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1 Introduction

While a large literature in social sciences focusses on assessing the average treatment effect

(ATE) of some intervention, quite frequently, also the causal mechanisms through which the

effect materializes appear interesting. Gelman and Imbens (2013), for instance, argue that

in many cases not only the ‘effects of causes’ seem relevant, but also the ‘causes of effects’.

When for example assessing the earnings effect of a training program, policy makers might

want to know whether the total impact comes from a change in search effort, human capital, or

other mediators that are themselves affected by the training. For this reason, causal mediation

analysis aims at disentangling a treatment effect into the indirect effect operating through one

or several mediators as well as the direct effect, net of mediation. Even under random treatment

assignment, total effects can in general not be disentangled by bluntly controlling for mediators,

because this likely introduces selection bias, see Robins and Greenland (1992). However,

direct and indirect effects are identified under a particular sequential conditional independence

assumption that assumes the exogeneity of the treatment given observed covariates and of

the mediator given observed covariates and the treatment, see for instance Imai, Keele, and

Yamamoto (2010). Huber (2014) shows that under this assumption, identification is obtained by

weighting observations by the inverses of particular treatment propensity scores1 and considers

semiparametric estimation based on parametric propensity score models in a simulation study

and an application.

This paper is the first to consider fully nonparametric estimation of natural direct and

indirect effects (in the denomination of Pearl (2001)) based on inverse probability weighting

(IPW), using series logit estimation for the computation of the propensity scores. The advantage

of the latter approach is that it prevents inconsistency of IPW due to an incorrectly specified

parametric functional form of the propensity scores. We formally show that under the sequential

conditional independence assumption and particular regularity conditions, nonparametric

IPW is root-n consistent and asymptotically normal. Furthermore, our estimator attains the

semiparametric efficiency bounds for mediation analysis derived by Tchetgen Tchetgen and

Shpitser (2012). We therefore contribute to a growing literature concerned with assessing

direct and indirect effects based on conditional independence under rather flexible model

1Tchetgen Tchetgen (2013) derives a related result in the context of inverse odds-ratio weighting.
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assumptions,2 see for instance Pearl (2001), Robins (2003), Petersen, Sinisi, and van der Laan

(2006), Flores and Flores-Lagunes (2009), VanderWeele (2009), Imai, Keele, and Yamamoto

(2010), Hong (2010), Albert and Nelson (2011), Imai and Yamamoto (2013), Tchetgen Tchetgen

and Shpitser (2012), and Vansteelandt, Bekaert, and Lange (2012), among others. In addition

to the evaluation of these effects in the total population, we in contrast to Huber (2014) also

discuss the identification and estimation of weighted direct and indirect effects. This provides

a framework for evaluating causal parameters in interesting subgroups, such as the direct and

indirect effects on the treated, which are explicitly considered in this paper. Also for the

estimators of the weighted effects in general and the effects on the treated with estimated

propensity scores in particular, we show root-n consistency and asymptotic normality.

Furthermore, we investigate the finite sample performance of nonparametric IPW in a simu-

lation study and compare it to other estimators considered in the literature, namely maximum-

likelihood-based g-computation (suggested by Robins (1986) and considered in the context of di-

rect and indirect effects in Zheng and van der Laan (2012)), estimation based on (parametrically)

simulating potential mediators and outcomes using the ‘mediation’ package for R by Tingley, Ya-

mamoto, Hirose, Imai, and Keele (2014), ‘multiply robust’ estimation based on the efficient influ-

ence function as suggested by Tchetgen Tchetgen and Shpitser (2012), and IPW with paramet-

ric propensity scores as in Huber (2014). Finally, we apply our estimator (as well as the other

methods considered in the simulations) to the experimental evaluation of Chinkhumba, Godlon-

ton, and Thornton (2014) who investigate an information intervention about male circumcisions

and HIV risk in urban Malawi. We investigate whether the information treatment affects the

event/willingness of being circumcised indirectly through a change in the assessment of the rela-

tive HIV risk for circumcised and uncircumcised males (which serves as mediator), or ‘directly’,

i.e. through other mechanisms. The results point to a small but quite robust indirect effect, while

the direct effect estimates are never statistically different from zero.

The remainder of this paper is organized as follows. Section 2 defines the average natural

direct and indirect effects and presents the identifying assumptions. Section 3 discusses nonpara-

metric estimation based on IPW as well as inference and shows root-n consistency and asymp-

totic normality under particular regularity conditions. Sections 4 extends the identification and

2In contrast, the seminal papers in mediation analysis of Judd and Kenny (1981) and Baron and Kenny (1986)
assume linear models for both the mediator and the outcome.
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estimation results to weighted effects and to the effects on the treated under estimated propensity

scores, respectively. Section 5 provides a simulation study, while Section 6 presents an applica-

tion in the field of development economics. Section 7 concludes. All proofs are deferred to the

Appendix.

2 Parameters of interest and identifying assumptions

2.1 Natural direct and indirect effects

We denote by D a binary intervention or treatment variable and by Y the outcome variable of

interest. We would like to disentangle the causal effect of D on Y into a direct effect and an

indirect impact that works through one or several discrete or continuous intermediate variables

or mediators, denoted by M . Figure 1 provides a graphical illustration of the causal framework,

in which arrows represent causal effects from one variable to another, but any confounders are

omitted for the sake of simplicity. The definition of the total, direct, and indirect effects makes

use of the potential outcome framework, see for instance Rubin (1974), and its adaptation to

mediation analysis, see for instance Rubin (2004), Ten Have, Joffe, Lynch, Brown, Maisto, and

Beck (2007), and Albert (2008). M(d), Y (d,M(d)) denote the potential mediator state and the

potential outcome, respectively, under treatment d ∈ {0, 1}. ∆ = E[Y (1,M(1)) − Y (0,M(0))]

yields the (total) average causal effect, also known as average treatment effect (ATE), which

has received much attention in the treatment or program evaluation literature, see for instance

Imbens and Wooldridge (2009) for a survey.

Figure 1: Graphical illustration of the mediation framework

The (average) natural direct effect (using the denomination of Pearl (2001))3 is defined as the

mean effect of varying the treatment when keeping the mediator fixed at its potential value for

3Robins and Greenland (1992) and Robins (2003) refer to this parameter as the total or pure direct effect and
Flores and Flores-Lagunes (2009) as net average treatment effect.
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some d ∈ {0, 1}:

θ(d) = E[Y (1,M(d))− Y (0,M(d))], d ∈ {0, 1}. (1)

Analogously, the (average) indirect effect is defined as the mean effect of shifting the mediator to

its potential values under treatment and non-treatment when keeping the treatment fixed:

δ(d) = E[Y (d,M(1))− Y (d,M(0))], d ∈ {0, 1}. (2)

The ATE is the sum of the direct and indirect effects defined upon opposite treatment states:

∆ = E[Y (1,M(1))− Y (0,M(0))]

= E[Y (1,M(0))− Y (0,M(0))] + E[Y (1,M(1))− Y (1,M(0))] = θ(0) + δ(1)

= E[Y (1,M(1))− Y (0,M(1))] + E[Y (0,M(1))− Y (0,M(0))] = θ(1) + δ(0). (3)

The notation θ(1), θ(0) and δ(1), δ(0) point out that direct and indirect effects may be heteroge-

neous in the treatment, which allows for interaction effects between the treatment and the medi-

ator. No effect is identifiable without assumptions, because either Y (1,M(1)) or Y (0,M(0)) (but

never both) is known for any individual, while Y (1,M(0)) and Y (0,M(1)) cannot be observed

for anyone (as an individual can either be treated or non-treated, but not both at the same time).

2.2 Identification

Like Imai, Keele, and Yamamoto (2010) and many others, we rely on a sequential conditional

independence assumption for identification. To this end, let X denote a vector of observed

covariates that potentially confound the treatment, the mediator, and the outcome. Furthermore,

we denote by X ,M the supports of X and M , respectively.

Assumption 1 (conditional independence of the treatment):

{Y (d′,m),M(d)}⊥D|X = x for all d′, d ∈ {0, 1} and m,x in M×X .

Assumption 1 requires the treatment to be conditionally independent of the potential mediator

states and outcomes given X, ruling out unobserved confounders jointly affecting the treatment

on the one hand and the mediator and/or the outcome on the other hand conditional on the
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covariates. This restriction is known as conditional independence, selection on observables, or

exogeneity in the treatment evaluation literature.

Assumption 2 (conditional independence of the mediator):

Y (d′,m)⊥M |D = d,X = x for all d′, d ∈ {0, 1} and m,x in M×X .

Assumption 2 requires the mediator to be conditionally independent of the potential outcomes

given D and X, ruling out unobserved confounders jointly causing the mediator and the outcome

conditional on the treatment and the covariates.

Assumption 3 (common support):

Pr(D = d|M = m,X = x) is bounded away from zero for all d ∈ {0, 1} and m,x in M×X .

Assumption 3 is a common support restriction requiring that the conditional probability to be

treated given M,X must be bounded away from zero in either treatment state. Note that Pr(D =

d|X = x) must therefore be bounded away from zero on X , too. By Bayes’ theorem, Assumption

3 also implies Pr(M = m|D = d,X = x) > 0 or, in the case of a continuous M , that the

conditional density of M given D,X is larger than zero. Therefore, the mediator state must not

be a deterministic function of the treatment conditional on X.

