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We show that several classes of groups G of PL-homeomorphisms of the
real line admit nontrivial homomorphisms χ : G → � that are fixed by
every automorphism of G. The classes enjoying the stated property include
the generalizations of Thompson’s group F studied by K. S. Brown (1992),
M. Stein (1992), S. Cleary (1995), and Bieri and Strebel (2016), but also the
class of groups investigated by Bieri, Neumann, and Strebel (Theorem 8.1
in Invent. Math. 90 (1987), 451–477). It follows that every automorphism
of a group in one of these classes has infinitely many associated twisted
conjugacy classes.
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1. Introduction

This paper stems from two articles [Bleak et al. 2008; Gonçalves and Kochloukova

2010] about twisted conjugacy classes of Thompson’s group F. In order to describe
the aim of the cited papers, we recall some terminology. Let G be a group and α
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an automorphism of G. Then α gives rise to an action μα : G ×|G| → |G| of G on

its underlying set |G|, defined by
(1-1) μα(g, x) = g · x · α(g)−1.

The orbits of this action are called twisted conjugacy classes, or Reidemeister
classes, of α. The twisted conjugacy classes of the identity automorphism, for

instance, are nothing but the conjugacy classes.

Two questions now arise, firstly, whether a given automorphism α has infinitely

many orbits and, secondly, whether every automorphism of G has infinitely many

orbits. As the latter property will be central to this paper, we recall the definition of

property R∞:

Definition 1.1. A group G is said to have property R∞ if the actionμα has infinitely

many orbits for every automorphism α : G −→∼ G.

The problem of determining whether a given group, or a class of groups, satisfies

property R∞ has attracted the attention of several researchers. The problem is

rendered particularly interesting by the fact there does not exist a uniform method of

solution. Indeed, a variety of techniques and ad hoc arguments from several branches

of mathematics have been used to tackle the problem, notably combinatorial group

theory in [Gonçalves and Wong 2009], geometric group theory in [Levitt and Lustig

2000], C∗-algebras in [Fel’shtin and Troitsky 2012], and algebraic geometry in
[Mubeena and Sankaran 2014b].

Bleak, Fel’shtyn, and Gonçalves [Bleak et al. 2008] show that Thompson’s

group F enjoys property R∞, while Gonçalves and Kochloukova [2010] establish
the same property for Thompson’s group F, but also for many other groups G having

the peculiarity that the complement of their BNS-invariant �1(G) is made up of

finitely many rank 1 points. In this paper, we generalize both approaches and prove

in this way that many classes of groups of PL-homeomorphisms have property R∞.

1A. A useful fact. The papers by Bleak et al. and by Gonçalves and Kochloukova
both exploit the following observation: let α be an automorphism of a group G, let
ψ : G → B be a homomorphism into an abelian group, and assume ψ is fixed by α.

Then ψ is constant on twisted conjugacy classes of α; indeed, if the elements x
and y lie in the same twisted conjugacy class there exists z ∈ G so that

y = z · x · α(z)−1;
the computation

ψ(y) = ψ(z · x · α(z)−1) = ψ(x) · ψ(z) · ((ψ ◦ α)(z))−1 = ψ(x)
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proves the claim. A groupG therefore has property R∞ if it admits a homomorphism

onto an infinite, abelian group that is fixed by every automorphism of G.1 For
B ⊂ �×

>0, the classes of groups G admitting such a nontrivial homomorphism

include various generalizations of Thompson’s group F [Brown 1987a; Stein 1992;

Cleary 1995; 2000; Bieri and Strebel 2016].

1B. Approach used by Bleak, Fel’shtyn, and Gonçalves. The authors [2008] es-
tablish that Thompson’s group F has property R∞ by using the mentioned fact.

To find the homomorphism ψ, they use a representation of F by piecewise linear

homeomorphisms of the real line: F is isomorphic to the group of all piecewise

linear homeomorphisms f with supports in the unit interval I = [0, 1], slopes a
power of 2, and break points, i.e., points where the left and right derivatives differ,
in the group �[1/2] of dyadic rationals; see, e.g., [Cannon et al. 1996, p. 216, §1].
This representation affords them with two homomorphisms σ� and σr , given by the

right derivative in the left end point 0 and the left derivative in right end point 1
of I, respectively. In formulae,

(1-2) σ�( f ) = lim t↘0 f ′(t) and σr ( f ) = lim t↗1 f ′(t).

The images of σ� and σr are both equal to gp(2), the (multiplicative) cyclic group

generated by the natural number 2. Theorem 3.3, the main result of [Bleak et al.

2008], can be rephrased by saying that the homomorphism

ψ : F → gp(2), f �→ σ�( f ) · σr ( f )

is fixed by every automorphism α of F. Its proof uses the very detailed information
about Aut F established by M. Brin [1996].

1C. A generalization. The stated description of Thompson’s group F invites one

to introduce generalized groups of type F in the following manner.

Definition 1.2. Let PLo(�) denote the group of all increasing PL-homeomorphisms

of the real line with only finitely many break points. Fix a closed interval I ⊆ �, a

subgroup P of the multiplicative group of positive reals �×
>0 and a subgroup A of

the additive group �add of the field � that is stable under multiplication by P. Define
G(I ; A, P) to be the subset of PLo(�) made up of all PL-homeomorphisms g that
satisfy the following conditions:

(a) the support supp g = {t ∈ � | g(t) �= t} of g is contained in I,

(b) the slopes of the finitely many line segments forming the graph of g lie in P,

(c) the break points of g lie in A, and

(d) g maps A onto A.

1One can find generalizations of, and also many variations on, the stated observation; see, e.g.,

[Gonçalves and Wong 2003, Formula (2.2)] or [Fel’shtyn and Troitsky 2015, Claim 2 in Theorem 4.4].
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Remarks 1.3. (a) The subset G(I ; A, P) is closed under composition2 and inver-

sion. The set G(I ; A, P) equipped with these operations is a group; by abuse of

notation, it will also be denoted by G(I ; A, P).

(b) We shall always require that neither P nor A be reduced to the neutral element.
These requirements imply that A contains arbitrary small positive elements and thus
A is a dense subgroup of �. As concerns the interval I we shall restrict attention to
three types: compact intervals with endpoints 0 and b ∈ A>0, the half-line [0, ∞[
and the line �; we refer the reader to [Bieri and Strebel 2016, Sections 2.4 and 16.4]

for a discussion of the groups associated to other intervals.

(c) The idea of introducing and studying the groups G(I ; A, P) goes back to the

papers [Brin and Squier 1985; Bieri and Strebel 1985].

1C1. The homomorphisms σ�, σr , and ψ . The definitions of σ� and σr , given

in (1-2), admit straightforward extensions to the groups G(I ; A, P); note, however,

that in case of the half-line [0, ∞[, the number σr ( f ) will denote the slope of f
near +∞, and similarly for I = � and σ�, σr . The homomorphisms σ� and σr allow

one then to introduce an analogue of ψ : F → gp(2), namely,

(1-3) ψ : G = G(I ; A, P) → P, g �→ σ�(g) · σr (g).

There remains the question whether this homomorphism ψ is fixed by every

automorphism of G. In the case of Thompson’s group F the question has been

answered in the affirmative by exploiting the detailed information about Aut F
obtained by Brin [1996]. Such a detailed description is not to be expected for every

group of the form G(I ; A, P); indeed, the results in [Brin and Guzmán 1998] show

that the structure of the automorphism group gets considerably more involved if

one passes from the group G([0, 1]; �[1/2], gp(2)), the group isomorphic to F, to
the groups G([0, 1]; �[1/n], gp(n)) with n an integer greater than 2.

1C2. The first main results. It turns out that one does not need very detailed
information about AutG(I ; A, P) in order to construct a nontrivial homomorphism

ψ :G(I ; A, P)→�×
>0 that is fixed by every automorphism of the groupG(I ; A, P);

it suffices to go back to the findings in the memoir [Bieri and Strebel 1985] and to

supplement them by some auxiliary results based upon them.3 One outcome is the

following theorem.

Theorem 1.4. Assume the interval I, the group of slopes P and the �[P]-module A
are as in Definition 1.2 and in Remark 1.3(b). Then there exists an epimorphism

2In this article we use left actions and the composition of functions familiar to analysts; thus g2◦g1
denotes the function t �→ g2(g1(t)) and g1g2 the homeomorphism g1 ◦ g2 ◦ g−1

1 .
3The memoir [Bieri and Strebel 1985] has recently been published as [Bieri and Strebel 2016].
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ψ : G(I ; A, P) � P that is fixed by every automorphism of G. Furthermore, the
group G(I ; A, P) therefore has property R∞.

Remark 1.5. Let I, A, and P be as before and let B = B(I ; A, P) be the subgroup

of G(I ; A, P) made up of all elements g that are the identity near the endpoints.
Then B is a characteristic subgroup of G(I ; A, P) and variations of Theorem 1.4

hold for many subgroups G of G(I ; A, P) with B ⊂ G. For further details, see
Theorems 3.8, 4.4, and 5.5.

1D. Route taken by Gonçalves and Kochloukova. For details, see [Gonçalves and
Kochloukova 2010]. The proof of Theorem 1.4 does not exploit information about

AutG(I ; A, P) that is as precise as that going into the proof of the main result

of [Bleak et al. 2008]. It uses, however, nontrivial features of the automorphisms

of G(I ; A, P). Gonçalves and Kochloukova [loc. cit.] put forward the novel idea

of replacing detailed information about AutG by information about the form of

the BNS-invariant of the group G; they carry out this program for the generalized
Thompson group Fn,0 with n ≥ 2, a group isomorphic to G([0, 1]; �[1/n], gp(n)),

and for many other groups, as well.

In a nutshell, their idea is this. Suppose G is a finitely generated group for which

the complement of �1(G) is finite.4 Then every automorphism of G permutes the

finitely many rays in �1(G)c. This suggests that it might be possible to construct a

new ray �>0 ·χ0 that is fixed by AutG. If one succeeds in doing so, then � ·χ0 will
be a 1-dimensional subrepresentation of the finite dimensional real vector space

Hom(G, �), acted on by AutG via

(α, χ) �→ χ ◦ α−1.

A priori, this invariant line need not be fixed pointwise.

Gonçalves and Kochloukova detected that the line � ·χ0 is fixed pointwise by
AutG if the homomorphism χ0 : G → � has rank 1, i.e., if its image is infinite
cyclic. Using this fact they were then able to prove that Thompson’s group F, but
also many other groups G, admit a rank 1 homomorphism that is fixed by AutG
and thus satisfy property R∞.

1E. A generalization. In the second part of this paper we consider a collection
of PL-homeomorphism groups G whose invariant �1(G)c is finite but contains a

point of rank greater than 1. One is then confronted with the following problem:

Suppose �>0 ·χ0 is a ray that is fixed by AutG as a set. There may then exist an
automorphism α which acts on the ray by multiplication by a positive real number

4Recall that �1(G) is a certain subset of the space of all half-lines �>0 ·χ emanating from the
origin of the real vector space Hom(G, �), and that AutG acts canonically on this subset, as well as

on its complement.
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s �= 1; if so, the 1-dimensional subspace � ·χ0 in the real vector space Hom(G, �)

is an eigenline with eigenvalue s �= 1 of the linear transformation α∗ induced by α

on Hom(G, �). The existence of an eigenvalue s �= 1 wrecks our attempt to extend

the approach adopted in [Bleak et al. 2008] to more general classes of groups of

PL-homomorphisms, but—as we shall see— it can be ruled out if the image B of
the character χ0 has only 1 and −1 as units, the definition of units being as follows:

Definition 1.6. Given a subgroup B of the additive group �add we set

(1-4) U(B) = {s ∈ �× | s · B = B}
and call U(B) the group of units of B (inside the multiplicative group of �).

We next explain how the subgroups B will enter into the picture. The groups
we shall be interested in will be subgroups of PLo(�) with supports in a compact

interval [0, b]; they are thus subgroups G of G([0, b]; �add, �×
>0). By restricting the

homomorphisms σ� and σr , defined in Section 1C1, one obtains homomorphisms of

G into the multiplicative group �×
>0; by composing these with the natural logarithm

function one arrives at the homomorphisms χ
� : G → �add and χr : G → �add.

The next result lists conditions that allow one to infer that G admits a nontrivial

homomorphism into �×
>0 fixed by every automorphism of G.

Theorem 1.7. Suppose G is a subgroup of G([0, b]; �add, �×
>0) that satisfies the

following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the homomorphisms χ
� and χr are both nonzero;

(iii) the quotient group G/(kerχ� · kerχr ) is a torsion group; and

(iv) at least one of the groups U(imχ
�) or U(imχr ) is reduced to {1, −1}.

Then there exists a nonzero homomorphism ψ : G → �×
>0 that is fixed by every

automorphism of G. The group G has therefore property R∞.

There remains the problem of finding subgroups B ⊂ �add that have only the

units 1 and −1. This problem is addressed in Section 6E. We shall show that

a subgroup B = ln P has this property if the multiplicative group P ⊂ �×
>0 is

free abelian and generated by algebraic numbers. In addition, we shall construct

in Section 8A a collection G of pairwise nonisomorphic 3-generator groups Gs

enjoying the properties that each group Gs satisfies the assumptions of Theorem 1.7

and that the cardinality of G is that of the continuum.

2. Preliminaries on automorphisms of the groups G(I; A, P)

The groups G(I ; A, P) form a class of subgroups of the group PLo(�), the group

of all orientation preserving, piecewise linear homeomorphisms of the real line.
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They enjoy some special properties, in particular the following two: each group acts

approximately5 highly transitively on the interior of I , and all its automorphisms are
induced by conjugation by homeomorphisms. It is, above all, this second property

that will be exploited in the sequel.

In this section, we recall the basic representation theorem for automorphisms of

the groups G(I ; A, P) and deduce then some consequences.

2A. Representation of isomorphisms. We begin by fixing the set-up of this section:
P is a nontrivial subgroup of �×

>0 and A a nonzero subgroup of �add that is stable

under multiplication by P. Next, I is a closed interval of positive length; we assume
the left end point of I is in A if I is bounded from below and similarly for the right
end point.

Remark 2.1. Distinct intervals I1 and I2 may give rise to isomorphic groups
G(I1; A, P) and G(I2; A, P). In particular, it is true that every group G(I1; A, P)

is isomorphic to one whose interval I2 has one of the three forms

(2-1) [0, b] with b ∈ A, [0, ∞[, and �.

See [Bieri and Strebel 2016, Sections 2.4 and 16.4] for proofs.

We come now to the announced result about isomorphisms of groups G(I ; A, P)

and G(I ; A, P). It asserts that each isomorphism of the first group onto the second

one is induced by conjugation by a homeomorphism of the interior int(I ) of I
onto the interior of I . This claim holds even for suitably restricted subgroups of
G(I ; A, P) and of G(I ; A, P). In order to state the generalized assertion we need

the subgroup of “bounded elements”.

Definition 2.2. Let B(I ; A, P) be the subgroup of G(I ; A, P) consisting of all

PL-homeomorphisms f that are the identity near the end points or, more formally,
that satisfy the inequalities inf I < inf supp f and sup supp f < sup I.

We are now in a position to state the representation theorem.

Theorem 2.3. Assume G is a subgroup of G(I ; A, P) that contains the derived
subgroup of B(I ; A, P), and G is a subgroup of G(I ; A, P) containing the derived
group of B(I ; A, P). Then every isomorphism α :G −→∼ G is induced by conjugation
by a unique homeomorphism ϕα of the interior int(I ) of I onto the interior of I ;
more precisely, the equation

(2-2) α(g) � int(I ) = ϕα ◦ (g � int(I )) ◦ ϕ−1
α

holds for every g ∈ G. Moreover, ϕα maps A ∩ int(I ) onto A ∩ int(I ).

Proof. The result is a restatement of [Bieri and Strebel 2016, Theorem E16.4]. �
5See [Bieri and Strebel 2016, Chapter A] for details.
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Remarks 2.4. (a) Theorem 2.3 has two simple, but important consequences. First
of all, every homeomorphism of intervals is either increasing or decreasing; since the

homeomorphism ϕα inducing an isomorphism α : G −→∼ G is uniquely determined

by α, there exist therefore two types of isomorphisms: the increasing isomorphisms,
induced by conjugation by an increasing homeomorphism, and the decreasing ones.

Assume now that I = I. If the homeomorphism ϕα : int(I )−→∼ int(I ) is increasing,
it extends uniquely to a homeomorphism of I, but this may not be so if it is decreasing.
Indeed, ϕα extends if I is a compact interval or the real line, but not if I is a half-line.
If the extension exists, it will be denoted by ϕ̃α.

(b) The increasing automorphisms of a groupG form a subgroup Aut+G of AutG of

index at most 2. It will turn out that is often easier to find a nonzero homomorphism

ψ : G → B that is fixed by the subgroup Aut+G than a nonzero homomorphism

fixed by AutG �Aut+G (in case this set is nonempty). For this reason, it is useful

to dispose of criteria guaranteeing that AutG = Aut+G.

