γRpHq if γF 1

0
pHq “ 0, γRpHq ‰ 0

γiF 1
0

pKqpHq “ γKpHq if γF 1
0
pHq “ 0, γRpHq “ 0.

Now consider the second alternative and remember that R|F 1
0| “ G, thus when 

γF 1
0
pHq “ 0 we have γRpHq “ γGpHq ď γKpHq and if additionally γRpHq ‰ 0, 

γRpHq “ γGpHq “ γKpHq, as required. Hence the claim follows. l

In order to complete the proof of Theorem 4.2.17 we can consider the cohomology 
diagram corresponding to diagram (8).

H˚pMpArL1sq;Zq b H˚pL1;Zq
idbι˚

H˚pSalpAq;Zq

ϕ˚
L1

ϕ˚
L

H˚pMpArL1sq;Zq b H˚pL;Zq

H˚pMpArLsq;Zq b H˚pL;Zq
j˚

F 1
0

bid

(11)

We project to the cohomological degree q for the first factor of the tensor product for 
the terms in the right side of diagram (11) and we take the direct sum for all L1 P CďLqq. 
We get:

À
L1PpCďLqq

HqpMpArL1sq;Zq b H˚pL1;Zq

idbι˚

H˚pSalpAq;Zq

À
L1PpCďLqq

ϕ˚
L1

ϕ˚
L

˜ À
L1PpCďLqq

HqpMpArL1sq;Zqb
¸

H˚pL;Zq

HqpMpArLsq;Zq b H˚pL;Zq.

¨̋ À
L1PpCďLqq

j˚
F 1

0
‚̨bid

From the Combinatorial Brieskorn Lemma (Proposition 3.3.3) the left factor 
À

L1PpCďLqq

j˚
F 1

0

of the bottom right map is an isomorphism. Hence we can invert the bottom right arrow 
and, composing with the upper right map idb ι˚ we get 

ř
L1PpCďLqq

LpL1ďLq. Thus, the 
commutativity of the diagram of the statement of the Theorem follows. l
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5. The complexified case

In this section we provide an explicit description of the cohomology ring of the com-
plement of a complexified toric arrangement. To this end we will consider for all L P C

the inclusion ϕL : SL Ñ SalpAq from Theorem 4.2.3 and use these maps in order to 
define a map

Φ :
ğ
LPC

SL Ñ SalpAq.

The understanding of the corresponding cohomology homomorphism Φ˚ is the key in-
gredient for the proof of Theorem A in the complexified case.

5.1. Spectral sequences

We consider the Leray spectral sequence pEp,q
˚ induced by the projection π :

SalpAq Ñ Tc (defined as in Remark 4.1.6) with second page

pEp,q
2 “ HppTc;H qpπ;Zqq,

where H qpπ; Zq is the sheaf given by the sheafification of the presheaf

U ÞÑ Hqpπ´1pUq;Zq.

Remark 5.1.1. The spectral sequence above is equivalent to the one used by Bibby in [2], 
induced by the inclusion MpAq ãÑ T . In fact the inclusions Tc ãÑ T and SalpAq ãÑ MpAq
are homotopy equivalences and the following square is homotopy commutative.

SalpAq Ă

π

MpAq
Ă

Tc
Ă

T

Moreover for every point z P Tc, let Lz :“ Ş
zPLĂC L be the unique layer containing z

in its interior and let Cpzq :“ tL P C | z P Lu “ CďLz
be the set of layers containing z. 

Then, given an open set U P T containing z, if U is small enough then π´1pU X Tcq is 
homotopy equivalent to SalpArLzsq and the inclusion π´1pU X Tcq ãÑ U X MpAq is an 
homotopy equivalence.

Given a layer L P C, let πL be the restriction of the map π to the subcomplex SL: 
πL : SL Ñ Tc. Let LEp,q

˚ be the Leray spectral induced by the projection πL, with second 
page
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LEp,q
2 “ HppTc;H qpπL;Zqq.

We notice that the sheaf H qpπL; Zq is supported on the subtorus Lc “ L X Tc.

Lemma 5.1.2. The sheaf H qpπ; Zq is a direct sum of the sheavesà
LPCq

rHqpMpArLsq;ZqsLc

where rHqpMpArLsq; ZqsLc
is the restriction of the constant sheaf HqpMpArLsq; Zq to 

the layer Lc. We have the following decomposition

pEp,q
2 “ à

L1PCq

HppL1;Zq b HqpMpArL1sq;Zq (12)

and for every layer L P C

LEp,q
2 “ à

L2PpCďLqq

HppL;Zq b HqpMpArL2sq;Zq. (13)

Proof. We prove our lemma with a straightforward generalization of the argument given 
in [2, Lemma 3.1].
Let L1 be a layer in Cq. The set of subtori of A that contain L1 is in bijection with 

the central arrangement ArL1s. The projection πL1 : SL1 Ñ Tc defines the sheaf εL1 :“
H qpπL1 ; Zq on Tc. The sheaf εL1 has support in L1

c and the stalk at a point z P L1
c is 

pεL1 qz » HqpSalpArL1sq; Zq. Moreover, since the complex SL1 is homotopy equivalent to 
the product L1

c ˆ SalpArL1sq, the sheaf εL1 is constant on L1
c.

Then we can consider the sheaf ε :“ À
L1PCq

εL1 . The stalk at z P T is

εz “ à
L1PCq

pεL1 qz » à
L1PCq

HqpSalpArL1sq;Zq

and the map

εL1 Ñ H qpπ;Zq

induced by inclusion L1
c ãÑ Tc and hence by the commutative diagram

SL1

πL1

Ă SalpAq
π

L1
c

Ă
Tc

can be described in terms of Brieskorn Lemma (Proposition 2.2.1). In fact for every point 
z P L1

c we have that the map of stalks
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pεL1 qz Ñ H qpπ;Zqz

is induced by an inclusion SalpArL1sq ãÑ SalpArLzsq and corresponds to the map

jF̊ : HqpSalpArLzsq;Zq Ñ HqpSalpArL1sq;Zq

where jF is the map given in Definition 3.3.2. From Proposition 3.3.3 the last map is 
the left inverse of map

bq : HqpMpArL1sq;Zq Ñ HqpMpArLzsq;Zq

of Definition 2.2.2, that is the ArL1s-component of the Brieskorn decomposition. Since 
pεqz is given by the direct sum of pεL1qz over all L P Cq containing z, it follows that the 
corresponding map ε Ñ H qpπ; Zq is an isomorphism of sheaves (in fact, this map is the 
Brieskorn isomorphism).
The first part of the lemma is now straightforward, since we have that

pEp,q
2 “ HppTc;H qpπ;Zqq “

“ HppTc; εq “
“ à

L1PCq

HppTc; εL1 q “

“ à
L1PCq

HppL1
c;Zq b HqpMpArL1sq;Zq.