Identification of the natural direct and indirect effects under these or similar assumptions

based on functions of the conditional mean of Y given D,M,X and the conditional density of

M given D,X (the mediation formulae) has been demonstrated for instance in Pearl (2001) and

Imai, Keele, and Yamamoto (2010). Huber (2014) shows that the effects as well as the mean

potential outcomes may alternatively be identified by inverse probability weighting (IPW) based

on the conditional probabilities Pr(D = 1|M,X) and Pr(D = d|X), henceforth referred to as

propensity scores:

θ(d) = E

[(
Y D

Pr(D = 1|M,X)
− Y (1−D)

1− Pr(D = 1|M,X)

)
Pr(D = d|M,X)

Pr(D = d|X)

]
,

δ(d) = E

[
Y I{D = d}

Pr(D = d|M,X)

(
Pr(D = 1|M,X)

Pr(D = 1|X)
− 1− Pr(D = 1|M,X)

1− Pr(D = 1|X)

)]
,

E[Y (d,M(d′))] = E

[
Y I{D = d}

Pr(D = d|M,X)

Pr(D = d′|M,X)

Pr(D = d′|X)

]
for d, d′ ∈ {1, 0}. (4)

I{·} is the indicator function which is one if its argument is satisfied and zero otherwise. The

expressions for θ(d) and δ(d) are (by Bayes’ theorem) mathematically identical to weighting-based
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representations of the direct and indirect effect relying on Pr(D = 1|X) and Pr(M = m|D,X)

(rather than Pr(D = 1|M,X)) suggested in Hong (2010) and Tchetgen Tchetgen and Shpitser

(2012), see their ‘strategy 3’. The practical advantage of the approach advocated in this paper

is that Pr(D = 1|M,X) may be easier to estimate than Pr(M = m|D,X) or the respective

conditional density of M in the case of a continuous M . This particularly relevant when the

support of M is rich (i.e., contains many values) or M is a vector of several variables.

We note that the identification results in (4) can be generalized in various dimensions. First,

replacing Y everywhere in (4) by an indicator function that Y is smaller than or equal to a

particular value a, i.e. I{Y ≤ a}, allows the evaluation of distributional features and effects. In

this case, the expressions for θ(d) and δ(d) provide the direct and indirect effects on the cumulative

distribution function (cdf) evaluated at a rather than the average effects. Likewise, the expressions

for the mean potential outcomes identify the potential cdf’s when Y is substituted by I{Y ≤ a}.

Inverting the cdf’s in turn allows identifying quantile treatment effects, given that Y satisfies

particular continuity conditions. See Donald and Hsu (2014) for related results in the context

of (total) treatment effect evaluation. Second, the results can be extended to the evaluation of

weighted direct and indirect effects as a function of the distribution of X in an analogous way

as suggested in Hirano, Imbens, and Ridder (2003), henceforth HIR, in the context of the ATE.

As more thoroughly discussed in Section 4, this permits the identification and (under particular

assumptions) root-n-consistent estimation in specific subgroups. As one important special case of

weighted IPW, Section 4.3 shows this for the treated population. Finally, the properties derived

for our estimators also apply to the estimation of the direct and partial indirect effects discussed in

Section 2.3. of Huber (2014) when some covariates in X are themselves affected by the treatment.

3 Estimation and inference

3.1 Nonparametric estimation

As in Huber (2014), the proposed estimators are based on normalized versions of the sample

analogs of the IPW-based identification results of expression (4), with weights adding up to

unity in either treatment state, see Imbens (2004) and Busso, DiNardo, and McCrary (2014).

The normalized estimators of the direct effects under treatment and non-treatment, for instance,
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correspond to

θ̂(1) =
1
n

∑n
i=1 YiDi/p̂(Xi)

1
n

∑n
i=1Di/p̂(Xi)

−
1
n

∑n
i=1 Yi(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

1
n

∑n
i=1(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

, (5)

θ̂(0) =
1
n

∑n
i=1 YiDi(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1Di(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

−
1
n

∑n
i=1 Yi(1−Di)/(1− p̂(Xi))

1
n

∑n
i=1(1−Di)/(1− p̂(Xi))

,

and the normalized estimators of the indirect effects under treatment and non-treatment corre-

spond to

δ̂(1) =
1
n

∑n
i=1DiYi/p̂(Xi)

1
n

∑n
i=1Di/p̂(Xi)

−
1
n

∑n
i=1 YiDi(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1Di(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

, (6)

δ̂(0) =
1
n

∑n
i=1 Yi(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

1
n

∑n
i=1(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

−
1
n

∑n
i=1 Yi(1−Di)/(1− p̂(Xi))

1
n

∑n
i=1(1−Di)/(1− p̂(Xi))

,

i indexes the observations in an i.i.d. sample of size n. p̂(Xi) and p̂(Mi, Xi) denote estimates

of the true propensity scores Pr(D = 1|X = Xi) and Pr(D = 1|M = Mi, X = Xi), henceforth

abbreviated by p(Xi) and p(Mi, Xi), respectively. In contrast to Huber (2014), we estimate the

propensity scores nonparametrically by series logit estimation (SLE) based on power series as

in HIR. Normalized estimators for the indirect effects, denoted by δ̂(1), δ̂(0), are obtained in an

analogous way. See also Appendix A.1 for the normalized estimators of the potential outcomes.

To illustrate the SLE approach consider, for instance, p̂(Xi) and suppose that X contains only

continuous variables with dimension dx. Let λ = (λ1, ..., λdx)′ ∈ Zdx+ be a dx-dimensional vector of

non-negative integers where Z+ denotes the set of non-negative integers, and define the norm for

λ as |λ| =
∑dx

j=1 λj . Furthermore, let {λ(k)}∞k=1 be a sequence including all distinct λ ∈ Zdx+ such

that |λ(k)| is non-decreasing in k and let xλ =
∏dx
j=1 x

λj
j . For any integer Kx, define RKx(x) =

(xλ(1), ..., xλ(Kx))′ as a vector of power functions. Denote by L(a) = exp(a)/(1+exp(a)) the logistic

cumulative distribution function (CDF). The SLE for p(x) is defined as p̂(x) = L
(
RK(x)′π̂K

)
where

π̂Kx = arg max
πk

1

n

n∑
i=1

(
Di lnL

(
RKx(Xi)

′πKx

)
+ (1−Di) ln

(
1− L

(
RKx(Xi)

′πKx

)))
.

The asymptotic properties of p̂(x) are discussed in Appendix A of HIR. p̂(m,x) is defined in an

analogous way.
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3.2 Asymptotic behaviour

To show root-n-consistency and asymptotic normality of our estimators, we subsequently intro-

duce regularity conditions that are very much related to those in HIR.

Assumption 4 (distribution of (X,M)):

(i) The distribution of the (dm + dx)-dimensional vector (M,X) is absolutely continuous with

probability density f(m,x); (ii) M and X , are Cartesian products of compact intervals; (iii)

f(m,x) is twice continuously differentiable, bounded above, and bounded away from 0 onM×X .

Assumption 4 rules out that M and/or X contain any binary or discrete variables, which seems

restrictive for empirical applications. We impose this assumption for the sake of ease of discussion

and note that our results could be easily extended to cases including discrete covariates and

mediators, however, at the cost of more burdensome notation. That is, the sample would need

to be stratified on the discrete values and SLE would have to be performed separately for each

stratum, see Donald, Hsu, and Lieli (2014).

Assumption 5 (smoothness of propensity scores):

(i) p(x) is continuously differentiable of order p̄x ≥ 7dx; (ii) p(m,x) is continuously differentiable

of order p̄m ≥ 7(dm + dx).

Assumption 5 is analogous to Assumption 4 of HIR and requires the propensity scores to be

sufficiently smooth.

Assumption 6 (series estimator):

(i) The SLE of p(x) uses a power series with Kx = Nνx for some dx/4(p̄x − dx) < νx < 1/9,

K3
xn
−1/2 → 0 and K

−(p̄x+2dx)/2dx
x n1/4 → 0; (ii) The SLE of p(m,x) uses a power series

with Km = Nνm for some (dm + dx)/4(p̄x − dm − dx) < νm < 1/9, K3
mn
−1/2 → 0 and

K
−(p̄m+2dm+2dx)/(2dm+2dx)
m n1/4 → 0.

Assumption 6 restricts the growth rate of the number of approximating functions to be in-

cluded in the series estimator of the propensity score. Note that our assumption is stronger than

Assumption 5 of HIR by requiring that K3
xn
−1/2 → 0 and K−(p̄x+2dx)/2dxn1/4 → 0, which en-

sures that supx∈X |p̂(x) − p(x)| = op(n
−1/4). An analogous result applies to p(m,x). These ex-

tra conditions on power series terms are needed because in contrast to HIR, our estimation ap-
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proach is based on two propensity scores. When employing mean-value expansions, we require

that the second order terms are of order op(1), for which supx∈X |p̂(x) − p(x)| = op(n
−1/4) and

supm∈M,x∈X |p̂(m,x)− p(m,x)| = op(n
−1/4) are sufficient conditions.

We now define several conditional moments related to potential and observed outcomes:

ρdd′(x) = E[Y (d,M(d′))|X = x] and ζd(m,x) = E[Y |M = m,X = x,D = d] for d, d′ ∈ {0, 1}.

Note that

ρ10(x) = E
[(1−D)Y

1− p(X)

p(M,X)

(1− p(M,X))

∣∣∣X = x
]
,

ρ01(x) = E
[ DY
p(X)

1− p(M,X)

p(M,X)

∣∣∣X = x
]
,

ζ1(m,x) = E
[ DY

p(X,M)

∣∣∣M = m,X = x
]
,

ζ0(m,x) = E
[ (1−D)Y

1− p(X,M)

∣∣∣M = m,X = x
]
.