(c) The derived group of B(I ; A, P) is a simple, infinite group (see [Bieri and

Strebel 2016, Proposition C10.2]), but B(I ; A, P) itself may not be perfect. To date,

no characterization of the parameters (I, A, P) corresponding to perfect groups

B(I ; A, P) is known. The quotient group G(I ; A, P)/B(I ; A, P), on the other

hand, is a metabelian group that can be described explicitly in terms of the triple

(I, A, P); see [Bieri and Strebel 2016, Section 5.2]. In the sequel, we shall therefore

restrict attention to subgroups G containing B(I ; A, P).

(d) The second important consequence of Theorem 2.3 is the fact that B(I ; A, P) is

a characteristic subgroup of every subgroup G with B(I ; A, P) ⊆ G ⊆ G(I ; A, P).

(The proof is easy; see [Bieri and Strebel 2016, Corollary E16.5] or Corollary 2.7

below.)

In part (a) of the previous remarks the term increasing isomorphism has been

introduced. In the sequel, this parlance will be used often, and so we declare:

Definition 2.5. Let α : G −→∼ G be an isomorphism induced by the (uniquely

determined) homeomorphism ϕα : int(I ) −→∼ int(I ). If ϕ is increasing then α will

be called increasing, and similarly for decreasing.

2B. The homomorphisms λ and ρ. By Remark 2.4(d) the group B = B(I ; A, P)

is a characteristic subgroup of every group G containing it. Now G has, in addition,

subgroups containing B that are invariant under the subgroup Aut+G, namely
the kernels of the homomorphisms λ and ρ. To set these homomorphisms into

perspective, we go back to the homomorphisms

σ� : G(I ; A, P) → P and σr : G(I ; A, P) → P,
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introduced in Section 1C1. Their images are abelian and coincide with the group of

slopes P. If I is not bounded from below, there exist a homomorphism λ, related

to σ�, whose image is contained in Aff(A, P), the group of all affine maps of �

with slopes in P and displacements f (0) ∈ A. The definition of λ is this:

(2-3) λ : G(I ; A, P) → Aff(A, P),

g �→ (affine map coinciding with g near −∞).

If the interval I is not bounded from above, then there exists a similarly defined
homomorphism

(2-4) ρ : G(I ; A, P) → Aff(A, P),

g �→ (affine map coinciding with g near +∞).

The images of λ and ρ are, in general, smaller than Aff(A, P). They are equal to

the entire group Aff(A, P) if I = �; if I is not bounded from below, but bounded
from above, the image of λ is Aff(I P · A, P) and the analogous statement holds

for ρ. In the above, I P · A denotes the submodule of A generated by the products
(p − 1) · a with p ∈ P and a ∈ A; see [Bieri and Strebel 2016, Section 4 and
Corollary A5.3].

For uniformity of notation, we extend the definition of λ and ρ to compact

intervals: if I = [0, b] and f ∈ G(I ; A, P) then λ(g) is the linear map t �→ σ�(g) · t
and ρ(g) is the affine map t �→ σr ( f ) · (t − b)+ b. Similarly one defines λ(g) if I
is the half-line [0, ∞[.
The homomorphisms λ and ρ allow one to restate the definition of B(I ; A, P):

(2-5) B(I ; A, P) = ker λ ∩ ker ρ.

Remark 2.6. In the sequel, we shall often deal with subgroups, denoted G, of a
group G(I ; A, P) that contain B(I ; A, P). For ease of notation, we shall then

denote the restrictions of λ and ρ to G again by λ and ρ.

2C. First consequences of the representation theorem. Let G be a subgroup of

G(I ; A, P) that contains the derived subgroup of B(I ; A, P) and let G be a sub-

group of G(I ; A, P) containing the derived subgroup of B(I ; A, P). Suppose ϕα

is a homeomorphism of int(I ) onto int(I ) that induces an isomorphism α : G −→∼ G.
The map ϕα need not be piecewise linear. Theorem 2.3, however, has useful

consequences even in such a case. One implication is recorded in this result:

Corollary 2.7. Assume G and G are subgroups of G(I ; A, P) both of which con-
tain B(I ; A, P), and let

λ, ρ : G → Aff(A, P) and λ, ρ : G → Aff(A, P)

109



be the obvious restrictions of the homomorphisms λ, ρ introduced in Section 2B.
Consider now an isomorphism α : G −→∼ G that is induced by the homeomorphism
ϕα : int(I ) −→∼ int(I ). If ϕα is increasing then

(i) α maps ker λ onto ker λ and induces an isomorphism α� of G/ ker λ onto
G/ ker λ;

(ii) α maps ker ρ onto ker ρ and induces an isomorphism αr of G/ ker ρ onto
G/ ker ρ.

Proof. (i) If g ∈ ker λ then g is the identity near inf I. As ϕα is increasing, the
image α(g) = ϕα ◦ g ◦ ϕ−1

α of g is therefore also the identity near inf I. It follows
that α(ker λ) ⊆ ker λ. This inclusion is actually an equality, for α−1 : G → G is an

isomorphism and so α−1(ker λ) ⊆ ker λ. Claim (ii) can be proved similarly. �

2D. Automorphisms induced by finitary PL-homeomorphisms. Suppose that the
group G ⊆ G(I ; A, P) is as before, and let α be an automorphism of G. According
to Theorem 2.3, α is induced by conjugation by a unique autohomeomorphism ϕα .

This autohomeomorphism may not be piecewise linear, but the situation improves

if P, the group of slopes, is not cyclic (and hence dense in �×
>0).

Theorem 2.8. Suppose P is not cyclic. For every automorphism α of G there exists
then a nonzero real number s such that A = s · A and that the autohomeomorphism
ϕα : int(I )−→∼ int(I ) is piecewise linear with slopes in the coset s ·P of P. Moreover,
ϕα maps the subset A ∩ int(I ) onto itself and has only finitely many breakpoints in
every compact subinterval of int(I ).

Proof. The result is a special case of [Bieri and Strebel 2016, Theorem E17.1]. �

Theorem 2.8 indicates that automorphisms of groups with a noncyclic group

of slopes P are easier to analyze than those of the groups with cyclic P. Note,
however, that the conclusion of Theorem 2.8 does not rule out that ϕα has infinitely

many breakpoints which accumulate in one or both end points6 and so ϕα may not

be differentiable at the end points. In Section 3A we shall therefore be interested in

differentiability criteria.

3. Characters fixed by Aut G([0, b]; A, P)

In this section, we prove Theorem 1.4 for the case of a compact interval and

various extensions of it. An important ingredient in the proofs of these results is

a criterion that allows one to deduce that an autohomeomorphism ϕα inducing an

automorphism α of the group is differentiable near one or both of its end points.

6The notion of end point is to be interpreted suitably if I is not bounded.
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3A. A differentiability criterion. The proof of the criterion is rather involved. Prior
to stating the criterion and giving its proof, we discuss therefore a result that explains

the interest in the criterion.

Proposition 3.1. Let G be a subgroup of G([a, b]; A, P) that contains the derived
subgroup of B(I ; A, P). Suppose ϕ̃ : [0, b] −→∼ [0, b] is an autohomeomorphism
that induces, by conjugation, an automorphism α of G. Then the following are true:

(i) if ϕ̃ is increasing, differentiable at 0, and ϕ̃′(0) > 0, then α fixes σ�;

(ii) if ϕ̃ is increasing, differentiable at b, with ϕ̃′(b) > 0, then α fixes σr ;

(iii) if ϕ̃ is differentiable both at 0 and at b, with nonzero derivatives, then α fixes
the homomorphism ψ : g �→ σ�(g) · σr (g).

Proof. (i) and (ii) Suppose the extended autohomeomorphism ϕ̃ = ϕ̃α is increasing

and fix g ∈ G. If ϕ̃ is differentiable at 0 and ϕ̃′(0) > 0, the chain rule justifies the

computation

(3-1) σ�(α(g)) = (ϕ̃ ◦ g ◦ ϕ̃−1)′(0) = ϕ̃′(0) · g′(0) · (ϕ̃−1)′(0) = σ�(g).

It follows that σ� is fixed by α. If ϕ̃ admits a left derivative at b and if ϕ̃′(b) > 0,

one sees similarly, that σr is fixed by α.

(iii) Assume now that ϕ̃ = ϕ̃α is differentiable, both at 0 and at b, and that both
derivatives are different from 0. If ϕ̃ is increasing, parts (i) and (ii) guarantee that
σ� and σr are fixed by α, whence so is their product ψ . If, on the other hand, ϕ̃ is

decreasing, the calculation

(3-2) σr (α(g)) = (ϕ̃ ◦ g ◦ ϕ̃−1)′(b) = ϕ̃′(0) · g′(0) · (ϕ̃−1)′(b) = σ�(g)

holds for every g ∈ G and establishes the relation σr ◦ α = σ�.

A similar calculation shows that the relation σ� ◦α = σr is valid. The claim for ψ

is then a consequence of the computation

(ψ ◦ α) (g) = σ�(α(g)) · σr (α(g)) = σr (g) · σ�(g) = ψ(g). �

3A1. Statement and proof of the criterion. We now come to the criterion; we

choose a formulation that is slightly more general than what is needed for the case

at hand; the extended version will be used in Section 4.

Proposition 3.2. Suppose I is an interval of one of the forms [0, b] or [0, ∞[, and
G as well as G are subgroups of G(I ; A, P) that contain B(I ; A, P). Assume
ϕ̃ : I −→∼ I is an increasing autohomeomorphism that induces, by conjugation, an
isomorphism α of the group G onto the group G.

If the image of σ� : G → P is not cyclic, then ϕ̃ is linear on a small interval of
the form [0, δ] and so ϕ̃ is differentiable at 0 with positive derivative.
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Proof. The following argument uses ideas from the proofs of Proposition E16.8
and Supplement E17.3 in [Bieri and Strebel 2016]. The proof will be divided into

three parts. In the first one, we show that α : G −→∼ G induces an isomorphism

α� : im σ� −→∼ im σ�, that takes p ∈ im σ� to pr = er ·log p for some positive real

number r that does not depend on p. In the second part, we establish that ϕ̃ satisfies
the relation

(3-3) ϕ̃(p · t) = pr · ϕ̃(t)

for every p ∈ (im σ� ∩]0, 1[) and t varying in some small interval [0, δ]. In the last
part, we deduce from this relation that ϕ̃ is linear near 0.

We now embark on the first part. Since ϕ is increasing, Corollary 2.7 applies and

shows that α maps the kernel of σ� : G → P onto the kernel of the homomorphism

σ� : G → P, and thus induces an isomorphism α� : im σ� −→∼ im σ� that renders the

square

G α
��

σ�

����

G

σ�

����

im σ�

α�
�� im σ�

commutative. We claim α� maps the set (im σ�)∩]0, 1[ onto (im σ�)∩]0, 1[. Indeed,
let p ∈ im σ� be a slope with p < 1 and let fp ∈ G be a preimage of p. Then α( fp)

is linear on some interval [0, εp] and has slope σ�(α( fp)) = α�(p) there. Since

ϕ̃ is continuous at 0, there exists δp > 0 so that fp is linear on [0, δp] and that
ϕ̃([0, δp]) ⊆ [0, εp]. Fix t ∈ [0, δp]. The hypothesis that α is induced by conjugation
by ϕ̃ then leads to the chain of equalities

ϕ̃(p · t) = (ϕ̃ ◦ fp)(t) = (α( fp) ◦ ϕ̃)(t) = α( fp)(ϕ̃(t)) = α�(p) · ϕ̃(t).(3-4)

Since ϕ̃ is increasing and as p < 1, the chain of equalities implies that α�(p) < 1.

It follows that α� maps (im σ�)∩]0, 1[ into im σ� ∩]0, 1[ and then, by applying the
preceding argument to ϕ−1, that

α�(im σ� ∩ ]0, 1[) = im σ� ∩ ]0, 1[.
We show next that α�(p) = pr for all p ∈ im σ� and some positive real number r .

We begin by passing from the multiplicative subgroup im σ� ⊂ �×
>0 to a subgroup

of �add; to that end, we introduce the homomorphism

L0 = ln ◦α� ◦ exp : ln(im σ�) −→∼ ln(im σ�).

The previous verification implies that L0 is an order preserving isomorphism; by
the assumption on im σ� the domain of L0 is a dense subgroup of �add. It follows

that L0 extends uniquely to an order preserving automorphism L : �add → �add.
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The homomorphism L is continuous, hence linear, and so given by multiplication
by some positive real number r . The isomorphism α� has therefore the form

p �→ pr = exp(r · ln p) with r > 0.

We come now to the second part of the proof. Fix a slope p1 < 1 in im σ�.

Formula (3-4) and the previously found formula for α� then imply that there exists

a small positive number δp1 such that the equation

(3-5) ϕ̃(p1 · t) = pr
1 · ϕ̃(t)

holds for every t ∈ [0, δp1]. Consider next another slope p < 1. There exists then,

as before, a real number δp > 0 so that ϕ̃(p · t) = pr · ϕ̃(t) for t ∈ [0, δp]. Choose
now m ∈ � so large that pm

1 · δp1 ≤ δp. The following chain of equalities then holds

for each t ∈ [0, δp1]:
pm·r
1 · ϕ̃(p · t) = ϕ̃(pm

1 · p · t) = ϕ̃(p · pm
1 · t) = pr · ϕ̃(pm

1 · t) = pr · pm·r
1 · ϕ̃(t).

The calculation shows that ϕ̃(p · t) = pr · ϕ̃(t) for every t ∈ [0, δ1]. Upon setting
δ = δp1 one arrives at (3-3).

The proof is now quickly completed. By assumption, im σ� is not cyclic and so

(3-3) holds for a dense set of slopes p and a fixed argument t , say t = δ. Since ϕ is

continuous and increasing, (3-3) continues to hold for every real x ∈ ]0, 1[. The
formula

ϕ(x · δ) = exp(r · ln x) · ϕ(δ) = xr · ϕ(δ)

is therefore valid for every x ∈ ]0, δ]. By Theorem 2.8, on the other hand, ϕ is

piecewise linear on ]0, δ]. So the exponent r must be equal to 1, whence ϕ is linear

on [0, δ] with slope ϕ(δ)/δ > 0 and so, in particular, differentiable at 0. �
Remark 3.3. Assume I is a compact interval of the form [0, b] with b ∈ A>0 and

the images of σ� and σr are both not cyclic. It follows then from Proposition 3.2 that

every increasing automorphism α : G −→∼ G is induced by an autohomeomorphism

ϕ̃ that is affine near both end points. By [Bieri and Strebel 2016, Proposition E16.9]

the homeomorphism ϕ̃ is thus finitary piecewise linear.

3A2. First application. As a further step towards the main results we give a corol-
lary that combines Propositions 3.1 and 3.2.

Corollary 3.4. Let G be a subgroup of G(I ; A, P) that contains B(I ; A, P).
Assume I = [0, b] and let α be an automorphism of G that is induced by the
autohomeomorphism ϕ̃ : I −→∼ I. Then the following statements hold:

(i) if α is increasing7and im σ� not cyclic, then σ� is fixed by α;

7See Definition 2.5.
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(ii) if α is increasing and im σr not cyclic, then σr is fixed by α;

(iii) if ϕ̃ is decreasing and im σ� is not cyclic, then ϕ̃ is affine near both end points
and the homomorphism ψ : g �→ σ�(g) · σr (g) is fixed by α.

Proof. (i) The statement is a direct consequence of Proposition 3.2 and part (i) of
Proposition 3.1.

(ii) We invoke Proposition 3.2 for an auxiliary group G1. Let ϑ : I −→∼ I be the
reflection in the midpoint of I ; set G1 = ϑ ◦ G ◦ϑ−1 and ϕ1 = ϑ ◦ ϕ̃α ◦ϑ−1. Since
G(I ; A, P) and B(I ; A, P) are both invariant under conjugation by ϑ, and as the

image of σr is not cyclic, Proposition 3.2 applies to the couple (G1, ϕ1) and shows

that ϕ1 is linear in a small interval [0, δ1] of positive length. But if so, ϕα is affine

in the interval [b − δ1, b]. Now use part (ii) in Proposition 3.1.
(iii) Since ϕ̃ is decreasing, the subgroups im σ� and im σr are isomorphic by

Lemma 3.6 below; the hypothesis on im σ� therefore implies the image of σr is

not cyclic either. Let ϑ : int(I ) −→∼ int(I ) be the reflection in the midpoint of the
interval I and set ϕ̃1 = ϑ ◦ ϕ̃ and G = ϑ ◦ G ◦ϑ−1. Conjugation by ϕ̃1 induces then

an increasing isomorphism α1 : G −→∼ G. Since G(I ; A, P) and B(I ; A, P) are

both invariant under conjugation by ϑ, Proposition 3.2 applies to ϕ̃1 in the rôle of ϕ̃

and shows that ϕ̃1 is linear near 0. But if so, ϕ̃ is linear near 0. Consider now the

autohomeomorphism ϕ̃2 = ϕ̃ ◦ ϑ of I. It induces an isomorphism α2 : G −→∼ G by

conjugation; an argument similar to the preceding one then reveals that ϕ̃ is affine

near b. The remainder of the claim follows from part (iii) in Proposition 3.1. �

3B. Construction of homomorphisms fixed by Aut+ G. The first main result holds
for all groups G with B(I ; A, P) � G ⊆ G(I ; A, P), but the exhibited homo-

morphisms may only be fixed by Aut+G.

