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Different subclasses of ATP-binding cassette (ABC) trans-
porters have been implicated in the transport of native vari-
ants of the phytohormone auxin. Here, the putative,
individual roles of key members belonging to the ABCB,
ABCD and ABCG families, respectively, are highlighted and
the knowledge of their assumed expression and transport
routes is reviewed and compared with their mutant pheno-
types. Protein—protein interactions between ABC trans-
porters and regulatory components during auxin transport
are summarized and their importance is critically discussed.
There is a focus on the functional interaction between mem-
bers of the ABCB family and the FKBP42, TWISTED DWARF1,
acting as a chaperone during plasma membrane trafficking of
ABCBs. Further, the mode and relevance of functional ABCB-
PIN interactions is diagnostically re-evaluated. A new nomen-
clature describing precisely the most likely ABCB-PIN inter-
action scenarios is suggested. Finally, available tools for the
detection and prediction of ABC transporter interactomes are
summarized and the potential of future ABC transporter
interactome maps is highlighted.

Keywords: ABCB e ABC transporter e AGC kinase e Auxin
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Abbreviations: ABC, ATP-binding cassette; ABCB, ABC trans-
porter B subfamily; ABCD, ABC transporter D subfamily; ABCG,
ABC transporter G subfamily; ALDP, adrenoleukodystrophy pro-
tein; AUX1, Auxin-resistantT; BRET, bioluminescence resonance
energy transfer; BUM, 2-(4-diethylamino-2-hydroxybenzoyl)ben-
zoic acid; CFTR, cystic fibrosis transmembrane conductance
regulator; DGT, DIAGEOTROPICA; ER, endoplasmic reticulum;
FKBP, FK506-binding protein; IBA, indole-3-butyric acid; 1AA,
indole-3-acetic acid; LAX, LIKE AUX1; MDR, multidrug resist-
ance; NAA, naphthaleneacetic acid; NPA, 1-N-naphthylphthala-
mic acid; PAT, polar auxin transport; PDR, pleitropic drug
resistance; PID, PINOID; PIN, PIN-FORMED; PM, plasma mem-
brane; PPI, protein—protein interaction; PPlase, cis-trans-petidyl
prolyl isomerase; TPR, tetratricopeptide; TWD1, TWISTED
DWARF1; UCU2, Ultracurvata2; Y2H, yeast two-hybrid.

Introduction =

Native auxins are a group of chemically related, mainly indolic
compounds, which are ubiquitous key regulators of plant de-
velopment and performance (Adamowski and Friml 2015,

Grones and Friml 2015). The most abundant auxin, IAA, con-
trols transcriptional regulation of multiple developmental pro-
cesses mainly via activation of the TRANSPORT INHIBITOR
RESPONSE 1(TIR1) family of auxin receptors (Grones and
Friml 2015). However, post-transcriptional actions of IAA,
such as actin cytoskeleton bundling and cell elongation, have
also been shown to occur in a time frame that is too fast to be
transcriptional and thus to occur independently of the auxin
receptors (Schenck et al. 2010, Zhu and Geisler 2015, Geisler
etal. 2016). To date, putative auxin-binding proteins that might
integrate these effects have not yet been clearly assigned (Zhu
and Geisler 2015).

IAA action as a developmental switch has been shown to be
tightly connected to the presence of local auxin maxima and
minima generated over tissues (Adamowski and Friml 2015).
These are created, maintained and modulated by cell to cell
transport of auxin (as reviewed in Adamowski and Friml 2015),
a plant-specific process so far not verified for other plant hor-
mones. [Beside auxin, transporters involved in long-distance
transfer of ABA, strigolactones, cytokinins and, eventually,
also jasmonic acid conjugates (Kretzschmar et al. 2011,
Kretzschmar et al. 2012, Borghi et al. 2015, Zurcher et al.
2016, Li et al. 2017) have been characterized. However, currently
it is still unclear if these indeed function in polar transport of
the respective hormones and not simply in phloem/xylem
(un)loading, which needs to be demonstrated.] This process,
called polar auxin transport (PAT), is dependent on the action
of members of at least three auxin transporter families: PIN
(PIN-FORMED) proteins, AUX1/LAX (AUXIN1/LIKE AUXINT)
and ABCBs (ATP-binding cassette transporters of the B sub-
family) (Kerr and Bennett 2007, Geisler et al. 2016). Despite the
difficulties in demonstrating auxin transport for individual
members, which is mainly caused by re-diffusion of protonated
IAA (Geisler and Murphy 2006), now for most of the key mem-
bers of all three families solid transport data also in respect of
their substrate specificity have been provided that characterize
them as bona fide auxin transporters (Geisler et al. 2014).

Beside IAA, the closely related native auxin, indole-3-butyric
acid (IBA), is also discussed to be transported in a polar fashion
and to be a substrate of different classes of ABC transporters
(Strader and Bartel 2011). In the following, the roles of subfa-
milies and individual members of these in auxin transport, as
well their interference with other interacting partners are
summarized.
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Roles of ABC Transporters in Auxin Transport

Discovery and features of ABCBs

ABCB19/MDR1/PGP19 was discovered as an induced gene re-
sponding to the anion channel blocker NPPB [5-nitro-2-(3-phe-
nylpropyl amino)-benzoic acid] while searching for a chloride
channel (Noh et al. 2001). However, auxin-related phenotypes,
i.e. reduced and enhanced hypocotyl lengths under dim light,
were reported before for ABCB1/PGP1 antisense and overex-
pressing lines, respectively (Sidler et al. 1998), although not yet
linked to auxin transport defects. Like many ABC transporters,
ABCB19 was also shown to be induced by auxin, and its loss-of-
function mutants showed phenotypes usually found with auxin
imbalance (Noh et al. 2001). Independently, ABCB19 together
with ABCB1, the FKBP42, TWISTED DWARF1 (TWD1)/
ULTRACURVATA?2 (UCU2) and other proteins were isolated
as 1-N-naphthylphthalamic acid (NPA)-binding proteins (Noh
et al. 2001, Murphy et al. 2002, Geisler et al. 2003)—NPA being a
non-competitive inhibitor of PAT (Katekar and Geissler 1980).
PAT in abcb19 mutants was severely reduced, in both inflores-
cence stems and hypocotyls, and even more dramatically in
abcb1 abcb19 (Noh et al. 2001). Their identity as auxin trans-
porters was sustained by the finding that abcb1 abcb19 and
twd1 showed overlapping dwarf phenotypes and similar drastic
reductions in PAT (14% of the wild type; Geisler et al. 2003) that
exceeded even those of pin1 (Bandyopadhyay et al. 2007,
Blakeslee et al. 2007). Further proof of their catalytic activities
was provided by demonstrating a gradual loss of specific auxin
export from abcb1, abcb19 and abcb1 abcb19 Arabidopsis
protoplasts and quantification of auxin export for ABCB1
after heterologous expression in the plasma membrane (PM)
of baker’s yeast (Geisler et al. 2005). Demonstration of ABCB19-
mediated auxin transport followed shortly after by employing
the Hela system (Bouchard et al. 2006). These initial transport
data have since been verified independently by various groups
using different expression systems (Blakeslee et al. 2007, Rojas-
Pierce et al. 2007, Bailly et al. 2008, Kim et al. 2010).