Assumption 7 imposes some regularity conditions on these moments and the second moments of

the potential outcomes.

Assumption 7 (moments of Y ):

(i) E[Y 2(0)] <∞ and E[Y 2(1)] <∞; (ii) for d, d′ ∈ {0, 1}, ρdd′(x) are continuously differentiable

over X ; (iii) for d = 0, 1, ζd(m,x) is continuously differentiable over M×X .

Under our assumptions, nonparametric IPW estimation of the direct and indirect effects using

SLE-based propensity scores is root-n-consistent and asymptotically normal.

Theorem 1 Under Assumptions 1 to 7,

√
n



θ̂(1)− θ(1)

θ̂(0)− θ(0)

δ̂(1)− δ(1)

δ̂(0)− δ(0)


D→ N (0,V), (7)
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where V is a 4× 4 covariance matrix generated by ψ = (ψθ(1), ψθ(0), ψδ(1), ψδ(0))
′ with

ψθ(1)(Y,M,D,X) = ψ11(Y,M,D,X)− ψ01(Y,M,D,X),

ψθ(0)(Y,M,D,X) = ψ10(Y,M,D,X)− ψ10(Y,M,D,X),

ψδ(1)(Y,M,D,X) = ψ01(Y,M,D,X)− ψ00(Y,M,D,X),

ψδ(0)(Y,M,D,X) = ψ10(Y,M,D,X)− ψ00(Y,M,D,X),

ψ11(Y,M,D,X) =
DY

p(X)
− ρ11(X)

p(X)
(D − p(X))− µ11,

ψ00(Y,M,D,X) =
(1−D)Y

1− p(X)
+

ρ00(X)

1− p(X)
(D − p(X))− µ00,

ψ10(Y,M,D,X) =
DY

p(M,X)

1− p(M,X)

1− p(X)
+

ρ10(X)

(1− p(X))
(D − p(X))

− ζ1(M,X)

p(M,X)(1− p(X))
(D − p(M,X))− µ10,

ψ01(Y,M,D,X) =
(1−D)Y

1− p(M,X)

p(M,X)

p(X)
− ρ01(X)

p(X)
(D − p(X))

+
ζ0(M,X)

(1− p(M,X))p(X)
(D − p(M,X))− µ01,

and µdd′ = E[Y (d,M(d′))] for d, d′ ∈ {0, 1}.

We note that the expressions in Theorem 1 imply that our estimators attain the semiparamet-

ric efficiency bounds for mediation analysis derived in Tchetgen Tchetgen and Shpitser (2012).

Finally, a relevant question for the practical implementation of the estimator is how to choose

orders Kx and Km for propensity score estimation. In the simulations presented in Section 5, we

consider cross-validation for picking either parameter, as well as overfitting by one order higher

than suggested by cross-validation. Even though cross-validation w.r.t. the the functional form

of the propensity score does in general not provide the optimal order for the estimation of direct

and indirect effects in a given sample, the simulation results suggest that this approach can yield

satisfactory results in practice.

3.3 Inference

Inference based on the asymptotic results in Theorem 1 requires a consistent estimator of the

asymptotic covariance matrix, denoted by V. We first propose uniformly consistent estimators

for ρdd′(x) and ζd(m,x) with d, d′ ∈ {0, 1}. Let RKx(x) and RKm(m,x) be the column vectors of
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power functions used for the estimation of the propensity score functions and define

ρ̂11(x) =
( 1

n

n∑
i=1

DiYi
p̂(Xi)

RKx(Xi)
′
)( 1

n

n∑
i=1

RKx(Xi)R
Kx(Xi)

′
)−1

RKx(x),

ρ̂00(x) =
( 1

n

n∑
i=1

(1−Di)Yi
1− p̂(Xi)

RKx(Xi)
′
)( 1

n

n∑
i=1

RKx(Xi)R
Kx(Xi)

′
)−1

RKx(x),

ρ̂10(x) =
( 1

n

n∑
i=1

DiY

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
RKx(Xi)

′
)( 1

n

n∑
i=1

RKx(Xi)R
Kx(Xi)

′
)−1

RKx(x),

ρ̂01(x) =
( 1

n

n∑
i=1

(1−Di)Y

1− p̂(Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)
RKx(Xi)

′
)( 1

n

n∑
i=1

RKx(Xi)R
Kx(Xi)

′
)−1

RKx(x),

ζ̂1(m,x) =
( 1

n

n∑
i=1

DiYi
p̂(Mi, Xi)

RKm(Mi, Xi)
′
)( 1

n

n∑
i=1

RKm(Mi, Xi)R
Km(Mi, Xi)

′
)−1

RKm(m,x),

ζ̂0(m,x) =
( 1

n

n∑
i=1

(1−Di)Yi
1− p̂(Mi, Xi)

RKm(Mi, Xi)
′
)( 1

n

n∑
i=1

RKm(Mi, Xi)R
Km(Mi, Xi)

′
)−1

RKm(m,x).

This permits defining the estimated influence functions as

ψ̂θ(1)(Y,M,D,X) = ψ̂11(Y,M,D,X)− ψ̂01(Y,M,D,X),

ψ̂θ(0)(Y,M,D,X) = ψ̂10(Y,M,D,X)− ψ̂10(Y,M,D,X),

ψ̂δ(1)(Y,M,D,X) = ψ̂01(Y,M,D,X)− ψ̂00(Y,M,D,X),

ψ̂δ(0)(Y,M,D,X) = ψ̂10(Y,M,D,X)− ψ̂00(Y,M,D,X),

ψ̂11(Y,M,D,X) =
DY

p̂(X)
− ρ̂11(X)

p̂(X)
(D − p̂(X))− µ̂11,

ψ̂00(Y,M,D,X) =
(1−D)Y

1− p̂(X)
+

ρ̂00(X)

1− p̂(X)
(D − p̂(X))− µ̂00,

ψ̂10(Y,M,D,X) =
DY

p̂(M,X)

1− p̂(M,X)

1− p̂(X)
+

ρ̂10(X)

(1− p̂(X))
(D − p̂(X))

− ζ̂1(M,X)

p̂(M,X)(1− p̂(X))
(D − p̂(M,X))− µ̂10,

ψ̂01(Y,M,D,X) =
(1−D)Y

1− p̂(M,X)

p̂(M,X)

p̂(X)
− ρ̂01(X)

p(X)
(D − p̂(X))

+
ζ̂0(M,X)

(1− p̂(M,X))p̂(X)
(D − p̂(M,X))− µ̂01,
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where

µ̂11 =
1

n

n∑
i=1

DiYi
p̂(Xi)

/
1

n

n∑
i=1

Di

p̂(Xi)
, µ̂00 =

1

n

n∑
i=1

(1−Di)Yi
1− p̂(Xi)

/
1

n

n∑
i=1

(1−Di)

1− p̂(Xi)
,

µ̂10 =
1

n

n∑
i=1

DiYi
p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)

/
1

n

n∑
i=1

Di

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
,

µ̂01 =
1

n

n∑
i=1

(1−Di)Yi
1− p̂(Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)

/
1

n

n∑
i=1

(1−Di)

1− p̂(Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)
.

Furthermore, define ψ̂i = (ψ̂θ(1),i, ψ̂θ(0),i, ψ̂δ(1),i, ψ̂δ(0),i)
′ with

ψ̂θ(1),i = ψ̂11(Yi,Mi, Di, Xi)− ψ̂01(Yi,Mi, Di, Xi),

ψ̂θ(0),i = ψ̂10(Yi,Mi, Di, Xi)− ψ̂10(Yi,Mi, Di, Xi),

ψ̂δ(1),i = ψ̂01(Yi,Mi, Di, Xi)− ψ̂00(Yi,Mi, Di, Xi),

ψ̂δ(0),i = ψ̂10(Yi,Mi, Di, Xi)− ψ̂00(Yi,Mi, Di, Xi).

Finally, let V̂ = n−1
∑n

i=1 ψ̂iψ̂
′
i. By the same arguments as in HIR, one can show that V̂

p→ V.

The details are therefore omitted. We also note that given the asymptotic normality of our

estimators, the bootstrap is a consistent inference method, too, and is used in our application

discussed further below.

4 Weighted direct and indirect effects

4.1 Identification of weighted effects

In this section, we discuss the identification, estimation, and asymptotic results for weighted

effects. Let to this end g(X) denote a weighting function that depends on X or subsets thereof

and satisfies |g(X)| < ∞ and E[g(X)] > 0. Weighted direct and indirect effects as well as

mean potential outcomes (denoted as θg(d), δg(d), Eg[Y (d,M(d′))]) are identified by including

12



g(X)/E[g(X)] in the respective expectation operators presented in (4):

θg(d) = E

[
g(X)

E[g(X)]

(
Y D

Pr(D = 1|M,X)
− Y (1−D)

1− Pr(D = 1|M,X)

)
Pr(D = d|M,X)

Pr(D = d|X)

]
,

δg(d) = E

[
g(X)

E[g(X)]

Y I{D = d}
Pr(D = d|M,X)

(
Pr(D = 1|M,X)

Pr(D = 1|X)
− 1− Pr(D = 1|M,X)

1− Pr(D = 1|X)

)]
.