Theorem 3.5. Suppose I = [0, b] with b ∈ A>0 and G is a subgroup of G(I ; A, P)

that contains B(I ; A, P) properly. Then the homomorphisms σ� and σr are fixed by
Aut+G, and at least one of them is nontrivial.

Proof. Let α be an increasing automorphism of G and let ϕ̃ be the autohomeomor-

phism of I that induces α. (The map ϕ̃ exists by Theorem 2.3 and Remark 2.4(a).)

Since the quotient group G(I ; A, P)/B(I ; A, P) is isomorphic to the image of

σ� ×σr : G(I ; A, P) → P × P and as G contains B(I ; A, P) properly, at least one

of the homomorphisms σ� and σr is nonzero.

Assume first that ψ = σ� is nonzero. Two cases then arise, depending on whether

the image of ψ is cyclic or not. If the image of ψ is not cyclic then part (i) in
Corollary 3.4 shows that α fixes ψ . If, on the other hand, ψ is cyclic, consider the

generator p ∈ imψ with p < 1 and pick a preimage gp ∈ G of p. Then gp attracts

points in every sufficiently small interval of the form [0, δ] towards 0; hence so does
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α(gp) = ϕ̃ ◦ gp ◦ ϕ̃−1 and thus p′ = (α(gp))
′(0) < 1. Now p′ generates also im σ�;

being smaller than 1, it therefore coincides with p = ψ(gp) and so ψ = ψ ◦ α.

Assume next that ψ = σr is not zero. If its image is not cyclic, part (ii) of

Corollary 3.4 allows us to conclude that α fixes ψ . If imψ is cyclic, consider the

generator p ∈ imψ with p < 1 and pick a preimage gp ∈ G. Then gp attracts points

in every sufficiently small interval [b − δ, b] towards b. It then follows, as before,
that ψ(α(gp)) = p = ψ(gp), whence ψ ◦ α = α. �

3C. Existence of decreasing automorphisms. Theorem 3.5 is very satisfactory

in that it produces a nonzero homomorphism ψ onto an infinite abelian group

whenever such a homomorphism is likely to exist, i.e., if G contains B(I ; A, P)

properly. This homomorphism is, however, only guaranteed to be fixed by the

subgroup Aut+G of AutG which has index 1 or 2 in AutG. If the index is 1, the
conclusion of Theorem 3.5 is as good as we can hope for. So the question arises

whether there are useful criteria that force the index to be 1. Here is a very simple

observation that leads to such a criterion:

Lemma 3.6. Assume I =[0, b] with b∈ A>0 and let G be a subgroup of G(I ; A, P)

that contains B(I ; A, P). Then every decreasing automorphism α induces an
isomorphism α∗ : im σ� −→∼ im σr .

Proof. The kernel of σ� consists of all elements in G that are the identity near 0.

Since α is induced by conjugation by a homeomorphism of I that maps 0 onto b, the
image of ker σ� consists of elements that are the identity near b, so α(ker σ�)⊆ker σr .

Since α−1 is also a decreasing automorphism, the preceding inclusion is actually an
equality. So α induces an isomorphism α∗ : im σ� −→∼ im σr that renders the square

(3-6)

G α
��

σ�

����

G

σr
����

im σ�

α∗
�� im σr

commutative. �
Example 3.7. Suppose the slope group P is finitely generated and hence free

abelian of finite rank r , say. Choose subgroups Q� and Qr of P and set

(3-7) G(Q�, Qr ) = {g ∈ G(I ; A, P) | (σ�(g), σr (g) ∈ Q� × Qr }.
Then im σ� = Q� and im σr = Qr , and the image of (σ�, σr ) : G → P × P coincides
with Q� × Qr . (These claims follow from [Bieri and Strebel 2016, Corollary A5.5]).

Now assume that G(Q�, Qr ) admits a decreasing automorphism, say α. By

Lemma 3.6 the groups Q� and Qr are then isomorphic, and thus have the same

rank. But more is true: if Q� = im σ� is not cyclic, then Proposition 3.2 and the
last line of Proposition 3.1 show that σr = σ� ◦ α, whence Qr , the image of σr ,
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coincides with Q�, the image of σ�. The same conclusion holds if Qr is not cyclic.

Conversely, if Q� = Qr then G(Q�, Qr ) admits decreasing automorphisms, for

instance the automorphism induced by conjugation by the reflection about the mid

point of I.
So the only case where the existence of a decreasing automorphism is neither

obvious nor easy to rule out by the preceding arguments is that where Q� and

Qr are both cyclic, but distinct. We shall come back to this exceptional case in

Example 3.13.

3D. Construction of a homomorphism fixed by Aut G. We move on to the con-
struction of a homomorphism fixed by all of AutG. The following result is our
main result.

Theorem 3.8. Suppose I is a compact interval of the form [0, b] with b ∈ A>0. Let
G be a subgroup of G(I ; A, P) containing B(I ; A, P) and let ψ : G → P be the
homomorphism g �→ σ�(g) · σr (g). Then ψ is fixed by AutG, except possibly when
G satisfies the following three conditions:

(a) im(σ� : G → P) is cyclic,

(b) G admits a decreasing automorphism,

(c) G does not admit a decreasing automorphism induced by an autohomeo-
morphism ϑ : I −→∼ I that is differentiable at both end points with nonzero values.

Proof. Let α be an automorphism of G and let ϕ be the autohomeomorphism of

int(I ) that induces α by conjugation. If ϕ is increasing both σ� and σr are fixed

by α (see Theorem 3.5) and hence so is ψ . If, on the other hand, α is decreasing
and the image of σ� is not cyclic then part (iii) of Corollary 3.4 yields the desired
conclusion.

Now suppose that G admits an automorphism β that is induced by a decreasing

autohomeomorphism ϕ̃β of I that is differentiable at 0, as well as at b, and has
there nonzero derivatives. Then part (iii) of Proposition 3.1 allows us to conclude

that ψ is fixed by β. Since β represents the coset AutG�Aut+G and as ψ is fixed

by Aut+G, it follows that ψ is fixed by every decreasing automorphism.

All taken together we have proved that the automorphism α fixes ψ except,

possibly, if im σ� is cyclic, α is decreasing and if there does not exists a decreasing

automorphism β that is differentiable at the end points and has there nonzero

derivatives. �
We state next some consequences of Theorems 3.5 and 3.8. We begin with the

special case where G is all of G(I ; A, P). Then G is normalized by the reflection

in the midpoint of I and so Theorem 3.8 leads to

Corollary 3.9. If G coincides with G([0, b]; A, P) the homomorphism ψ : G → P
taking g ∈ G to σ�(g) · σr (g) is surjective, hence nonzero, and fixed by AutG.
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The second result is a consequence of the proof of Theorem 3.5.

Corollary 3.10. Suppose that I is the half-line [0, ∞[ and G is a subgroup of
G(I ; A, P) containing B(I ; A, P). If G does not admit a decreasing automorphism
then ψ = σ� is fixed by AutG.

Proof. The claim follows from Proposition 3.2 and from the proof of part (i) in
Proposition 3.1 upon noting that the cited proof does not presuppose that the interval

I be bounded from above. �

3E. Some examples. We exhibit some specimens of groups G that possess a homo-

morphism ψ : G → P fixed by AutG. The existence of ψ will be established by

recourse to Theorems 3.5 and 3.8 and to Corollary 3.9.

Example 3.11. We begin with variations on Thompson’s group F. Assume P is in-

finite cyclic and A is a (nontrivial) �[P]-submodule of �. Set G0= G([0, b]; A, P)

with b ∈ A>0 and consider the following subgroups of G0:

G1 = {g ∈ G0 | σ�(g) = 1},(3-8)

G2 = {g ∈ G0 | σ�(g) = σr (g)},(3-9)

G3 = {g ∈ G0 | σ�(g) = σr (g)−1}.(3-10)

The group G0 is the entire group G(I ; A, P) and so Corollary 3.9 tells us that

the homomorphism ψ : g �→ σ�(g) · σr (g) is nonzero and fixed by AutG0.

The group G1 is an ascending union of subgroups Hn = G([an, b]; A, P) given

by a strictly decreasing sequence n �→ an of elements in A that converges to 0, and
so the group G1 is infinitely generated. It does not admit a decreasing automorphism

(for instance because of Lemma 3.6) and so Theorem 3.5 allows us to infer that the

epimorphism σr : G1 � P is fixed by all of AutG1.

The group G2 is an ascending HNN-extension with a base group that is isomor-

phic to G0 (see [Bieri and Strebel 2016, Lemma E18.8]). If G0 is finitely generated

or finitely presented, so is therefore G2. The group is normalized by the reflection

in the midpoint of I and so Theorem 3.8 implies that ψ : g �→ σ�(g) ·σr (g) is fixed

by AutG2. This homomorphism ψ is nonzero, for it coincides with σ 2� . (Actually,

σ� and σr are also fixed by AutG2.)

Now to the group G3. It differs from G2 in several respects: it cannot be written

as an ascending HNN-extension with a finitely generated base group contained in

B(I ; A, P); it is finitely generated if G0 is so, but, if finitely generated, it does

not admit a finite presentation (see part (ii) of Lemma E18.8 and Remark E18.10

in [Bieri and Strebel 2016]). The group G3 is normalized by the reflection in the

mid point of I and so ψ : G3 → P is fixed by AutG3; this conclusion, however, is

of no interest as ψ is the zero map. Actually, more is true: every homomorphism

ψ ′ : G3 → P fixed by ρ and vanishing on the bounded subgroup B3 of G3 is the
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zero-map: by definition (3-10) the group G3/B3 is infinite cyclic and so ψ ′ must
be a multiple of σ�.

Remark 3.12. The previous discussion shows that G0, G1 and G2 admit nontrivial

homomorphisms into P that are fixed by the corresponding automorphism groups.

This fact and the observation made in Section 1A imply that every automorphism

of one of these groups has infinitely many corresponding twisted conjugacy classes.

This reasoning does not hold for G3, for ψ : G3 → P is the zero homomorphism.

So the question whether or not an automorphism α of G3 has infinitely many

twisted conjugacy classes has to be tackled by another approach. Note first that the

homomorphisms σ� and σr are both nonzero; as G3 satisfies the assumptions of

Theorem 3.5 these homomorphisms are therefore fixed by Aut+ G3. It follows that

every increasing automorphism α of G3 has infinitely many α-twisted conjugacy

classes. We are thus left with the coset of decreasing automorphisms of G3.

Consider, for example, the automorphism β induced by conjugation by the

reflection ϑ in the midpoint of the interval I. Our aim is to construct an infinite
collection of elements gn ∈ G3 and to verify then that they represent pairwise

distinct β-twisted conjugacy classes. This verification will be based on the fact that

β has order 2 and a connection between twisted and ordinary conjugacy classes,

available for automorphisms of finite order.8

Let f and g be elements of G3 that lie in the same β-twisted conjugacy class.

By definition, there exists then h ∈ G3 that satisfies the equation g = h ◦ f ◦β(h−1).
The calculation

g ◦ β(g) = (
h ◦ f ◦ β(h−1)

) ◦ β
(
h ◦ f ◦ β(h−1)

)
= h ◦ ( f ◦ β( f )) ◦ β2(h−1) = h( f ◦ β( f ))

shows then that the elements f ◦β( f ) and g◦β(g) are conjugate. It suffices therefore

to find a sequence of elements n �→ fn with the property that the compositions

fn1 ◦β( fn1) and fn2 ◦β( fn2) represent distinct conjugacy classes whenever n1 �= n2.
To obtain such a sequence, we use the fact that G contains B(I ; A, P) and that

B(I ; A, P) consists of all PL-homeomorphisms with slopes in P, breakpoints in
the dense subgroup A, and which are the identity near the end points. For every
positive integer n there exists therefore a nontrivial element fn ∈ B(I ; A, P) whose

support has n connected components, all contained in the interval ]0, b/2[. Then
hn = fn ◦ β( fn) = fn ◦ (ϑ ◦ fn ◦ ϑ−1)

has 2n connected components, so hn1 is not conjugate to hn2 for n1 �= n2. It follows
that G3 has infinitely many β-twisted conjugacy classes.

8Compare with [Gonçalves and Sankaran 2016, Lemma 2.3].
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The previous reasoning allows of some improvements, but it does not seem

powerful enough to establish that G3 has infinitely many α-twisted conjugacy

classes for every decreasing automorphism α of G3.

Example 3.13. Example 3.11 admits a generalization that is worth being brought
to the attention of the reader. Assume P is a nontrivial subgroup of the positive

reals, A is a (nontrivial) P-submodule of �, and ν is an endomorphism of P. Now
fix b ∈ A>0, set I = [0, b], and define

(3-11) Gν = {g ∈ G([0, b]; A, P) | σr (g) = ν(σ�(g))}.

We are interested in finding a nonzero homomorphism ψ : Gν → P that is fixed

by AutGν . Theorem 3.8 implies that the homomorphism ψ : g �→ σ�(g) · σr (g) is

fixed by AutGν whenever P is not cyclic; this homomorphism is nonzero unless ν

is the map that sends p ∈ P to its inverse p−1.

Assume now that P is cyclic. Then Gν is isomorphic to one of the groups G1, G2,

or G3 discussed in Example 3.11. This claim is clear if ν is the zero map, for Gν

coincides then with ker σr and is therefore isomorphic to G1. Assume now that ν is

not zero. The quotient group Gν/B(I ; A, P) is then an infinite cyclic subgroup of

the quotient group G(I ; A, P)/B(I ; A, P) which is free abelian group of rank 2.

By the classification in Section 18.4b of [Bieri and Strebel 2016], the group Gν

is therefore isomorphic, either to G2 or to G3. Since the isomorphism Gν −→∼ G2,

respectively Gν −→∼ G3, is induced by conjugation by an autohomeomorphism of

]0, b[ and as conjugation by the reflection in b/2 induces decreasing automorphisms

in G2 and in G3, the group Gν admits a decreasing automorphism, say β; it induces

an isomorphism β∗ : im σ� −→∼ im σr (see Lemma 3.6). Our next aim is to obtain a

formula for β∗.
The definition of Gν shows, first of all, that im σ� = P and that im σr = ν(P).

Let p be the generator of P with p <1. Then ν(p)= pm for some nonzero integerm
(recall that ν is not the zero map). Pick an element gp ∈ Gν with σ�(gp)= p. Then 0
is an attracting fixed point of gp restricted to a sufficiently small interval of the

form [0, δ], and hence b is an attracting fixed point for the restriction of β(gp) to

a sufficiently small interval of the form [b − ε, b]. Thus β(gp) < 1. Since β(gp)

generates im σr = ν(P) = gp(pm) it follows that β∗ is given by the formula

(3-12) β∗ : P → P, p �→ p|m|.

Consider now the commutative square (3-6), with α replaced byβ. It shows that

(3-13) (σr ◦ β)(gp) = β∗(σ�(gp)) = β∗(p) = p|m| = (σ�(gp))
|m|
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and so σr ◦β = σ
|m|
� . The preceding reasoning is also valid with β−1 in place of β,

for β−1 is also a decreasing automorphism of Gν , and so the relation σr ◦β−1=σ
|m|
�

holds, hence also the relation σ
|m|
� ◦ β = σr .

Consider next the homomorphism ψ : Gν → P that takes g to σ�(g)|m| · σr (g).

The calculation

(ψ ◦ β)(g) = σ
|m|
� (β(g)) · σr (β(g)) = σr (g) · σ |m|

� (g) = ψ(g)

shows then that ψ is fixed by β. Note, however, that ψ is the zero homomorphism

whenever m is negative, for in this case the definition of Gν implies that

ψ(g) = (σ�(g))|m| · σr (g) = (σ�(g))|m| · (σ�(g))m = 1

for every g ∈ Gν , just as it happens with G3 in Example 3.11.

Remark 3.14. Suppose P is cyclic and ν : P → P is neither the identity nor the
passage to the inverse. Then Gν admits decreasing automorphisms β, but none of

them can be induced by an autohomeomorphism ϕ̃ : I −→∼ I that is differentiable at
the end points; indeed, (3-13) shows that σr ◦β �= σ�, in contrast to what happens if

the chain rule can be applied (see Proposition 3.1). It follows, in particular, that the

three conditions (a), (b), and (c) stated in Theorem 3.8 can occur simultaneously.

4. Characters fixed by Aut G([0, ∞[; A, P)

The results in this section differ from those of Section 3 in two important respects:

in many situations several candidates for ψ : G → P are available and one of the
candidates may not be fixed by Aut+ G.

4A. Existence of decreasing automorphisms. Every compact interval of the form
[0, b], and also the line, is invariant under a reflection. It follows that the groups
G(I ; A, P) with I one of these intervals, but also many of their subgroups, admit
decreasing automorphisms. The case where I is a half-line, say [0, ∞[, is different:
then G([0, ∞[; A, P) does not admit a decreasing automorphism.

In this section, we first justify this claim and discuss then the extent to which it

continues to be valid for subgroups of G([0, ∞[; A, P). We begin with an analogue

of Lemma 3.6 in which the homomorphism σr is replaced by the homomorphism ρ

defined in (2-4).