The second part of the lemma follows since the subcomplex SL is homotopy equivalent to 
the product Lc ˆSalpArLsq and the map πL is homotopically equivalent to the projection 
on the first factor (see Theorem 4.2.3). Hence the sheaf H qpπL; Zq is the constant sheaf 
H˚pMpArLsq; Zq and the decomposition given in (13) follows from the decomposition 
given by the Brieskorn Lemma applied to H˚pMpArLsq; Zq. l

Theorem 5.1.3. The spectral sequences pEp,q
˚ and LEp,q

˚ collapse at the second page.

Proof. We can prove the collapsing of pEp,q
2 by means of a counting argument. We assume 

the arrangement A to be ordered and we define a no broken circuit in CďL via the natural 
poset-isomorphism with ArLs (see Remark 2.1.3). According to De Concini–Procesi [11]
(see also Looijenga [23]) the Poincaré polynomial PAptq of the cohomology H˚pMpAq; Cq
of a toric arrangement A in a complex torus T of dimension d is given by

PAptq “
8ÿ

j“0
|Nj |p1` tqd´jtj

where we define
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Nj :“ tpL, Nq P Cj ˆ PpAq | N is a no broken circuit set of CďL, |N | “ ju

(we refer to [11, Definition 3.6] for a definition of no broken circuit set).
We compare the Poincaré polynomial above with the rank of the term pEp,q

2 . For a 
fixed q we have that ‘p

pEp,q
2 is a free Z-module with Poincaré polynomial given by 

|Nq|p1 ̀ tqd´q. Hence the total rank of pEp,q
2 is computed by its Poincaré polynomial

ÿ
qě0

|Nq|p1` tqd´qtq

and the spectral sequence must collapse at the page pE2.
The collapsing for LEp,q

2 is straightforward since the projection πL : SL Ñ Tc maps 
onto the compact subtorus Lc and (again, applying Theorem 4.2.3) the subcomplex SL

factors as Lc ˆSalpArLsq where πL is the projection on the first factor. Hence the spectral 
sequence trivially collapses at the second page, since the two factors have torsion-free 
integer cohomology. l

We will see in Section 7 that a similar argument shows that the Leray spectral sequence 
induced by the inclusion MpAq P T always collapses at the second page.

Remark 5.1.4. It has already been noticed in [2] that the analogous spectral sequence over 
the rationals collapses at the third page in the more general case of smooth connected 
divisors intersecting like hyperplanes in a smooth complex projective variety.

Theorem 5.1.5. The inclusion ϕL : SL ãÑ SalpAq induces a natural morphism of spectral 
sequences

pEp,q
˚

ϕ˚
LÝÑ LEp,q

˚ .

The map ϕL̊ : pEp,˚
2 Ñ LEp,˚

2 is the natural map

HppT ;H ˚pπ;Zqq Ñ HppT ;H ˚pπL;Zqq

induced by the morphism of Z-algebras

H˚pπ´1pUq;Zq Ñ H˚pπ´1
L pUq;Zq

given by the inclusion

π´1
L pUq ãÑ π´1pUq.

This is obvious from the definition (or following Leray’s argument in [22], see also [33]).
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Corollary 5.1.6. The morphism

ϕL̊ :
à

L1PCq

HppL1;Zq b HqpMpArL1sq;Zq Ñ à
L2PpCďLqq

HppL;Zq b HqpMpArL2sq;Zq

decomposes in maps between the direct summands as follows. For every L1 P Cq, L2 P
pCďLqq we have a map:

HppL1;Zq b HqpMpArL1sq;Zq Ñ HppL;Zq b HqpMpArL2sq;Zq

ω b λ ÞÑ
#

i˚pωq b λ if L1 “ L2,

0 otherwise.

In particular ϕL̊ is a surjective map.

Proof. According to Theorem 5.1.5 we have the commutative square

À
L1PCq

HppL1;Zq b HqpMpArL1sq;Zq

»

ϕ˚
L À

L2PpCďLqq

HppL;Zq b HqpMpArL2sq;Zq

»

HppTc;
À

L1PCq

rHqpMpArL1sq;ZqsL1 q HppTc;
À

L2PpCďLqq

rHqpMpArL2sq;ZqsLq

where the vertical maps are isomorphisms and the map in the bottom row is induced 
by the natural map of sheaves. The top arrow is simply inclusion in the corresponding 
direct summands. More precisely, the top arrow splits in a direct sum of maps, a null 
map for every L1 ę L and the natural restriction map

HppTc; rHqpMpArL2sq;ZqsL2 q Ñ HppTc; rHqpMpArL2sq;ZqsLq, (14)

for every L1 “ L2 P pCďLqq. The two sheaves that appear in (14) are two restrictions of 
the same constant sheaf, thus the map is the projection

HppL2q b HqpMpArL2sq;Zqq i˚bidÝÑ HppLq b HqpMpArL2sq;Zq

given by the tensor product of the projection on the first factor induced by the inclusion 
i : L ãÑ L2 and the identity on the second factor.
The surjectivity of ϕL̊ follows from the surjectivity of the cohomology homomorphism 

i˚ induced by the inclusion i : L ãÑ L1 for L1 ď L. l

Corollary 5.1.7. With respect to the decomposition given in Equation (12) of Lemma 5.1.2, 
for a fixed L P C the map ϕL̊ : pEp,q

2 Ñ LEp,q
2 restricts on every L1-summand of pEp,q

2 as 
follows
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HppL1q b HqpMpArL1sq;Zqq Ñ HppL;HqpMpArLsq;Zqq “ LEp,q
2

ω b λ ÞÑ
#

i˚pωq b bpλq if L1 ď L,

0 otherwise.

Proof. The statement follows from Corollary 5.1.6, applying the Brieskorn decomposition 
to Equation (13) of Lemma 5.1.2. l

Remark 5.1.8. Recall the definition of the map Φ :
Ů

LPC SL Ñ SalpAq given at the 
beginning of Section 5. The morphism of spectral sequences, and of algebras,

Φ˚ : pEp,q
˚ ÝÑ à

LPC
LEp,q

˚

induced by the map Φ is the direct sum ‘LPCϕL̊.