Eg[Y (d,M(d′))] = E

[
g(X)

E[g(X)]

Y I{D = d}
Pr(D = d|M,X)

Pr(D = d′|M,X)

Pr(D = d′|X)

]
for d, d′ ∈ {1, 0}. (8)

This allows identifying the effects for specific subgroups of interest. For instance, setting g(X) =

p(X) with E[g(X)] = Pr(D = 1) yields the direct and indirect effects as well as the potential

outcomes among the treated. To see this, consider Eg[Y (d,M(d′))] = E[Y (d,M(d′))|D = 1] and

note that (when M,X are continuous),

E

[
p(X)

E[p(X)]

Y I{D = d}
Pr(D = d|M,X)

Pr(D = d′|M,X)

Pr(D = d′|X)

]
(9)

= E

[
p(X)

Pr(D = 1)
E

[
E

[
Y I{D = d}

Pr(D = d|M,X)

∣∣∣∣M = m,X = x

]
Pr(D = d′|M,X)

Pr(D = d′|X)

∣∣∣∣X = x

]]
=

∫
p(X)

Pr(D = 1)

∫
E[Y |D = d,M = m,X = x]

Pr(D = d′|M,X)

Pr(D = d′|X)
dFM |X=x(m)dFX(x)

=

∫
p(X)

Pr(D = 1)

∫
E[Y (d,m)|D = d,M = m,X = x]dFM |D=d′,X=x(m)dFX(x)

=

∫
p(X)

Pr(D = 1)

∫
E[Y (d,m)|M(d′) = m,X = x]dFM(d′)|X=x(m)dFX(x)

=

∫
E[Y (d,M(d′))|X = x]

p(X)

Pr(D = 1)
dFX(x)

=

∫
E[Y (d,M(d′))|X = x]dFX|D=1(x)

= E[Y (d,M(d′))|D = 1].

The first equation follows from the law of iterated expectations, the second from basic probability

theory and replacing expectations by integrals, the third and sixth from Bayes’ theorem, the

fourth from Assumptions 1 and 2, and the fifth and seventh from integration. Analogously, the

parameters for the nontreated are obtained by setting g(X) = 1 − p(X). Furthermore, this

approach can be used to asses effect heterogeneity w.r.t. X, e.g. by defining g(X) as an indicator

function that X takes particular (ranges of) values.
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4.2 Estimation and asymptotics under known weighting functions

Based on (8), we propose the following estimators for a known weighting function g(X):

θ̂g(1) =
1
n

∑n
i=1 g(Xi)YiDi/p̂(Xi)

1
n

∑n
i=1 g(Xi)Di/p̂(Xi)

−
1
n

∑n
i=1 g(Xi)Yi(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

1
n

∑n
i=1 g(Xi)(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

θ̂g(0) =
1
n

∑n
i=1 g(Xi)YiDi(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1 g(Xi)Di(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

−
1
n

∑n
i=1 g(Xi)Yi(1−Di)/(1− p̂(Xi))
1
n

∑n
i=1(1−Di)/(1− p̂(Xi))

,

δ̂g(1) =
1
n

∑n
i=1 g(Xi)DiYi/p̂(Xi)

1
n

∑n
i=1 g(Xi)Di/p̂(Xi)

−
1
n

∑n
i=1 g(Xi)YiDi(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1 g(Xi)Di(1− p̂(Mi, Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

, (10)

δ̂g(0) =
1
n

∑n
i=1 g(Xi)Yi(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

1
n

∑n
i=1 g(Xi)(1−Di)p̂(Mi, Xi)/[(1− p̂(Mi, Xi))p̂(Xi)]

−
1
n

∑n
i=1 g(Xi)Yi(1−Di)/(1− p̂(Xi))

1
n

∑n
i=1 g(Xi)(1−Di)/(1− p̂(Xi))

,

Under our previously discussed assumptions, nonparametric IPW estimation of the direct and in-

direct effects using SLE-based propensity scores are root-n-consistent and asymptotically normal.

Theorem 2 Suppose that |g(x)| < M <∞ and E[g(X)] > 0. Under Assumptions 1 to 7,

√
n



θ̂g(1)− θg(1)

θ̂g(0)− θg(0)

δ̂g(1)− δg(1)

δ̂g(0)− δg(0)


D→ N (0,Vg) (11)
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where Vg is a 4× 4 covariance matrix generated by ψg = (ψθg(1), ψθg(0), ψδg(1), ψδg(0))
′ with

ψθg(1)(Y,M,D,X) = ψ11,g(Y,M,D,X)− ψ01,g(Y,M,D,X)

ψθg(0)(Y,M,D,X) = ψ10,g(Y,M,D,X)− ψ10,g(Y,M,D,X)

ψδg(1)(Y,M,D,X) = ψ01,g(Y,M,D,X)− ψ00,g(Y,M,D,X)

ψδg(0)(Y,M,D,X) = ψ10,g(Y,M,D,X)− ψ00,g(Y,M,D,X)

ψ11,g(Y,M,D,X) =
g(X)

E[g(X)]

( DY
p(X)

− ρ11(X)

p(X)
(D − p(X))− µ11,g

)
,

ψ00,g(Y,M,D,X) =
g(X)

E[g(X)]

((1−D)Y

1− p(X)
+

ρ00(X)

1− p(X)
(D − p(X))− µ00,g

)
,

ψ10,g(Y,M,D,X) =
g(X)

E[g(X)]

( DY

p(M,X)

1− p(M,X)

1− p(X)
+

ρ10(X)

(1− p(X))
(D − p(X))

− ζ1(M,X)

P (M,X)(1− P (X))
(D − p(M,X))− µ10,g

)
,

ψ01,g(Y,M,D,X) =
g(X)

E[g(X)]

( (1−D)Y

1− p(M,X)

p(M,X)

p(X)
− ρ01(X)

p(X)
(D − p(X))

+
ζ0(M,X)

(1− p(M,X))p(X)
(D − p(M,X))− µ01,g

)
,

where µdd′,g = E[g(X)Y (d,M(d′))]/E[g(X)] for d, d′ ∈ {0, 1}.

Inference for weighted effects can be performed in a similar way as outlined in Section 3.3.

4.3 Effects on the treated with estimated propensity scores

In this section, we discuss the estimation and asymptotic results for the subgroup of treated. Note

that if the propensity score p(X) was known, the results of Section 4.2 with g(X) = p(X) would

immediately apply. However, practically more relevant is the case that p(X) is unknown and

needs to be estimated, which is considered in this section. We denote by θ̂t(d) and δ̂t(d) estimates

of the direct and indirect effects amon the treated, θt(d) = E[Y (1,M(d)) − Y (0,M(d))|D = 1]

and δt(d) = E[Y (d,M(1))− Y (d,M(0))|D = 1], respectively.

The normalized sample analogs of the effects in (8) with an unknown weighting function
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g(X) = p(X) correspond to:

θ̂t(1) =
1
n

∑n
i=1 YiDi

1
n

∑n
i=1Di

−
1
n

∑n
i=1 Yi(1−Di)p̂(Mi, Xi)/(1− p̂(Mi, Xi))

1
n

∑n
i=1(1−Di)p̂(Mi, Xi)/(1− p̂(Mi, Xi))

, (12)

θ̂t(0) =
1
n

∑n
i=1 YiDi(1− p̂(Mi, Xi))(p̂(Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1Di(1− p̂(Mi, Xi))(p̂(Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

−
1
n

∑n
i=1 Yi(1−Di)(p̂(Xi))/(1− p̂(Xi))

1
n

∑n
i=1(1−Di)(p̂(Xi))/(1− p̂(Xi))

,

δ̂t(1) =
1
n

∑n
i=1DiYi

1
n

∑n
i=1Di

−
1
n

∑n
i=1 YiDi(1− p̂(Mi, Xi))(p̂(Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

1
n

∑n
i=1Di(1− p̂(Mi, Xi))(p̂(Xi))/[p̂(Mi, Xi)(1− p̂(Xi))]

,

δ̂t(0) =
1
n

∑n
i=1 Yi(1−Di)p̂(Mi, Xi)/(1− p̂(Mi, Xi))

1
n

∑n
i=1(1−Di)p̂(Mi, Xi)/(1− p̂(Mi, Xi))

−
1
n

∑n
i=1 Yi(1−Di)(p̂(Xi))/(1− p̂(Xi))

1
n

∑n
i=1(1−Di)(p̂(Xi))/(1− p̂(Xi))

,

Under the same assumptions as before, nonparametric IPW estimation of the direct and indirect

effects among the treated based on SLE-based propensity scores is root-n-consistent and asymp-

totically normal.

Theorem 3 Under Assumptions 1 to 7,

√
n



θ̂t(1)− θt(1)

θ̂t(0)− θt(0)

δ̂t(1)− δt(1)

δ̂t(0)− δt(0)


D→ N (0,Vt) (13)
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where Vt is a 4× 4 covariance matrix generated by ψt = (ψθt(1), ψθt(0), ψδt(1), ψδt(0))
′ with

ψθt(1)(Y,M,D,X) = ψ11,t(Y,M,D,X)− ψ01,t(Y,M,D,X)

ψθt(0)(Y,M,D,X) = ψ10,t(Y,M,D,X)− ψ10,t(Y,M,D,X)

ψδt(1)(Y,M,D,X) = ψ01,t(Y,M,D,X)− ψ00,t(Y,M,D,X)

ψδt(0)(Y,M,D,X) = ψ10,t(Y,M,D,X)− ψ00,t(Y,M,D,X)

ψ11,t(Y,M,D,X) =
1

E[p(X)]

(
D(Y − µ11,t)

)
,

ψ00,t(Y,M,D,X) =
1

E[p(X)]

(p(X)(1−D)(Y − ρ00(X))

1− p(X)
+ (ρ00(X)− µ00,t)D

)
,

ψ10,t(Y,M,D,X) =
1

E[p(X)]

(p(X)DY

p(M,X)

1− p(M,X)

1− p(X)
+

ρ10(X)

1− p(X)
(D − p(X))

− p(X)ζ1(M,X)

p(M,X)(1− p(X))
(D − p(M,X))− µ10,tD

)
,

ψ01,t(Y,M,D,X) =
1

E[p(X)]

( (1−D)Y

1− p(M,X)
p(M,X) +

ζ0(M,X)

1− p(M,X)
(D − p(M,X))− µ01,tD

)
,

where µdd′,t = E[p(X)Y (d,M(d′))]/E[p(X)] for d, d′ ∈ {0, 1}.

