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Abstract

Methods used in information filtering and recommendation often rely on quantifying the simi-

larity between objects or users. The used similarity metrics often suffer from similarity redun-

dancies arising from correlations between objects’ attributes. Based on an unweighted

undirected object-user bipartite network, we propose a Corrected Redundancy-Eliminating

similarity index (CRE) which is based on a spreading process on the network. Extensive

experiments on three benchmark data sets—Movilens, Netflix and Amazon—show that

when used in recommendation, the CRE yields significant improvements in terms of recom-

mendation accuracy and diversity. A detailed analysis is presented to unveil the origins of

the observed differences between the CRE and mainstream similarity indices.

Introduction

Not so long time ago, people had to arduously travel around many stores to search for what

they needed. Limited by the travel distance, number of available stores, and search costs in

general, one often had to accept choices that did not meet the expectations satisfactorily. Infor-

mation technologies such as the Internet [1, 2], World Wide Web [3, 4] and smart mobile

devices [5, 6] have revolutionized the shopping behavior with most of the conceivable goods

just a few clicks away. However, these unlimited possibilities have exposed the customers to

yet another problem: that of information overload. The limited information processing capa-

bility of individuals made an additional layer of online shopping experience necessary where

every customer is provided with personalized recommendation [7]. The task of personalized

recommendation is to find potentially suitable items for individual customers. The recommen-

dations are typically computed based on past purchases of all customers, features of the

available items, customer personal information, or often a combination of these various

approaches. Nowadays, a recommendation engine is present in most successful e-commerce

web sites. For example, Amazon uses customers’ purchase records to recommend books [8],

Twitter uses users’ past actions to recommend who to follow [9], AdaptiveInfo uses users’
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reading histories to recommend news [10], and TiVo uses users’ viewing patterns and pro-

vided ratings to recommend TV shows and movies [11].

Due to the outstanding significance of recommendation to the economy and society, signif-

icant attention has been devoted to studying its scientific basis and engineering applications

(see the review articles [12–14] and the references therein). The various approaches to recom-

mendation have been suggested, such as content-based analysis [15, 16], context-aware analy-

sis [17], time-aware analysis [18], tag-aware analysis [19], social recommendation analysis

[20], constraint-based analysis [21], spectral analysis [22], iterative refinement [23], principle

component analysis [24], information core analysis [25], and hybrid methods [26]. Further-

more, collaborative filtering (CF) recommendation algorithms become highly popular due to

their simplicity and effectiveness [27]. The class of algorithms based on network-based infer-

ence (NBI) [28–34] and heat conduction [35–37] becomes popular due to their flexibility and

extendability.

In an unweighted undirected object-user bipartite network, two objects are thought to be

similar if they are simultaneously selected by a user. The more users co-select the two objects,

the more similar the objects are believed to be. The same is true for objects who are thought to

be similar if they co-selected by one or more users. However, owing to the sparsity and hetero-

geneity of many real-world bipartite networks, similarities among pairs of objects or users are

overestimated or underestimated outstandingly, which in turn impairs accuracy of the pro-

duced recommendations. In addition, overestimating object similarity arising from object

attributes leads to substantial redundancy which then directly weakens the diversity and per-

sonality of the produced recommendations. To further improve the performance of recom-

mendation methods, these problems must be comprehensively addressed. We propose a novel

similarity index, which we refer to as Corrected Redundancy-Eliminating similarity index

(shortly CRE), in order to improve the accuracy and diversity of recommendations. Similarly

to the corrected similarity index (shortly CSI), the CRE takes into account the symmetrical

nature of the underlying mass diffusion process on the bipartite network. Most importantly,

CRE eliminates unexpected original and secondary similarity redundancy—a problem which

is ignored by the CSI. We show that the CRE indeed improves the recommendation perfor-

mance as measured by a number of standard information filtering evaluation metrics.

Methods

Apparent similarity problem

In traditional works based on bipartite networks (e.g. NBI), researchers naturally suppose

two objects are more similar if they are commonly selected by more users. However, owing

to structural sparsity and heterogeneity in bipartite networks, the apparent similarity estima-

tions including overestimation and underestimation can happen unexpectedly. For concretely

explaining the origin of such problem, we simply exemplify it in Fig 1, which has been men-

tioned in [33].