5.2. Algebras

Recall Definition 2.3.2 of the algebra ApAq. In this section we define the algebra 
BpAq and we prove that the algebras ApAq and BpAq are isomorphic. We will see that 
two algebras turn our to be both isomorphic to the integer cohomology ring of the 
complement MpAq of a toric arrangement. In the case of a real complexified arrangement 
this is proved in Section 5.3. Actually the abstract construction of the two algebras and 
of their isomorphism holds not only for real complexified toric arrangements, but also 
for the general case, thus the following results will be useful also in Section 6, the proof 
of Theorem 6.2.4.
We begin with some definitions.

Definition 5.2.1. The map of Z-modules p : ApAq Ñ À
LPC LL is the map defined on 

generators by:

L
rkpLq
L Q α ÞÑ ppαq

where

ppαqq
L1 “

#
LLďL1 pαq if L ď L1,
0 otherwise.

Remark 5.2.2. The map p is a section of the natural projection π :
À

LPC LL Ñ ApAq.

Proposition 5.2.3. The map p : ApAq Ñ À
LPC LL is injective and its image is the 

submodule of coherent elements (introduced in Definition 2.3.4).

Proof. It is clear that the image of p is given by coherent elements since the images of 
all the generators are coherent. The map p is clearly injective since the projection of 
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π :
À

LPC LL Ñ ApAq is a left inverse for p. Finally, since it follows from Definition 2.3.4
that every coherent element α is determined by its projection on ApAq, the map p is 
surjective on the submodule of coherent elements. l

We need to introduce a special product on the sum of algebras ‘LPCLL.

Definition 5.2.4. The product d on the direct sum ‘LPCLL is given on generators as 
follows. Let α P L q

L and α1 P L q1
L1 :

pα d α1qL2 :“
#

LLďL2 pαq Y LL1ďL2 pα1q if rkpLq “ q, rkpL1q “ q1 and L X L1 ď L2,

0 otherwise.

Remark 5.2.5. Notice that the product d restricts on the subgroup ApAq to the product 
Ź introduced in Definition 2.3.2.

Lemma 5.2.6. The restriction of the product d, defined on the sum ‘LPCLL, to the 
submodule of coherent elements equals the restriction of the natural product given on 
‘LPCLL viewed as a direct sum of cohomology rings.

Proof. Since all coherent elements are in the image of p, we can easily check the lemma 
on generators of the form ppαq for α P L q

L1 . l

The following proposition allows us to define the algebra of coherent elements.

Proposition 5.2.7. The product d maps two coherent elements α P À
LPC L q

L and α1 PÀ
LPC L q1

L to a coherent element in 
À

LPCěpq`q1q
L q`q1

L .

Proof. From the definition of the product d in ‘LPCLL we have that for L2 P Cěpq`q1q

pα d α1qL2 “
ÿ

LPpCěL2 qq

L1PpCěL2 qq1

LLďL2 pαLq Y LL1ďL2 pα1
L1 q.

We claim that such an element is coherent. For rkpL2q “ q `q1 there is nothing to check, 
while for rkpL2q ą q ` q1 we need to check that

pα d α1qL2 “
ÿ

rLPpCďL2 qq`q1

LrLďL2 pα d α1qrL. (15)

In order to prove Equation (15), we need to show that if α P L
rkpLq
L , α1 P L

rkpL1q
L1 and 

rkpLq ̀ rkpL1q ą rkpL X L1q then α d α1 “ 0. First notice that even if L X L1 can not be 
a layer. Nevertheless its connected components are parallel layers with the same rank, 
hence rkpL XL1q is well defined. The equality αdα1 “ 0 follows since for every connected 

39

ht
tp
://
do
c.
re
ro
.c
h



component L˝ of L X L1 we have L rkpLq`rkpL1q
L˝ “ 0 and this implies that pα d α1qL˝ “ 0. 

Moreover for any layer L such that L ą L and L ą L1 we have that there exists a unique 
connected component L˝ of L X L1 such that L ą L˝ and we have that

pα d α1qL “ LLďLpαq Y LL1ďLpα1q “
“ LL˝ďLpLLďL˝ pαq Y LL1ďL˝ pα1qq “ LL˝ďLpα d α1qL˝ “ 0.

Then we can assume that for any pair of layers pL, L1q P Cq ˆ Cq1 we have that either 
rkpL X L1q “ q ` q1 or αL d αL1 “ 0. Now the equality

pα d α1qL2 “
ÿ

rLPpCěL2 qpq`q1q

ÿ
LPpCě rLqq

L1PpCě rLqq1

LLďL2 pαLq Y LL1ďL2 pα1
L1 q (16)

follows by bilinearity, since it holds when α, α1 are supported on a single layer. From 
Equation (16) it follows that Equation (15) holds. l

Definition 5.2.8. Let A be a toric arrangement in T and let C be the poset of layers. We 
define the algebra BpAq as the subring ofà

LPC
LL

endowed with the natural product d, generated as a Z-module by the coherent elements.

Remark 5.2.9. Lemma 5.2.6 implies that BpAq is also a subring of ÀLPC LL with respect 
to the multiplication given by d. Moreover, as previously remarked, the two product 
structures coincide on BpAq.

Proposition 5.2.10. The map of Z-modules p : ApAq Ñ BpAq is an isomorphism of 
algebras.

Proof. Given α, α1 P ApAq, we remarked that

πpppαq d ppα1qq “ πpppαq Y ppα1qq “ α Ź α1

where the second equality follows from the definition of the product Ź . Hence proposition 
follows from the injectivity of π : BpAq Ñ ApAq. l

5.3. Proof of the main theorem

We are ready to prove our main theorem in the case of a real complexified toric 
arrangement.
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Proof of Theorem A (complexified case). We will consider the map Φ :
Ů

LPC SL Ñ
MpAq defined at the beginning of Section 5. This induces a map in cohomology

Φ˚ : H˚pMpAq;Zq Ñ à
LPC

LL

that is a ring homomorphism with respect to the natural product on the sum of coho-
mology rings 

À
LPC LL.