5 Simulations

This section presents a brief simulation study in which we investigate the finite sample perfor-

mance of nonparametric IPW based on (5) and SLE of the propensity scores, as well as of alter-

native estimators by considering the following data generating process:

D = I{β(X2
1 +X2) + εD > 0}, M = I{β(D +X2

1 +X2) + εM > 0},

Y = D +M + β[(1 +D)(X2
1 +X2) +DM(1 +X2

1 +X2)] + εY , (14)

with X1, εD, εM , εY ∼ N (0, 1), X2 ∼ binomial(0.5), independently of each other.

X1 and X2 are observed covariates and follow standard normal and binomial distributions,

respectively. We note that X1 enters the equation of the continuous outcome Y and the

index functions of the binary treatment and mediator variables D and M both linearly and

quadratically. εD, εM , εY are random and standard normally distributed unobservables. The

parameter β gauges the degree of confounding, i.e. how strongly the covariates jointly affect

D, M , and Y . β also determines the level of effect heterogeneity across values of the mediator
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and the covariates rooted in the interaction terms between D, M , X1, and X2 in the outcome

equation. In our simulations with 1000 replications, we set β = 0.1, 1.5, 0.2, implying low and

somewhat stronger confounding and effect heterogeneity, and consider two sample sizes of

n = 1000, 4000.4

We investigate the performance of the following estimators: (i) Nonparametric IPW using

SLE-based propensity scores as outlined in Section 3, where the orders Kx and Km for the series

approximations are chosen by 10-fold cross-validation for either propensity score given X1, X2

and X1, X2,M , respectively. For implementation, we make use of some functions provided in the

‘LARF’ package of An and Wang (2016) for the statistical software R. On top of IPW based on

cross-validated propensity scores (ipw cv), we also consider an overfitted version (ipw ofit) where

Kx and Km are one order higher than suggested by cross-validation. (ii) Semiparametric IPW

based on parametric plug-in estimators as in Huber (2014) (semi ipw), using probit models for

the treatment propensity scores. Note that all IPW estimators of (i) and (ii) apply a trimming

rule that discards observations with propensity scores smaller than 0.02 or larger than 0.98 to

prevent exploding weights due to small denominators.5

(iii) g-computation (g.comp) as suggested by Robins (1986) and used in the context of di-

rect and indirect effects for instance in Zheng and van der Laan (2012). It is based on max-

imum likelihood estimation of the mediator and outcome models as logit and linear functions

of D,X1, X2 and D,M,DM,X1, X2, respectively. It therefore omits the squared terms of X1

as well as interactions with covariates in the outcome equation. (iv) Multiply robust estimation

(mr) as suggested in Tchetgen Tchetgen and Shpitser (2012) based on the sample analog of the

efficient influence or score function, which relies on estimates of the treatment, mediator, and

outcome models. The latter two follow the same specifications as in g-computation, while D is

modelled as a logit function of X1, X2. (v) Simulation-based estimation (sim) as proposed by

Tingley, Yamamoto, Hirose, Imai, and Keele (2014) and implemented in the ‘mediation’ package

for R. It is based on estimating the mediator and outcome models using the same (logit and lin-

ear) models as in g-computation and simulating potential mediators and outcomes to compute

4For β = 0.1, the averages of D and M are 0.56 and 0.58, respectively, in our simulations. For β = 0.2, the
averages of D and M are 0.65 and 0.61, respectively.

5Only few observations in our simulations need to be trimmed. For (β = 0.1, n = 1000), on average 0.25 overfitted
SLE-based propensity scores including both the covariates and the mediator lie outside the [0.02, 0.98] interval.
This is also the case for on average 0.04 cross-validated SLE-based propensity scores. For (β = 0.2, n = 1000), the
respective numbers are 2.80 and 1.39 for the overfitted and cross-validated SLE-based propensity scores, respectively.
None of the probit-based propensity scores are trimmed in any simulation design.
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Table 1: Simulation results for β = 0.1, 1.5, 0.2 and n = 1000, 4000

n = 1000 θ(1) θ(0) δ(1) δ(0)
β = 0.1 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.02 0.07 0.07 0.04 0.09 0.10 -0.03 0.07 0.08 -0.01 0.04 0.04
ipw ofit 0.01 0.07 0.07 0.01 0.07 0.07 -0.01 0.04 0.04 -0.01 0.04 0.04

semi ipw 0.06 0.07 0.09 0.05 0.07 0.08 0.02 0.05 0.05 0.00 0.03 0.03
g.comp 0.04 0.07 0.08 0.04 0.07 0.08 0.02 0.05 0.05 0.02 0.05 0.05

mr 0.05 0.07 0.08 0.05 0.07 0.08 0.02 0.05 0.05 0.02 0.05 0.05
sim 0.06 0.07 0.09 0.05 0.07 0.08 0.02 0.05 0.05 0.00 0.04 0.04

β = 0.15 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.02 0.08 0.08 0.02 0.09 0.09 -0.02 0.07 0.07 -0.02 0.06 0.06
ipw ofit 0.02 0.08 0.08 0.00 0.07 0.07 -0.00 0.05 0.05 -0.02 0.06 0.06

semi ipw 0.13 0.07 0.15 0.09 0.07 0.11 0.04 0.05 0.07 0.00 0.03 0.03
g.comp 0.08 0.07 0.11 0.08 0.07 0.11 0.04 0.05 0.07 0.04 0.05 0.07

mr 0.09 0.07 0.11 0.09 0.07 0.11 0.04 0.05 0.07 0.04 0.05 0.07
sim 0.13 0.07 0.14 0.09 0.07 0.12 0.03 0.05 0.06 -0.01 0.03 0.04

β = 0.2 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.03 0.07 0.08 0.01 0.08 0.08 -0.01 0.06 0.06 -0.03 0.04 0.05
ipw ofit 0.02 0.07 0.08 -0.00 0.08 0.08 -0.00 0.05 0.05 -0.03 0.04 0.05

semi ipw 0.21 0.08 0.22 0.13 0.08 0.15 0.08 0.06 0.10 0.00 0.04 0.04
g.comp 0.12 0.08 0.14 0.12 0.08 0.14 0.08 0.06 0.10 0.08 0.06 0.10

mr 0.13 0.08 0.15 0.13 0.08 0.15 0.08 0.06 0.10 0.08 0.06 0.10
sim 0.20 0.08 0.21 0.13 0.08 0.15 0.04 0.06 0.08 -0.02 0.03 0.04

n = 4000 θ(1) θ(0) δ(1) δ(0)
β = 0.1 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.01 0.03 0.03 0.00 0.03 0.03 0.00 0.02 0.02 -0.01 0.02 0.02
ipw ofit 0.01 0.03 0.03 0.00 0.03 0.03 0.00 0.02 0.02 -0.01 0.02 0.02

semi ipw 0.06 0.03 0.07 0.05 0.03 0.06 0.02 0.02 0.03 0.00 0.02 0.02
g.comp 0.04 0.03 0.06 0.04 0.03 0.06 0.02 0.02 0.03 0.02 0.02 0.03

mr 0.05 0.03 0.06 0.05 0.03 0.06 0.02 0.02 0.03 0.02 0.02 0.03
sim 0.06 0.03 0.07 0.05 0.03 0.06 -0.01 0.02 0.02 -0.02 0.02 0.03

β = 0.15 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.02 0.03 0.04 0.00 0.03 0.03 0.00 0.02 0.02 -0.02 0.02 0.02
ipw ofit 0.02 0.03 0.04 0.00 0.03 0.03 0.00 0.02 0.02 -0.02 0.02 0.02

semi ipw 0.13 0.04 0.13 0.09 0.03 0.09 0.05 0.02 0.05 0.01 0.02 0.02
g.comp 0.08 0.03 0.09 0.08 0.03 0.09 0.05 0.02 0.05 0.05 0.02 0.05

mr 0.09 0.03 0.09 0.09 0.03 0.09 0.05 0.02 0.05 0.05 0.02 0.05
sim 0.12 0.04 0.13 0.09 0.03 0.10 0.02 0.02 0.03 -0.02 0.02 0.02

β = 0.2 bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE bias std.dev RMSE

ipw cv 0.03 0.04 0.05 0.00 0.04 0.04 -0.00 0.02 0.02 -0.03 0.02 0.04
ipw ofit 0.03 0.04 0.05 -0.00 0.04 0.04 -0.00 0.03 0.03 -0.03 0.02 0.03

semi ipw 0.21 0.04 0.21 0.13 0.04 0.13 0.09 0.03 0.09 0.00 0.02 0.02
g.comp 0.12 0.04 0.13 0.12 0.04 0.13 0.09 0.03 0.09 0.09 0.03 0.09

mr 0.13 0.04 0.13 0.13 0.04 0.13 0.09 0.03 0.09 0.09 0.03 0.09
sim 0.20 0.04 0.20 0.13 0.04 0.14 0.05 0.03 0.06 -0.02 0.02 0.02

Note: ‘bias’, ‘std.dev’, and ‘RMSE’ denote the bias, standard deviation, and root mean squared error. ‘ipw cv’,

‘ipw ofit’, ‘semi ipw’, ‘g.comp’, ‘mr’ and ‘sim’ denote IPW using SLE based on cross-validation, IPW using SLE

based on overfitting, semiparametric IPW using probit, g-compuation, multiply robust estimation using the efficient

influence function, and simulation-based estimation, respectively.
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direct and indirect effects.