Concretely, in the example bipartite network shown in Fig 1(a), objects {o1, o2} and {o1, o3}

are only selected by user u2 at the same time. So, the similarity from o1 to o2 is expected to the

same as the one from o1 to o3, such like w21 = w31 for NBI (see RF of Fig 1(b)). Nevertheless, it

deviates from this expectation: the statistical sums of (mass) similarities between each object

and others are assumed to be set as 1. In total three users selecting o2, only one also selects o1

and for o3 it is one in two. Accordingly, for o2, the most likely similarity only accounts for 1

3
of

the original, and for o3 it accounts for 1

2
. We inverse the similarity matrix W obtained from

NBI, and scale it in each column (see RB of Fig 1(b)). It can be found that the original (mass)

similarity is overestimated between o1 and o2 (w21 > r12) or underestimated between o1 and
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o3 (w31 < r13). It suggests the heterogenous objects’ degrees affect the similarity estimation

based asymmetrical mass diffusion of NBI. Obviously, we can solve this apparent similarity

problem to introduce the symmetrical mass diffusion like CSI (more details of CSI in Sec. 2.3).

Similarity redundancy problem

Since CSI takes NBI as foundation, there still exists another similarity redundancy problem

[31]. Basically speaking, similarity between two objects is originated from correlation between

objects’ attributes. In other words, some similarities may be derived from objects’ diverse

attributes and others may be deduced from objects’ same attribute, which brings in similarity

redundancy and eventually harms recommendation performance, especially for diversity and

personalization. Let us take Fig 2 for an example to clarify the idea.

In Fig 2, A, B, D, E represent the collected objects and C, F represent the uncollected

objects, respectively. All five links, representing correlations between two objects in the object

Fig 1. Illustrating the apparent similarity problem. (a) the description of a unweighted undirected object-user bipartite network, with objects

denoted by squares and users by round circles. (b) Matrices W, RF, RB and MC indicate similarity matrix of NBI, forward and backward similarity

proportion matrices and corrected similarity matrix, respectively. Color circles highlight the corresponding relations of similarity elements in

different similarity matrices. Here element mij in MC equals to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwij � rji
p

, with wij in W = RF and rji in RB.

https://doi.org/10.1371/journal.pone.0181402.g001
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-object network, should have more or less the same weight because each of them is derived

from one common attribute as labeled. Here, we may as well set the weight of each link as one

unit.

Since C and F respectively has two similar collected objects, both of them are ranked with

two scores based on similarity measure. However, the collected objects for C has two absolutely

distinct attributes ‘color = green’ and ‘geometry = diamond’, while for F the collected objects

oppose a common attribute ‘color = green’. Obviously, the two scores for C and F implies dif-

ferent extent of similarity. Such phenomenon is called the similarity redundancy existing ubiq-

uitously in real recommendation systems, which recommends users many repetitions and

definitely depresses diversity, personality and accuracy.

Corrected redundancy-eliminating similarity index

The reason resulting in the apparent similarity problem is asymmetrical mass diffusion on the

spares and heterogeneous BN. Much more practically, two objects are believed to be similar

only if the forward similarity proportion is coherent with the backward similarity proportion.

The more coherent and symmetrical, the more similar they are. Like CSI, the element mij of

corrected similarity matrix MC can be defined as,

mij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rFij � rBji

p
; ð1Þ

where rFij and rBji are the elements of RF and RB. The computation of rFij and rBji is according to

CSI. As shown in Fig 1(b), the original apparent similarity estimations of w21 and w31 in blue

solid circle. Through the corrections via r12, r13 and definition of rBji , they are corrected as m21

and m31, respectively. Between them, the clear difference is embodied and confirms our for-

mally expectation. Meanwhile, other similarity weight wij are transformed into mij with the

same circle marker to keep the existing distinguishability, such as w13 and w23 into m13 and

m23 surrounded by green dash circles.

Apart from the above apparent similarity, the redundancy similarity intrinsically originates

from the common attributes among collected objects, which tightly connects them just like the

D-E correlation (‘color = green’) in Fig 2(b). With the close correlation like D-E, the collected

Fig 2. Illustration of similarity redundancy. A, B, D and E are collected objects, and C and F are the

uncollected. Object pairs (A, C) and (B, C) respectively have similarities of color green and geometry

diamond. So there is no similarity redundancy between A and B. However, (D, F) and (E, F) both have the

similarity of color green so that D and E possess the similarity redundancy of color green.

https://doi.org/10.1371/journal.pone.0181402.g002
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object must have strong second order correlations with the uncollected one, such as the second

order correlation D-E-F. It causes the redundancy similarity for uncollected objects. On the

contrary, if the two collected objects have weak relation, the second order correlation can be

neglected, just like the A-B-C in Fig 2(a). Beside of the above mentioned similarity redundancy,

the superposed bidirectional similarities arising from the symmetrical mass diffusion bring in

secondary similarity redundancy.

Thus, after correcting apparent similarity, we should eliminate these similarity redundan-

cies with the following definition,

Definition 1 With corrected similarity matrix MC and tunable parameter α, the corrected
redundancy-eliminating similarity matrix SCRE is defined as follows:

SCRE ¼ MC þ a½MC�
2
; ð2Þ

where the tunable parameter α is always negative and adjusts for different redundancy situations
in diverse biparite networks, and [MC]2 represents the secondary moment of MC.