It appears that a subgroup of ABCBs are primary active auxin
pumps that are able to transport against steep auxin gradients
by coupling their transport directly to ATP hydrolysis. This
separates them from PINs and AUX1/LAXs, which are thought
to act as secondary active auxin transporters that are depend-
ent on electrochemical gradients (Grones and Friml 2015,
Geisler et al. 2016). The ATP dependence of auxin transport
has been demonstrated by ATP depletion, and pharmacologic-
ally by employing flavonols known to compete with ATP for
binding sites on the nucleotide-binding folds of ABC trans-
porters (Geisler et al. 2005). In contrast to their mammalian
orthologs, that are known for their involvement in multidrug
resistance (MDR) phenomena, plant ABCBs revealed a surpris-
ingly high degree of substrate specificity toward only a few
auxinic compounds [including IAA, 1-naphthaleneacetic acid
1-NAA) and 2.4-D] (Bouchard et al. 2006). Structurally related
substances (such as benzoic acid or 2-NAA) or structurally
distant classical mammalian ABCB substrates (such as rhoda-
min123, daunomycin and vinblastine) were not efficiently

transported (Geisler et al. 2005, Bouchard et al. 2006). An in
silico comparison of putative substrate-binding domains of
Arabidopsis and mammalian ABCB1/PGP1 revealed an evolu-
tionary shift toward charged amino acids in these domains
apparently required for binding of the IAA anion (Bailly et al.
2011).

Whereas ABCB1 and ABCB19 and all so far characterized
PM-embedded PINs [long PINs (PIN1-PIN4 and PIN7) contain-
ing a large hydrophilic loop which is subject to multiple phos-
phorylation events regulating both PIN trafficking and activity
(Adamowski and Friml 2015)] were shown to function as auxin
exporters, members of the AUX1/LAX family are considered as
permease-like auxin importers, most probably functioning as
H™/IAA symporters (Kerr and Bennett 2007). Of special interest
in this context is thus ABCB4 and its close homolog, ABCB21,
for which, depending on the expression system, opposite
import and export directionalities have been reported
(Santelia et al. 2005, Terasaka et al. 2005, Cho et al. 2007,
Kamimoto et al. 2012). Therefore, it was suggested that plant-
specific factors might control transport directionalities (Cho
et al. 2007). Recently, both ABCB isoforms were suggested to
function as facultative IAA importers/exporters whose trans-
port directionality is triggered by intracellular auxin concentra-
tions (Kamimoto et al. 2012). This is an interesting
phenomenon because the supposed transport bidirectionality
as found for Arabidopsis ABCB4 and ABCB21, Oryza sativa
ABCB14 (Xu et al. 2014) and Coptis japonica ABCB1/MDR1
(Shitan et al. 2003) seems to be limited to the plant kingdom.
Therefore, identification of the molecular bases regulating
transport directions—either the local auxin concentration
itself or a second regulatory factor—both options being mutu-
ally non-exclusive—is of the highest priority.

ABCB expression and roles during polar auxin
transport

In correlation with their identity as auxin pumps, ABCBs are
mainly expressed in meristematic tissues (both root and shoot)
with high auxin concentrations where they are thought to
export IAA into the apoplast (Bailly et al. 2006). These roles
are on one hand in agreement with Arabidopsis mutant pheno-
types for abcb and abcb1 abcb19, showing epinastic leaves and
dwarfism as expected for excess apical auxin, while the single
abcb1 mutant has only a very subtle phenotype (Noh et al.
2001, Geisler et al. 2003). On the other hand, phenotypes are
also in line with gradual reductions in auxin transport measured
in a cellular and a polar fashion (Geisler et al. 2005), where the
abcb1 abcb19 mutant showed a ca. 70% reduction in PAT
(Blakeslee et al. 2007). These findings suggested a second func-
tion for ABCBs in maintaining long-range transport of auxin
(see Fig. 2), which might either be connected to its primary role
in clearing apoplastic auxin reflux or even form the basis of it.
An involvement in long-distance auxin transport was recently
confirmed by the analyses of dwarf phenotypes caused by
ABCBT loss of function in the agriculturally important crop
mutants, maize zmabcb1/brachytic2, an ABCB ortholog of sor-
ghum sbabcb1 dwarf3 (Multani et al. 2003). While ABCB21
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functions have not been analyzed due to a lack of mutants,
ABCB4 was shown to function primarily in the transport of
auxin away from the root tip into the root elongation zone
(Santelia et al. 2005, Cho et al. 2007, Lewis et al. 2007)

In comparison with PINs that, with a few exceptions, show
concrete expression patterns, expression of ABCB1, ABCB4 and
ABCB19 is more broad and overlapping. This is most obvious
for ABCB1 and ABCB19 that show widely overlapping expres-
sion in the stele of roots, while ABCB1 (but not ABCB19) is
additionally found in the epidermis and inner lateral root cap
(Mravec et al. 2008). While ABCB19 expression is strongest in
the pericycle and endodermis, ABCB4 is expressed from the
root cap to the hair differentiation zone and was confined to
the epidermis and outer cell layers of the columella and lateral
root cap tissue (Cho et al. 2007). Common for all investigated
ABCBs is that they are not found in the columella cells. This
makes a direct involvement in lateral redirection of auxin
streams during gravitropic responses (as shown for PIN3)
unlikely.

Like most PINs, ABCBs also reveal a mix of polar and non-
polar PM locations; however, in comparison with predomin-
antly polarly localized PIN1 and PIN2, ABCB1, ABCB4 and
ABCB19 clearly reveal a reduced polarity (Geisler and Murphy
2006). Therefore, their direct involvement—although demon-
strated for Arabidopsis and crop plants—in polar or long-range
auxin transport is not directly obvious. Three possible roles
during PAT are currently discussed that are all mutually not
exclusive: first, one possibility is that they function independ-
ently of PINs by pumping auxin out of the cell in meristematic
tissues with high apoplastic auxin concentrations. A need for
this option has been criticized by thermodynamic calculations
arguing that apoplastic IAA concentrations would need to
reach herbicidal (>100 ;LtM) concentrations in order to require
primary active export of nanomolar auxin (Spalding 2013).
However, these calculations do not include the functions of
cellular uptake. Therefore, we still believe that such steep trans-
membrane auxin gradients in the root tip are possible, espe-
cially in light of the fact that ABC transporters are often
functioning in raft-like microdomains for which auxin concen-
trations might be very different from assumed cytoplasmic con-
centrations. A second, although not well supported option that
will be discussed in detail later, is that ABCB-PIN pairs might
act interactively (see Fig. 3b). A third scenario is based on the
finding that all investigated ABCBs are apparently very weakly
expressed in the lateral, outward-facing domain of the epider-
mis. The reason for lateral epidermal exclusion is unknown, but
might suggest a role in canalizing auxin toward the auxin
stream of the vasculature.

Correlation with ABCB mutant phenotypes

ABCB mutants have been mainly analyzed in terms of their root
and hypocotyl bending capacities toward the gravitropic vector
or the light, respectively (Noh et al. 2001, Noh et al. 2003,
Bouchard et al. 2006, Lewis et al. 2007, Bailly et al. 2008, Ge
etal. 2017). Results indicate that in the widest sense, ABCB1 and
ABCB19 also have both a concerted function [in this review we
propose a new nomenclature for functional transporter

interactions (for details, see text and legends to Figs. 2 and 3)
that is highlighted in italics] in root PAT, although they have
been shown to function mainly in shoot-ward (basipetal) and
root-ward (acropetal) directions (Geisler et al. 2003, Bouchard
et al. 2006, Lewis et al. 2007), respectively (see Fig. 2). In line
with subtle single loss-of-function phenotypes, single abcb1 and
abcb19 mutant alleles so far tested show only minor root bend-
ing defects (Geisler et al. 2003, Bouchard et al. 2006, Lewis et al.
2007), but a lower rate of early root bending (Bouchard et al.
2006). [Conflicting hypergravitropic root bending reported ini-
tially for abcb19 (Noh et al. 2003) has subsequently been cor-
rected by the same group (Lewis et al. 2007).] In light of strongly
reduced auxin transport defects (around 30-80% depending on
the tissue and method; Geisler et al. 2003, Bouchard et al. 2006,
Lewis et al. 2007), these mild bending phenotypes point to a
complementary action (see below and Fig. 3 for details) in
abcb1 and abcb19 single mutants by ABCB19 and ABCB1 iso-
forms, respectively. This is sustained by drastic root bending
(and dwarf) phenotypes for abcb1 abcb19 mutant roots (Noh
et al. 2001, Geisler et al. 2003, Bouchard et al. 2006) that are the
result of disruption of shoot-ward and root-ward auxin streams
that apparently cannot be complemented by other ABCB iso-
forms or PIN proteins. Based on only very subtle root bending
phenotypes for abcb19 and PIN mutants involved in this pro-
cess (including PIN1, PIN4 and PIN7), root-ward auxin transport
in the stele seems not to have a strong impact on the asym-
metric auxin re-distribution causing the root to bend (Spalding
2013).