Lemma 4.1. Assume I is the half-line [0, ∞[ and G is a subgroup of G(I ; A, P)

that contains B(I ; A, P). Then every decreasing automorphism α induces an
isomorphism α∗ : im σ� −→∼ im ρ.

Proof. The proof is very similar to that of Lemma 3.6. The kernel of σ� consists of

all elements in G that are the identity near 0, while the kernel of ρ is made up of the

elements in G that are the identity near ∞. Since α is induced by conjugation by a
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decreasing homeomorphism of ]0, ∞[, the image of ker σ� consists of elements α(g)

that are the identity on a half-line of the form [t (g), ∞[, and so α(ker σ�) ⊆ ker ρ.

Since α−1 is also a decreasing automorphism, the preceding inclusion is actually an
equality. It follows that α induces an isomorphism α∗ : im σ� −→∼ im ρ that renders

the square

(4-1)

G α
��

σ�

����

G

ρ

����

im σ�

α∗
�� im ρ

commutative. �
The preceding lemma leads directly to a criterion for the nonexistence of de-

creasing automorphisms. Indeed, the image of σ� is abelian, while that of ρ is often

a nonabelian, metabelian group, and so we obtain

Criterion 4.2. Assume I is the half-line [0, ∞[ and G is a subgroup of G(I ; A, P)

that contains B(I ; A, P). If im ρ is not abelian then AutG = Aut+G.

4B. Construction of homomorphisms: part I. We turn now to the construction of
homomorphisms fixed by Aut+G, or even by AutG. Several homomorphisms are
at our disposal. The first of them is σ�. Corollary 3.10 tells us then:

Proposition 4.3. Assume that G is a subgroup of G([0, ∞[; A, P) containing
B(I ; A, P). Then the homomorphisms σ� is fixed by Aut+G.

We move on to the homomorphism ρ. Here two cases arise, depending on

whether its image is abelian or nonabelian. In the second case, a very satisfying

conclusion holds. It is enunciated in

Theorem 4.4. Assume I = [0, ∞[ and G is a subgroup of G(I ; A, P) containing
B(I ; A, P). If im ρ is not abelian, σr is a nonzero homomorphism fixed by AutG.

Proof. Suppose im ρ is nonabelian. Then Lemma 4.1 forces α to be increasing. Let

ϕ : ]0, ∞[ −→∼ ]0, ∞[ be the autohomeomorphism that induces α by conjugation.

As it is increasing, it is affine near∞ by Proposition 4.5 below, and so the following

calculation

σr (α(g)) = limt→∞
(
ϕ ◦ g ◦ ϕ−1)′(t)

= limt→∞
(
ϕ′(g ◦ ϕ−1(t)) · g′(ϕ−1(t)) · (ϕ−1)′(t)

)
= limt→∞

(
ϕ′(t) · g′(t) · (ϕ−1)′(t)

)
= limt→∞ g′(t) = σr (g)

is valid for every g ∈ G, which shows that α fixes the homomorphism σr . This

homomorphism is nonzero. Indeed, G/ ker ρ −→∼ im ρ is not abelian by hypothesis,
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while ker σr/ ker ρ is abelian and thus the third term of the extension

ker σr/ ker ρ � G/ ker ρ � G/ ker σr

is not zero, whence ker σr �= G. �

We are left with proving an analogue of Proposition 3.2. For later use, we state

it in greater generality than needed at this point, namely as

Proposition 4.5. Assume G and G are subgroups of G(I ; A, P), both containing
the subgroup B(I ; A, P), and that I is either the half-line [0, ∞[ or the line �. Let
α : G −→∼ G be an isomorphism and let ϕα be an autohomeomorphism of int(I )
that induces α by conjugation.

If im ρ is not abelian and ϕα is increasing then ϕα is affine near ∞.

Proof. We adapt the argument of Part 2 in the proof of [Bieri and Strebel 2016,
Supplement E17.3] to the case at hand. By assumption, the image of

ρ∗ : G → Aff(A, P) −→∼ A� P

is not abelian; its derived group is therefore (isomorphic to) a nontrivial submodule

A1 of A which, being nontrivial, contains arbitrary small positive elements and so
is dense in �. Let ρ∗ : G → A � P be the similarly defined homomorphism; the
derived group of its image is then isomorphic to a nontrivial submodule A1 of A.
By part (ii) of Corollary 2.7, the isomorphism α induces an isomorphism α∗ of

G/ ker ρ onto G/ ker ρ; hence an isomorphism of im ρ onto im ρ, and, finally, an

isomorphism α1 of A1 onto A1. They render commutative the following diagram

(4-2)

G
ρ

�� ��

α

��

im ρ �� ��

α∗
��

A1
α1

��

G
ρ

�� �� im ρ �� �� A1

We claim the automorphism α1 : A1 −→∼ A1 is strictly increasing.
Let b ∈ A1 be an arbitrary positive element and let fb ∈ G be a PL-homeo-

morphisms that is a translation with amplitude b near ∞, say on [tb,1, ∞[. Then
α( fb) is a PL-homeomorphism which is a translation with amplitude α1(b) near∞,

say for t ≥ ϕ(tb,2). Since α is induced by conjugation by ϕ, one has α( fb) = ϕ fb;

so ϕ ◦ fb = α( fb) ◦ϕ. By evaluating this equality at t ≥max{tb,1, tb,2} one obtains
the chain of equations

ϕ(t + b) = (ϕ ◦ fb)(t) = (α( fb) ◦ ϕ)(t) = α1(b) + ϕ(t).

It implies that α1(b) is positive, for b is so by assumption and ϕ is increasing.
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We show next that α1 is given by multiplication by a positive real number s1. As
stated in the first paragraph of the proof, A1 is a dense subgroup of �add. Since

α1 is strictly increasing it extends to a (unique) strictly increasing automorphism

α̃1 : � −→∼ �. This automorphism is continuous and hence an �-linear map, given

by multiplication by some positive real number s1.
We come now to the final stage of the analysis of ϕ. In it we show that the

restriction of ϕ to a suitable interval of the form [t∗, ∞[ is affine. Choose a positive
element b∗ ∈ A1 and let fb∗ ∈ G be an element whose image under ρ is a translation

with amplitude b∗. It then follows, as before, that there is a positive number t∗ so
that the equation

(4-3) ϕ(t + b∗) = α1(b∗) + ϕ(t) = ϕ(t) + s1 · b∗

holds for every t ≥ t∗. Consider now an arbitrary positive element b ∈ A1. There
exists then a positive number tb such that the calculation

ϕ(t + b) = α1(b) + ϕ(t) = ϕ(t) + s1 · b

is valid for t ≥ tb. Choose a positive integer m which is so large that tb ≤ t∗ +m ·b∗.
For every t ≥ t∗ the following calculation is then valid:

ϕ(t + b) + s1 · mb∗ = ϕ(t + b + m · b∗)
= ϕ(t + m · b∗) + s1 · b

= ϕ(t) + s1 · mb∗ + s1 · b.

It follows, in particular, that the equation

(4-4) ϕ(t∗ + b) = ϕ(t∗) + s1 · b

holds for every positive element b ∈ A1 and t ≥ t∗. Since ϕ is continuous and

increasing and as A1 is dense in �, this equation allows us to deduce that ϕ is affine

with slope s1 on the half-line [t∗, ∞[, and so the proof is complete. �

The hypotheses of the Theorem 4.4 are satisfied if G = G([0, ∞[; A, P); the

theorem, Lemma 4.1 and Corollary 3.10 thus yield the pleasant

Corollary 4.6. If G coincides with G([0, ∞[; A, P) then both σ� : G → P and
σr : G → P are surjective homomorphisms fixed by AutG.

Corollary 4.6 is the analogue of Corollary 3.9, but with the compact interval I
replaced by a half-line. Groups G(I ; A, P) with I a half-line have, so far, been
investigated less often than groups with I a compact interval; they have, however,
their own merits, in particular the following one: to date, finitely generated groups

of the form G(I ; A, P) with I compact are only known for very special choices of
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the parameters (A, P).9 By contrast, finitely generated groups with I a half-line
are far more common, as is shown by the following characterization:

Proposition 4.7 [Bieri and Strebel 2016, Theorem B8.2]. The homeomorphism
group G([0, ∞[; A, P) is finitely generated if and only if the following conditions
are satisfied:

(i) P is finitely generated,

(ii) A is a finitely generated �[P]-module, and

(iii) A/(I P · A) is finite.

4C. Construction of homomorphisms: part II. Theorem 4.4 is very pleasing: it
shows that the homomorphism σr is fixed by all automorphisms provided merely

the image of ρ : G → Aff(I P · A, P) is not abelian. In this section, we discuss the
remaining case.

The image of G([0, ∞[; A, P) under ρ is the affine group

Aff(I P · A, P) −→∼ (I P · A)� P

(see Section 2B). This group is metabelian and contains two obvious kinds of abelian

subgroups: those made up of translations, corresponding to the subgroups of I P · A,
and the subgroups consisting of homotheties t �→ q · t with ratio q varying in a
subgroup Q of P. We begin by discussing the second type of abelian subgroups.

4C1. Image of ρ is made up of homotheties. Given a subgroup Q of P let GQ

be the subgroup of G = G([0, ∞[; A, P) consisting of the products f ◦ g with
g ∈ B = B([0, ∞[; A, P) and f a homothety t �→ q · t with q ∈ Q; since B is

normal in G the set so defined is actually a subgroup of G. We do not know which
of these subgroups GQ admit decreasing automorphisms, but those with Q cyclic

have this peculiarity, as can be seen from

Lemma 4.8. Assume I is the half-line [0, ∞[ and Q is a cyclic subgroup of P.
Then the subgroup

(4-5) GQ = { f ◦ g | f = (t �→ q · t) with q ∈ Q and g ∈ B}
of the group G([0, ∞[; A, P) does admit a decreasing automorphism.

Proof. Let q0 be the generator of Q with q0 > 1 and choose a positive element

a0 ∈ I P · A. For each k ∈ � set tk = qk · a0 and define ϕ : ]0, ∞[ −→∼ ]0, ∞[ to be
the affine interpolation of the assignment (tk �→ t−k)k∈�. Then ϕ is an infinitary PL-

autohomeomorphism of ]0, ∞[ whose interpolation points lie in (I P · A)×(I P · A).

9See [Bieri and Strebel 2016, p. vii] for the list of the groups known at the end of 2014.
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The slopes of the segments forming the graph of ϕ are the negatives of powers

of q0; indeed,

tk+1− tk = qk+1
0 · a0− qk

0 · a0 = (q0− 1) · qk
0 · a0

and

ϕ(tk+1) − ϕ(tk) = (1/q0)k+1 · a0− (1/q0)k · a0 = (1− q0) · q−k−1
0 · a0

and so ϕ has slope (−1) · q−2k−1
0 on the interval [tk, tk+1].

It follows that ϕ maps I P ·A onto itself. Consider now a conjugate ϕ h =ϕ◦h◦ϕ−1
of an element h ∈ GQ . If h ∈ B(I ; A, P), then h has support contained in some
interval of the form Ik(h) = [t−k(h), tk(h)] for some k(h) > 0 and so ϕh has support
in ϕ(Ik(h)) = Ik(h), slopes in P, break points in I P · A and is thus an element of
B ⊂ GQ . If, on the other hand, h is the homothety with ratio q0, then h(tk)= tk+1 for
each index k ∈ � and its conjugate ϕh is the PL-function with interpolation points
(tk, tk−1), hence the homothety with center 0 and ratio q−1

0 and thus ϕh = h−1 lies
in GQ . As GQ is generated by B ∪{(t �→ q0 · t)}, the previous reasoning shows that
the decreasing autohomeomorphism ϕ induces by conjugation an automorphism of

GQ and so the lemma is established. �

Remark 4.9. Assume A, P and Q are as in the statement of the lemma. Then the

bounded group B = B([0, ∞[; A, P) may be perfect and hence simple; cf. [Bieri

and Strebel 2016, Section 12.4]. In such a case, B is the only normal subgroup N
of GQ with G/N infinite abelian and so the lemma implies that no homomorphism
of GQ onto an infinite abelian group is fixed by all of AutGQ . Note, however, that

ρ is fixed by every increasing automorphism of GQ .

4C2. Image of ρ consists of translations. We turn now to the other type of abelian
subgroups of Aff(I P · A, P), but concentrate on a special case. Given a subgroup

Q of P and a subgroup A0 ⊆ I P · A, we set

(4-6) GQ,A0 = {
g ∈ G([0, ∞[; A, P)

∣∣ σ�(g) ∈ Q and ρ(g) ∈ A0� {1}}.
The group GQ,A0 is an extension of B([0, ∞[; A, P) by the abelian group Q × A0.
The class of groups having the form GQ,A0 is of interest for several reasons.

Firstly, if Q and A0 are not isomorphic, every automorphism of GQ,A0 is increasing

by Lemma 4.1. This case occurs frequently, as is brought home by the following

kind of examples. Suppose Q is finitely generated and contains an integer p > 1,

while A0 is a nonzero submodule of I P · A. Then A0 is divisible by p and, in
particular, not free abelian.

Some groups of the form GQ,A0 admit decreasing automorphisms, in particular

the following ones: Let P be a cyclic group generated by the real number p > 1,

let A be a �[P]-submodule of �add and choose a positive element b ∈ A. The
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group G = G([0, b]; A, P) admits decreasing automorphisms, for instance the auto-

morphism induced by conjugation by the reflection ϕ at the midpoint of I = [0, b].
Consider now the group G = GP,�·(p−1)b ⊂ G([0, ∞[; P, A). It is isomorphic

to G; there exists actually an isomorphism induced by an increasing, infinitary

PL-homeomorphism ϕb : [0, ∞[ −→∼ [0, b[; see [op. cit., Lemma E18.2]. Then the
composition ϕ−1

b ◦ ϕ ◦ ϕb induces by conjugation a decreasing automorphism of G.
Thirdly, let τr : GQ,A0 → �add be the homomorphism that maps the PL-homeo-

morphism g ∈ GQ,A0 to the amplitude of the translation ρ(g). This homomorphism

seems to have a good chance of being fixed by Aut+GQ,A0 , but this impression is

mistaken. Indeed, let AutP A0 be the set of elements p ∈ P with p · A0 = A0; this
set is a subgroup of P and the semidirect product A0�AutP A0 is a subgroup of
(I P · A)� P; let G̃ denote the preimage of A0�AutP A0 under the epimorphism

ρ : G([0,∞[; A, P)
ρ
� Aff(I P · A, P) −→∼ (I P · A)� P.

Then GQ,A0 is a normal subgroup of G̃. The group G̃ contains the homothety

ϑp : t �→ p · t for every p ∈ AutP A0, and so conjugation by such a homothety
induces an automorphism αp of GQ,A0 . The calculation

(τr ◦ αp)(g) = τr (ϑp ◦ g ◦ ϑ−1
p ) = (ϑp ◦ g ◦ ϑ−1

p )(t) − t

= ϑp(g(p−1t)) − t = p · (p−1t + τr (g)) − t = (p · τr )(g),

valid for every sufficiently large real number t , then shows that the formula

(4-7) τr ◦ αp = p · τr

holds for each p ∈ AutP A0. We conclude that τr can only be fixed by all of

Aut+GQ,A0 if AutP A0 is reduced to 1 ∈ �×
>0. This condition is fulfilled, for

instance, if A0 is infinite cyclic.

Example 4.10. Given a real number p > 1, set P = gp(p) and A = �[P] =
�[p, p−1]. Choose A0 = A and set G = G P,A0 . Then AutP A0 = P. Concrete
examples are rational integers p ∈ � � {0, 1}, with A0 = �[1/p], or quadratic
integers like

√
2+ 1 with A0 = A = �[√2 ]. We shall come back to the second of

these examples in Section 6E1.

5. Characters fixed by Aut G(�; A, P)

Let I denote one of the intervals [0, b], [0, ∞[ or �, and let G be a subgroup of

G(I ; A, P) containing B(I ; A, P). In Sections 3 and 4 groups with I a compact
interval or a half-line have been studied. In this section we now turn to the line

I = �. Finding nonzero homomorphisms ψ : G → �×
>0 fixed by AutG, is then

harder than in the previously investigated cases, and this for two reasons. Firstly,

subgroups of G(�; A, P) often admit decreasing automorphisms α, in contrast to
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what happens if I is a half-line; in the case of a decreasing automorphism, λ (or ρ)

is only fixed by α if λ coincides with ρ. Secondly, if the image of λ or that of ρ

consists of translations, neither λ nor ρ need be fixed by Aut+G.
The plan of our investigation will be similar to that adopted in Section 4. We

begin by discussing the existence of decreasing automorphisms (in Section 5A),

move on to the main results about the existence of homomorphisms fixed by Aut+G
or AutG (in Section 5B) and complement these results with more special findings in

Section 5C. The layout of the middle Section 5B will resemble that of Section 3A.

5A. Existence of decreasing automorphisms. As in the cases of a compact inter-
val or a half-line, the existence of a decreasing automorphism has an easily stated

consequence, namely

Lemma 5.1. Assume G is a subgroup of G(�; A, P) that contains B(�; A, P).
Then every decreasing automorphism α induces an isomorphism α∗ : im λ −→∼ im ρ

that renders commutative the following square.