Moreover it follows from Proposition 4.2.17 that the image of Φ˚ is given by coherent 
elements. Hence Φ˚ maps in BpAq and from Lemma 5.2.6 it is also an homomorphism 
of rings, with respect to the product d defined in Section 5.2.
We need to prove the injectivity and surjectivity of the map Φ˚.
Recall that from Lemma 5.1.2 we can write

pEp,q
2 “ à

LPC
HppT ; rHrkpLqpSalpArLsq;ZqsLq

for the Leray spectral sequence associated to the projection π : SalA Ñ Tc and

LEp,q
2 “ HppTc;H qpπL;Zqq “ HppL;Zq b HqpMpArLsq;Zq

for the Leray spectral sequence associated to the map πL : SL Ñ Tc. Moreover, also due 
to Lemma 5.1.2, we have the decomposition

LEp,q
2 “ à

L2PpCďLqq

HppL;Zq b HqpMpArL2sq;Zq.

From Theorem 4.2.3 we have that for any layer L we have a commutative square

SL

πL

Ă SalpAq
π

Lc
Ă

Tc

and hence a map ϕL̊ of Leray spectral sequences in cohomology, together with the fol-
lowing commutative diagram, where, from Theorem 5.1.3 the vertical maps ψ and ψL

are group isomorphisms; moreover ψL and the horizontal maps ϕL̊ and ϕL̊ are ring 
homomorphisms:

H˚pMpAq;Zq ϕ˚
L

ψ

H˚pL;Zq b H˚pMpArLsq;Zq
ψL

pEp,q
2

ϕ˚
L

LEp,q
2 .
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Note that it follows from Corollary 5.1.6 that the horizontal maps are surjective. If we 
take the sum for on the right hand side all layers L we get the commutative diagram

H˚pMpAq;Zq Φ˚

ψ

À
LPC

H˚pL;Zq b H˚pMpArLsq;Zq
À

LPC
ψL

pEp,q
2

Φ˚ À
LPC

LEp,q
2 .

(17)

As above, the vertical maps are group isomorphisms. Moreover the horizontal maps and À
LPCψL are ring homomorphisms. We want to describe the image of the subalgebra 

BpAq Ă À
LPCH˚pL; Zq b H˚pMpArLsq; Zq of coherent elements in the subalgebra of À

LPCLEp,q
2 .

Let L1 P Cq be a layer and take a class α P L q
L1 . Moreover we assume that α “ ω b λ P

H˚pL1; Zq b HqpMpArL1sq; Zq. It is clear that BpAq is generated by the elements of the 
form ppαq (see Definition 5.2.1):

ppαqL “
#

LL1ďLpαq “ i˚pωq b bpλq if L1 ď L,

0 otherwise.

Since the map 
À

LPC ψL is the identity, it follows from Corollaries 5.1.7 and Remark 5.1.8
that the class 

À
LPC ψLppαq is the image, via Φ˚, of the class ω b λ P zEp,q

2 . Hence Φ˚ is 
surjective on the algebra BpAq.
The injectivity of the map Φ˚ : H˚pMpAq; Zq Ñ À

LPC LL follows by a rank ar-
gument. In fact both terms are torsion-free and we already know that the Poincaré 
polynomial of H˚pMpAq; Zq is given by

PAptq “
8ÿ

j“0
|Nj |p1` tqd´jtj

where Nj is the set of pairs pL, Nq P Cj ˆ PpAq and N is a no broken circuit set of 
cardinality j of CďL. We claim that PAptq is also the Poincaré polynomial of the algebra 
BpAq. In fact from Theorem B we have BpAq » ApAq and ApAq is the direct sum of free 
modules

ApAq “ à
LPC

L
rkpLq
L ,

and the contribution of the term L rkpLq
L for the Poincaré polynomial of ApAq is

p1` tqd´rkLrkHrkLpMpArLsq;Zq “
“ p1` tqd´rkL|tN P PpAq a no broken circuit set in CďLu|.
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Taking the sum over all L P C we get that the two torsion free algebras H˚pMpAq; Zq
and BpAq have the same Poincaré polynomial PAptq. Hence the surjective map Φ˚ :
H˚pMpAq; Zq Ñ BpAq is also injective. The theorem follows. l

6. The general case

From now on we drop the restriction to complexified arrangements and treat general 
complex toric arrangements. We will show that the description of the cohomology ring 
of the complement naturally applies also to this case. In fact, a deletion–restriction 
argument allows us to always reduce to the complexified case.

6.1. Deletion–restriction recursion

We thus start with a brief discussion of the effect on the cohomology of removing an 
hypertorus from the arrangement and of restricting the arrangement to an hypertorus.
This type of operation has been investigated by Bibby in [2] and by Deshpande and 

Sutar in [15]. Here we discuss how some of their results generalize to cohomology with 
integer coefficients, and start with a remark on degeneration of spectral sequences.

Remark 6.1.1. In analogy with Theorem 5.1.3, the Leray spectral sequence induced by 
the inclusion MpAq ãÑ T , also considered in [2] (see also [16, sec. 4.3], gives, as a second 
term

Ep,q
2 “ à

LPCq

HppL;Zq b HqpMpArLsq;Zq ùñ Hp`qpMpAq;Zq.

Looking at the Poincaré polynomial PAptq of H˚pMpAq; Cq as in the proof of The-
orem 5.1.3 in the complexified case, we can see that E2 is a free Z-module and the 
rank of E2 is the same as the rank of H˚pMpAq; Cq. This implies that the spectral 
sequence collapses at the E2 term and hence the cohomology H˚pMpAq; Zq is tor-
sion free.2 In particular, since the E2 term of the spectral sequence is isomorphic 
as a Z-module to the cohomology H˚pMpAq; Cq, given a layer L P C and a class 
α P HppL; Zq b HrkpLqpMpArLsq; Zq we can associate in a natural way an element 
α P H˚pMpAq; Cq.

Lemma 6.1.2. Let A Ă B be toric arrangements in T , the inclusion MpBq Ă MpAq
induces an injective homomorphism of cohomology rings i˚ : H˚pMpAq; Zq ãÑ
H˚pMpBq; Zq.

2 We thank Clément Dupont for a useful conversation where we noticed this natural generalization of 
Theorem 5.1.3.
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Proof. This is straightforward from the description of the Leray spectral sequences AEp,q
r

and BEp,q
r associated to the inclusion MpAq ãÑ T and MpBq ãÑ T . Following the con-

struction of the spectral sequence one can see that the inclusion i : MpBq Ă MpAq
induces a map of spectral sequences that on the E2-term is as follows:

i˚ :
à

LPCqpAq
HppL;Zq b HqpMpArLsq;Zq Ñ à

LPCqpBq
HppL;Zq b HqpMpBrLsq;Zq

where the map i˚ is given by the sum of the homomorphisms on the summands

iL̊ : HppL;Zq b HqpMpArLsq;Zq Ñ HppL;Zq b HqpMpBrLsqZq

and iL̊ is given by the identity on the first factor and by the natural injection

HqpMpArLsq;Zq ãÑ HqpMpBrLsq;Zq

on the second factor induced by the inclusion MpBrLsq ãÑ MpArLsq. The Lemma follows 
since the spectral sequence collapses at the page E2. l

Given a toric arrangement A, choose Y0 P A and let A1 “ AztY0u and A2 “ tY0 X Y |
for Y P A1u. We consider A1 as a toric arrangement in T , even if its rank differs from 
the rank of A. We consider A2 as an arrangement in Y0.