Further evidence for auxin transport defects in abcb1
abcb19 mutants is that their Columbia alleles display a non-
fixed handed helical disorientation (‘twisting’) of epidermal
layers (Wu et al. 2010, Wang et al. 2013). This is most likely
to be the result of unequal elongation of cortical and epidermal
layers most probably due to enhanced epidermal auxin con-
centrations (Wang et al. 2013) caused by a block of shoot-ward
auxin transport. This phenotype is phenocopied and even
stronger in the FKBP42/ TWISTED DWARF1 mutant (Wang
et al. 2013), shown to be responsible for mislocation and sub-
sequent degradation of ABCB1, ABCB19 and ABCB4 (Wu et al.
2010, Wang et al. 2013). Both epidermal twisting defects can be
partially rescued by NPA, indicating a direct involvement of
ABCBs, shown to be direct targets of NPA (Rojas-Pierce et al.
2007, Kim et al. 2010, Wang et al. 2013). A block of ABCB-
mediated auxin transport by NPA in the abcb1 abcb19 and
twd1 mutants, whose gene products are both a target of NPA
(Rojas-Pierce et al. 2007, Nagashima et al. 2008), is at first
counterintuitive, but might indicate that other ABCBs are com-
plementing for ABCB1, ABCB4 and ABCB19.

For abcb4 mutants, reduced (Terasaka et al. 2005) and
enhanced root bending data (Lewis et al. 2007) have been re-
ported, although not using identical mutant alleles. A high-
resolution analysis indicated that both abcb4-1 and abcb4-2
alleles bent earlier and at a faster rate than the wild type
(Lewis et al. 2007). In agreement with reduced shoot-ward
transport rates (40% reduction; Terasaka et al. 2005, Lewis
et al. 2007), monitoring DR5:GFP (green fluorescent protein)
auxin reporter gene expression during bending revealed that in



//doc.rero.ch

http

abcb4 mutants shoot-ward auxin progression was slowed
down, resulting in faster bending (Lewis et al. 2007). These
findings are overall in line with the proposed uptake direction-
ality for ABCB4 during shoot-ward PAT. As mentioned above,
abcb21 mutants have not yet been analyzed; however, recently,
rice ABCB14 was shown to function as an auxin importer in
analogy to ABCB4 and ABCB21 (Xu et al. 2014).

Interestingly, abcb19 and abcb1,19 hypocotyls were shown
to exhibit greatly impaired root-ward auxin transport (Lewis
et al. 2007, Nagashima et al. 2008) but also enhanced shoot
phototropism and gravitropism (Noh et al. 2003). These results
strongly suggest that ABCB19 contributes to the suppression of
the differential growth of hypocotyls, which is partially shared
by ABCB1 (Nagashima et al. 2008). Follow-up work indicated
that activation of the blue light receptor kinase, phot1, inhibits
ABCB19 activity at the illuminated side by means of protein
phosphorylation (Christie et al. 2011; see below for details). This
block would enhance auxin at the shaded side, which is
enhanced by concerted action (for a definition, see Figs. 2
and 3) with PIN3 that was shown to be redistributed to this
lateral subdomain (Ding et al. 2011). Whether ABCB19 and
PIN3 also act interactively by means of physical interaction
has not yet been investigated.

Although these examples clearly illustrate concerted and
complementary modes of action during auxin transport, over-
all developmental phenotypes for ABCB and PIN mutants are
distinct. Mutations in PINT and combined mutations in other
PIN genes with PINT result in organogenesis defects, which was
interpreted as a proof of concept that PINs provide directional
auxin flow essential for organogenesis (Benkova et al. 2003,
Blilou et al. 2005). However, recently a strong mutant allele
of ABCB19, abcb19-5, was identified, which showed stem-cau-
line leaf and stem-pedicel fusion defects due to increased
auxin levels at the organ boundary region in the inflorescence
apex (Zhao et al. 2013). Recently, ABCB1 was shown to act as a
major player during auxin-controlled anther development,
while ABCB19 plays only a minor role here (Cecchetti et al.
2015). For abcb1 abcb19 mutant combinations, significant
apical shifts in root hair polarity were reported (Zhu et al.
2016) that were previously overlooked. In light of these find-
ings, the separation into polarly expressed PINs controlling
development by organizing an auxin reflux system and non-
polar ABCBs contributing to long-range transport that does
not play a role in plant development obviously needs some
readjustment.

Arabidopsis contains 21 full-size ABCB genes (Kang et al.
2011), but so far only for four isoforms, ABCB1, ABCB4,
ABCB19 and ABCB21, have solid auxin transport data been
provided. As substrate specificities cannot easily be deduced
from sequence (Geisler and Murphy 2006, Bailly et al. 2011), it is
currently unclear how many of the 17 remaining ABCBs func-
tion as auxin transporters. However, a recent publication sug-
gested that there are eventually more to come: ABCB14 and
ABCB15, both apparently involved in stem lignification,
promote auxin transport since inflorescence stems in both mu-
tants showed a reduction in PAT (Kaneda et al. 2011) (see
Fig. 1). However, ABCB14 was previously identified as a

Cytoskeleton

ACTIN? \ .
Immunophilins
.- FKBP42/TWD1
Protein kinases
ETI:I)(;"ID Calmodulin
Auxin transporters Gaivee
PINs
ABCBs
ABCGs

Fig. 1 Known and suspected interacting partners of ABC transporters
involved in auxin transport. Known subclasses (underlined) and key
members shown to interact physically with ABC transporters involved
in transport of the native auxins, IAA or IBA. References can be found
in the text.

malate importer implicated in stomatal regulation (Lee et al.
2008), indicating eventually that altered auxin transport in
abcb14 might be caused indirectly.

Novel roles for ABC transporters in IBA transport?

IBA, long considered as a synthetic auxin, is a closely related
native auxin and can be converted to IAA in a peroxisome-
dependent reaction (Zolman et al. 2008). Currently it is unclear
if IBA acts as an auxin by itself or if it is a precursor of IAA and
thus acts via IAA (Ludwig-Muller 2007, Strader and Bartel 2008,
Schlicht et al. 2013). Moreover, the existence of IBA in the
model plant Arabidopsis has been questioned (Novak et al.
2012), although this might simply be a question of extraction
and detection methods.