(5-1)

G α
��

λ
����

G

ρ

����

im λ
α∗

�� im ρ

Proof. The claim can be established as in the proofs of Lemmata 3.6 and 4.1. �
The images of λ and ρ are both subgroups of the affine group Q =Affo(I P ·A, P).

It is easy to describe some pairs of subgroups (Q1, Q2) that are not isomorphic for
obvious reasons, for instance if one is abelian, and the other is nonabelian. We are,

however, not aware of a classification of the isomorphism types of subgroups of

Affo(I P · A, P) for parameters A �= {0} and P �= {1}.
5B. Construction of homomorphisms: part I. We turn now to the construction
of homomorphisms that are fixed by Aut+G or by AutG. The next result is an
analogue of Corollary 3.4. The main ingredient in its proof is Proposition 4.5.

Proposition 5.2. Let G be a subgroup of G(�; A, P) containing B(�; A, P) and
let α be an automorphism of G that is induced by conjugation by the autohomeo-
morphism ϕα : � −→∼ �. Then the following statements hold:

(i) if α is increasing10 and im ρ is not abelian, then ϕα is affine near ∞;

(ii) if α is increasing and im λ is not abelian, then ϕα is affine near −∞;

(iii) if α is decreasing and im ρ is not abelian, then ϕ̃α is affine, both near −∞ and
near ∞.

10See Definition 2.5.
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Proof. Statement (i) is a restatement of the claim of Proposition 4.5. To establish (ii),
we show that (ii) can be reduced to (i). Let ϑ : � −→∼ � be the reflection in the

origin 0, set G1 = ϑ ◦G ◦ϑ−1 and ϕ1 = ϑ ◦ ϕ̃α ◦ϑ−1. We claim that Proposition 4.5
applies to the couple (G1, ϕ1). Indeed, the groups G(�; A, P) and B(�; A, P) are

invariant under conjugation by ϑ and so G1 is a subgroup of G(�; A, P) containing

B(�; A, P). Next, Lemma 5.3 below shows that

ρ(G1) = ρ
(
ϑ ◦ G ◦ ϑ−1) = ϑ ◦ λ(G) ◦ ϑ−1.

The group ϑ ◦λ(G)◦ϑ−1 is isomorphic to im λ, which is nonabelian by hypothesis,

and so ρ(G1) is nonabelian. Proposition 4.5 thus applies to G1 and to ϕ1 and implies

that ϕ1 = ϑ ◦ ϕα ◦ ϑ−1 is affine near +∞, whence ϕα itself is affine near −∞.

To establish (iii), note that since α is decreasing, the groups im λ and im ρ are

isomorphic (see Lemma 5.1); the hypothesis on im ρ implies therefore that the

image of λ is not abelian. The idea now is to reduce (iii) to the previously treated

cases (i) and (ii). As before, let ϑ : � −→∼ � denote the reflection in the origin 0,

and set ϕ2 = ϑ ◦ ϕα. Then ϕ2 is increasing and conjugation by ϕ2 maps G onto

G =ϑ◦G◦ϑ−1. Proposition 4.5 thus applies and guarantees that ϕ2 is affine near∞.

But ϕ2 = ϑ ◦ ϕα and so ϕα itself is affine near ∞. Consider, secondly, ϕ3 = ϕα ◦ ϑ.

This map is again increasing, and conjugation by it maps G = ϑ ◦ G ◦ϑ−1 onto G.
Invoking Proposition 4.5 once more, we learn that ϕ3 is affine near +∞, and so ϕα

itself is affine near −∞. All taken together, we have shown that ϕα is affine, both

near −∞ and +∞, as asserted by claim (iii). �

We are left with proving

Lemma 5.3. Let ϑ : � −→∼ � denote the reflection in 0. Then the formula

(5-2) ρ
(
ϑ ◦ g ◦ ϑ−1) = ϑ ◦ λ(g) ◦ ϑ−1

holds for every g ∈ PLo(�).

Proof. Let μ and ν denote the functions of PLo(�) into itself given by the left

hand and the right hand side of (5-2); thus μ(g) = ρ(ϑ ◦ g ◦ ϑ−1) for g ∈ PLo(�),

and similarly for ν. Both functions are homomorphisms of PLo(�) into Affo(�)

that vanish on ker λ. It suffices therefore to check (5-2) on a complement of

ker(λ : PLo(�) → Affo(�)). Such a complement is Affo(�) and for affine maps h
the following calculation holds:

ρ(ϑ ◦ h ◦ ϑ−1) = ϑ ◦ h ◦ ϑ−1 = ϑ ◦ λ(h) ◦ ϑ−1. �

5B1. Some corollaries. The first corollary of Proposition 5.2 deals with homo-
morphisms fixed by Aut+ G; the corollary is an analogue of Theorem 3.5.
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Theorem 5.4. Assume G is a subgroup of G(�; A, P) that contains B(�; A, P).
If im ρ is not abelian, σr is a nonzero homomorphism fixed by Aut+G. Similarly,
σ� is a nonzero homomorphism fixed by Aut+G in case im λ is not abelian.

Proof. Let α be an increasing automorphism of G and let ϕα be the increasing

autohomeomorphism of � inducing α by conjugation. (The map exists thanks to

Theorem 2.3.) Assume first that im ρ is not abelian. By part (i) of Proposition 5.2 the

map ϕα is then affine near∞. On the other hand, the image of ρ, being nonabelian,

cannot consist merely of translations; so the homomorphism σr : G → P is nonzero.
The following calculation then reveals that σr is fixed by α:

(σr ◦ α)(g) = σr (ϕα ◦ g ◦ ϕ−1
α )

= limt→∞(ϕα ◦ g ◦ ϕ−1
α )′(t)

= limt→∞
(
ϕ′

α(g(ϕ−1
α (t))) · g′(ϕ−1

α (t)) · (ϕ−1
α )′(t)

)
= limt→∞ g′(ϕ−1

α (t)) = σr (g).

In this calculation the facts that the derivatives of ϕα and of g are constant on a
half-line of the form [t∗, ∞[ and that ϕα is an increasing homeomorphism, have

been used.

Assume next that im λ is not abelian. By part (ii) of Proposition 5.2 the map ϕα

is then affine near −∞. and the homomorphism σ� : G → P is nonzero. Since the

derivatives of every element g ∈ G and of ϕα are constant near −∞, a calculation

similar to the preceding one will show that λ is fixed by α. �

As a second application of Proposition 5.2, we present a result that furnishes a

homomorphism ψ that is fixed by every automorphism. Note, however, that the

hypotheses of the result do not imply that ψ is nontrivial.

Theorem 5.5. Assume G is a subgroup of G(�; A, P) containing B(�; A, P) and
let ψ : G → P be the homomorphism g �→ σ�(g) · σr (g). If the images of λ and
of ρ are both nonabelian, then the homomorphism ψ : G → P is fixed by AutG.

Proof. Let α be an automorphism of G and let ϕα be the autohomeomorphism of �

that induces α by conjugation. If ϕα is increasing both σ� and σr are fixed by α

(see Theorem 5.4) and hence so is ψ .

Assume now that α is decreasing. Part (iii) of Corollary 3.4 then guarantees that
ϕα is affine near −∞ and also near ∞. These facts imply the relations

(5-3) σ� ◦ α = σr and σr ◦ α = σ�

(see below) and so ψ = σ� · σr is fixed by α.
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We are left with verifying relations (5-3). The following calculation uses the fact

that both ϕα and g have constant derivatives near −∞ and +∞:

(σ� ◦ α)(g) = σ�(ϕα ◦ g ◦ ϕ−1
α )

= limt→−∞(ϕα ◦ g ◦ ϕ−1
α )′(t)

= limt→−∞
(
ϕ′

α(g(ϕ−1
α (t))) · g′(ϕ−1

α (t)) · (ϕ−1
α )′(t)

)
= limt→−∞ g′(ϕ−1

α (t)) = σr (g).

A similar calculation establishes the second relation in (5-3). �

We continue with an easy consequence of Theorem 5.5. If the group G is all

of G(I ; A, P) the homomorphism ψ : g �→ σ�(g) · σr (g) is surjective; in addition,

im λ and im ρ both coincide with Affo(A, P) and thus are nonabelian. Therefore,

Theorem 5.5 implies the following:

Corollary 5.6. If G = G(�; A, P), the homomorphism ψ : G → P, mapping
g �→ σ�(g) · σr (g), is nonzero and fixed by AutG.

Corollary 5.6 is an analogue of Corollaries 3.9 and 4.6. Groups of the form

G(�; A, P) have been investigated, so far, less often than groups with I a compact
interval; they have, however, their own merits if it comes to finite generation. There

exists, first of all, a characterization of the finitely generated groups of the form

G(�; A, P), namely the following result:

Proposition 5.7 [Bieri and Strebel 2016, Theorem B7.1]. The group G(�; A, P) is
finitely generated if and only if P is finitely generated and A is a finitely generated
�[P]-module.

Remark 5.8. Proposition 5.7 implies that there are continuously many, pairwise
nonisomorphic, finitely generated groups of the form G(�; A, P).

To prove this assertion, we recall the following result: if two groups of the form
G(�; A, P) and G(�; A, P) are isomorphic and if P is not cyclic, then P = P.11

It suffices therefore to find a collection of finitely generated, pairwise distinct

subgroups {Pj | j ∈ J } of �×
>0 with J an index set having the cardinality of �, and

to set Aj = �[Pj ] for each j ∈ J . Such a collection of subgroups can be obtained
as follows: first one constructs a family of irrational real numbers {xj | j ∈ J } such
that the extended family {1}∪{xj | j ∈ J } is linearly independent (over �) and then

sets Pj = exp(gp({1, xj }). Then each group Pj is free abelian of rank two, hence

not cyclic, and for indices j1 �= j2 the groups Pj1 and Pj2 are distinct.

11see [Bieri and Strebel 2016, Theorem E17.1].
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5C. Construction of homomorphisms: part II. In this final part of Section 5, we
consider subgroups G of G(�; A, P), containing B(�; A, P), with im λ and im ρ

both abelian.12 The most interesting subcase seems to be that where the images of

λ and ρ consists only of translations. Then two homomorphisms τ� and τr of G
into �add can be defined: they associate to g ∈ G the amplitudes of the translations

λ(g) and ρ(g), respectively. One sees, as in Section 4C2, that neither of these

homomorphisms need be fixed by Aut+G.
An exception occurs if the image of ρ or of λ is infinite cyclic. Suppose, for

instance, that im ρ is infinite cyclic, and let f ∈ G be an element that maps onto

the positive generator, say xf , of im τr . Consider an increasing automorphism α

of G and let ϕα be the homeomorphism of � that induces α by conjugation. Then

τr (α( f )) generates im τr , too, and so τr (α( f )) = ±xf . Near +∞, the map f is
a translation with positive amplitude, hence so is α( f ) = ϕα ◦ f ◦ ϕ−1

α , and so

τr (α( f )) > 0. Thus τr ( f ) = (α ◦ τr )( f ). We conclude that τr is fixed by α. An

analogous argument shows that τ� is fixed by every increasing automorphism of G.
All taken together we have thus established the following result:

Proposition 5.9. Let G be a subgroup of G(�; A, P) containing B(�; A, P). Now
assume that the images of λ and ρ contain only translations and that these images
are infinite cyclic. Then τ� and τr are both nonzero homomorphisms that are fixed
by Aut+G.

Example 5.10. Suppose P is an infinite cyclic group, A a (nonzero) �[P]-module
and b a positive element of A. Set G = G([0, b]; A, P). Then there exists a

homeomorphism ϑ : ]0, b[ −→∼ � that induces, by conjugation, an embedding

μ : G([0, b]; A, P) � G(�; A, P)

whose image contains B(�; A, P).13 Let G denote the image of μ. The images of

λ � G and ρ � G are both infinite cyclic and consist of translations. The images of

τ� and τr are therefore infinite cyclic, too, and so the previous lemma applies.

Let’s now consider the special case where P is generated by an integer n ≥ 2,
where A = �[P] = �[1/n] and b = 1. For a suitably chosen homeomorphism ϑ

the image G of μ consists then of all elements g ∈ G(�; �[1/n], gp(n)) fulfilling

the conditions

(5-4) σ�(g) = σr (g) = 1 and τ�(g), τr (g) ∈ �(n − 1);
12If exactly one of im λ and im ρ is abelian, the group does not admit a decreasing automorphism

(by Lemma 5.1) and so Theorem 5.4 yields a nonzero homomorphism fixed by AutG.
13In special cases, for instance if G is Thompson’s group F, this fact is well known (see, e.g.,

[Belk and Brown 2005, Proposition 3.1.1]); the general claim is established in [Bieri and Strebel

2016] (see Lemma E18.4).
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see [Bieri and Strebel 2016, Lemma E18.4]. This group G is called Fn,∞ in [Brin

and Guzmán 1998, p. 298].

By relaxing conditions (5-4) one obtains supergroups of Fn,∞, in particular the
group called Fn in [op. cit., p. 298] and defined by the requirements

(5-5) σ�(g) = σr (g) = 1 and τ�(g), τr (g) ∈ �, τr (g) − τ�(g) ∈ �(n − 1);
see [op. cit., Proposition 2.2.6]. Proposition 5.9 applies to the groups Fn,∞, but
also to the larger groups Fn . Now, the groups Fn and Fn,∞ both admit decreasing

automorphisms, in particular the automorphism induced by the reflection in the

origin. The homomorphisms τ� and τr are therefore not fixed by the full auto-

morphism group of the groups Fn,∞ and Fn , but the difference τr − τ� is a nonzero

homomorphism, with infinite cyclic image, that enjoys this property.

6. Characters fixed by Aut G with G a subgroup of PLo([0, b])
In this section we prove Theorem 1.7. For the convenience of the reader we restate

this result here.

Theorem 6.1. Suppose I = [0, b] is a compact interval of positive length and G is
subgroup of PLo(I ) that satisfies the following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the characters χ
� and χr are both nonzero;

(iii) the quotient group G/(kerχ� · kerχr ) is a torsion group; and

(iv) at least one of the group of units U(imχ
�) or U(imχr ) is reduced to {1, −1}.

Then there exists a nonzero homomorphism ψ : G → �×
>0 that is fixed by every

automorphism of G. The group G therefore has property R∞.

Next we explain the layout of Section 6. We begin by recalling the definition of

the invariant �1 and stating some basic results concerning it. In Section 6C, we

prove Theorem 6.1. The hypotheses of the theorem allow of variations that deserve

some comments. This topic is taken care of in sections 6D through 6F.

6A. Review of �1. Given an infinite group G, consider the real vector space
Hom(G, �) made up of all homomorphisms χ : G → �add into the additive group

of �. These homomorphisms will be referred to as characters. Two nonzero
characters χ1 and χ2 are called equivalent, if one is a positive real multiple of the

other. Geometrically speaking, the associated equivalence classes are (open) rays

emanating from the origin. The space of all rays is denoted by S(G) and called

the character sphere of G. In case the abelianization Gab = G/[G, G] of G is

finitely generated, the vector space Hom(G, �) is finite dimensional and carries a

unique topology, induced by its norms; the sphere S(G) equipped with the quotient
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topology is then homeomorphic to the spheres in a Euclidean vector space of

dimension dim� H1(G, �) = dim�(Gab⊗ �).

The invariant �1(G) is a subset of S(G). It admits several equivalent definitions;

in the sequel, we use the definition in terms of Cayley graphs.14 Fix a generating

set X of G and define � = �(G,X ) to be the associated Cayley graph of G. This
graph can be equipped with G-actions; as we want to work with left G-actions we
define the set of positive edges of the Cayley graph like this:

E+(�) = {(g, g · x) ∈ G × G | (g, x) ∈ G ×X }.
We move on to the definition of �1(G). Given a nonzero character χ, consider

the submonoid Gχ = {g ∈ G | χ(g) ≥ 0} of G and define �χ = �(G,X )χ to be

the full subgraph of �(G;X ) with vertex set Gχ . Both the submonoid Gχ and

the subgraph �χ remain the same if χ is replaced by a positive multiple; so these

objects depend only on the ray [χ] = �>0 ·χ represented by χ. The Cayley graph

� is connected, but its subgraph �χ may not be so; the invariant �
1(G) records the

rays for which the subgraph �χ = �(G,X )χ is connected. In symbols,

(6-1) �1(G,X ) = {[χ] ∈ S(G) | �(G,X )χ is connected}.
One now faces the problem, familiar from homological algebra, that the definition

of �1(G,X ) involves an arbitrary choice and that one wants to construct an object

that does not depend on this choice.

Suppose, first, that G is finitely generated and let X f be a finite generating
set. Then the subgraph �(G,X f )χ is connected if and only if all the subgraphs

�(G,X )χ , are connected (see, e.g., [Strebel 2013, Lemma C2.1]) and so the

following definition is licit:

Definition 6.2. Let G be a finitely generated group and X f a finite generating set
of G. Then �1(G) is defined to be the subset

(6-2) {[χ] ∈ S(G) | �(G,X f )χ is connected}.
The fact that the set (6-2) does not depend on the choice of the finite set X f ,

allows one to select X f in accordance with the problem at hand; see [Strebel 2013,

Sections A2.3a and A2.3b] for some consequences of this fact.