If a user has selections denoted by vector f, the recommendations f0 according to corrected

similarity matrix SCRE can be obtained from the equation f0 = SCRE f.

Results & analysis

Experimental results

The experimental results on three benchmark datasets are averaged over ten independent ran-

dom divisions. The goal of our experiment is to investigate diversity and personality under the

condition of the optimal accuracy. Thus, we choose the optimal parameter when the ranking

score is the lowest in each dataset, and compute six metrics (ranking score, AUC, precision,

intra-similarity, hamming distance and average degree) under such parameter. In Fig 3, we

plot the curves of six metrics, from the top to the bottom, with α in [-1.2, 0] and recommenda-

tion list’s length L = 10, 50, 100. In the same pattern, metrics curves of three datasets (Movie-

lens, Netflix and Amazon) from the left to the right are provided. Accordingly, we first show

the all evaluation metrics of six performance indices in restriction to the optimal α = -0.93,

-0.88 and 0. These results clearly suggest that the optimal α definitely exists in [-1, 0], and with

this restriction the other evaluation metrics (especially precision and AUC) also behave better.

Although we cannot leverage the best values of evaluation metrics with an identical parame-

ter, the comparatively better values in restriction to higher accuracy outperform those of

benchmark methods. As shown in Tables 1 and 2, the optimal parameters are subject to the

lowest ranking score(hri) for all methods (mainly HNBI, REBNI, CRE). The other evaluation

metrics of precision(P), AUC, intrasimilarity(I), hamming distance(H), and popularity(hki),
are obtained at their optimal parameters, respectively. According to the optimal evaluation

metrics, we can clearly find that the best ones emphasized in boldface are almost obtained

through CRE. Distinctively, CRE perfectly acquires the most outstanding diversity and person-

ality (see values in I, H, hki) with L = 50, 100 and also achieves much more remarkable accu-

racy (see values in hri, P, AUC) in the most cases.

More concretely, let’s analyze Table 1 at first. Evidently, CRE surpasses CF the most in all

aspects, especially even with hri reduced by more than 32%, H increased by more than 44% in

Movielens, P increased by more than 51%, I increased by more than 47% and hki reduced by

more than 53% in Netflix, and in Amazon, besides, P increased by more than 23% and hki
reduced by more than 51%. CRE transcends NBI on six metrics, distinctively, with hri reduced

by more than 28%, P increased by more than 41% and I reduced by 42% in Netflix, H increased

by more than 34% in Movielens and hki reduced by more than 52% in Amazon. CRE is supe-

rior to HNBI on all six metrics, with hri reduced by more than 23%, P increased by more than
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Fig 3. Demonstration of performances of CRE under optimal parameter (α = -0.93 in Movielens, -0.88 in Netflix and 0 in

Amazon, from the left to the right) of lowest ranking score, with L = 10, 50 and 100. From the top to the bottom, the subgraphs

exhibit ranking score, AUC, precision, intra-similarity, hamming distance and average degree in the parameter range [-1.2, 0], to

confirm the performance promotion under depressing similarity redundancy, regardless of the recommendation list’s length L.

https://doi.org/10.1371/journal.pone.0181402.g003
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31%, I reduced by 41% in Netflix, H increased by more than 21% in Movielens, and hki
reduced by more than 51% in Amazon. CRE is more excellent than RENBI in most cases.

Prominently, herein, CRE overcomes RENBI with I reduced by more than 31% in Netflix, and

hki reduced by more than 42% in Amazon. At last, CRE stands on top of CSI, remarkably with

hri reduced by more than 17%, P increased by more than 15%, I reduced by more than 23%

and hki reduced by more than 23% in Netflix, H increased by more than 11% in Movielens.

In addition, from further examination in Table 2 with L = 100, CRE also has approximately

similar performances corresponding to Table 1. Even though there exists differences in three

benchmark data sets, we argue that CRE obviously outperforms the five mainstream baselines

in diversity and personality, and meanwhile has excellent accuracy in most cases as well. Espe-

cially, in data set Amazon containing little redundancy because of diversity of goods for sale,

CRE shows the optimal values as the same as CSI at α = 0, meaning that it degrades to CSI. In

others words, from the definition of CRE, it is obvious that CSI is a special case of CRE, sug-

gesting CRE a more capable and adaptive algorithm in various conditions of different datasets

to approach the satisfied performances.