However, for full IBA responsiveness, the ABC transporter
PEROXISOMAL ABC TRANSPORTER1 [PXA1/ABCD1/PED3;
also known as COMATOSE (CTS)] seems to be essential
(Zolman et al. 2001, Footitt et al. 2002, Hooks et al. 2007).
Mutant alleles for this gene, ped3 (peroxisome-defective 3),
were isolated in a screen for mutants resistant to 2,4-D
(Hayashi et al. 1998), an auxin analog, but only mapped later
(Zolman et al. 2001). The cts mutant of Arabidopsis was isolated
in a forward genetic screen to identify lines that possessed
reduced germination potential and found to encode an ortho-
log of human ABCD1 (ALDP; adrenoleukodystrophy protein)
known to transport long-chain and very-long-chain fatty acyl-
CoA, respectively (Morita and Imanaka 2012). A mutation in
the same gene was isolated from a screen to identify mutants
resistant to IBA (Zolman et al. 2000). Moreover, cts mutants
contain low residual levels of jasmonic acid and are male fertile,
which has led to the suggestion that ABCD1 might also trans-
port jasmonic acid precursors (Theodoulou et al. 2005).
Because clear-cut transport data have not been provided yet,
the nature of the ABCD1 substrate(s) is unclear but it is thought
to import fatty acid and/or acyl-CoAs, acetate, jasmonic acid
precursors and IBA into peroxisomes.
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shoot apex
PINT

AUX1, LAX1, 2, 3
ABCB1,19 (ABCB14,15 ?)

hypocotyl ABCB19 + PINT
PINT
ABCB19
ABCB14, 152

v
root ABCB19 + PIN1
ABCB1,4,19 PIN3,4,7
AUX1 AUXT
PIN1,2,3,4,7

PIN2, PIN3, PIN7
ABCB4 + PIN2
\ 4

lateral root cap
AUX1

ABCB4

Fig. 2 Main expression of ABCBs and their contribution to PAT in
Arabidopsis seedlings. Main expression of ABCBs shown to be
involved in auxin transport in the indicated organs (underlined).
Their contribution to PAT and concerted action (italics) with
PIN-type auxin exporters is indicated by arrows. Note that concerted
actions of ABCB1+PIN2 and ABCB4 + PIN2, respectively, are sym-
metric under vertical growth conditions. Further, note that ABCB1
and ABCB19 can complement each other for basipetal and acropetal
transport defects in abcb19 and abcb1 mutant backgrounds, respect-
ively, although their dominant directionalities in basipetal (shoot-
ward) and acropetal (root-ward) PAT are opposite. Note that expres-
sion and routes of AUX1/LAX transporters are also indicated, although
no functional interaction with ABC transporters has yet been
described. Figure content is partially based on Cho and Cho (2012).

Barley has, like yeast and humans, two ABCD1 homologs,
designated HVABCD1 and HVABCD2, which play roles in the
metabolism of the auxins, 2,4-D and IBA, but also in jasmonate
biosynthesis and determination of grain size (Mendiondo et al.
2014).

Currently it is unclear if IBA is indeed transported in a polar
fashion. Two independent studies support this concept
(Rashotte et al. 2003. Liu et al. 2012); however, only one study
verified the identity of the transported radiotracer as IBA (Liu
et al. 2012). In contrast, Ruzicka et al. (2010) came to the con-
clusion that most of the applied IBA was converted to IAA.

However, members of all three major IAA transporter
families have tested negative for IBA transport (Swarup et al.
2008, Ruzicka et al. 2010). Independent IAA and IBA transport
catalysts are also supported by the finding that neither NPA nor
the competitive auxin inhibitor, TIBA (2,3,5-triiodobenzoic
acid), blocks IBA transport (Rashotte et al. 2003, Liu et al.
2012). Genetic approaches in Arabidopsis support the idea
that IBA efflux from root cells is catalyzed by at least two mem-
bers of the PLEIOTROPIC DRUG RESISTANCE (PDR) subclade
of the ABCG family of ABC transporters (Borghi et al. 2015): loss
of ABCG36/PDR8/PEN3 (Strader and Bartel 2009, Lu et al. 2015)
and ABCG37/PDR9/PIS1 (Strader et al. 2008, Ruzicka et al. 2010)

(a) (b)

ABCB

PIN iii.

Fig. 3 Speculative models on independent and interactive actions of
ABCB and PIN proteins during polar auxin transport. (a) In an inde-
pendent action, members of the ABCB, PIN or AUX1/LAX families
function as independent auxin transport catalysts that do not interact
physically. Note that independent action does not exclude a concerted
action of ABCB and PIN exporters as depicted in Fig. 2. We would like
to define concerted action, as shared, overlapping function of two (or
more) proteins (such as ABCB1 and PIN2, ABCB4 and PIN2 or ABCB19
and PIN3), which, however, does not require physical interaction. (b)
In an interactive action, the activity of ABCBs and PINs depends on
functional interaction with each other. Interactive action can be
divided into co-operative or mutual cases. In a co-operative interactive
action, one component acts as the transport catalyst, while the other
works as the regulator (indicated by arrows). Currently it is not known
if PINs can act as regulators of ABCBs (i.) or the inverse (ii.), resulting in
an interaction that can have a synergistic (activating) or antagonistic
(inhibitory) effect on transport. In a mutual interactive interaction
(iii.), none of the ABCBs or PINs can act as transport catalysts inde-
pendently but require strictly functional interaction that forms a
transport—competent complex.

increases sensitivity to IBA, but not IAA. The IBA hypersensi-
tivity phenotypes of mutants defective in these transporters
suggest that IBA is a common substrate effluxed by both
ABCG36 and ABCG37, but clear transport data have so far
only been provided for ABCG37 (Ruzicka et al. 2010).
However, it should be mentioned that, although ABCGs
obviously do not transport IAA (Ruzicka et al. 2010), both
ABCG36 and ABCG37 obviously have a wider but clearly de-
limited specificity for structurally unrelated substrates typical
for PDR-type ABC transporters (Kang et al. 2010, Borghi et al.
2015). For ABCG36, these include auxinic compounds (such as
IBA and 2.4-D; Ito and Gray 2006), heavy metals (such as Cd, Fe
and Pb; Kim et al. 2007) and not yet clearly identified indole
glucosinolates (Stein et al. 2006, Lu et al. 2015). ABCG37 has
been suggested to transport—beside auxinic compounds such
as IBA, 2.4-D and NPA (Ruzicka et al. 2010)—phenolic com-
pounds including coumarin (Fourcroy et al. 2014, Fourcroy et al.
2016, Ziegler et al. 2017).
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Currently it is unclear if ABCG36/37 indeed function in polar
IBA transport. If so, in light of their predominant expression in
lateral epidermal PM domains, a putative role could be that
they function in reducing proposed basipetal (shoot-ward)
polar IBA streams that would be provided by as yet unidentified
IBA transporters.

In summary, it appears that we are only at the start of iden-
tifying the individual roles of ABC transporters from different
subclasses in auxin transport and have only a very limited in-
sight into their individual roles during this complex process. In
light of reported complementary and/or concerted action of
some isoforms, two obvious strategies will in the future allow
dissection of individual roles for ABC transporters in auxin
transport: first, the identities of all isoforms of individual ABC
transporters subclasses must be tested for auxin transport
capacities, which can be perceived by transport studies or
mutant analyses. Secondly, complementary action of some iso-
forms can be tested by the creation of knock-out combinations
or cluster-wise down-regulation by artificial microRNAs.

Importance of Protein—Protein Interactions
During Auxin Transport

Transport proteins, especially primary active ones, rarely act
alone as their functions need to be tightly regulated (Geisler
2014). This regulatory event usually employs transient or stable
protein—protein interactions (PPIs), which are defined as the
physical contact between two or more protein molecules.
These physical associations between chains or subdomains
are provided by electrostatic forces (mainly hydrophobic ef-
fects) and regulate virtually all cellular processes.

For transporters, an involvement of PPIs in a quick and eco-
nomic regulation of transporter activity, trafficking and stability
has been demonstrated (reviewed in Geisler 2014, Geisler et al.
2016). In the following, we will limit our discussion mainly to
the relevance of only a few described PPIs of single ABCB trans-
porters involved in auxin transport. For auxin transporters of
the ABCG and ABCD classes, the information on functional
interactions by PPIs is very limited.