Now suppose that G is an arbitrary group. A useful subset of S(G) can then be

obtained by defining

(6-3) �1(G) = {[χ] ∈ S(G) | �(G,X )χ is connected for every generating set X };
see [Strebel 2013, Definition C2.2]. If G happens to be finitely generated, the sets

(6-2) and (6-3) are equal; for an arbitrary group, the set �1(G) coincides with the

14See, e.g., [Strebel 2013, Chapter C] for alternate definitions.
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invariant �(G) defined by Ken Brown in [Brown 1987b, p. 489] up to a sign; in
other words,

(6-4) �(G) = −�1(G).

The sign in this formula is caused by the fact that Brown uses right actions on

�-trees, whereas left actions are employed in our definition of �1.

The subset �1(G) of S(G) is traditionally called the �1-invariant. The epithet
“invariant” is justified by a fact that we explain next. Suppose α : G −→∼ G is an

isomorphism of groups. Then α induces, first of all, a linear isomorphism of vector

spaces Hom(α, �) :Hom(G, �)−→∼ Hom(G, �), and so an isomorphism of spheres

(6-5) α∗ : S(G) −→∼ S(G), [χ] �→ [χ ◦ α].
This second isomorphism maps the subset �1(G) ⊆ S(G) onto �1(G) ⊆ S(G).

[Strebel 2013, Section B1.2a] has more details.

Later, the case where α is automorphism will be crucial. The assignment

(6-6) �1(G) −→∼ �1(G), α �→ (α−1)∗,

defines a homomorphism from the automorphism group of G into the group of

bijections of �1(G), and hence also one into that of its complement �1(G)c.

Remarks 6.3. (a) Historically speaking, the invariant �1 is a descendent of the

invariant �A(G), introduced by R. Bieri and R. Strebel [1980]. Here the group G is

abelian, A is a finitely generated �G-module, and �A(G) is a subset of the sphere

S(G) depending both on A and on G. The motivation for introducing this invariant
stems from a question posed by G. Baumslag [1974], namely: Is there any way of
discerning finitely presented metabelian groups from the other finitely generated
metabelian groups?

(b) The invariant �1 is a member of a sequence of invariants �m introduced

by B. Renz in his thesis [1988]. The definition of these higher �-invariants is

considerably more involved than that of �1 and so we shall not give it here; we

refer the interested reader to Section 8 of K.-U. Bux’s paper [2004] for a survey of

various equivalent definitions given in the literature. Suffice it to say here that these

invariants form a descending chain

�1(G) ⊇ �2(G) ⊇ · · · ⊇ �m(G) ⊇ · · ·
of open subsets in S(G), and that, so far, there are very few groups whose higher

�-invariants are completely known. In the case of PL-homeomorphism groups, the

most general result known today is due to M. Zaremsky [2016]; it deals with the

sequence of groups G([0, 1]; �[1/n], gp(n)), with n ≥ 2 an integer.
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6B. �1 of subgroups of PLo([0, b]). Given a subgroup G of PLo([0, b]), let σ� be

the homomorphism that assigns to a function g ∈ G the value of its (right) derivative

in the left end point 0; similarly, define σr : G → �×
>0 to be the homomorphism given

by the formula σr (g) = limt→b g′(t). The homomorphisms σ� and σr generalize

the maps with the same names studied in Section 3. By composing them with the

natural logarithm function, one obtains characters of G, namely

(6-7) χ
� = ln ◦ σ� and χr = ln ◦ σr .

The invariant �1(G)c turns out to consist of precisely two points, represented by

the characters χ
� and χr , provided G satisfies certain restrictions. The first of them

rules out that G is a direct product of subgroups G1, G2 with supports in two disjoint

open subintervals I1, I2, and more general decompositions; the second requires that
χ

�, χr be nonzero and hence represent points of S(G); the third condition is natural

in the sense that it holds for all groups of the form G([0; b]; A, P) investigated in

Section 3.

Theorem 6.4. Let I be a compact interval of positive length and G a subgroup of
PLo(I ). Assume the following requirements are satisfied:

(i) no interior point of I is fixed by G;

(ii) the characters χ
� and χr are both nonzero; and

(iii) the quotient group G/(kerχ� · kerχ) is a torsion group.

Then �1(G)c = {[χ�], [χr ]}.
Remarks 6.5. (a) Theorem 6.4 generalizes [Bieri et al. 1987, Theorem 8.1]; in
that work, G is assumed to be finitely generated and condition (iii) is sharpened to

G = kerχ� · kerχr . The theorem improves also on a result stated in [Brown 1987b,

Remark on p. 502]. A proof of Theorem 6.4, based on the Cayley graph definition

of �1(G), can be found in [Strebel 2015, Theorem 1.1].

(b) We continue with a comment that seems overdue. In [Bieri et al. 1987] an

invariant �G ′(G) is introduced for finitely generated groups G; in the sequel, this
invariant will be called �B N S(G). It is defined in terms of a generation property

that uses right conjugation, while left action is employed in the definition of �1(G).

There is, however, a close connection between the two invariants: if G is finitely

generated, then

(6-8) �B N S(G) = −�1(G),

similar to the what happens for Brown’s invariant �(G); see (6-4).

Now, PL-homeomorphism groups are examples of groups made up of permuta-

tions, and for such a group G the underlying set can be equipped with two familiar

compositions. Suppose the composition in the group G is the one familiar to
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analysts (and used in this paper); to emphasize this fact call the group temporarily

Gana. The assignment g �→ g−1 defines then an antiautomorphism of Gana and
hence an isomorphism ι : Gana −→∼ Ggt onto the group obtained by equipping the
set underlying Gana with the composition defined by f ◦ g : t �→ f (t) �→ g( f (t))
and preferred by many group theorists (hence, the subscript “gt”). The invariants of

the groups Gana and Ggt are then related by the formulae

�1(Gana) = −�1(Ggt) and �B N S(Gana) = −�B N S(Ggt).

The analogous formula holds for the invariant � studied in [Brown 1987b].

The two parts of the comment, taken together, lead to the following formulae for

groups made up of bijections:

Ggt arbitrary �⇒ �(Ggt) = �1(Gana),(6-9)

Ggt is finitely generated �⇒ �B N S(Ggt) = �1(Gana).(6-10)

6C. Proof of Theorem 6.1. Let I = [0, b] be an interval of positive length and G a

subgroup of PLo(I ) that satisfies hypotheses (i) through (iv) stated in Theorem 6.1.
Hypotheses (i), (ii), and (iii) allow one to invoke Theorem 6.4 and so

�1(G)c = {[χ�], [χr ]}.
In view of the remarks made at the end of Section 6A, every automorphism α of

G will therefore permute the set {[χ�], [χr ]}. Two cases now arise, depending on
whether or not the automorphism group of G acts by the identity on �1(G)c.

Suppose first that AutG acts trivially on �1(G)c. By hypothesis (iv), one of the

characters χ
� and χr , say χ

�, has an image B with U(B) = {1, −1}. We assert that
χ

� is fixed by AutG. Consider an automorphism α of G. It fixes the ray �>0 ·χ�

and so χ
� ◦α = s ·χ� for some positive real s. The relation χ

� ◦α = s ·χ� implies

next that
imχ

� = im(χ� ◦ α) = s · imχ
�.

So s is a positive element of U(imχ
�) = {1, −1} and thus s = 1.

So far we have assumed that U(χ�) equals {1, −1}; if U(imχr ) is so, one proves

in the same way that χr is fixed by AutG. The homomorphism ψ : G → �×
>0 can

thus be chosen to be σ� if U(imχ
�) = {1, −1} and to be σr if U(imχr ) = {1, −1}.

Assume now that AutG interchanges the points [χ�] and [χr ]. Pick an auto-
morphism, say α−, that interchanges these points (and hence is decreasing) and
denote, as in Remark 2.4(b), by Aut+ G the subgroup of AutG made up of the

increasing automorphisms. Then χr ◦ α− = s ·χ� for some positive real s and so
imχr = s · imχ

�. This relation implies that U(imχ
�) = U(imχr ) = {1, −1}.

We claim that the homomorphism

ψ = σ� · (σ� ◦ α−) = σ� · (s · σr )
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is fixed by AutG. Two cases arise. If α ∈ Aut+G then σ� is fixed by α in view of

the first part of the proof. Moreover, α′ = α− ◦ α ◦ (α−)−1 ∈ Aut+G and so the

calculation

ψ ◦ α = (σ� ◦ α) · (σ� ◦ α−) ◦ α = σ� · (σ� ◦ α′) ◦ α− = σ� · (σ� ◦ α−) = ψ

holds. If α = α− then α2− ∈ Aut+G and so ψ ◦ α− = (σ� ◦ α−) · (σ� ◦ σ 2−) = ψ . It

follows that ψ is fixed by Aut+G ∪ {α−} and hence by AutG.
6D. Discussion of the hypotheses of Theorem 6.1. This section and the next two
contain various remarks on the hypotheses of Theorem 6.1.

6D1. Irreducibility. Let G be a subgroup of PLo([0, b]). The union of the supports
of the elements of G is then an open subset of I = [0, b], and hence a union of
disjoint intervals Jk for k running over some index set K. For each k ∈ K the

assignment g �→ g � Jk defines an epimorphism πk onto a quotient group Gk

so G itself is isomorphic to a subgroup of the cartesian product
∏{Gk | k ∈ K };

more precisely, G is a subdirect product of the quotient groups Gk . Hypothesis (i)

requires that K be a singleton, and so the group G does not admit such obvious

decompositions. This fact prompted the authors of [Bieri et al. 1987] to call a

group G irreducible if card(K ) = 1.

If the group G is not irreducible it may be a direct product G1 × G2 with

each factor Gk an irreducible subgroup of PLo(Ik) where Ik is the closure of Jk .

Then �1(G)c can contain more than 2 points (for more details, see [Strebel 2015,

Section 4.1]).

6D2. Nontriviality of the characters χ
� and χr . In Theorem 6.1 the characters χ

�

and χr are assumed to be nonzero. They represent therefore points of S(G); the

remaining hypotheses and Theorem 6.4 then guarantee that �1(G)c = {[χ�], [χr ]}
and so every automorphism of G must permute the points [χ�] and [χr ].
There exists a variant of Theorem 6.1 in which only one of the characters, say χ

�,

is nonzero, the remaining hypotheses being as before. Then �1(G)c = {[χ�]} (see
[Strebel 2015, Theorem 1.1]) and so the argument in the first part of the proof of

Theorem 6.1 applies and shows that ψ = χ
� is fixed by every automorphism of G.

Note that hypothesis (iii) holds automatically if χ
� or χr vanishes.

6D3. Almost independence of χ
� and χr . Among the assumptions of [Bieri et al.

1987, Theorem 8.1], a sharper form of hypothesis (iii) is assumed, namely that G =
kerχ� ·kerχr ; in addition, G is assumed to be finitely generated. The authors of that

reference refer to this stronger condition by saying that “χ� and χr are independent”.

In what follows, we exhibit various versions of this stronger requirement and explain

then the reason that led the authors to adopt the mentioned language.

We start out with a general result.
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Lemma 6.6. Let ψ1 : G � H1 and ψ2 : G � H2 be epimorphisms of groups. Then
the following statements are equivalent:

(i) H1 = ψ1(kerψ2),

(ii) H2 = ψ2(kerψ1),

(iii) G = kerψ1 · kerψ2,
(iv) (ψ1, ψ2) : G → H1× H2 is surjective.

Proof. Note first that the product kerψ1 · kerψ2 is a normal subgroup of G. Next,
note that ψ1 maps G onto H1 and kerψ1 · kerψ2 onto ψ1(kerψ2) and induces thus

an isomorphism

(6-11) (ψ1)∗ : G/(kerψ1 · kerψ2) −→∼ H1/ψ1(kerψ2).

It follows, in particular, that statements (i) and (iii) are equivalent. By exchanging

the rôles of the indices 1 and 2, one sees that statements (ii) and (iii) are equivalent.

Assume now that statements (i) and (ii) hold and consider (h1, h2) ∈ H1× H2.
Sinceψ1 is surjective, h1 has a preimage g1∈G; as statement (i) holds, this preimage
can actually be chosen in kerψ2. If this is done, one sees that (ψ1, ψ2)(g1)= (h1, 1).
One finds similarly that there exists g2 ∈ kerψ1 with (ψ1, ψ2)(g2) = (1, h2). The
product g1 · g2 is therefore a preimage of (h1, h2) under (ψ1, ψ2).

The preceding argument proves that the conjunction of (i) and (ii) implies

statement (iv). Assume, finally, that (iv) holds. Given h1 ∈ H1, there exists then
g1 ∈ G with (ψ1, ψ2)(g1) = (h1, 1); so g1 is a preimage of h1 lying in kerψ2. The
implication (iv) ⇒ (i) is thus valid, and so the proof is complete. �
Remark 6.7. Lemma 6.6 allows one to understand why the phrase “χ� and χr

are independent” is used in [Bieri et al. 1987] to express the requirement that

G = kerχ� · kerχr , the group G being a finitely generated, irreducible subgroup of

PLo([0, b]). Let ψ1 denote the epimorphism G � imχ
� obtained by restricting the

domain of χ� : G → � to imχ
�, and let ψ2 be defined analogously. If statement (iii)

holds, then the implication (iii) ⇒ (iv) of Lemma 6.6 shows that the image of

(χ�, χr ) : G → �add × �add is imχ
� × imχr . This fact amounts to saying that

the values of the characters χ
� and χr can be prescribed independently (within

imχ
� × imχr ), in contrast to what happens, for instance, if the characters satisfy a

relation like χ2 = −χ1.
15

By analyzing the proof of Theorem 8.1 in [op. cit.] one finds that it suffices

to require that the normal subgroup kerχ� · kerχr has finite index in the finitely

generated group G; a condition that we shall paraphrase by saying that χ� and χr are

almost independent. Theorem 6.4 extends this result to possibly infinitely generated
groups G; the new form of hypothesis (iii) will likewise be referred to by saying

15Example 3.13 considers more general relations.
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that χ� and χr are almost independent. This form of almost independence is used
in the proof Theorem 6.4 to find commuting elements of a certain type; see, e.g.,

[Strebel 2015, Section 3.3]. It remains unclear what �1(G)c looks like if χ� and χr

are not almost independent.16

6E. Group of units. In Section 1E, the group of units U(B) of a subgroup B of
�add is introduced. This notion allows one to state a very simple condition that

implies, in conjunction with the hypotheses of Theorem 6.4, that AutG fixes the

character χ
� if it fixes the ray [χ�] = � ·χ�.

In this section, we discuss the group of units of some concrete examples of

subgroups B of �add, then study two types of subgroups B of �add where methods

taken from the theory of transcendental numbers allow one to establish that B has
only trivial units.

6E1. Elementary examples. We begin with an observation: a subgroup B and a
nonzero real multiple s · B of B have the same group of units. If B is not reduced
to 0, we may therefore assume that 1 ∈ B.

(a) If B is infinite cyclic, it is a positive multiple of �. Clearly U(�) = {1, −1}.
(b) If B is free abelian of rank 2, we may assume that it is generated by 1 and an
irrational number ϑ ; so B = � · 1⊕ � · ϑ. If u is a unit of B then u = u · 1 ∈ B,
say u = a + b · ϑ with (a, b) ∈ �2. The condition u · B ⊆ B implies next that

u · ϑ = a · ϑ + b · ϑ2 lies in B. If b �= 0, the real ϑ is thus a quadratic algebraic

number; if b = 0, the condition that u · B = B forces a to 1 or −1. It follows that
U(B) = {1, −1} if ϑ is an irrational, but not a quadratic algebraic number.

(c) Let B be the additive group of a subring R of �, for instance the additive group

of the ring �[P] generated by a subgroup P of �×
>0 or of a ring of algebraic integers.

Then U(B) is nothing but the group of units U(R) of R; if R is a ring of the form
�[P] its group of units contains, of course, P ∪ −P, but it may be considerably
larger; moreover, rings of algebraic integers have also often units of infinite order.

Note, however, that not every subring R �= � of � has nontrivial units, an example

being the polynomial ring �[s] generated by a transcendental number s.

6E2. Transcendental subgroups. Many of the familiar examples of subgroups of
PLo([0, b]) consist of PL-homeomorphisms with rational slopes; this is true for
Thompson’s group F, but also for its generalizations Gm = G([0,1];�[1/m],gp(m))

with m ≥ 3 an integer and for many of the groups studied by Stein [1992].
The values of the characters χ

� are then natural logarithms of rational numbers,

so either transcendental numbers or 0 (see, e.g., [Niven 1956, Theorem 9.11c]).

We are thus led to study the unit groups U(B) of subgroups B ⊂ � that contain

16Sections 4.2 and 4.3 in [Strebel 2015] have some preliminary results.

139



transcendental numbers; in view of the fact that U(B) = U(s · B) for every s �= 0,

it is not so much the nature of the elements of B that is important, but the nature of
the quotients b1/b2 of nonzero elements in B. The following definition singles out
a class of subgroups B that turn out to be significant.