Theorem 6.1.3. We have the following short exact sequence of groups:

0 Ñ H˚pMpA1q;Zq Ñ H˚pMpAq;Zq Ñ H˚´1pMpA2q;Zq Ñ 0.

Proof. We observe that, in light of Remark 6.1.1, for every toric arrangement B we have 
an isomorphism of Z-modules

BEp,q
2 Ñ H˚pMpBq;Zq,

where we write BEp,q
2 for the Leray spectral sequence in the case of the arrangement B. 

The result follows applying the isomorphism above to the exact sequence (see [2])

0 Ñ A1Ep,q
2 Ñ AEp,q

2 Ñ A2Ep,q
2 Ñ 0. l

6.2. The cohomology ring of (non-complexified) toric arrangements

Given a layer L P C “ CpAq we define, as we did for hyperplane arrangements, the 
subarrangement:

AL :“ tY P A | L P Y u.
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Remark 6.2.1. For any layer L P CpAq, the subarrangement AL is “almost” a complexified 
toric arrangement, in the following sense: choose an element p P L and consider the 
inverse p´1 P T of p. Then the translated arrangement p´1AL “ tp´1Y | Y P ALu is 
complexified.
It is straightforward to see that the descriptions of the cohomology ring of MpAq

given in Theorem A and Theorem B extend to this case.

Let Cmax :“ CrkpAq be the set of layers of maximal rank in C. We recall that if A is 
essential, then the elements in Cmax are points. Otherwise, given the subtorus L that is 
the translation of any of the element in Cmax passing through the identity, we can factor 
MpAq “ L ˆ MpA{Lq, where A{L is the essential arrangement induced by A in T {L.
For every layer L P C “ CpAq we can choose a layer of maximal rank P pLq P

Cmax contained in L. Now, we fix a layer P1 P Cmax and let L P CpAP1 q. Let 
α P H˚pL; Zq b HrkpLqpMpAP1 rLsq; Zq. Moreover, let α be the class corresponding to 
α in the ring ApAP1q “ H˚pMpAP1 q; Zq. We can consider the class

β P H˚pL;Zq b HrkpLqpMpAP pLqrLsq;Zq

induced by α via the inclusion i : L ̂ MpAP pLqrLsq ãÑ L ̂ MpAP1rLsq:

β :“ i˚α

and let β be the corresponding class in ApAP pLqq “ H˚pMpAP pLqq; Zq. Finally, let rα
(resp. rβ) be the class induced by α (resp. β) in the tensor product 

Â
P PCmax

ApAP q
where the P1-factor (resp. P pLq-factor) is α (resp. β) and all the other factors equal 1.
We define the ideal

IpAq Ă â
P PCmax

ApAP q

generated by the elements of the form

rα ´ rβ
for any pair prα, rβq constructed as above. Moreover we define the ideal

JpAq Ă â
P PCmax

ApAP q

generated by all the cup products of the form

rα1 Y ¨ ¨ ¨ Y rαh

for some disjoint layers Pj1 , . . . , Pjh
P Cmax and Lj1 , . . . , Ljh

P C such that:
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i) P pLji
q “ Pji

;
ii) rαi (i “ 1, . . . , h) is an element in the tensor product 

Â
P PCmax

ApAP q induced by 
αi P H˚pMpAPji

q; Zq on the Pji
-factor and all the other factors equal 1, with αi

induced by a class αi P H˚pLji
; Zq b HrkpLji

qpMpAP ji
rLji

sq; Zq;
iii) the layers Lji

have trivial intersection:

hč
i“1

Lji
“ H.

We consider the map

Δ :MpAq Ñ
ź

P PCmax

MpAP q

induced by the inclusions MpAq ãÑ MpAP q.
The next proposition is useful in order to understand the corresponding cohomology 

homomorphism

Δ˚ :
â

P PCmax

H˚pMpAP q;Zq Ñ H˚pMpAq;Zq.

Proposition 6.2.2. The homomorphism Δ˚ is surjective and the kernel of Δ˚ is given by 
the ideal IpAq ̀ JpAq.

Proof. We begin showing that the map Δ˚ is surjective. Let consider a layer L P C and an 
element α P H˚pL; Zq bHrkpLqpMpArLsq; Zq. Let α P H˚pMpAq; Zq be the corresponding 
class. The hyperplane arrangements ArLs and AP pLqrLs are equal. Hence we can consider 
the class β P H˚pMpAP pLqq; Zq associated to

α P H˚pL;Zq b HrkpLqpMpAP pLqrLsq;Zq “ H˚pL;Zq b HrkpLqpMpArLsq;Zq.

From the description of the map i˚ : H˚pMpAP pLqq; Zq Ñ H˚pMpAq; Zq given in the 
proof of Lemma 6.1.2 we have that i˚pβq “ α. Hence we can consider the class

rβ P â
P PCmax

H˚pMpAP q;Zq “ â
P PCmax

ApAP q

given by the product of the term β in the P pLq-factor and 1 for all other factors and we 
have

Δ˚ rβ “ α (18)

and the surjectivity of Δ˚ follows since the element α runs over a set of generators of 
H˚pMpAq; Zq.
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Let us define the Z-submodule

V pAq Ă â
P PCmax

ApAP q

generated by all the classes rβ as above, that is with rβ induced in one of the factors of 
the tensor product by a class β P H˚pL; Zq b HrkpLqpMpAP pLqrLsq; Zq for all possible 
layers L P CpAq and all the other factors equal to 1. We notice that by equation (18) the 
restriction of the map Δ˚ to V pAq is injective.
It is clear that the ideal IpAq is contained in the kernel of Δ˚. We need to show that 

also JpAq Ă kerΔ˚. Given a generator rα1 Y ¨ ¨ ¨ Y rαh, we can consider the images Δ˚ rαi. 
From the Leray spectral sequence associated to the inclusion MpAq ãÑ T it follows that 
Δ˚ rαi can be represented by a cocycle supported in a neighborhood of Lji

. Since we can 
choose neighborhoods U1, . . . , Uh of the layers Lj1 , . . . , Ljh

such that 
Ş

Ui “ H, this 
implies that the product Δ˚ rα1 Y ¨ ¨ ¨ YΔ˚ rαh must be trivial.
In order to show that the kernel of Δ˚ is the ideal IpAq ` JpAq it remains to show 

that any element of 
Â

P PCmax
H˚pMpAP q; Zq is equivalent, modulo IpAq ` JpAq, to an 

element in the submodule V pAq.
Let ω be an element in 

Â
P PCmax

H˚pMpAP q; Zq “ Â
P PCmax

ApAP q. We can reduce 
to the case of ω “ Â

P PCmax
αP , with αP P ApAP q.