Immunophilins function as ABC transporter
chaperones

Immunophilins form a superfamily of evolutionarily unrelated
proteins originally discovered to bind clinically relevant im-
munosuppressant drugs (Geisler et al. 2016). FKBPs (FK506-
binding proteins) bind the macrolides, FK506 and rapamycin,
while cyclophilins bind the cyclic peptide cyclosporin A (CsA).
A common feature is their [cis-trans-petidyl prolyl isomerase
(PPlase) or rotamase] activity, which is inhibited by immuno-
suppressant drugs (Romano et al. 2005, Geisler and Bailly 2007,
Gollan et al. 2012, Geisler et al. 2016). In addition, some immu-
nophilins were shown to harbor an intrinsic chaperone activity
that is independent of their PPlase activity and unaffected by
immunosuppressants (Geisler et al. 2016). Larger, multidomain
immunophilins own a co-chaperone activity that seems to
depend on functional interaction with HSP90 at the

tetratricopeptide (TPR) domain (lki et al. 2012). PPlase and
chaperone activities might be involved separately or co-opera-
tively in assisting protein folding (Geisler et al. 2016).

Both FKBP and cyclophilin families seem to be expanded in
plants with 23 and 29 members, respectively, in Arabidopsis
which was interpreted as an adaptation to a sessile lifestyle
providing, for example stress resistance and developmental
plasticity (Geisler and Bailly 2007, Geisler et al. 2016).

Among plant FKBPs, the FKBP42, TWD1/UCU2, was shown
in detail to regulate both ABCB transport activity and ABCB
transporter presence in the PM (Wu et al. 2010, Henrichs et al.
2012, Wang et al. 2013). ABCB1 was initially identified in yeast
two-hybrid (Y2H) screens for TWD1-interacting proteins
(Geisler et al. 2003). Using co-immunoprecipitation and BRET
(bioluminescence resonance energy transfer) assays in plant
and yeast systems, the TWD1-ABCB1 interaction was strength-
ened (Wang et al. 2013).

Heterologous co-expression supported a regulatory impact
on ABCB1 and ABCB19 transport activity (Bouchard et al. 2006,
Bailly et al. 2008, Henrichs et al. 2012) as was found for yeast
FKBP12 on mouse ABCB3/MDR3 when co-expressed in yeast
(Hemenway and Heitman 1996). Initially, and in agreement
with a functional interaction on the PM, the regulatory
action by TWD1 was thought to take place there and to
employ a refolding of the ABCB1 C-terminus, shown to provide
interaction (Geisler et al. 2003). Refolding was thought to be
catalyzed by the TWD1 PPlase activity and to activate ABCB1
activity by causing a conformational change that might en-
hance access of either ATP or the substrate (Geisler 2014).
However, all attempts to demonstrate clearly such a PPlase
activity either by classical calorimetric or nuclear magnetic res-
onance (NMR) assays failed (Kamphausen et al. 2002; M. di
Donato, A. Bailly, D. Carnevale and M. Geisler, unpublished).
Also, no immunosuppressant drug binding could be detected
at TWD1, which usually correlates with a loss of PPlase activity.
A structural reason was provided by the finding that the TWD1
FKBD retained only three out of 11 conserved key residues in
the hydrophobic FK506-binding pocket (Geisler and Bailly
2007). However, Kamphausen et al. (2001) provided evidence
for an aggregation/holdase activity by TWD1, which is a PPlase-
independent mode of chaperone action that may be respon-
sible for ABCB stability/regulation. This activity is usually de-
pendent on the interaction with other chaperones provided by
a TPR domain, suggesting that TWD1 action may be mediated
by a larger chaperone complex.

Interestingly, yeast co-expression with TWD1 up-regulated
ABCB1- and ABCB19-mediated IAA but not 1-NAA export,
which suggests that TWDT1 acts as a specificity filter (Bailly et al.
2014). This finding was supported by the fact that IAA but not 1-
NAA export was reduced in twd1 but not in abcb1 abcb19 mu-
tants. Although the overall concept that ABCB substrate specifi-
city is determined by an immunophilin awaits verification in a
mammalian system, it might be of major clinical importance be-
cause it implies that multidrug resistance is caused by ABCB-
FKBP imbalance during ABCB overexpression in tumor cells.

It has been clear for some time that TWD1 functions pri-
marily as an ABCB chaperone during endoplasmic reticulum
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(ER) to PM trafficking, which is based on the findings that
ABCB1, ABCB4 and ABCB19 are mislocalized on the ER and
degraded in twd1 (Wu et al. 2010, Wang et al. 2013). This chap-
erone function on ABCB transporters seems to be conserved as
the mammalian ortholog, FKBP38, was described to promote
ER to PM delivery of ABCC7/CFTR (cystic fibrosis transmem-
brane conductance regulator), a chloride channel whose loss of
function is responsible for the genetic disease mucoviscidosis
(Banasavadi-Siddegowda et al. 2011, Aryal et al. 2015). As for
TWD1, for FKBP38—CFTR regulation an involvement of PPlase
activity was discussed but never clearly demonstrated.

A functional difference between both modules lies in the
fact that interaction with ABCBs is provided by the FKBP
domain, while CFTR seems to employ FKBP and TPR domains
(Banasavadi-Siddegowda et al. 2011). The TWD1 TPR domain
was shown to interact functionally with vacuolar transporters,
ABCC1 and ABCC2 (Geisler et al. 2004), indicating that inter-
acting domains might encode specificity of ABC transporter
subclass interaction.

An interesting, although not well understood, aspect of the
proposed chaperone function for TWD1 is that by means of
fluorescence reporter gene fusion, TWD1 was shown to reside,
beside on the PM, mainly in the ER, while ABCBs have been
limited to the PM in the wild type (Wu et al. 2010, Wang et al.
2013). In contrast, by immunolocalizations using TWD1-spe-
cific antisera, TWD1 was shown to be limited to lateral, out-
ward-facing, PM domains of epidermal cells, where it co-
localizes with small amounts of ABCB1 found there (Wang
et al. 2013). The discrepancies between both methods are
unclear; however, functional interaction on lateral PM subdo-
mains was interpreted as a way to boost lateral ABCB1-
mediated auxin export. The latter is supported by enhanced
responsiveness of IAA-induced hypocotyl elongation caused by
overexpression of TWD1 (Wang et al. 2013, Bailly et al. 2014).

Another fascinating facet of this interaction is that TWD1/
FKBP42, like FKBP38, contains a C-terminal in-plane membrane
(IPM) anchor that docks TWD1 to the membranes (Geisler
et al. 2003). This anchor is not strictly required for functionality
because expression of a C-terminal deleted version still com-
plemented the twisted dwarfl syndrome in all aspects (Bailly
et al. 2014). Surprisingly, deletion of the membrane anchor led
to hypermorphic growth caused by enhanced cell elongation,
again supporting the concept of enhanced auxin export into
the apoplast. This is currently interpreted as a way to dampen
the polar auxin stream (Bailly et al. 2014).

This proposed chaperone function on ABCBs, which was
shown not to affect PINs, might be interconnected with a
second regulatory role for TWD1 on the actin cytoskeleton.
Recently, TWD1 was shown to interact physically with the
actin isoform, ACTIN7, and to interfere dually with actin bund-
ling and dynamics: TWD1 promotes actin filament turnover
and blocks actin de-bundling; however, both actions are most
probably perceived via as yet unknown actin-binding proteins
(Zhu et al. 2016). As in twd]1, in actin7 too, ABCB1, ABCB4 and
ABCB19—but additionally also PIN1T and PIN2—were misloca-
lized, although on vacuolar and early endosomal compart-
ments. This, on the one hand, suggests overlapping action,

but, on the other hand, that ACTIN7 and TWD1 control the
same trafficking events although on different levels (Zhu et al.
2016).

Using BRET and NPA chromatography, micromolar concen-
trations of NPA, or its functional analog, BUM [2-(4-diethyla-
mino-2-hydroxybenzoyl)benzoic acid] were shown to disrupt
TWD1-ABCB1 interactions (Geisler et al. 2003, Bailly et al. 2008,
Kim et al. 2010, Wang et al. 2013). This phenomenon is in
agreement with findings that both ABCBs and TWD1 were
shown to bind NPA and that ABCB-mediated auxin transport
is inhibited by NPA and BUM (Rojas-Pierce et al. 2007, Kim et al.
2010, Zhu et al. 2016). As proposed binding sites were mapped
to the C-terminal nucleotide binding fold (NBD2) of ABCB1
and the TWD1 FKBD, respectively (Kim et al. 2010, Zhu et al.
2016), both previously shown to provide PPIs (Geisler et al.
2003), these findings suggest that NPA/BUM interfere with
the ABCB-TWD?1 interface where they might compete for
the interacting partner.