Table 1 reports the bias, standard deviation (std.dev), and root mean squared error (RMSE)

of the estimators for various combinations of β and n. As a general pattern, nonparametric

IPW becomes relatively more competitive when compared to the other estimators as n and/or

β increase. In any simulation design with n = 4000, our procedure with both cross-validated or

overfitted propensity scores by and large dominates the other estimators in terms of RMSE. This

is driven by the lower bias of nonparametric IPW due to not imposing any parametric functional

form assumptions on the propensity score (in particular when β is large), while all methods are

quite comparable in terms of standard deviations. We also see that for n = 1000, the overfitted

version of our method somewhat outperforms estimation based on cross-validation. Under the

larger sample size, however, both methods appear to work equally well in terms of bias, standard

deviation, and RMSE.

6 Application

We apply our methods to experimental data from Chinkhumba, Godlonton, and Thornton (2014)

who aim measuring the demand for adult medical male circumcision among 1,634 uncircumcised

men in urban Malawi as a function of randomized subsidies for circumcision and comprehensive

information on circumcision and HIV. In our mediation analysis, we focus on the information

campaign only, which was randomized independently of the financial subsidies. Men receiving

comprehensive information were informed that circumcision is partially protective against HIV

transmission (based on other empirical studies) at the baseline survey in 2010, while those who did

not receive it were only told about the (circumcision) services of the experimenters’ partner clinic.

We are interested in the effect of information (D) on a binary outcome taking the value one if a

male has already been circumcised or claimed to be willing to ever get circumcised at the follow

up survey (Y ) in 2011, roughly one year after the baseline survey and treatment assignment.6

We aim at disentangling the impact of information into a direct effect an indirect component

operating through (a change in) the risk assessment of HIV with and without circumcision. To

this end, the mediator is defined to be a dummy for whether uncircumcised males are considered

6To be concise, Y is defined as one if either the interviewee stated to be circumcised or was willing to ever
get circumcised, or the administrative records of the partner clinic show that he actually got circumcised, see the
discussion in Chinkhumba, Godlonton, and Thornton (2014).
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Table 2: Descriptives

D = 1 D = 0 M = 1 M = 0
mean std.dev mean std.dev mean std.dev mean std.dev

age (in years; discrete) 26.72 5.33 26.43 6.11 26.48 5.80 27.19 5.10
12 years of education (binary) 0.40 0.49 0.42 0.49 0.41 0.49 0.38 0.49

13+ years of education (binary) 0.18 0.38 0.21 0.40 0.19 0.39 0.21 0.41
ever had sex (binary) 0.87 0.34 0.88 0.32 0.88 0.33 0.85 0.35

used condom at last sex (binary) 0.38 0.48 0.42 0.49 0.41 0.49 0.31 0.46
expenditures (in 1000 MKW; continuous) 21.72 32.47 21.98 25.61 21.04 23.59 26.65 51.91
has a working tv / stereo system (binary) 0.78 0.42 0.78 0.41 0.79 0.41 0.76 0.43

has a working car (binary) 0.13 0.34 0.15 0.36 0.14 0.35 0.13 0.34
Y : got or would get circumcised (binary) 0.76 0.43 0.76 0.43 0.80 0.40 0.48 0.50

Note: Sample consists of 1,147 men without missing information in covariates, mediators, and outcomes (note

that there are no missing values in the randomly assigned treatment). ‘mean’ and ‘std.dev’ denotes the mean

and standard deviation, respectively. *: ‘believe about HIV risk’ is 0 if individual believes circumcised men to

have higher HIV risk than uncircumcised men, 1 if the risk is believed to be the same for both groups, and 2 if

uncircumcised men are believed to bear a higher HIV risk.

to be more prone to HIV risk than circumcised ones in the follow up survey (M). We therefore

aim at evaluating whether it is HIV risk assessment or other factors that constitute important

causal mechanisms of the information treatment.

We control for the following baseline covariates (X) in our estimation, in particular to account

for the endogeneity of the mediator, which is in contrast to the treatment not randomly assigned:

age, education (measured in categories of up to 11 years of education, 12 years, or 13 years and

more), a dummy for having ever had sex, a dummy for condom use at last sex as a proxy for sexual

(risk) behavior, monthly expenditures in Malawian Kwacha (MKW), and dummies for having a

working TV and/or stereo system as well as a working car as wealth proxies. We confine our

sample to those 1,147 men without missing information in the covariates, the mediator, and the

outcome (while there are no missing values in the randomly assigned treatment). Table 2 provides

descriptive statistics (means and standard deviations) for the covariates and the outcome across

the various treatment and mediator states. We refer to Chinkhumba, Godlonton, and Thornton

(2014) for more details about the survey design, the variables, and attrition patterns.

Table 3 reports the direct and indirect effects based on the same estimators as considered in the

simulations. In the case of IPW, we again discard observations with extreme propensity scores

using the 0.02 trimming rule. No observations are affected by trimming when estimating the

propensity score by probit or based on SLE with cross-validation, while 2 subjects are discarded
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Table 3: Application

θ(1) θ(0) δ(1) δ(0)
est se pval est se pval est se pval est se pval

ipw cv -0.00 0.02 0.89 -0.01 0.02 0.74 0.01 0.01 0.08 0.01 0.01 0.09
ipw ofit -0.00 0.03 1.00 -0.01 0.03 0.72 0.01 0.01 0.19 0.01 0.01 0.57

semi ipw -0.00 0.02 0.89 -0.01 0.02 0.74 0.01 0.01 0.08 0.01 0.01 0.09
g.comp -0.01 0.02 0.73 -0.01 0.02 0.73 0.01 0.01 0.08 0.01 0.01 0.08

mr -0.01 0.02 0.73 -0.01 0.02 0.73 0.01 0.01 0.08 0.01 0.01 0.08
sim -0.00 0.86 -0.01 0.70 0.01 0.12 0.01 0.11

Note: ‘est’, ‘se’, and ‘pval’ denote the effect estimate, the standard error, and the p-value, respectively. ‘ipw cv’,

‘ipw ofit’, ‘semi ipw’, ‘g.comp’, ‘mr’, and ‘sim’ denote IPW using SLE based on cross-validation, IPW using SLE

based on overfitting, semiparametric IPW using probit, g-compuation, multiply robust estimation using the efficient

influence function, and simulation-based estimation, respectively. Standard errors and/or p-values are based on

1999 bootstrap replications or simulations (in the case of ‘sim’).

when using an overfitted propensity score where SLE uses one order higher than suggested by

cross-validation. Standard errors (‘se’) are based on bootstrapping the effects 1999 times. P-

values (‘pval’) of most estimators are computed according to the t-statistic, with the exception

of ‘simulation’ and ‘simulation gam’, for which the p-values follow from simulating potential

mediators and outcomes (1999 times) using the ‘mediation’ package for R of Tingley, Yamamoto,

Hirose, Imai, and Keele (2014).7

None of the direct effects is statistically different from zero at conventional levels of signifi-

cance, no matter which method is considered. All of the indirect effects are positive, amounting

to an increase in (intended) circumcision of roughly one percentage point in most estimations.

Even though the effects are small, many of them are statistically significant at the 10% level.

This is the case for IPW using SLE with cross-validation or probit for propensity score estima-

tion, g-computation, and multiply robust estimation. The indirect effects under simulation-based

estimation and IPW with overfitted propensity scores are not significant at conventional levels,

but the point estimates are similar to those of the other procedures. All in all, the results suggest

that the information intervention has a very moderate positive effect on the outcome through a

change in the assessment of HIV risk with and without circumcision. In contrast, the insignificant

direct effects do not point to further important causal mechanisms through which information

affects (intended) circumcision.

7Note that standard errors are not provided for the simulation-based estimators.
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7 Conclusion

This paper proposed a fully nonparametric estimator of natural direct and indirect effects in the

total population or specific subgroups based on inverse probability weighting and series logit esti-

mation of the propensity scores when invoking a sequential conditional independence assumption.

We established the conditions required for the root-n consistency and asymptotic normality of

our estimator and investigated its finite sample performance in a simulation study. Finally, we

applied our method to experimental data from Malawi to evaluate the direct effect of receiving

information on circumcision on the inclination towards circumcision, as well as the indirect effect

mediated by the risk assessment of HIV with and without circumcision. The results suggest a

very moderate positive indirect effect while the direct effect is virtually zero and not statistically

significant.

References

Albert, J. M. (2008): “Mediation analysis via potential outcomes models,” Statistics in

Medicine, 27, 1282–1304.

Albert, J. M., and S. Nelson (2011): “Generalized causal mediation analysis,” Biometrics,

67, 1028–1038.

An, W., and X. Wang (2016): “Instrumental Variable Estimation of Causal Effects through

Local Average Response Functions,” Journal of Statistical Software, 71, 1–13.