If we write rαP for the tensor product with P -factor αP P ApAP q and 1 for all other 
factors, we have

ω “ rαP1 Y ¨ ¨ ¨ Y rαPk

where Cmax “ tP1, . . . , Pku.
Moreover we can suppose that for every P P Cmax the class αP is induced by a class 

αP P H˚pLP q b HrkpLP qpMpAP rLP sq; Zq for some LP P CpAP q.
If 

Ş
P PCmax

LP “ H then ω P JpAq and hence ω ” 0 mod IpAq ̀ JpAq.
Otherwise, the intersection of the layers LP is non-empty. Let P P Cmax be such that 

P P Ş
P PCmax

LP .
Since P Ă LP for all P P Cmax, we have that the local arrangements AP rLP s and 

AP rLP s are equal. Hence the class rαP is equivalent, modulo the ideal IpAq, to the 
class rγP that is the tensor product with P -factor γP P ApAP q and all the other factors 
equal 1 and γP is induced by the class αP P H˚pLP q b HrkpLpqpMpAP rLP sq; Zq “
H˚pLP q b HrkpLpqpMpAP rLP sq; Zq. Hence we have reduced, modulo IpAq, the class ω
to the product of the classes rγP :

ω ” rγP1 Y ¨ ¨ ¨ Y rγPk
mod IpAq

and the right hand side is a tensor product with P -factor equal to γP1 Y¨ ¨ ¨YγPk
P ApAP q

and all other factors equal to 1. Finally, since ApAP q decomposes as a direct sum
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à
LPCpAP q

H˚pLq b HrkpLqpMpAP rLsq;Zq

we have that

γP1 Y ¨ ¨ ¨ Y γPk
“

ÿ
LPCpAP q

δL

where δL is induced by a class in H˚pLq b HrkpLqpMpAP rLsq; Zq. So we can write

ω ”
ÿ

LPCpAP q
rδL

where rδL is the class in tensor product with P -factor δL and all other factors equal to 1. 
Now it is clear that each of the summands rδL can be replaced, modulo IpAq with an 
element in V pAq and this completes the proof. l

We recall that in Definition 2.3.2 we introduced the ring

ApAq “ à
LPC

L
rkpLq
L .

Remark 6.2.3. We notice that the definitions of the algebras ApAq and BpAq (Defini-
tion 5.2.8) do not depend on the structure of complexified arrangement. In particular all 
the results in Section 5.2 hold for any arrangement and Proposition 5.2.10 gives, for any 
arrangement A, the isomorphism

ApAq » BpAq.

We can then state and prove in full generality the result of Theorem A:

Theorem 6.2.4. There exists a well defined map ι :
`Â

P PCmax
ApAP q˘ { kerΔ˚ Ñ ApAq

that induces the isomorphism H˚pMpAq; Zq Ñ ApAq.

Proof. For any P P Cmax there’s a natural map ιP : ApAP q Ñ ApAq that is induced on 
the summands by the maps

L
rkpLq
L pAP q Ñ L

rkpLq
L pAq

induced by the identifications MpArLsq Ă MpAP rLsq. It is easy to see that the map ιP

is a ring homomorphism and is injective. Hence there is a well defined map

ι :
â

P PCmax

ApAP q Ñ ApAq
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defined by the cup product of the generators:

ιpaP1 b ¨ ¨ ¨ b aPk
q “ ιP1 paP1 q Y ¨ ¨ ¨ Y ιPk

paPk
q.

We will show that the kernel of the map ι is kerΔ˚. Given classes ai P L
rkpLiq
Li

pAq, for 
i “ 1, . . . , h it is clear that a1 Y ¨ ¨ ¨ Y ah is supported only on the summands L rkpLq

L pAq
such that L Ă Ş

i Li and this implies that JpAq Ă ker ι.
Moreover, given a maximal layer P1 P CmaxpAq and a layer L P CpAP1 q, we have that 

AP1 rLs “ ArLs “ AP pLqrLs. Hence there is a commutative diagram

L
rkpLq
L pAP1 q “

“
L
rkpLq
L pAq

L
rkpLq
L pAPL

q

“

and this implies that IpAq Ă ker ι and the map ι is surjective. Then the map ι induces a 
well defined surjective map ι. The injectivity of ι follows from a rank-counting argument, 
since the Z-modules ApAq and 

Â
P PCmax

ApAP q have the same rank given by the sumÿ
LPCpAq

2rkpLq dimHrkpLqpMpArLsq;Qq. l

7. Dependency on the poset of layers

We now turn to the study of the relationship between the cohomology algebra struc-
ture and the poset of layers. We refer to Section 2.3.3 for a discussion of the our results 
on this topic.