Interestingly, flavonols, a class of phenolic compounds that
also block PAT, were even more effective in disrupting ABCB—
TWD?1 interaction, with quercetin being the most effective
(Bailly et al. 2008). However, quercetin does not bind to
TWD1, while it still binds and inhibits plant and mammalian
ABCBs (Conseil et al. 1998, Geisler et al. 2005, Zhu et al. 2016),
which might suggest that binding of flavonols to ABCBs is suf-
ficient to disrupt interaction. Taken together, it seems likely
that non-competitive auxin transport inhibitors (such as
NPA, BUM or flavonols) inhibit auxin transport by blocking
the chaperone effect of TWD1 on ABCBs via disruption of
ABCB-TWDT1 interaction. This model is supported by the find-
ing that micromolar concentrations of NPA reduce the pres-
ence of ABCBs on the PM (Kubes et al. 2012).

The involvement of ACTIN7 in ABCB chaperoning by TWD1
was indirectly supported by the finding that TWD1 mediates
NPA action on the actin cytoskeleton (Zhu et al. 2016). While
the impact of NPA on actin de-bundling was TWD1 independ-
ent, TWD1 was shown to mediate directly the inhibitory effect
of NPA on actin filament turnover.

Recently the cyclophilin DIAGEOTROPICA (DGT/CypA)
was characterized in regulation of PIN sorting, while ABCBs
were not affected (lvanchenko et al. 2015, Geisler et al. 2016).
While TWD1 was shown to increase ABCB functionality, the
opposite was shown for DGT. Interestingly, both PIN1 and
ABCB1 co-expression increased the presence of DGT on the
PM, suggesting an interaction with both transporter classes
(Geisler et al. 2016). In summary, it appears that members of
both FKBP and cyclophilin classes of immunophilins serve as
chaperones during secretion of auxin transporters by means of
PPI. However, it remains open whether these actions employ
PPlase activities and, if so, if the roles of PPlase and chaperone
activities are interconnected.

ABCB transport activity is regulated by AGC
protein kinases

Two recent studies support the concept that members of the
plant-specific AGC protein kinase family, orthologs of mamma-
lian protein kinases A, C and G, regulate ABCBs involved in
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auxin transport (Aryal et al. 2015): first, the AGC4 kinase,
PHOTROPIN1 (phot1) was shown to interact with the NBDs
of ABCB19 (but not with ABCB1). Co-expression in Hela cells
reduced ABCB19 activity, which was further accelerated by blue
light irradiation. ABCB19 phosphorylation by phot1 was shown
in vitro but not yet in vivo (Christie et al. 2011). Secondly, the
AGC3 kinase, PINOID (PID), was identified and characterized as
a TWD1 interactor by co-immunoprecipitation/liquid chroma-
tography—-mass spectrometry (LC-MS) and BRET analyses
(Henrichs et al. 2012). In contrast to ABCB19-phot1 inter-
action, PID was shown to phosphorylate ABCB1 at S634 in
the regulatory linker domain that had a promoting impact
on ABCBI1 transport activity (Henrichs et al. 2012). The finding
that ABCBT1 transport activity was inhibited when co-expressed
with PID in the presence of TWD1 was at first interpreted as
there being a second, TWD1-specific phosphorylation site
(Henrichs et al. 2012). However, another option might be
that in the presence of TWD1, ABCB1 phosphorylation of
S634 might simply be reduced, which is currently under
investigation.

Currently it is unclear if ABCB phosphorylation by AGC
kinases strictly requires TWD1. ABCB1-PID interaction has
not yet been tested in both the presence and absence of
TWD1. Co-immunoprecipitation data revealed that blue light
reduced ABCB19-TWD?1 interaction, which is dependent on
phot1 (Christie et al. 2011). These data together support a
model in which ABCB phosphorylation by AGC kinases, such
as phot1 or PID, alters the chaperoning role of TWD1 on ABCB
PM trafficking by reducing ABCB-TWD1 interaction (Aryal
et al. 2015). A similar mode of action has been suggested for
CFTR/ABCC7 secretion that is dependent both on interaction
with FKBP38 and phosphorylation of the regulatory R domain,
the equivalent of the ABCB linker, by protein kinase A. In sum-
mary, it seems as if an interconnected, regulatory module con-
sisting of protein phosphorylation and PPI is conserved across
kingdom:s.

Do primary and secondary active auxin
transporters functionally interact with each
other?

Interactive action between individual auxin transporters is not
well understood but has been previously suggested for specific
ABCB-PIN pairs (Blakeslee et al. 2007). The original motivation
to investigate these was that heterologously expressed ABCBs,
but especially PIN proteins, were able to function independ-
ently as auxin transport catalysts but were less specific com-
pared with their in vivo environment, suggesting the lack of
plant-specific factors. Y2H and co-immunoprecipitation ana-
lyses provided evidence for physical interaction of selected
ABCB1 and ABCB19 and PIN1 and PIN2 pairs (Blakeslee et al.
2007, Rojas-Pierce et al. 2007, Kim et al. 2010). In analogy to
ABCB-TWD1 interaction, ABCB-PIN interaction is also
provided by the C-terminal ends of ABCBs interacting with
hydrophilic loops of PINs (Blakeslee et al. 2007). Co-expressed
PIN1-ABCB1 and PIN1-ABCB19 combinations showed
increased export rates and substrate specificity compared

with single systems, while PIN2 only had an effect on substrate
specificity. PINs co-expressed with ABCB4 had an influence on
transport directionality, although proof of physical PIN-ABCB4
interactions is still awaited (Bandyopadhyay et al. 2007,
Blakeslee et al. 2007). Functional PIN-ABCB interactions were
supported by subcellular co-localization studies indicating lim-
ited, overlapping ABCB1 expression with PINT in stelar tissues
and with PIN2 signal in cortical and epidermal cells (Blakeslee
et al. 2007). Finally, genetic analyses were employed to dissect
auxin transport mechanisms; however, mutant phenotypes
were found to be complex: abcb19 pin1 shoot phenotypes
and agravitropism for abcb19 pin2 supported additive mech-
anisms (Blakeslee et al. 2007). Interestingly, unlike in pin1 or
pin1 abcb19 plants, in pin1 abcb1 abcb19 triple mutants floral
development was restored presumably as a result of ectopic
auxin accumulation in the shoot apical meristem (Blakeslee
et al. 2007). On the other hand, pin1 abcb1 abcb19 triple (but
not pinT or abcb1 abcb19) mutants were found to have strong
defects in cotyledon development during embryogenesis, indi-
cating synergistic action during embryogenesis (Mravec et al.
2008).

In summary, these data suggest that PINs and ABCBs char-
acterize co-ordinated, independent auxin transport mechan-
isms but also support the possibility of interactivity between
single members of the ABCB and PIN families functioning as
synergistic or antagonistic transport complexes in auxin trans-
port. In these tissue-specific pairings, PINs were thought to add
a vectorial dimension to ABCB-mediated transport. This con-
cept, in a physiological context, makes sense for described pairs
(such as ABCB19 and PIN1 or ABCB1/ABCB4 and PIN2) in that
concerted actions in the same transport directionality have
been shown. However, the functional relevance for some sug-
gested interactive pairs (such as ABCB19-PIN2), in that no con-
certed action or co-location has so far been shown, might be
questioned. Moreover, based on the low degree of co-locations
for described ABCB-PIN pairs, it is more likely that the inter-
activity of these complexes is limited to some polar PM sub-
domains, where ABCBs and PINs would physically interact (see
below for details).