Analysis

To better reveal the intrinsic nature that CRE outperforms benchmark methods, we compare

the recommendation processes of all methods. Generally, CF makes recommendation rea-

sonably based on similarity between users, but still ranks with the worst compared with CRE

because it neglects the similarity between objects and users’ similarity redundancy. NBI dis-

tinctively performs better than CF but also shows severe shortage in contrast to CRE. It is

Table 1. Performance comparison table. The optimal α’s of ranking score hri for HNBI, RENBI, CRE are (-0.86, -0.76, -0.93) in Movielens, (-1, -0.81, -0.88)

in Netflix and (-0.08, -0.53, 0) in Amazon, respectively. And the other evaluation metrics—P for precision, AUC, I for intra-similarity, H for hamming distance,

hki for popularity— take the values corresponding to the optimal α of hri. The recommendation list L = 50, and the sampling number n in AUC is one million. All

the values are obtained by averaging over ten independent runs with different data set divisions and numbers in brackets stand for the standard deviations.

Movielens hri P AUC I H hki

CF 0.1225(0.0020) 0.0638(0.0011) 0.8990(0.0020) 0.3758(0.0008) 0.5796(0.0016) 242(0.3724)

NBI 0.1142(0.0018) 0.0670(0.0011) 0.9093(0.0016) 0.3554(0.0008) 0.6185(0.0013) 234(0.3925)

HNBI 0.1075(0.0018) 0.0693(0.0012) 0.9144(0.0014) 0.3392(0.0010) 0.6886(0.0011) 220(0.4726)

RENBI 0.0875(0.0014) 0.0812(0.0009) 0.8990(0.0021) 0.3758(0.0008) 0.7923(0.0007) 243(0.3725)

CSI 0.0970(0.0017) 0.0759(0.0010) 0.9278(0.0014) 0.3315(0.0006) 0.7530(0.0006) 200(0.3718)

CRE 0.0830(0.0011) 0.0835(0.0009) 0.9383(0.0011) 0.3034(0.0006) 0.8329(0.0005) 169(0.3507)

Netflix hri P AUC I H hki

CF 0.1755(0.0004) 0.0235(0.0003) 0.8714(0.0021) 0.3106(0.0009) 0.6787(0.0010) 423(1.2803)

NBI 0.1661(0.0004) 0.0251(0.0003) 0.8858(0.0019) 0.2819(0.0008) 0.7299(0.0006) 398(1.0763)

HNBI 0.1554(0.0004) 0.0270(0.0004) 0.8860(0.0021) 0.2521(0.0005) 0.8414(0.0005) 339(0.8053)

RENBI 0.1220(0.0003) 0.0364(0.0003) 0.9131(0.0019) 0.2373(0.0005) 0.8952(0.0003) 295(0.5911)

CSI 0.1437(0.0003) 0.0310(0.0004) 0.9063(0.0016) 0.1937(0.0012) 0.9063(0.0003) 256(0.7554)

CRE 0.1191(0.0003) 0.0356(0.0004) 0.9154(0.0017) 0.1629(0.0003) 0.9480(0.0002) 198(0.4003)

Amazon hri P AUC I H hki

CF 0.1212(0.0010) 0.0156(0.0001) 0.8810(0.0017) 0.0927(0.0001) 0.8649(0.0008) 81(0.1938)

NBI 0.1170(0.0011) 0.0162(0.0001) 0.8844(0.0018) 0.0899(0.0001) 0.8619(0.0006) 82(0.1775)

HNBI 0.1169(0.0011) 0.0162(0.0002) 0.8843(0.0019) 0.0896(0.0001) 0.8653(0.0007) 81(0.1182)

RENBI 0.1103(0.0012) 0.0181(0.0002) 0.8848(0.0019) 0.0861(0.0001) 0.9245(0.0004) 68(0.1182)

CSI 0.1036(0.0011) 0.0190(0.0001) 0.8930(0.0018) 0.0880(0.0002) 0.9667(0.00007) 48(0.0479)

CRE 0.1036(0.0011) 0.0190(0.0001) 0.8930(0.0018) 0.0880(0.0002) 0.9667(0.00007) 48(0.0479)

https://doi.org/10.1371/journal.pone.0181402.t001
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due to the unidirectional defective (or apparent) similarity between objects and neglects sim-

ilarity redundancy. HNBI and RENBI are the derivations of NBI. HNBI only penalizes the

high degree of popular objects and RENBI only eliminates the similarity redundant. How-

ever, both of them are based on the unidirectional defective similarity between objects like

NBI. To the opposite, CSI explicitly corrects the biased unidirectional similarity, but pre-

serves the original adverse similarity redundancy. Meanwhile, it brings in secondary redun-

dancy because of the accumulation of bidirectional similarities, which may lead to much

worse redundancy.