7.1. Whitney homology of the poset of layers

In analogy with the case of hyperplanes, the additive structure of the toric OS-algebra 
can be obtained as the (Whitney) homology of the sheaf of rings W : L ÞÑ H˚pL; Zq
defined on the poset of layers C with zero maps as restrictions. In fact, in this situation 
the differentials of the associated spectral sequence [1, Section 4] vanish already at the 
first page, thus we obtain

HqpC, W q “ à
LPC,rkpLq“q

H˚pL;ZqμpT d,Lq » à
LPC,rkpLq“q

H˚pL;Zq b ZμpT d,Lq »
à

LPC,rkpLq“q

H˚pL;Zq b HqpMpArLsq;Zq

since the absolute value of the Möbius function at L is precisely the number of maximal 
no broken circuit sets of CďL.
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7.2. Centered arrangements with unimodular basis

Suppose that the given toric arrangement is centered, i.e., each subtorus is of the 
form Yi “ kerχi (for notations see Section 2.1). We can identify the lattice HompT, C˚q
with Zd through any isomorphism. The characters then correspond to the columns of a 
pd ˆ nq matrix A with integer entries. For any subset I Ď rns let then ApIq denote the 
matrix given by the columns of A with indices in I and let mpIq denote the product of 
the invariant factors of ApIq. Then the function mp¨q defines an arithmetic matroid on 
the Q-dependency matroid of the columns of A (we refer to [4] for basics on arithmetic 
matroids); the matrix A is then called a representation of this arithmetic matroid. In 
particular notice that, if |I| “ d, we have that mpIq “ | detApIq|.
Now suppose that the set of defining characters has a unimodular basis, i.e., that – 

say – χ1, . . . , χd are a basis of the lattice HompT, C˚q. Notice that the existence of a uni-
modular basis can be ascertained from the multiplicity data of the associated arithmetic 
matroid: such a basis has multiplicity 1. We choose the isomorphism HompT, C˚q » Zd to 
be such that χi is sent to the standard vector ei for i ď d. Then, the leftmost d ̂ d-block 
of A, Apt1, . . . , duq, is the identity matrix.
We now claim that in this case the whole matrix A can be recovered from the multi-

plicity data (which is part of the information given by the poset of layers).

Theorem 7.2.1. If an arithmetic matroid with a basis of multiplicity 1 is representable by 
a matrix A, then A is unique up to sign reversal of the column vectors.

Proof. For every non-zero entry ai,j of A (j ą d) we have ai,j “ p´1qi detpAp1, . . . , i ́ 1,
j, i ̀ 1, . . . , dqq.

ai,j “ mprdsztiu Y tjuq signpdetApj, 1, . . . , i ´ 1, i ` 1, . . . , dqq.

We may without loss of generality (by taking negatives of characters) suppose that 
the first nonzero entries past the first d columns in every row are positive, i.e., for

j0piq :“ mintj ą d | ai,j ‰ 0u,

ai,j0 ą 0

and that the first entry in every column is positive, i.e., if

i0pjq :“ minti | ai,j ‰ 0u,

ai0pjq,j “ detpApj, 1, ¨ ¨ ¨ , zi0pjq, ¨ ¨ ¨ , dqq ą 0.

We will determine the sign of the entries ai,j by induction on j. We assume j ě d and 
if j “ d there’s nothing to prove.
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For a fixed j ą d we will determine the sign of the entries ai,j by induction on i. For 
fixed i and j, we restrict to study the submatrix A1 of A given by the columns 1, . . . , d
and j1 ą d such that ai,j1 ‰ 0 of A and to the corresponding submatroid with multiplicity 
function m1. Then we can assume that ai,j1 ‰ 0 for all d ă j1 ď j.
Let i0pjq be as above, we recursively define the integers ihpjq for h ą 0 as follows:

ihpjq :“ minti ą ih´1pjq | ai,j ‰ 0u

and let

kpjq :“ mintk | j0pikpjqq ‰ ju.

We notice that if kpjq “ 8 then j0pikpjqq “ j for all k and hence we are assuming 
that ai,j ě 0 for all i. In general, since for k ď kpjq we have that j0pikpjqq “ j, we can 
assume that aikpjq,j ą 0 for all k ă kpjq.
Assume kpjq ă 8. Hence for a fixed i, if we suppose i ą i0pjq and ai,j ‰ 0, we have 

three possible cases:

a) if ikpjqpjq ą i then we have i “ ikpjq for a certain k ď kpjq and hence we are already 
assuming that ai,j ą 0;

b) if ikpjqpjq “ i then, up to changing the sign of the j-th column of A we can assume 
that ai,j ą 0; moreover, in order to keep A as previously assumed, we need to change 
the sign of the i1-th row and of the i1-th column of A for all i1 ă i, of the j1-th 
columns of A for all j1 such that i0pj1q ă i and finally, recursively for i2 ą i, if with 
the changes of sign already done we changed the sign of ai2,j0pi2q then we need to 
change the sign of the i2-th row, of the i2-th column and of the j2-th column for all 
j2 ą d such that i0pj2q “ i2;

c) if ikpjqpjq ă i then we already know by induction the sign of ai,j0pikpjqpjqq and since 
from the hypothesis of restriction we have that ai,j0pikpjqpjqq ‰ 0, we can consider, up 
to a sign, the determinant

|detA1pj0pikpjqpjqq, j, 1, ¨ ¨ ¨ , {ikpjqpjq, ¨ ¨ ¨ ,pi, ¨ ¨ ¨ , dq| “
“ |ai,jaikpjqpjq,j0pikpjqpjqq ´ ai,j0pikpjqpjqqaikpjqpjq,j |.

All entries in the right hand side are non-zero and we have

m1prdsztikpjqpjq, iu Y tj0pikpjqpjqq, juq “
“ |detA1pj0pikpjqpjqq, j, 1, ¨ ¨ ¨ , {ikpjqpjq, ¨ ¨ ¨ ,pi, ¨ ¨ ¨ , dq|

we can determine the sign of ai,j . l
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Fig. 3. The poset of layers associated to the arrangements A1 and A2 of Example 7.3.2.

Remark 7.2.2. The result of Theorem 7.2.1 has been recently improved by Matthias Lenz 
in [21].

7.3. Further questions and examples

We close by presenting some examples addressing the dependency of the ring structure 
from the arrangement’s combinatorics.

7.3.1. Isomorphism type
Since our description of the cohomology ring of the complement of a toric arrangement 

depends on the defining equation of the arrangement, we are led to consider the following 
problem:

Question 7.3.1. Is the toric OS-algebra combinatorial? Does the ring H˚pMpAq; Zq only 
depend on the poset CpAq?

We provide an example which shows the delicacy of the situation, even in small rank. 
We give two complexified toric arrangements (of rank 2) with isomorphic posets of layers 
whose integer cohomology rings are indeed isomorphic – yet the isomorphism can’t be 
chosen to be natural with respect to the inclusion into the ambient torus pC˚q2.

Example 7.3.2. Fix d “ 2 and let T “ pC˚q2 the 2-dimensional complex torus with 
coordinates z1, z2. We write Hij for the subtorus defined by the equation Hij “ tpz1, z2q P
T | zi

1z
j
2 “ 1u. Moreover we write χij for the character defined by χijpzq :“ zi

1z
j
2. Consider 

the arrangements A1, A2 defined as follows:

A1 “ tH10, H15u

and

A2 “ tH10, H25u.