An interesting result of the original study was that co-ex-
pressed PINT-ABCB1 and PIN1-ABCB19 combinations showed
a higher degree of NPA sensitivity (Blakeslee et al. 2007). This
outcome might be helpful to understand the discrepancy be-
tween the finding that growth on NPA/BUM results on the one
hand in pin-formed inflorescences but that PINs investigated
thus far neither bind NPA/BUM nor are inhibited by either
inhibitor in heterologous systems (Rojas-Pierce et al. 2007,
Kim et al. 2010, Zhu et al. 2016). In this context it might also
be helpful to recall that based on biochemical work the regu-
latory NPA-binding protein was predicted to be distinct from
the transport catalyst (Muday and Murphy 2002).

Proposed ABCB-PIN interaction on the one hand as well as
NPA/BUM insensitivity of PIN-mediated transport leads to the
next interesting but not yet solved question: what in this pro-
posed interaction works as a transport catalyst and what solely
(or additionally) as a transport regulator? Transport studies for
ABCBs and PINs employing heterologous—especially non-
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plant—systems argue for independent action as transporters
(Kerr and Bennett 2007); however, they do not strictly exclude
functional interaction with endogenous ABCB/PIN-like ortho-
logs, respectively. However, PINs, with the exception of PIN1
[PIN1 transport activity was shown to depend on protein phos-
phorylation by members of the AGC family of protein kinases
(Zourelidou et al. 2014)], have so far been proven to be active in
baker’s yeast and oocytes (Blakeslee et al. 2007, Kim et al. 2010,
Zourelidou et al. 2014) not containing ABCBs, which makes a
strong point for PINs as independent export catalysts that do
not depend on ABCBs. The inverse has not been shown; how-
ever, it is important to recall that ABCBs are an old invention
already existing in green algae, while PINs coincided with the
appearance of land plants (Galvan-Ampudia and Offringa
2007). This makes a strict requirement of PINs for ABCB trans-
port activity unlikely. On the other hand, it is well known that
ABC transporters can, besides functioning as transporters and
channels, also act as regulators of other secondary active trans-
port systems, including channels (Spalding 2013, Aryal et al.
2015). A prominent example for such a functional interaction
is the sulfonylurea receptor (SUR; ABCC8/9) that associates
with the potassium channel proteins Kir6.1 or Kir6.2 to form
the ATP-sensitive potassium channel (Principalli et al. 2015).
Within the channel complex, SUR serves as a regulatory sub-
unit, which fine-tunes channel gating. Another, although dis-
tinct, example is functional interaction between the chloride
channel, ABCC7/CFTR, and isoforms of the anion exchanger
family, SLC26 (SOLUTE CARRIER26) that exchange chloride
against bicarbonate (EI Khouri and Toure 2014, Aryal et al.
2015).

In summary, out of the many options that have been dis-
cussed recently (Spalding 2013), the following scenarios for an
ABCB-PIN interaction have been best supported experimen-
tally and are thus discussed here in more detail.

1. ABCBs and PINs act independently as auxin transport catalysts
(Fig. 3) as is supported by single, heterologous expression experi-
ments and independent evolution. However, ABCBs and PINs in
some cell files show overlapping, concerted action (such as
ABCB19/PIN1, ABCB1/PIN2, ABCB4/PIN2 or ABCB19/PIN3; see
Fig. 2), which does not require PPIs. Concerted action, however,
does not essentially have to employ the same transport direction-
alities and thus might result in a reduced net auxin stream. Such a
case is easy to imagine in cell files that express exporters (such as
PIN2) and putative importers/exporters (such as ABCB4) on the
same PM subdomain.

Moreover, one might imagine a complementary mode of
action, where ABCB (or PIN) isoforms take over roles of another
ABCB (or PIN) isoform in the respective mutant background, as
for example shown for ABCB1 and ABCB19. The strong abcb1
abcb19 phenotype would thus be the sum of individual roles of
ABCB1 and ABCB19 in basipetal and acropetal PAT and the
inability for functional complementation.

2. For local, polar PM subdomains, we propose an interactive ABCB—
PIN action that does strictly require physical interaction. In a co-

operative interactive action of ABCB-PIN pairs, either ABCBs or
PINs act as regulators of export catalysts, respectively. A physical
contact would result in synergistic or antagonistic net auxin trans-
port (Fig. 3b i, ii.).

In an unorthodox, alternative scenario, transport-incompe-
tent ABCBs and PINs would require a mutual interactive mode
in order to form a novel, transport-competent auxin efflux
complex (Fig. 3b iii.). However, this scenario is unlikely because
it is not supported by heterologous expression and co-localiza-
tion data and does not correlate well with known auxin routes.

In summary it appears that our understanding on the here
proposed concerted and/or interactive actions and how they
can be integrated into widely non-overlapping phenotypes be-
tween PIN and ABCB mutants is very limited. The only way that
will allow safe determination of individual functions of putative
transporters as auxin export catalysts and their interplay is a
functional, single and pairwise reconstitution of ABCBs and
PINs in a cell-free system.

Other relevant ABC interactions during auxin
transport

Several other PPIs with ABC transporters involved in auxin
transport have been reported recently (see Fig. 1 for a sum-
mary); however, the impact of most of these on transporter
activity or membrane presence and its relevance for auxin
transport is only poorly understood.

The N-terminus of the putative IBA transporter, ABCG36/
PEN3, was shown to co-localize with and to bind to the cal-
modulin isoform, CaM7, in a calcium-dependent manner
(Campe et al. 2016). Interestingly, as in abcg36, in cam7 mutants
non-host resistance is also compromised (Campe et al. 2016),
indicating that CaM7 might have a negative impact on
ABCG36-mediated export of defense compounds in this
process.

As mentioned already above, several lines of evidence sup-
port the idea that trafficking of ABCB transporters involved in
auxin transport is directly or indirectly dependent on inter-
action with ACTIN7 (Zhu et al. 2016). Very recently it was
shown that ACTIN7 is also involved in lateral distribution of
ABCG36/PEN3/PDR8 and the aquaporin, NIP5;1 (Mao et al.
2016), suggesting a generic role during PM secretion of polar
(basal/apical and lateral) and non-polar PM proteins (Geisler
2016). ACTIN7 was isolated as an interactor of TWD1, although
in an indirect interaction most probably involving actin-bind-
ing proteins (Zhu et al. 2016). However, ACTIN7 was also pulled
down in co-immunoprecipitations using ABCB1 (Zhu et al.
2016) and ABCG36 (B. Aryal and M. Geisler, unpublished) as
bait, suggesting that the actin cytoskeleton might also directly
interfere with auxin transporters itself.

The polarly localized SHADE AVOIDANCE4 (SAV4) protein
was recently shown to be required for proper auxin distribution
in Arabidopsis hypocotyls (Ge et al. 2017). SAV4 exhibits a dual
localization at the PM and the nucleus. SAV4 contains a puta-
tive ARM repeat- and a TPR-like domain, both of which are
often involved in PPlIs. Interestingly, SAV4 physically interacts
with ABCB1 and inhibits ABCB1 transport activity upon
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co-expression in tobacco (Ge et al. 2017). Overall, this regula-
tory mechanism resembles roughly those of the immunophi-
lins, TWD1 and DGT; interacting domains and mechanisms
here are not completely clear.

Toward an Identification of ABC Transporter
Interactomes During Auxin Transport

Transporters do not act independently but in a network of
complex molecular interactions. This is supported by the first,
partial Arabidopsis interactome (Arabidopsis Interactome
Mapping Consortium 2011) revealing a strong enrichment of
a few network communities, in that, not surprisingly, trans-
membrane transport and vesicle trafficking hubs tightly
interact.