These traditional similarity based algorithms indeed either contains the analogous draw-

back of similarity estimation, or hides with annoying similarity redundancy, which cause

unsatisfied recommendation performance. Nevertheless, CRE simultaneously combines

apparent similarity correction with redundant similarity elimination, even removes second-

ary redundant similarity brought by similarity correction procedure. It surely achieves the

admirable improvements in accuracy, diversity and personality. More importantly, CRE

intrinsically holds the merits of our proposed CSI, but modifies its defects. Moreover, CRE

with tunable parameter can adjust to diverse similarity redundancies for the most suitable

recommendations.

Besides, the lower computation complexity is another important factor when we design the

recommendation algorithm. As we known, the time complexity of product of two N × N
matrices is O(N3). To NBI and CSI without searching precess, they have the complexity of O
(N3). However, even though necessary for searching for optimal value, compared with N, the

searching cost is negligible. Accordingly, CRE, HNBI and RENBI still retain the complexity as

O(N3), implying great improvement of performance but without increasing complexity.

Table 2. Performance comparison table. The optimal α’s of ranking score hri for HNBI, RENBI, CRE are (-0.86, -0.76, -0.93) in Movielens, (-1, -0.81, -0.88)

in Netflix and (-0.08, -0.53, 0) in Amazon, respectively. And other evaluation metrics—P for precision, AUC, I for intra-similarity, H for hamming distance, hki

for popularity— take the values corresponding to the optimal α of hri. The recommendation list L = 100, and the sampling number n in AUC is one million. All

the values are obtained by averaging over ten independent runs with different data set divisions and numbers in brackets stand for the standard deviations.

Movielens hri P AUC I H hki

CF 0.1225(0.0020) 0.0443(0.0006) 0.8990(0.0020) 0.3336(0.0007) 0.4826(0.0013) 205(0.3754)

NBI 0.1143(0.0019) 0.0461(0.0006) 0.9093(0.0017) 0.3153(0.0006) 0.5209(0.0011) 199(0.3773)

HNBI 0.1075(0.0018) 0.0478(0.0006) 0.9144(0.0014) 0.3004(0.0007) 0.5946(0.0012) 189(0.3378)

RENBI 0.0875(0.0014) 0.0542(0.0006) 0.9349(0.0013) 0.2722(0.0004) 0.7301(0.0007) 156(0.2666)

CSI 0.0970(0.0017) 0.0512(0.0007) 0.9278(0.0014) 0.2829(0.0005) 0.6743(0.0006) 171(0.2479)

CRE 0.0830(0.0011) 0.0551(0.0005) 0.9383(0.0011) 0.2511(0.0004) 0.7797(0.0007) 140(0.3226)

Netflix hri P AUC I H hki

CF 0.1755(0.0005) 0.0186(0.0002) 0.8714(0.0022) 0.3034(0.0007) 0.6167(0.0010) 378(0.9545)

NBI 0.1661(0.0004) 0.0197(0.0002) 0.8859(0.0020) 0.2772(0.0006) 0.6727(0.0007) 358(0.8371)

HNBI 0.1554(0.0004) 0.0212(0.0002) 0.8860(0.0022) 0.2529(0.0005) 0.7893(0.0007) 313(0.6651)

RENBI 0.1220(0.0003) 0.0275(0.0002) 0.9131(0.0020) 0.2303(0.0003) 0.8667(0.0002) 265(0.3904)

CSI 0.1437(0.0003) 0.0236(0.0002) 0.9063(0.0016) 0.1998(0.0003) 0.8661(0.0003) 249(0.4804)

CRE 0.1191(0.0003) 0.0272(0.0002) 0.9154(0.0017) 0.1659(0.0002) 0.9226(0.0002) 193(0.3100)

Amazon hri P AUC I H hki

CF 0.1212(0.0011) 0.0109(0.0001) 0.8811(0.0018) 0.0730(0.0001) 0.8309(0.0006) 71(0.1037)

NBI 0.1170(0.0011) 0.0113(0.0001) 0.8844(0.0019) 0.0706(0.0001) 0.8287(0.0006) 72(0.1163)

HNBI 0.1169(0.0011) 0.0113(0.0001) 0.8843(0.0018) 0.0703(0.0001) 0.8323(0.0006) 71(0.1099)

RENBI 0.1103(0.0012) 0.0123(0.0001) 0.8848(0.0019) 0.0669(0.0001) 0.9010(0.0002) 60(0.0596)

CSI 0.1036(0.0011) 0.0128(0.0001) 0.8936(0.0018) 0.0685(0.0001) 0.9467(0.0001) 46(0.0530)

CRE 0.1036(0.0011) 0.0128(0.0001) 0.8936(0.0018) 0.0685(0.0001) 0.9467(0.0001) 46(0.0530)

https://doi.org/10.1371/journal.pone.0181402.t002
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Discussions