Definition 6.8. (a) Let B �= {0} be a subgroup of the additive group �add of the

reals. We say B is transcendental if, for each ordered pair (b1, b2) of nonzero
elements in B, the quotient b1/b2 is either rational or transcendental.

(b) We call a nonzero character χ : G → � transcendental if its image in �add is

transcendental.

The next result explains why transcendental subgroups are welcome in our study.

Proposition 6.9. If B is a nontrivial, finitely generated, transcendental subgroup
of �add, then U(B) = {1, −1}.
Proof. Suppose u is a unit of B. Then u · B = B. Pick b ∈ B � 0; this is possible

since B is not reduced to 0. The assignment 1 �→ b extends to a homomorphism
�[u]→ B of �[u]-modules; it is injective since � has no zero-divisors. The fact that

B is finitely generated implies next that the additive group of the integral domain
�[u] is finitely generated and so u is an algebraic integer; as B is transcendental by
assumption, u must therefore be an algebraic integer and also a rational number,
hence an integer. Finally, u−1 satisfies also the relation u−1 · B = B, and so u−1 is
an integer, too. �

We continue with a combination of Theorem 6.1 and Proposition 6.9.

Corollary 6.10. Suppose I = [0, b] is a compact interval of positive length and G
is subgroup of PLo(I ) that satisfies the following conditions:

(i) no interior point of the interval I = [0, b] is fixed by G;

(ii) the characters χ
� and χr are both nonzero;

(iii) the quotient group G/(kerχ� · kerχr ) is a torsion group G; and

(iv) the image of σ� or that of σr is finitely generated and transcendental.

Then there exists a nonzero homomorphism ψ : G → �×
>0 that is fixed by every

automorphism of G.

6E3. Examples of transcendental subgroups of �add. In order to make use of
Proposition 6.9, one needs a supply of transcendental subgroups of �. The simplest

ones are the cyclic subgroups; noncyclic subgroups are harder to come by.

Example 6.12 below describes a first collection of transcendental subgroups. It

is based on the following theorem, established independently by A. O. Gelfond

in 1934 and by T. Schneider in 1935:
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Theorem 6.11 (Gelfond–Schneider theorem). If p1 and p2 are nonzero (real or
complex) algebraic numbers and if p2 �= 1, then ln p1/ ln p2 is either a rational or
a transcendental number.

Proof. See, e.g., [Niven 1956, Theorem 10.2]. �

Example 6.12. Let P denote a subgroup of �×
>0 generated by a set P of algebraic

numbers and define B = ln P to be its image in �add under the natural logarithm.

Then every element in P is a positive algebraic number, so the Gelfond–Schneider

theorem implies that every quotient ln p1/ ln p2 of elements in P � {1} is either
rational or transcendental.

In Example 6.12 the set P is allowed to be infinite; for such a choice, the group

B = ln(gp(P)) is not finitely generated and so neither Proposition 6.9 nor its

Corollary 6.10 applies. Now, in Proposition 6.9 the finite generation of B is only
used to infer that a unit u of B—which, by the transcendence of B, is either rational
or transcendental— is also an algebraic integer, and hence a rational integer.

Proposition 6.14 below furnishes examples of infinitely generated, transcendental

groups that have only 1 and −1 as units. Its proof makes use of the following result,
due to C. L. Siegel and rediscovered by S. Lang; see [Lang 1966, Theorem II.1] or

[Lang 1971, Theorem (1.6)]:

Theorem 6.13 (Siegel–Lang theorem). Suppose β1, β2 and z1, z2, z3 are nonzero
complex numbers. If the subsets {β1, β2} and {z1, z2, z3} are both �-linearly inde-
pendent then at least one of the six numbers

exp(βi · zj ), with (i, j) ∈ {1, 2}× {1, 2, 3},
is transcendental.

Here then is the announced result:

Proposition 6.14. Suppose that P is a set of positive algebraic numbers and set
B = ln gp(P). If B is free abelian of positive rank, then U(B) = {1, −1}.
Proof. Note first that every element of P = gp(P) is a positive algebraic number.

Consider now a unit u of B. Since B has positive rank, it contains a nonzero

element b1 = ln q1. Then u · b ∈ B � {0}; so b2 = u · b1 has the form ln q2 and thus
u is either rational or transcendental (by the Gelfond–Schneider theorem).
Assume first that u is rational, say u = m/n, where m and n are relatively prime

integers. The hypothesis (m/n) · B = B implies then that m B = nB. As B is free
abelian of positive rank this equality can only hold if |m| = |n| = 1. So u ∈ {1, −1}.
Assume now that u is transcendental. Fix p ∈ P � {1}. Then u · ln p ∈ B = ln P ;

so there exists q ∈ P with ln q = u · ln p; put differently, exp(u · ln p) lies in P and
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is thus an algebraic number. As the powers of u are again units of B it follows that

exp(u� · ln p) ∈ P for every � ∈ �. Set

β1 = ln p, β2 = u · ln p, and zj = u j for j = 1, 2, 3.

Then the sets {β1, β2} and {z1, z2, z3} fulfill the hypotheses of Theorem 6.13; its
conclusion, however, is contradicted by the previous calculation. This state of

affairs shows that the unit u cannot be transcendental. �
Example 6.15. Let P be a nonempty set of (rational) prime numbers and let P
denote the subgroup of �×

>0 generated by P. Then P is free abelian with basis P
(by the unique factorization in �×

>0) and so U(ln P) = {1, −1}.
More generally, every nontrivial subgroup P of �×

>0 is a free abelian group and

hence B = ln P has only the units 1 and −1.
6E4. Some properties of transcendental subgroups and transcendental characters.
The transcendence of a character is a property that has not yet been discussed in the

literature on the invariant �1. In this section, we therefore assemble a few useful

properties of this notion.

Assume B ⊂ �add is a transcendental subgroup. Then:

(a) every nontrivial subgroup B ′ ⊆ B is transcendental (immediate from the

definition);

(b) if χ : G → � is a character whose image is a nontrivial subgroup of B then χ is

transcendental (by (a)), and so are all the compositions χ ◦ π with π : G̃ � G
an epimorphism of groups (immediate from the first part);

(c) if χ, χ′ are characters of G with images equal to B, the image of χ + χ′ is
contained in B, and so the character χ + χ′ is transcendental, unless it is 0;

(d) if χ is transcendental and α1, . . . , αm are automorphisms of G the character

η = χ ◦ α1+ · · · +χ ◦ αm

is transcendental, unless it is zero.

A further property is discussed in part (iv) of Proposition 6.16 below.

6F. Passage to subgroups of finite index. The next proposition shows that the
hypotheses stated in Corollary 6.10 are inherited by subgroups of finite index.

Proposition 6.16. Let G be a subgroup of PLo([0, b]) and H ⊆ G a subgroup of
finite index. Denote the restrictions of χ

� and χr to H by χ′
� and χ′

r . Then the
following statements are valid:

(i) G is irreducible if and only if H is irreducible;

(ii) χ
� is nonzero precisely if χ′

� is nonzero, and similarly for χr and χ′
r ;
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(iii) the characters χ
� and χr are almost independent if and only if χ′

� and χ′
r are

almost independent;

(iv) χ
� is transcendental exactly if χ′

� is transcendental, and similarly for χr and χ′
r .

Proof. Claim (i) holds since the support of a PL-homeomorphism f coincides with
that of its positive powers f m. Assertion (ii) is valid since the image of a character

is a subgroup of �add and hence torsion-free. The fact that the quotient b1/b2 of
nonzero real numbers coincides, for every positive integer m, with the quotient
(mb1)/(mb2) allows one to see that a nonzero character χ of G is transcendental if

its restriction to H is so; the converse is covered by property (a) stated in Section 6E4.

We are left with establishing statement (iii).

To achieve this goal, we compare the quotient groups G/(kerχ� · kerχr ) and

H/(kerχ′
� ·kerχ′

r ). By (6-11), the first of them is isomorphic to the quotient group

A1 = imχ
�/χ�(kerχr ); the second one is isomorphic to A2 = imχ′

�/χ
′
�(kerχ

′
r ).

Clearly, A2 = imχ′
�/χ�(kerχ

′
r ). The groups A1 and A2 fit into the short exact

sequences

A2 = imχ′
�/χ�(kerχ

′
r ) ↪→ A = imχ

�/χ�(kerχ
′
r ) � imχ

�/ imχ′
�,(6-12)

χ
�(kerχr )/χ�(kerχ

′
r )

↪→ A = imχ
�/χ�(kerχ

′
r ) � A1 = imχ

�/χ�(kerχr ).

(6-13)

The claim now follows from the fact that imχ
�/ imχ′

� and χ
�(kerχr )/χ�(kerχ

′
r )

are finite groups with orders that divide the index of H in G. �

A first application of Proposition 6.16 is the following corollary:

Corollary 6.17. Let G be a finitely generated, irreducible subgroup of PLo(I ). If
the characters χ

� and χr are almost independent and one of them is transcendental,
then any group � commensurable17 with G has property R∞.

Proof. Let H0 ⊂ G be a finite index subgroup of G that is isomorphic to a finite

index subgroup �0 of �. There exists then a finite index subgroup �1 of �0 that is
characteristic in �; see, e.g., [Lyndon and Schupp 1977, Theorem IV.4.7]. Let H1 be
the subgroup of H0 that corresponds to�1 under an isomorphism H0−→∼ �0. Then H1
has finite index in G and thus Proposition 6.16 allows us to infer that H1 inherits the
properties enunciated forG in the statement of Corollary 6.10. This corollary applies

therefore to H1 and shows that H1 admits a nonzero homomorphism ψ1 : H1→ �×
>0

that is fixed by Aut H1. So H1, and hence �1, satisfy property R∞. Use now the
fact that �1 is a characteristic subgroup of � and apply [Mubeena and Sankaran

2014a, Lemma 2.2(ii)] to infer that � satisfies property R∞. �
17Two groups G1 and G2 are called commensurable if they contain subgroups H1 and H2 that are

isomorphic and of finite indices in G1 and in G2, respectively.
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Remark 6.18. If the group G1 has property R∞, then a group G2 commensurable

to G1 need not have this property, as is shown by the fundamental group G1 of the

Klein bottle and the fundamental group G2 of a torus: the group G1 has property

R∞ by [Gonçalves and Wong 2009, Theorem 2.2]), while the automorphism −1 of
G2 = �2 has Reidemeister number 4.

7. Miscellaneous examples

In this section we illustrate by various examples the notions of irreducible subgroup,

almost independence of χ
� and χr , and the group of units.

7A. Irreducible subgroups. Let b be a positive real number and G a subgroup of

PLo([0, b]). Recall that G is called irreducible if no interior point of I = [0, b] is
fixed by all of G (see Section 6D1 for the motivation that led to this name).

The group is irreducible if and only if the supports of the elements of G cover the

interior int(I ) of I or, equivalently, if the supports of the elements in a generating
set X of G cover int(I ); these claims are easily verified. If G is cyclic, generated

by f , say, it is therefore irreducible if f fixes no point in int(I ) or, equivalently, if
f ε(t) < t for t ∈ int(I ) and some sign ε. Such a function is often called a bump.

Example 7.1. Here is a very simple kind of PL-homeomorphism bump. Given a
positive slope s �= 1, set

(7-1) fs(t) =
⎧⎨
⎩
1

s
· t, if 0≤ t ≤ s

s+1 · b,

s
(
t − s ·b

s+1
)

+ b
s+1 , if

s
s+1 · b < t ≤ b.

Then fs is continuous at s/(s + 1) · b; since fs(0) = 0 and fs(b) = b, the function
fs lies in PLo([0, b]). Let Gs denote the group generated by fs and let α be the

automorphism that sends fs to its inverse f −1
s . Then

(χ� ◦ α)( fs) = χ
�( f −1

s ) = −χ
�( fs);

similarly (χr ◦ α)( fs) = −χr ( fs), whence

(7-2) χ
� ◦ α = −χ

� and χr ◦ α = −χr .

So neither χ� nor χr is fixed by Aut(Gs). However, Theorem 6.4 cannot be applied,

as requirement (iii) is violated; indeed, kerχ� = kerχr ={1}, so Gs/(kerχ� ·kerχr )

is infinite cyclic. The conclusion of Theorem 6.4 is likewise false, for �1(G)c = ∅

(this follows, e.g., from [Strebel 2013, Example A2.5a]). Property R∞, finally, does
not hold, either; for the Reidemeister number of the automorphism α is 2, as a

simple calculation shows.

The groups in the previous example are cyclic; more challenging groups are

considered in the following example:

144



Example 7.2. Let d > 1 be an integer and s1, . . . , sd pairwise distinct, positive real

numbers not equal to 1. For each index i ∈ {1, . . . , d}, define fi by (7-1) with s = si ,

and set

G = G{s1,...,sd} = gp( f1, . . . , fd).

The group G inherits two properties from the group Gs in the previous example: it is

irreducible (obvious), and the assignment fi �→ f −1
i extends to an automorphism α;

indeed, the special form of the elements fi implies that conjugation by the reflection
in the midpoint of I = [0, b] sends fi to its inverse. It follows, as before, that the
relations (7-2) are valid; so neither χ

� nor χr is fixed by AutG.
Now to another property of the automorphism α. The calculation

(7-3) (χ� ◦ α)( fi ) = χ
�( f −1

i ) = −χ
�( fi ) = χr ( fi )

is valid for every index i . It shows that α exchanges χ
� and χr . It follows, in

particular, that kerχ� = kerχr and so the quotient

G/(kerχ� · kerχr ) = G/ kerχ� −→∼ imχ
� = gp(ln s1, . . . , ln sd)

is a nontrivial free abelian group of rank at most d . Requirement (iii) in Theorem 6.4
is thus violated and so we cannot use that result to determine �1(G)c. Actually,

only the following meager facts are known about �1(G)c: both χ
� and χr = −χ

�

represent points of �1(G)c [Strebel 2015, Proposition 2.5]; moreover, the existence

and form of the automorphism α and formula (6-6) imply that �1(G)c is invariant

under the antipodal map [χ] �→ [−χ].
Computation (7-3) shows that χ� ◦α = −χ

�. This conclusion holds, actually, for

every character χ : G → � and proves that no nonzero character of G is fixed by α.

7B. Independence of χ
� and χr . As before, let G be a subgroup of PLo([0, b])

with b a positive real number. Recall that the characters χ
� and χr are called

independent if G = kerχ� · kerχr ; see Section 6D1. It follows that χ� and χr are

independent if and only if G admits a generating set X = X� ∪Xr in which the

elements of X� have slope 1 near b and those of Xr have slope 1 near 0.

It is thus very easy to manufacture groups for which χ
� and χr are independent.

In the next example, some very particular specimens are constructed.

Example 7.3. Choose a real number b1 ∈ ]b/2, b[. Given a tuple of positive real
numbers s1, . . . , sd�

that are pairwise distinct and not equal to 1, let fi be the bump
defined by (7-1) but with s = si and b = b1. Next let s ′

1, . . . , s ′
dr
be another sequence

of positive reals that are pairwise distinct and different from 1. Use them to define

bump functions gj with supports in ]b −b1, b[ like this: let hj be the function given

by (7-1) but with s = s ′
j and b = b1, and define then gj to be hj conjugated by the
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translation with amplitude b − b1. Finally set

(7-4) G = G{s1,...,sd�
,s′
1,...s

′
dr

;b1} = gp( f1, . . . , fd�
, g1, . . . , gdr ).

From now on, we assume that d� and dr are both positive. Then G is irreducible

(since b1 > b − b1), the characters χ
�, χr are nonzero and independent, and thus

Theorem 6.4 allows us to conclude that �1(G)c = {[χ�], [χr ]}.
The character χ� is transcendental if all the positive reals s1, . . . , sd�

are algebraic

(see Example 6.12). Then G admits a nonzero homomorphism ψ : G → �×
>0 that

is fixed by AutG (see Theorem 6.1). If G does not admit an automorphism α

with χ
� ◦ α ∈ [χr ] the homomorphism ψ can be chosen to be σ� (see the second

paragraph of Section 6C). The stated condition holds, in particular, if there does

not exists a number s with imχr = s · imχ
�. Similar remarks apply to χr .

7B1. Independence versus almost independence. The characters χ
� and χr are

called almost independent if G/(kerχ� ·kerχr ) is a torsion group (see Remark 6.7).

Statement (iii) of Proposition 6.16 shows that almost independence of χ
� and χr

is inherited by the restricted characters χ′
� = χ

� � H and χ′
r = χr � H whenever

H ⊆ G is a subgroup of finite index. The next result characterizes those ordered

pairs (G, H), with χ
�, χr independent whose restrictions χ′

� and χ′
r are again

independent.

Lemma 7.4. Let G be a subgroup of PLo([0, b]) for which χ
� and χr are indepen-

dent and let H ⊂ G be a subgroup of finite index. Then the restrictions χ′
� and χ′

r
of these characters are independent if and only if the homomorphism

(7-5) ζ : χ�(kerχr )/χ�(kerχ
′
r ) −→ imχ

�/ imχ′
�,

induced by the inclusions, is injective.