In the past, mainly GAL4-based Y2H systems and affinity
purification followed by mass spectrometry (AP-MS) were
used to detect PPls. Both methods were adapted for high-
throughput approaches, and allowed feeding of literature cura-
tor PPI databases, such as MINT, DIP Intact, BioGRID, MPIDB
and MatrixDb. Unfortunately, the overlap between these data-
bases was soon found to be low due to different standards of
curation, organisms and underlying methods (Mosca et al.
2013). To overcome this problem, the International Molecular
Exchange (IMEx; http://imex.sourceforge.net/) consortium was
formed aiming to enable the exchange of data and to avoid
duplication of the curation efforts.

However, due to their hydrophobicity and need for deter-
gent solubilization, transporter interactions are usually under-
represented in PPl databases (Geisler 2014). These limitations
have been partially overcome by the invention of membrane-
based Y2H systems (such as the split ubiquitin Y2H system)
allowing detection of interactions between membrane proteins
and by the use of milder solubilization techniques. Still, several
groups in the (ABC) transporter field have launched individual
small-scale PPI projects that focused on a limited subset of
(ABC) transporters (Paumi et al. 2007, Paumi et al. 2009) or
interacting signaling components (Lalonde et al. 2010). Paumi
et al. (2007) reported the identification of six potential partners
of the yeast ABC transporter of the ABCC subclass, YCF1 (Yeast
Cadmium Factor1). In a follow-up report, the same consortium
provided the first yeast ABC interactome by analyzing 19 of all
22 yeast ABC transporters (Snider et al. 2013). An unexpected
outcome was the large number of functionally diverse interac-
tors. Another interesting observation was the tendency of full-
size ABC transporters to interact with one another and with
secondary active transporters. In another interesting report, by
comparison of the CFTR and CFTR®®® interactome, key inter-
actors involved in rescue of channel function were identified
(Pankow et al. 2015).

The maintenance of experimental PPl databases by litera-
ture curation is expensive, often error-prone and can even
sometimes be biased (Mosca et al. 2013). Therefore, computa-
tional methods have been created in order to make the next
step from experiments to predictions. Computational methods
to predict PPls can employ either high-throughput

experimental data or 3D structural information. However, the
methods based on the prediction of the 3D structure of protein
complexes (= docking) have serious limitations, as discussed in
detail in Mosca et al. (2013).

A number of new methods have been designed to overcome
these limitations. Particularly exciting is a new concept that is
based on ‘co-evolution’, which refers to co-ordinated changes
that occur in proteins to maintain or to regulate protein fold-
ing, stability, function and interactions. Applying this algorithm
to a subset of ABC transporter complexes resulted in accurate
prediction (Bitbol et al. 2016). Finally, there are hybrid methods
that integrate various methods, such as low-resolution struc-
tural modeling, with other functional data, such as co-expres-
sion, and functional and evolutionary similarities.

Unfortunately, all these tools have not yet been used to
uncover interactomes of individual auxin transporters or trans-
porter families, either of the ABCB, ABCG or ABCD families.
This is surprising as the required lines are now available and
techniques are affordable. Interactomes for individual ABC
transporters involved in auxin transport under controlled
standard conditions could be easily generated from different
organs, tissues or even individual cell types generated by cell
sorting of marker lines. These high-confidence interaction maps
could provide us with detailed spatio-temporal information on
ABC transporter activity, regulation and trafficking during
auxin transport at high resolution. ABC interactomes could
obviously also be compared with those of different model
plants, with other Arabidopsis ecotypes, with developmental
stages in a given model plant or with mutants or plants grown
under special conditions, such as altered exposure to gravity,
light etc.

Conclusions and Outlook

Members of three classes of ABC transporter subfamilies, ABCB,
ABCD and ABCG, have been implicated in the transport of
native auxins. A critical re-evaluation of the current literature
suggests that we have only started to identify the individual
catalytic components of auxin transport. While peroxisomal
import of IBA by ABCD1/PXA1/PED3/CTS still awaits demon-
stration, independent reports have indicated that members of
the ABCG families might catalyze the transport of IBA (Strader
and Bartel 2011). In contrast, members of the ABCB family have
been widely accepted as IAA transporters (Geisler and Murphy
2006, Bailly et al. 2011, Cho and Cho 2012, Spalding 2013) and,
despite their mixed polarity, ABCBs seem to be directly involved
in the polar distribution of IAA. In contrast, the roles of ABCGs
in polar IBA transport have not yet been established, also be-
cause IBA transport measurements are hindered by conversion
to IAA. Also it is unknown how many of the 21 ABCB and 12
full-size (PDR-type) ABCG isoforms are actually functioning as
auxin transporters.

The individual roles of the three key members of the ABCB
subfamily, ABCB1, ABCB4 and ABCB19, show a sufficient cor-
relation with their expression patterns on one hand and with
their reported mutant phenotypes on the other (Cho and Cho
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2012). However, at the moment, the evolutionary advantage of
having primary active (ABCBs) and secondary active |AA export
systems (PINs) is unclear. The fact that widely non-polarly ex-
pressed ABCBs are ancient auxin transporters, while PINs ap-
peared with the first land plants (Galvan-Ampudia and Offringa
2007) argues for their involvement in a more advanced plant
architecture and performance apparently requiring a faster es-
tablishment of auxin gradients as can be only provided by
polarly expressed secondary active transporters that usually
show a higher turnover number. Connected to this, we have
only a glimpse of the relevance of described concerted actions
during PAT, which have been described for single ABCB—PIN
pairs (see Fig. 2). We have even less understanding of the mech-
anism and significance of proposed interactive ABCB-PIN pairs,
thought to take place at local polar PM subdomains by PPI (see
Fig. 3). Although, based on heterologous expression, it is likely
that both members of the ABCB and PIN families can act inde-
pendently as auxin transport catalysts, a strict co-operative or
mutual functionality cannot be excluded (see Fig. 3).

Beside ABCB—PIN interactions, ABCB-mediated auxin trans-
port has been shown to be regulated by physical interactions
with regulatory components such as kinases and immunophi-
lins (Aryal et al. 2015, Geisler et al. 2016). These PPIs apparently
allow for a quick and economic regulation of ABCBs and were
shown to have an impact on transport activity, trafficking and
stability. Current data support a model in which ABCB phos-
phorylation by AGC kinases, such as phot1 or PID, might have
an impact on the chaperoning role of TWD1 on ABCB PM
trafficking by interfering with ABCB—TWD?1 interaction. A simi-
lar mode of action has been suggested for CFTR/ABCC7 secre-
tion that is dependent on both interaction with FKBP38 and
phosphorylation by protein kinase A (Aryal et al. 2015).
Although CFTR belongs to a different ABC transporter subclass,
this regulatory module consisting of protein phosphorylation
and PPI seems to be conserved.

Unlike for yeast or mammalian ABC transporters, a systematic,
genome-wide interactome of any auxin transporter has not yet
been assembled for any plant organism. This is a pity because a
positive regulatory impact on transport activity or location by a
so-called ‘auxin integrator’ (Zhu and Geisler 2015) that is
thought to act via PPl (Zhu and Geisler 2015) would be per-
fectly in agreement with the proposed positive feedback loop
between auxin flux and the cell’s auxin transport capacity, ori-
ginally referred to as the ‘canalization concept’ (Sachs 1969;
Stoma et al. 2008). Although auxins at micromolar concentra-
tions were shown to promote their own transport by
blocking PIN endocytosis (Paciorek et al. 2005), the mechanisms
and regulatory components (such as the proposed ‘flux
sensor’; Merks et al. 2007) by which auxin feeds back on
auxin transport have not been discovered (Zhu and Geisler
2015).

High-confidence interaction maps for individual ABC trans-
porters involved in auxin transport are therefore highly desir-
able because they could provide us with detailed spatio-
temporal information on ABC transporter activity, regulation
and trafficking during auxin transport at high resolution. This
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information will provide a greater insight into interplay be-
tween transporters and regulatory components during plant
development.
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