We have investigated the similarity based recommendation algorithms (mainly involving with

benchmark methods) and find the existence of two problem, that is, apparent similarity esti-

mations due to only considering unidirectional mass diffusion and similarity redundancy

caused by the correlations between objects’ attributes. Even the worse, in some benchmark

methods, such as CF, NBI, HNBI, they both originally exist. Significantly, CSI bring in second-

ary similarity redundancy to make recommendation worse in some evaluation metrics, such

as I, H, hki in Movielens, although it correct the apparent similarity. After exploring biased

unidirectional similarities from the collected objects to the uncollected ones and similarity

redundancies derived from correlations between objects’ attributes, a corrected redundancy-

eliminating model (i.e., CRE) is proposed. Herein, modeled with symmetrical mass diffusion,

CRE believes stronger symmetric mass diffusion makes more precise similarity estimation.

Additionally, CRE advisably eliminates unexpected original and secondary similarity redun-

dancy caused by mass diffusion. Through experimental verifications on three benchmark

datasets, CRE indeed achieves great and impressive improvement in accuracy, diversity and

personality in comparison with other methods. Because of high effectiveness and low complex-

ity, CRE can be applied in various kinds of recommendation systems, such as online news rec-

ommendation, online books recommendation, online movies recommendation, online music

recommendation, and so on. Although obtaining great improvement, CRE still has weak-

nesses. For example, the lack of consideration on node degrees may to some extent impacts

the recommendation performance. This will be further investigated in our future work.

Data & metrics

Data

Three real benchmark datasets, Movielens from http://www.grouplens.org/, Netflix from

http://www.netflix.com/, and Amazon from http://www.amazon.com/ are introduced to dem-

onstrate the effectiveness of our CRE index and freely downloaded from KONECT database.

Three benchmark datasets are firstly realeased by GroupLens, Netflix and Amazon, which

mainly used to testing recommendation alogorithms. They are gathered into the KONECT

database built by Institute of Web Science and Technologies at the University of Koblenz-Lan-

dau (http://konect.uni-koblenz.de/networks/). The aim of the KONECT database is for public

academic research. We guarantee that there is no conflict of interest. And, all people can freely

download these datasets. Movielens and Netflix are well-known movie recommendation web-

sites, and Amazon is a famous online shopping store. Ratings in such web sites are extracted

to rank users’ preference to the objects with extent from 1 to 5 stars. We believe user likes the

object if he/she rank the ratings� 3, and then the rest dislike links will be abandoned. Conse-

quently, we can gain the ultimate processed experimental datasets, detailed in the following

Table 3.

For the sake of clear description of experiment, we denote all the possible user-object links

as a whole link-set EA. Further, we divide the existed link-set E into training set ET with 90%

Table 3. Summary on primary information of four datasets.

Data Users Objects Links Sparsity

Movielens 943 1682 1000000 6.3 × 10−1

Netflix 10000 6000 701947 1.17 × 10−2

Amazon 3604 4000 134679 9.24 × 10−3

https://doi.org/10.1371/journal.pone.0181402.t003
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links of the total and probe set EP with the remaining 10% links (EP \ ET = ;). It is noticed that

links in the probe set are considered as unknown information which is prohibited from taking

in training phase. The links in the set EA \ E represent all the unrealized user-object selections.

Evaluation

For evaluating the recommendation performance, we focus on three categories of metrics:

accuracy, diversity and personality (contrary to popularity) [14].

The accuracy is usually assessed by three metrics, including averaged ranking score, preci-

sion and AUC, which are described as follows:

1. Averaged ranking score (hri): Better ranking score is smaller, meaning all the links in the

probe set EP are ranked ahead contrast to the links in the set EA \ ET. If uj purchases oi in the

EP and the link gets the ranking position pij in his/her uncollected objects set Oj based on

the recommendation score, we obtain the rankij ¼
pij
jOjj as the ranking score of oi-uj link lij.

Consequently, we compute the averaged ranking score hri via all the links in EP as follows:

hri¼

P
lij2EP

rankij

jEPj
ð3Þ

Where |Oj| and |EP| suggest the cardinality of sets.

2. Precision (P): If a user uj has Nj recommended testing links, the precision Pj(L) of him/her

equals to
Nj
L with recommendation list length = L. Furthermore, the precision P of the whole

system can be calculated through all users’ individual precisions as

P ¼
1

m

Xm

j¼1

PjðLÞ ð4Þ

3. Area Under ROC Curve (AUC): AUC is designed for the measurement that a recom-

mender system can effectively discriminate the users’ appreciated objects from all other

objects. There exists a convenient way to compute AUC, we can compare the probability

that the users’ appreciated objects will be recommended with that of the uninterested

objects. In n independent comparisons (each comparison means choosing an appreciated

and a disliked object), if the appreciated object has n0 times higher score than the disliked

and n00 times equal, then

AUC ¼
n0 þ 0:5n00

n
ð5Þ

Evidently, if all appreciated objects are ranked higher score than the opposite objects,

AUC = 1 which implies a perfect recommendation list. For a completely random recom-

mendation list, AUC = 0.5. Therefore, the more AUC exceeds 0.5, the more excellent the

ability of a recommendation algorithm to distinguish niche objects.