Baron, R. M., and D. A. Kenny (1986): “The Moderator-Mediator Variable Distinction in

Social Psychological Research: Conceptual, Strategic, and Statistical Considerations,” Journal

of Personality and Social Psychology, 51, 1173–1182.

Busso, M., J. DiNardo, and J. McCrary (2014): “New Evidence on the Finite Sample

Properties of Propensity Score Matching and Reweighting Estimators,” forthcoming in the

Review of Economics and Statistics.

Chinkhumba, J., S. Godlonton, and R. Thornton (2014): “The Demand for Medical Male

Circumcision,” American Economic Journal: Applied Economics, 6, 152–177.

Donald, S. G., and Y.-C. Hsu (2014): “Estimation and Inference for Distribution Functions

and Quantile Functions in Treatment Effect Models,” Journal of Econometrics, 178, 383–397.

Donald, S. G., Y.-C. Hsu, and R. P. Lieli (2014): “Testing the Unconfoundedness Assump-

tion via Inverse Probability Weighted Estimators of (L)ATT,” Journal of Business & Economic

Statistics, 32(3), 395–415.

Flores, C. A., and A. Flores-Lagunes (2009): “Identification and Estimation of Causal

Mechanisms and Net Effects of a Treatment under Unconfoundedness,” IZA Dicussion Paper

No. 4237.

23



Gelman, A., and G. Imbens (2013): “Why ask Why? Forward Causal Inference and Reverse

Causal Questions,” NBER Working Paper No. 19614.

Hirano, K., G. W. Imbens, and G. Ridder (2003): “Efficient Estimation of Average Treat-

ment Effects Using the Estimated Propensity Score,” Econometrica, 71, 1161–1189.

Hong, G. (2010): “Ratio of mediator probability weighting for estimating natural direct and

indirect effects,” in JSM Proceedings, Biometrics Section, pp. 2401–2415. American Statistical

Association, Alexandria, VA.

Hsu, Y.-C. (2016): “Consistent Tests for Conditional Treatment Effects,” working paper,

Academia Sinica, Taipei.

Huber, M. (2014): “Identifying causal mechanisms (primarily) based on inverse probability

weighting,” Journal of Applied Econometrics, 29, 920–943.

Imai, K., L. Keele, and T. Yamamoto (2010): “Identification, Inference and Sensitivity

Analysis for Causal Mediation Effects,” Statistical Science, 25, 51–71.

Imai, K., and T. Yamamoto (2013): “Identification and Sensitivity Analysis for Multiple

Causal Mechanisms: Revisiting Evidence from Framing Experiments,” Political Analysis, 21,

141–171.

Imbens, G. W. (2004): “Nonparametric Estimation of Average Treatment Effects under Exo-

geneity: A Review,” The Review of Economics and Statistics, 86, 4–29.

Imbens, G. W., and J. M. Wooldridge (2009): “Recent Developments in the Econometrics

of Program Evaluation,” Journal of Economic Literature, 47, 5–86.

Judd, C. M., and D. A. Kenny (1981): “Process Analysis: Estimating Mediation in Treatment

Evaluations,” Evaluation Review, 5, 602–619.

Pearl, J. (2001): “Direct and indirect effects,” in Proceedings of the Seventeenth Conference on

Uncertainty in Artificial Intelligence, pp. 411–420, San Francisco. Morgan Kaufman.

Petersen, M. L., S. E. Sinisi, and M. J. van der Laan (2006): “Estimation of Direct Causal

Effects,” Epidemiology, 17, 276–284.

Robins, J. M. (1986): “A new approach to causal inference in mortality studies with sustained

exposure periods - application to control of the healthy worker survivor effect,” Mathematical

Modelling, 7, 1393–1512.

(2003): “Semantics of causal DAG models and the identification of direct and indirect ef-

fects,” in In Highly Structured Stochastic Systems, ed. by P. Green, N. Hjort, and S. Richardson,

pp. 70–81, Oxford. Oxford University Press.

Robins, J. M., and S. Greenland (1992): “Identifiability and Exchangeability for Direct and

Indirect Effects,” Epidemiology, 3, 143–155.

Rubin, D. B. (1974): “Estimating Causal Effects of Treatments in Randomized and Nonran-

domized Studies,” Journal of Educational Psychology, 66, 688–701.

(2004): “Direct and Indirect Causal Effects via Potential Outcomes,” Scandinavian

Journal of Statistics, 31, 161–170.

Tchetgen Tchetgen, E. J. (2013): “Inverse Odds Ratio-Weighted Estimation for Causal

Mediation Analysis,” Statistics in Medicine, 32, 4567–4580.

24



Tchetgen Tchetgen, E. J., and I. Shpitser (2012): “Semiparametric theory for causal me-

diation analysis: Efficiency bounds, multiple robustness, and sensitivity analysis,” The Annals

of Statistics, 40, 1816–1845.

Ten Have, T. R., M. M. Joffe, K. G. Lynch, G. K. Brown, S. A. Maisto, and A. T.

Beck (2007): “Causal mediation analyses with rank preserving models,” Biometrics, 63, 926–

934.

Tingley, D., T. Yamamoto, K. Hirose, K. Imai, and L. Keele (2014): “Mediation: R

package for causal mediation analysis,” Journal of Statistical Software, 59, 1–38.

VanderWeele, T. J. (2009): “Marginal Structural Models for the Estimation of Direct and

Indirect Effects,” Epidemiology, 20, 18–26.

Vansteelandt, S., M. Bekaert, and T. Lange (2012): “Imputation Strategies for the Esti-

mation of Natural Direct and Indirect Effects,” Epidemiologic Methods, 1, 129–158.

Zheng, W., and M. J. van der Laan (2012): “Targeted Maximum Likelihood Estimation of

Natural Direct Effects,” The International Journal of Biostatistics, 8, 1–40.

25



A Appendix

A.1 Proof of Theorem 1

Define Ydd′ = Y (d,M(d′)) and µdd′ = E[Ydd′ ] for d, d′ ∈ {0, 1}. By Assumptions 1 and 2,

µ11 = E
[ DY
p(X)

]
, µ00 = E

[(1−D)Y

1− p(X)

]
,

µ10 = E
[ DY

p(M,X)

1− p(M,X)

1− p(X)

]
, µ01 = E

[ (1−D)Y

1− p(M,X)

p(M,X)

p(X)

]
,

see equations (4) and (5) of Huber (2014). This allows defining the direct and indirect effects

of interest in terms of µdd′ , e.g. θ(1) = µ11 − µ01. We estimate µdd′ for d, d′ ∈ {0, 1} by the

normalized sample analogs

µ̂11 =
1

n

n∑
i=1

DiYi
p̂(Xi)

/
1

n

n∑
i=1

Di

p̂(Xi)
, µ̂00 =

1

n

n∑
i=1

(1−Di)Yi
1− p̂(Xi)

/
1

n

n∑
i=1

(1−Di)

1− p̂(Xi)
,

µ̂10 =
1

n

n∑
i=1

DiYi
p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)

/
1

n

n∑
i=1

Di

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
,

µ̂01 =
1

n

n∑
i=1

(1−Di)Yi
1− p̂(Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)

/
1

n

n∑
i=1

(1−Di)

1− p̂(Mi, Xi)

p̂(Mi, Xi)

p̂(Xi)
.

To prove Theorem 1, it is thus sufficient to show that for d, d′ ∈ {0, 1},

√
n(µ̂dd′ − µdd′) =

1√
n

n∑
i=1

ψdd′(Yi,Mi, Di, Xi) + op(1).

As the results regarding µ11 and µ00 have been established by HIR, we subsequently focus on the

proof for µ10 and note that the derivations for µ01 proceed in an analogous way. Let µ̃10 be the

numerator of µ̂10 and ω̃10 be the denominator of µ̂10. We first show that

√
n(µ̃10 − µ10) =

1√
n

n∑
i=1

ψ10(Yi,Mi, Di, Xi) + op(1),
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using a similar approach as HIR. Note that

√
n(µ̃10 − µ10) =

1√
n

n∑
i=1

{ DiYi
p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
− µ10

}
=

1√
n

n∑
i=1

{ DiYi
p(Mi, Xi)

1− p(Mi, Xi)

1− p(Xi)
− µ10

}
+

1√
n

n∑
i=1

{ DiYi
p(Mi, Xi)

1− p(Mi, Xi)

(1− p(Xi))2
(p̂(Xi)− p(Xi))

}
+

1√
n

n∑
i=1

{ −DiYi
p2(Mi, Xi)

1

1− p(Xi)
(p̂(Mi, Xi)− p(Mi, Xi))

}
+ op(1)

where the second equality holds by a second order mean valued expansion around p(Xi) and

p(Mi, Xi) and the fact that supx∈X |p̂(x)−p(x)| = op(n
−1/4) and supm∈M,x∈X |p̂(m,x)−p(m,x)| =

op(n
−1/4). The converge rate of supx∈X |p̂(x)−p(x)| = Op(Kx(

√
Kx/n+K−p̄x/2dx)) is derived in

Lemma A3 of Hsu (2016) and the conditions given in this paper are sufficient for supx∈X |p̂(x)−
p(x)| = op(n

−1/4). By the same argument as in Theorem 1 of HIR, we have

1√
n

n∑
i=1

{ DiYi
p(Mi, Xi)

1− p(Mi, Xi)

(1− p(Xi))2
(p̂(Xi)− p(Xi))

}
=

1√
n

n∑
i=1

{
E
[ DiYi
p(Mi, Xi)

1− p(Mi, Xi)

(1− p(Xi))2

∣∣∣Xi

]
(Di − p(Xi))

}
+ op(1)

=
1√
n

n∑
i=1

{ ρ10(Xi)

(1− p(Xi))
(Di − p(Xi))

}
+ op(1).