The two arrangements have isomorphic posets of layers described in Fig. 3.
Let x be a generator of H1pC˚; Zq and y a generator of H1pCzt1u; Zq.
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The group H1pMpA1q; Zq has rank 4 and is generated by the classes x1 :“ χ1̊0pxq, 
x2 :“ χ0̊1pxq, y1 :“ χ1̊0pyq, y2 :“ χ1̊5pyq. The inclusions i1 : C˚zt1u ãÑ C˚ and i2 :
C˚zt1u ãÑ Czt1u give the relation

i1̊ pxqi2̊ pyq “ 0. (19)

From the identity χ15 “ χ10χ
5
01 we get χ1̊5pxq “ x1 ` 5x2 and hence, applying Equa-

tion (19), we get the following relations for the ring H˚pMpA1q; Zq:

x1y1 “ 0 (20)

and

px1 ` 5x2qy2 “ 0. (21)

Moreover we have the square relations x21 “ x22 “ y21 “ y22 “ 0. Let p10, . . . , p14 be the
points of the intersection H10 X H15, then the group H2pMpA1q; Zq has rank 8 and is 
generated by x1x2, x2y1, x1y2, τ0, . . . , τ4, where τk corresponds to the class 1 b αk in the 
algebra ApA1q and αk is a top class generating the group H2pMpA1rp1ksq; Zq. The ring 
structure is completed by the relation

y1y2 “
4ÿ

k“0
τk.

The analogous computation for A2 goes as follows. The group H1pMpA2q; Zq has rank 
4 and is generated by the classes x1 :“ χ1̊0pxq, x2 :“ χ0̊1pxq, y1 :“ χ1̊0pyq, y1

2 :“ χ2̊5pyq. 
The following relations holds for the ring H˚pMpA2q; Zq:

x1y1 “ 0 (22)

and

p2x1 ` 5x2qy1
2 “ 0. (23)

Moreover we have the square relations x21 “ x22 “ y21 “ y1
2
2 “ 0. Let p20, . . . , p24 be the

points of the intersection H10 X H25, then the group H2pMpA2q; Zq has rank 8 and is 
generated by x1x2, x2y1

1, px2´2x1qy1
2, τ

1
0, . . . , τ 1

4, where τ 1
k corresponds to the class 1 bα1

k

in the algebra ApA2q and α1
k is a top class generating the group H2pMpA2rp2ksq; Zq. The 

ring structure is completed by the relation

y1y
1
2 “

4ÿ
k“0

τ 1
k.
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With an easy computation one can see that the annihilator of an element u ‰ 0 of 
dimension 1 in the ring R1 “ H˚pMpA1q; Zq (that we simply call Ann11puq) is a subgroup 
of R11 that has rank 1, except when u belongs to one of the following two groups:

G1 “ tax1 ` by1|a, b P Zu

or

G2 “ tapx1 ` 5x2q ` by2|a, b P Zu.

In such cases the rank of Ann11puq is 2.
Similarly, for u ‰ 0 of dimension 1 in the ring R2 “ H˚pMpA2q; Zq, the rank of 

Ann11puq has rank 2 if and only if u belongs to one of the following two groups:

G1 “ tax1 ` by1|a, b P Zu

or

G1
2 “ tap2x1 ` 5x2q ` by1

2|a, b P Zu.

It is easy to verify that the map f : R1 Ñ R2 defined as follows

f : x1 ÞÑ 2x1 ` 5y1; f : y1 ÞÑ x1 ` 2y1;
f : x2 ÞÑ x2 ´ y1; f : y2 ÞÑ y1

2;
f :

ř4
i“0 τi ÞÑ x1y

1
2 ` 2ř4

i“0 τ 1
i ; f : τi ´ τj ÞÑ τ 1

i ´ τ 1
j

is an isomorphism of rings.
In order to show the impossibility of a natural isomorphism we can consider the ring 

R0 “ H˚pT ; Zq “ Λrx1, x2s. The inclusion of MpAiq (i “ 1, 2) into T induces a structure 
of R0-algebra on Ri.
We claim that the pairs of rings pR1, R0q and pR2, R0q are not isomorphic, hence the 

two cohomology rings R1 and R2 are not isomorphic as algebras on the cohomology of T .
In fact we can consider the groups G1X R0 and G2X R0 for pR1, R0q and respectively 

G1 X R0 and G1
2 X R0 for pR2, R0q. In the first pair a sum of generators of the two 

intersections is a multiple of 5 (namely px1 ` 5x2q ́ x1 “ 5x2) while in the second pair 
this is not possible since the two intersections are generated by x1 and 2x1 ` x5.

7.3.2. Degree one generators
The question of whether a cohomology ring is generated in degree one is natural and 

well-studied. For toric arrangements, this question has been addressed also in [11,15].

Question 7.3.3. When is the cohomology ring H˚pMpAq; Zq generated in degree 1? Is this 
property combinatorially determined by CpAq?
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Fig. 4. Example of a toric arrangement with cohomology ring not generated in degree 1.

In order to have that the cohomology ring H˚pMpAq; Zq is generated in degree 1, it is 
natural to ask as a necessary condition ensuring that intersections can distinguish layers, 
that is

for every k, the Boolean algebra generated by the non-empty intersections of rank k
of elements of A contains all the layers of rank k.

However, the following example shows that this condition is not sufficient.

Example 7.3.4. Fix d “ 2 and let T “ pC˚q2 the 2-dimensional complex torus with 
coordinates z1, z2. We define the arrangement A given by the following subtori (see 
Fig. 4):

H1 “ tz1 “ 1u; H2 “ tz1z
2
2 “ 1u; H3 “ tz1z

3
2 “ 1u; H4 “ tz2 “ e

2πı
3 u.

It is easy to check that the intersections of rank 2 are the following:

tSu “ H2 X H4; tP u “ H1 X H4 “ H3 X H4;

tQ, O, P u “ H1 X H3; tR, Ou “ H1 X H2; tOu “ H2 X H3

and hence they generate a Boolean algebra containing all the layers of rank 1.
Nevertheless, we claim that the algebra H˚pMpAq; Zq is not generated in rank 1. In 

fact the five local arrangements of rank 2, namely ArP s, ArQs, ArRs, ArOs and ArSs, 
determine a submodule of rank 7 in H2pMpAq; Zq. This module can be generated only 
by products of the generators associated to the four hypertori of A. The claim follows 
since 

`4
2
˘ “ 6 ă 7.
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