Referred to diversity, we usually consider intra-similarity and hamming distance, which are

introduced as below:

1. Intra-similarity (I): A single user should be recommended with diverse objects [38] to avoid

dullness and attract his/her interests. Otherwise such method would degrade user’s loyalty

for receiving boring recommendation under the same topic. Thus, for a certain target user

ul, we set the recommended objects for ul as {o1, o2, . . ., oL}. By Sϕensen index [39], the
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similarity between oi and oj can be modeled as,

soij ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðoiÞkðojÞ

q
Xm

l¼1

ailajl ð6Þ

k(oi) is item i’s degree. In addition, we can define the intra-similarity of ul’s recommenda-

tion list as,

Il ¼
1

LðL � 1Þ

X

i6¼j
snij ð7Þ

The whole system’s intra-similarity is thus calculated as,

I ¼
1

m

Xm

l¼1

Il ð8Þ

2. Hamming distance (H): Another perspective to see the diversity of recommendations is the

intra-diversity, which is quantified via the Hamming distance and the essence of personal-

ized recommendations. Assumed the recommendation list length = L (i.e., the number of

objects recommended to each user), if the overlapped number of objects in ui and uj’s rec-

ommendation lists is Q, their recommendation lists’ Hamming distance is described as,

Hij ¼ 1 � Q=L ð9Þ

In a word, a more personalized recommendation list should be qualified with larger Ham-

ming distances contrast to other lists. Accordingly, we can further measure the diversity of

recommendations through Hamming distance as

H ¼
1

mðm � 1Þ

X

i6¼j
Hij ð10Þ

averaged over all the user-user pairs. Note that, H only takes into account the diversity

among users.

The popularity is estimated by average degree over recommended objects to represent

personality:

1. Average degree (hki): oij is the jth recommended item as to user i. k(oij) denotes item oij’s
degree. We can leverage the average degree of all recommended items for all users to com-

pute the popularity as below,

< k >¼
1

mL

Xm

i¼1

XL

j¼1

kðoijÞ ð11Þ

2.3 Benchmark methods

Five mainstream indices, cooperative filtering (CF), network based inference (NBI), heteroge-

nous initial resource distribution NBI (HNBI), redundancy elimination NBI (RENBI), cor-

rected similarity index (CSI) are introduced for comparison with our CRE, listed as below:
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1. Collaborative filtering (CF) [27]: Collaborative filtering is designed to compute similarity

between users or objects. We define the cosine similarity between two users ui and uj as:

sij ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðuiÞkðujÞ

q
Xn

l¼1

alialj ð12Þ

For arbitrary user-object pair ui − oj, when ui has not yet collected oj (i.e., aji = 0), the pre-

dicted score, vij (to what extent ui likes oj), is calculated as

vij ¼
Pm

l¼1;l 6¼i sliajl
Pm

l¼1;l 6¼i sli
ð13Þ

To any user ui, we sort all the nonzero vij with aji = 0 in a descending order, and recom-

mend those objects in the top-L.

2. Network Based Inference (NBI) [29]: NBI based on network structure computes the Sϕen-

sen index. For a general user-object network, we can give the similarity weight between oi
and oj as:

wNBI
ij ¼

1

kðojÞ

Xm

l¼1

ailajl

kðulÞ
ð14Þ

where wNBI
ij comes from similarity weight matrix WNBI, and kðojÞ ¼

Pm
i¼1

aji and

kðulÞ ¼
Pn

i¼1
ail respectively denote the degrees of object oj and user ul. Accordingly, we

can obtain the recommendation list of user ul as f 0l ¼WNBIfl, with fl = ali representing the

historical record of ul.

3. Heterogeneous NBI (HNBI) [30]: HNBI based on NBI takes heterogenous initial resource

configuration into account with weight wHNBIij ¼ kðojÞwa
ij. wij is from Eq (14) and

WHNBI ¼ fwHNBIij g. With purchase history fj of uj, the probable recommendation list of uj is

f 0j ¼ WHNBIfj.

4. Redundancy-Eliminating NBI (RENBI) [31]: RENBI based on NBI further consider to

eliminate the similarity redundancy. Say the similarity matrix of NBI as W, the similarity

matrix of RENBI is modeled as WRENBI = W + αW2 and the future recommendation list of

uj is acquired as f 0j ¼ WRENBI fj.