Similarly, it holds that

1√
n

n∑
i=1

{ −DiYi
p2(Mi, Xi)

1

1− p(Xi)
(p̂(Mi, Xi)− p(Mi, Xi))

}
=

1√
n

n∑
i=1

{
E
[ −DiYi
p2(Mi, Xi)

1

1− p(Xi)

∣∣∣Mi, Xi

]
(Di − p(Mi, Xi))

}
+ op(1)

=
1√
n

n∑
i=1

{−ζ1(Mi, Xi)

p(Mi, Xi)

1

1− p(Xi)
(Di − p(Mi, Xi))

}
+ op(1).

Next, one can easily show that

√
n(w̃10 − 1) = op(1),

by replacing Yi’s with 1’s in the proof for µ̃10 and acknowledging that the influence functions for
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w̃10 are all zero. Finally, it follows that

√
n(µ̂10 − µ10) =

√
n(
µ̃10

w̃10
− µ10)

=
√
n(µ̃10 − µ10)− µ10

√
n(w̃10 − 1) + op(1)

=
√
n(µ̃10 − µ10) + op(1),

where the second equality follows by a mean-value expansion and the last equality holds by the

fact that µ10 is bounded and that
√
n(w̃10 − 1) = op(1). This completes the proof. 2

A.2 Proof of Theorem 2

Define µdd′,g = E[g(X)Ydd′ ]/E[g(X)] for d, d′ ∈ {0, 1}. Similarly,

µ11,g =
E
[
g(X) DYp(X)

]
E[g(X)]

,

µ00,g =
E
[
g(X) (1−D)Y

1−p(X)

]
E[g(X)]

,

µ10,g =
E
[
g(X) DY

p(M,X)
1−p(M,X)

1−p(X)

]
E[g(X)]

,

µ01,g =
E
[
g(X) (1−D)Y

1−p(M,X)
p(M,X)
p(X)

]
E[g(X)]

.

We estimate µdd′,g for d, d′ ∈ {0, 1} by the normalized sample analogs

µ̂11,g =
1

n

n∑
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/
1
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.
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Define Pg = E[g(X)]. We would like to show that
√
n(µ̂11,g−µ11,g) = n−1/2

∑n
i=1 ψµ11,g(Yi,Mi, Di, Xi)+

op(1). First, we can be demonstrated that

√
n(

1

n

n∑
i=1

g(Xi)
DiYi
p̂(Xi)

− µ11,g · Pg)

=
1√
n

n∑
i=1

(g(Xi)DiYi
p(Xi)

− g(Xi)ρ11(Xi)

p(Xi)
(Di − p(Xi))− µ11,g · Pg

)
+ op(1), and

√
n(

1

n

n∑
i=1

g(Xi)
Di

p̂(Xi)
− µ11,g · Pg)

=
1√
n

n∑
i=1

(g(Xi)Di

p(Xi)
− g(Xi)

p(Xi)
(Di − p(Xi))− Pg

)
+ op(1)

=
1√
n

n∑
i=1

(g(Xi)− Pg) + op(1).

Then by delta method, we have

√
n(µ̂11,g − µ11,g)

=
1

Pg

1√
n

n∑
i=1

(g(Xi)DiYi
p(Xi)

− g(Xi)µ1(Xi)

p(Xi)
(Di − p(Xi))− µ11,g · Pg

)
− µ11,g

Pg
(g(Xi)− Pg) + op(1)

=
1√
n

n∑
i=1

g(Xi)

E[g(X)]

( DiYi
p(Xi)

− ρ11(Xi)

p(Xi)
(Di − p(Xi))− µ11,g

)
+ op(1).

This gives the result for the µ11,g case. Using the same arguments, we can derive the results for

µ00,g, µ01,g and µ10,g, too, which is sufficient to prove Theorem 2. 2

A.3 Proof of Theorem 3

Define µdd′,t = E[p(X)Ydd′ ]/E[p(X)] for d, d′ ∈ {0, 1}. Similarly,

µ11,t =
E
[
p(X) DYp(X)

]
E[p(X)]

,

µ00,t =
E
[
p(X) (1−D)Y

1−p(X)

]
E[p(X)]

,

µ10,t =
E
[
p(X) DY

p(M,X)
1−p(M,X)

1−p(X)

]
E[p(X)]

,

µ01,t =
E
[
p(X) (1−D)Y

1−p(M,X)
p(M,X)
p(X)

]
E[p(X)]

.
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We estimate µdd′,t for d, d′ ∈ {0, 1} by the normalized sample analogs

µ̂11,t =
1

n

n∑
i=1

DiYi

/
1

n

n∑
i=1

Di,

µ̂00,t =
1

n

n∑
i=1

p̂(Xi)
(1−Di)Yi
1− p̂(Xi)

/
1

n

n∑
i=1

p̂(Xi)
(1−Di)

1− p̂(Xi)
,

µ̂10,t =
1

n

n∑
i=1

p̂(Xi)
DiYi

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)

/
1

n

n∑
i=1

p̂(Xi)
Di

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
,

µ̂01,t =
1

n

n∑
i=1

(1−Di)Yi
1− p̂(Mi, Xi)

p̂(Mi, Xi)

/
1

n

n∑
i=1

(1−Di)

1− p̂(Mi, Xi)
p̂(Mi, Xi).

Define Pt = E[p(X)]. Note that we have

√
n
( 1

n

n∑
i=1

DiYi − µ11,tPt

)
=

1√
n

n∑
i=1

(DiYi − µ11,tPt),

√
n
( 1

n

n∑
i=1

p̂(Xi)
(1−Di)Yi
1− p̂(Xi)

− µ00,tPt

)
=

1√
n

n∑
i=1

(p(Xi)(1−Di)Yi
1− p(Xi)

+
µ0(Xi)

1− p(Xi)
(Di − p(Xi))− µ00,tPt

)
+ op(1),

√
n
( 1

n

n∑
i=1

p̂(Xi)
DiYi

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
− µ10,tPt

)
=

1√
n

n∑
i=1

(p(Xi)DiYi
p(Mi, Xi)

1− p(Mi, Xi)

1− p(Xi)
+

ρ10(Xi)

1− p(Xi)
(Di − p(Xi))

− p(Xi)ζ1(Mi, Xi)

p(Mi, Xi)(1− p(Xi))
(Di − p(Mi, Xi))− µ10,tPt

)
+ op(1), and

√
n
( 1

n

n∑
i=1

(1−Di)Yi
1− p̂(Mi, Xi)

p̂(Mi, Xi)− µ01,tPt

)
=

1√
n

n∑
i=1

( (1−Di)Yi
1− p(Mi, Xi)

p(Mi, Xi) +
ζ0(Mi, Xi)

(1− p(Mi, Xi))
(Di − p(Mi, Xi))− µ01,tPt

)
+ op(1).

Furthermore,

√
n
( 1

n

n∑
i=1

Di − Pt
)

=
1√
n

n∑
i=1

(Di − Pt) + op(1),

√
n
( 1

n

n∑
i=1

p̂(Xi)
(1−Di)Yi
1− p̂(Xi)

− Pt
)

=
1√
n

n∑
i=1

(Di − Pt) + op(1)

√
n
( 1

n

n∑
i=1

p̂(Xi)
Di

p̂(Mi, Xi)

1− p̂(Mi, Xi)

1− p̂(Xi)
− Pt

)
=

1√
n

n∑
i=1

(Di − Pt) + op(1), and

√
n
( 1

n

n∑
i=1

(1−Di)

1− p̂(Mi, Xi)
p̂(Mi, Xi)− Pt

)
=

1√
n

n∑
i=1

(Di − Pt) + op(1).

30



By delta method, we have

√
n(µ̂11,t − µ11,t)

=
1√
n

n∑
i=1

1

Pt

(
DiYi − µ11,tPt − µ11,t(Di − Pt)

)
+ op(1)

=
1√
n

n∑
i=1

1

Pt

(
Di(Yi − µ11,t)

)
+ op(1).

Similarly,

√
n(µ̂00,t − µ00,t)

=
1√
n

n∑
i=1

1

Pt

(p(Xi)(1−Di)Yi
1− p(Xi)

+
ρ00(Xi)

1− p(Xi)
(Di − p(Xi))− µ00,tPt − µ00,t(Di − Pt)

)
+ op(1)

=
1√
n

n∑
i=1

1

Pt

(p(Xi)(1−Di)(Yi − ρ00(Xi))

1− p(Xi)
+ (ρ00(Xi)− µ00,t)Di

)
+ op(1).

Next,

√
n(µ̂10,t − µ10,t)

=
1√
n

n∑
i=1

1

Pt

(p(Xi)DiYi
p(Mi, Xi)

1− p(Mi, Xi)

1− p(Xi)
+

ρ10(Xi)

(1− p(Xi))
(Di − p(Xi))

− p(Xi)ζ1(Mi, Xi)

p(Mi, Xi)(1− p(Xi))
(Di − p(Mi, Xi))− µ10,tDi

)
+ op(1),

√
n(µ̂01,t − µ01,t)

=
1√
n

n∑
i=1

1

Pt

( (1−Di)Yi
1− p(Mi, Xi)

p(Mi, Xi) +
ζ0(Mi, Xi)

(1− p(Mi, Xi))
(Di − p(Mi, Xi))− µ01,tDi

)
+ op(1).

This completes the proof. 2
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