5. Corrected Similarity Index (CSI) [33]: CSI based on NBI further corrects unidirectional

similarity. Given similarity matrix W = {wij} of NBI, the forward similarity proportion is:

rFij ¼
wij

Pn
i¼1

wij
¼ wij ð15Þ

and the back similarity proportion is:

rBji ¼
wji

Pn
j¼1

wji
¼ rji; ð16Þ

eventually getting the CSI similarity SCSI = {sij} as:

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rFij � rBji

p
: ð17Þ

Therefore, the recommendation list of uj is f 0j ¼ SCSIfj.
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14. Lü L, Medo M, Yeung CH, Zhang YC, Zhang ZK, Zhou T. Recommender systems. Phys. Rep. 2012;

519(1): 1–49. https://doi.org/10.1016/j.physrep.2012.02.006

15. Guan Y, Cai SM, and Shang MS. Recommendation algorithm based on item quality and user rating

preferences. Front. Comput. Sci. 2014; 2(8): 289–297. https://doi.org/10.1007/s11704-013-3012-7

16. Yao L, Sheng QZ, Ngu AH, Yu J, Segev A. Unified collaborative and content-based web service recom-

mendation. IEEE Trans. on Services Comp. 2015; 8(3): 453–466. https://doi.org/10.1109/TSC.2014.

2355842

17. Unger M. Latent Context-Aware Recommender Systems. In Proc. of the 9th ACM Conf. on Recomm.

Sys.: ACM; 2015: 383–386.

18. Campos PG, Dı́ez F, Cantador I. Time-aware recommender systems: a comprehensive survey and

analysis of existing. evaluation protocols. User Model. User-Adap. Inter. 2014; 24(1–2): 67. https://doi.

org/10.1007/s11257-012-9136-x

19. Zhang ZK, Zhou T, Zhang YC. Tag-aware recommender systems: a state-of-the-art survey. J. Comput.

Sci. Technol. 2011; 26(5): 767–777. https://doi.org/10.1007/s11390-011-0176-1

20. Liu H, Hu Z, Mian A, Tian H and Zhu X. A new user similarity model to improve the accuracy of collab-

orative filtering. Knowl-Based Syst. 2014; 56: 156–166. https://doi.org/10.1016/j.knosys.2013.11.

006

21. Felfernig A, Burke R. Constraint-based recommender systems: technologies and research issues. In

Proc. of the 10th Inter. Conf. on Electronic Commerce: ACM; 2008: 3.

22. Maslov S, Zhang YC. Extracting hidden information from knowledge networks. Phys. Rev. Lett. 2001;

87(24): 248701. https://doi.org/10.1103/PhysRevLett.87.248701 PMID: 11736544

23. Ren J, Zhou T, Zhang YC. Information filtering via self-consistent refinement. EPL 2008; 82(5): 58007.

https://doi.org/10.1209/0295-5075/82/58007

24. Goldberg K, Roeder T, Gupta D, Perkins C. Eigentaste: A constant time collaborative filtering algorithm.

Inf. Retrieval 2001; 4(2): 133–151. https://doi.org/10.1023/A:1011419012209

25. Zeng W, Zeng A, Liu H, Shang MS, Zhou T. Uncovering the information core in recommender systems.

Sci. Rep. 2014; 4: 6140.

26. Burke R. Hybrid recommender systems: Survey and experiments. User Model. User-Adap. Inter. 2002;

12(4): 331–370. https://doi.org/10.1023/A:1021240730564

27. Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering recommender sys-

tems. ACM Trans. on Inf. Syst. 2004; 22(1): 5–53. https://doi.org/10.1145/963770.963772

28. Zhang YC, Medo M, Ren J, Zhou T, Li T, Yang F. Recommendation model based on opinion diffusion.

EPL 2007; 80(6): 68003. https://doi.org/10.1209/0295-5075/80/68003

29. Zhou T, Ren J, Medo M, Zhang YC. Bipartite network projection and personal recommendation. Phys.

Rev. E. 2007; 76(4): 046115. https://doi.org/10.1103/PhysRevE.76.046115

30. Zhou T, Jiang LL, Su RQ, Zhang YC. Effect of initial configuration on network-based recommendation.

EPL 2008; 81(5): 58004. https://doi.org/10.1209/0295-5075/81/58004

31. Zhou T, Su RQ, Liu RR, Jiang LL, Wang BH, Zhang YC. Accurate and diverse recommendations via

eliminating redundant correlations. New J. Phys. 2009; 11(12): 123008. https://doi.org/10.1088/1367-

2630/11/12/123008
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