Proof. The justification will be an assemblage of facts extracted from the proof of
Lemma 6.6 and from that of Proposition 6.16. Firstly, χ� and χr are independent

if and only if the abelian group A1 = imχ
�/χ�(kerχr ) is 0. Similarly, χ

′
� and χ′

r
are independent precisely if A2 = imχ′

�/χ�(kerχ
′
r ) is the zero group. The groups

A1 and A2 occur among the groups in the short exact sequences (6-12) and (6-13).
Since A1 = 0, these exact sequences lead to the short exact sequence

imχ′
�/χ�(kerχ

′
r ) ↪→ χ

�(kerχr )/χ�(kerχ
′
r ) = imχ

�/χ�(kerχ
′
r ) � imχ

�/ imχ′
�,

It shows that A2 = imχ′
�/χ�(kerχ

′
r ) is the kernel of the homomorphism ζ . �

It is now easy to construct independent characters χ
� and χr of G whose restric-

tions to a subgroup of finite index are no longer independent.

Example 7.5. Let G be a subgroup of PLo([0, b]) and H a subgroup of finite index.

Assume the characters χ
� and χr are independent. According to Lemma 7.4 the
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restricted characters χ′
� and χ′

r of H are independent if and only if the obvious

homomorphism

ζ : χ�(kerχr )/χ�(kerχ
′
r ) −→ imχ

�/ imχ′
�

is injective. The characters χ′
� and χ′

r of H will therefore not be independent
whenever

(7-6) imχ′
� = imχ

� but χ
�(kerχr ∩ H) � χ

�(kerχr ).

Now to some explicit examples. We begin with quotients of the groups we shall

ultimately be interested in. Set G = �2, let p ≥ 2 be an integer and set
H = �(p, 0) + �(1, 1).

Then H has index p in G.
Next, let χ1, χ2 denote the canonical projections of �2 onto its factors. Then

χ1(G)=�=χ1(H), kerχ2=�(1, 0), and kerχ2∩H =�(1, 0)∩H =�(p, 0),

and thus

χ1(kerχ2 ∩ H) = � · p � χ1(kerχ2) = �.

The auxiliary groups G and H therefore satisfy the relations (7-6).

We are now ready to define the group G; it will be of the kind considered in
Example 7.3 with d� = dr = 1. Fix b > 0 and b1 ∈ ]b/2, b[ and choose positive
numbers s1, s ′

1, both different from 1. Define f1 and g1 as in Example 7.3 and set

G = gp( f1, g1).

Then G is an irreducible subgroup of PL0([0, b]) and the characters χ
� and χr of

G are independent. Moreover, Gab is free abelian of rank 2, freely generated by

the canonical images of f1 and g1. Set H = gp( f p
1 , f1 ◦ g1, [G, G]). The above

calculations then imply that

χ
�(G)=�·ln s1=χ

�(H) and χ
�(kerχr ∩H)=�·p·ln s1�χ

�(kerχr )=� ln s1.

7C. Eigenlines. Let G be an irreducible subgroup of PLo([0, b]). If the characters
χ

� and χr are nonzero and almost independent, then �1(G)c consist of the two

points [χ�] and [χr ] (by Theorem 6.4). Every automorphism α of G either fixes or

exchanges them. Suppose we are in the first case. Then χr ◦ α = s ·χr for some

positive real s, and so � ·χr is an eigenline, with eigenvalue s, in the vector space
Hom(G, �) acted on by α∗. No example with s �= 1 has been found so far.

If the compact interval [0, b] is replaced by the half-line [0, ∞[, such examples
exist, provided χr is replaced by a suitable analogue τr . In order to construct

examples, we return to the set-up of Section 4. So P is a nontrivial subgroup of
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�×
>0 and A is a nontrivial �[P] submodule of �add. Define G to be the kernel of the

homomorphism σr : G([0, ∞[; A, P) → �×
>0; thus G consists of all the elements of

G([0, ∞[; A, P) that are translations near +∞. The analysis in Section 4C2 shows

that conjugation by the PL-homeomorphism fp : � −→∼ �, given by fp(t) = p · t for
t ≥ 0, induces, for every p ∈ P, an automorphism αp of G that satisfies the relation

(7-7) τr ◦ αp = p · τr ;
here τr : G → �add is the character that sends g ∈ G to the amplitude of the

translation that coincides with g near +∞. This character τr shares an important

property with the character χr : the invariant �
1(G)c consists of two points, one

represented by χ
�, the other by τr ; see [Strebel 2015, Theorem 1.2].

The image of τr in �add is a subgroup B of A, namely

B = I P · A = {∑
(p − 1) · a

∣∣ p ∈ P and a ∈ A
}

(see assertion (iii) of [Bieri and Strebel 2016, CorollaryeA5.3]). The group of units

U(B) of B contains the group P and so it is not reduced to {1, −1}.
The subgroup B is typically infinitely generated; if so, G is likewise infinitely

generated. Examples of finitely generated groups G = ker σr are harder to find,

and they are so far rare. Suppose the group G([0, b]; A, P) is finitely generated

for some b ∈ A>0. Then G([b, 2b]; A, P) is a finitely generated subgroup of the

group of bounded elements B([0, ∞ [; A, P). Pick now an element g0 ∈ G that

moves every point of the open interval ]0, ∞[ to the right and satisfies the inequality
g0(b) < 2b. Then translates of the interval ]b, 2b[ under the powers of g0 will then
cover ]0, ∞[. It follows that the subgroup

N = gp
({g j

0 ◦ G([b, 2b]; A, P) ◦ g− j
0 | j ∈ �})

coincides with the bounded group B([0, ∞[; A, P) (use [Bieri and Strebel 2016,

Lemma E18.9]). So the group B([0, ∞[; A, P)� gp(g0) is finitely generated. The
group G, finally, is finitely generated if G/N −→∼ im τr = I P · A is finitely generated.
To show that finitely generated groups of the form G = ker σr exist we need thus

an example of a group G([0, b]; A, P) where both G([0, b]; A, P) and the abelian

group underlying B = I P · A are finitely generated. The parameters

P = gp
(√
2 + 1), A = �

[√
2
] = �[P], b = 1

lead to such a group; see [Cleary 1995].

7D. Variation on Theorem 6.1. Among the hypotheses of Theorems 6.1 and 6.4
figures the requirement that G acts irreducibly on the interval [0, b]. This require-
ment rules out, in particular, that G is a product G1×G2 with G1 acting irreducibly
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on some interval I1 = [0, b1] and G2 acting irreducibly on an interval I2 = [b2, b]
that is disjoint from I1.
Now suppose we are in this excluded case and that the groups G1, G2 satisfy

the assumptions of Theorem 6.4, suitably interpreted; more explicitly, suppose the

characters χ1,� and χ1,r of G1 are nonzero and almost independent, and similarly for

the characters χ2,� and χ2,r of G2. The question then arises whether G = G1× G2

admits a nonzero homomorphism ψ : G → �×
>0 that is fixed by AutG. We shall see

that this is the case if at least one of the four groups imχ1,�, imχ1,r and imχ2,�,

imχ2,r has a unit group that is reduced to {1, −1}.
The following proposition is a variation on Theorem 3.2 in [Gonçalves and

Kochloukova 2010].

Proposition 7.6. Let G be a group for which �1(G)c is a nonempty finite set with m
elements. Assume the rays [χ] ∈ �1(G)c span a subspace of Hom(G, �) having
dimension m over � and that U(imχ1) = {1, −1} for some point [χ1] ∈ �1(G)c.
Then G admits a nontrivial homomorphism ψ : G → �×

>0 that is fixed by AutG.

Proof. The automorphism group AutG acts on �1(G)c via the assignment

(α, [χ]) �→ [χ ◦ α−1];
let {[χ1], . . . , [χn]} be the orbit in �1(G)c containing [χ1]. If n = 1, the point [χ1]
is fixed by AutG; hence χ1 itself is fixed by AutG in view of the assumption that

U(imχ1) = {1, −1}, and so we can take ψ = exp ◦χ1.

Now suppose that n > 1 and choose, for every i ∈ {1, . . . , n}, an automorphism αi

with [χi ]= [χ1◦αi ]. Let α be an automorphism of G. For every index i ∈{1, . . . , n}
there exists then an index j so that [χi ◦ α−1] = [(χ1 ◦ αi ) ◦ α−1] is equal to
[χ j ] = |χ1 ◦ αj ]. It follows that there exists a positive real number si, j so that

χ1 ◦ αi ◦ α−1 = si, j ·χ1 ◦ αj .

But if so, β = αi ◦ α−1 ◦ α−1
j is an automorphism with χ1 ◦ β = si, j ·χ1. The

assumption that U(imχ1) = {1, −1} permits one then to deduce that si, j = 1. So
AutG permutes the set of characters

(7-8) χ1 ◦ α1, χ1 ◦ α2, . . . , χ1 ◦ αn.

Their sum η is therefore fixed by AutG. It is nonzero since the characters displayed
in (7-8) are linearly independent over �. Set ψ = exp ◦η. �
Corollary 7.7. Let G1 be a subgroup of PL0([0, b1]) and let G2 be a subgroup
of PL0([b2, b]) with 0 < b1 < b2 < b. Assume G1 and G2 are irreducible, the
characters χ1,� and χ1,r of G1 are nonzero and almost independent, and that the
characters χ2,� and χ2,r of G2 have the same properties. If the image of at least
one of the four characters χ1,�, χ1,r and χ2,�, χ2,r has a unit group that is reduced
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to {1, −1} then G = G1 × G2 admits a nontrivial homomorphism ψ : G → �×
>0

that is fixed by AutG.

Proof. The hypothesis on G1 and G2 allow us to apply Theorem 6.4 and so

�1(G1)
c = {[χ1,�], [χ1,r ]} and �1(G2)

c = {[χ2,�], [χ2,r ]}.
The product formula for �1 then implies that �1(G)c consists of the four points

represented by

(7-9) χ1,� ◦ π1, χ1,r ◦ π1, χ2,� ◦ π2, χ1,� ◦ π2;
here πi : G � Gi denotes the canonical projection onto the i-th factor Gi (see, e.g.,

[Strebel 2013, Proposition C2.55]). These four characters are�-linearly independent

since all are nonzero, as kerχ1,� �= kerχ1,r by the almost independence of χ1,�

and χ1,r , as kerχ2,� �= kerχ2,r by the almost independence of χ2,� and χ2,r , and

since π∗
1 (Hom(G1, �)) and π∗

2 (Hom(G2, �)) are complementary subspaces of

Hom(G, �). Finally, at least one of the images of the four characters displayed in

(7-9) has an image B with U(B) = {1, −1}. All the assumptions of Proposition 7.6
are thus satisfied, so the contention of the corollary follows from that proposition. �

Remark 7.8. It is not known whether the direct product of groups G1, G2 each of

which has property R∞ has again property R∞. The previous corollary implies that
this will be so if the groups G1 and G2 satisfy the assumptions of the corollary.

8. Complements

By Remark 5.8 there exist continuously many pairwise nonisomorphic, finitely

generated groups of the form G(�; A, P), and by Corollary 5.6 each of these

groups admits a nonzero homomorphism ψ into P. These facts prompt the question
whether there exist similarly large collections of finitely generated subgroups of

PLo(I ) with I a compact interval, say I =[0, 1]. Since only countably many finitely
generated groups of the form G([0, 1]; A, P) have been found so far, we look for

finitely generated groups that satisfy the assumptions of Theorem 6.1.

In Section 8A we exhibit a collection G of 3-generator groups with the desired
properties. Checking that each group in G satisfies the assumptions of Theorem 6.1
is fairly easy; the verification that distinct groups in G are not isomorphic, however,
is more demanding. We shall succeed by exploiting properties of the �1-invariant

of the groups in G in a roundabout manner. In Section 8B we describe then a
collection of 2-generator groups which, despite appearances, turn out to be pairwise

isomorphic. This indicates once more that criteria which allow one to prove that

two given, similarly looking, groups are not isomorphic, are very useful. In the

final section, we give such a criterion.
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8A. A large collection of groups G with characters fixed by Aut G. In this sec-
tion we construct a collection G of pairwise nonisomorphic groups Gs with the

following properties:

(i) each Gs ∈ G is an irreducible subgroup of PLo([0, 1]) generated by 3 elements;
(ii) the characters χ

�, χr of Gs are independent and have ranks 1, respectively 2;

(iii) for each Gs ∈ G the character χ
� is fixed by AutGs ; and

(iv) the cardinality of G is that of the continuum.
8A1. Construction of the groups Gs. The groups Gs are obtained by the recipe

described in Example 7.3. Fix a triple s = (s1, s2 = s ′
1, s3 = s ′

2) of real numbers

in ]1, ∞[. Let fs be the PL-homeomorphism defined by (7-1) with s = s1 and b = 3
4
.

Next, let g be the function obtained by putting s = s2, b = 3
4
and by then conjugating

the function so obtained by translation with amplitude 1
4
. Similarly, let hs be the

function obtained by setting s = s3, b = 3
4
and by conjugating the function so

obtained by the translation t �→ t + 1
4
. Finally, set

(8-1) Gs = G{s1,s2,s3} = gp( fs, gs, hs)

The definition of Gs shows that it is an irreducible subgroup of PLo([0, 1]) with
nonzero and independent characters χ

� and χr . By Theorem 6.4, the complement

of �1(Gs) consists therefore of the two rays [χ�] and [χr ].
Consider now an automorphism α of Gs . It induces an autohomeomorphism α∗

of the sphere S(Gs) that maps the subset �
1(Gs)

c onto itself. Suppose α∗ is the
identity on �1(Gs)

c. Since χ
� has rank 1 and is thus transcendental, the first two

paragraphs of Section 6C apply and show that α fixes the character χ
� and hence

also the homomorphism σ� : G → �×
>0. This homomorphism σ� will therefore be

fixed by all of AutGs whenever the images of χ
� and χr are not isomorphic.

8A2. Additional assumptions. Assume therefore that s2 and s3 are multiplicatively
independent. Then the free abelian group

imχr = ln gp({s2, s3}) = � ln s2+ � ln s3.

has rank 2.

Consider now two triples s and s ′ where s ′
2 = s2 and where both pairs {s2, s3}

and {s2, s ′
3} are multiplicatively independent. Suppose there exists an isomorphism

β : Gs −→∼ Gs′ . Then β induces a homeomorphism

β∗ : S(Gs′) −→∼ S(Gs)

β∗({[χ′
�], [χ′

r ]}
) = {[χ�], [χr ]}.

The ranks of the involved characters imply that β∗[χ′
r ] = [χr ]; so there exists a

positive real number u with χ′
r ◦ β = u ·χr . It follows that imχ′

r = u · imχr or,
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equivalently, that

�(ln s ′
3) + �(ln s2) = u · (�(ln s3) + �(ln s2)

)
.

This equality amounts to saying that there exists a matrix T = (
a b
c d

) ∈ GL(2, �)

such that (
ln s ′

3

ln s2

)
= u · T ·

(
ln s3
ln s2

)
= u ·

(
a · ln s3+ b · ln s2
c · ln s3+ d · ln s2

)
.

It follows that
ln s′

3

ln s2
= a(ln s3/ ln s2) + b

c(ln s3/ ln s2) + d
;

alternatively put, the numbers ln s3, ln s ′
3 lie in the same orbit of the group

(8-2) Hs2 =
(
ln s2 0
0 1

)
·GL(2, �) ·

(
ln s2 0
0 1

)−1

acting on the extended real line � ∪ {∞} by fractional linear transformations.
8A3. Consequences. It is now easy to exhibit a collection of groups G that enjoy
the properties stated at the beginning of Section 8A. Choose first a number s1 > 1;

for instance s1 = 2, and select s2 so that ln s2 is rational, for instance s2 = exp 1.

The group Hs2 is then a subgroup of GL(2, �); it acts on � ∪ {∞} by fractional
linear transformations. The set � ∪ {∞} is an orbit; all other orbits are made up of
irrational numbers. Use the axiom of choice to find a set of representative T of the

orbits of Hs2 contained in ���. For every t ∈ T the numbers ln s2 and t are then
�-linearly independent, and hence s2 and exp t are multiplicatively independent.
Since ��� has the cardinality of the continuum and Hs2 is countable, the set T
likewise has the cardinality of the continuum. The collection

(8-3) G = {G(s1,s2,exp t) | t ∈ T }
therefore enjoys properties (i) through (iv) stated at the beginning of Section 8A.

8B. Some unexpected isomorphisms. Let t1, t2 be distinct irrational numbers and
consider the groups G1 = G(2,exp 1,exp t1) and G2 = G(2,exp 1,exp t2). We don’t know

under which conditions on t1 and t2 the groups G1 and G2 are isomorphic. In the

construction of the collection G, carried out in Section 8A, we proceeded therefore
in a very cautious manner and required that distinct elements in the parameter

space T fail to satisfy a certain condition. The question now arises whether this

approach is overly pessimistic. The next example indicates that caution may have

been appropriate. We begin with a simple, but surprising, lemma.18

18Strebel got word of this result in discussions with Matt Brin and Matt Zaremsky.
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Lemma 8.1. Suppose that G is a subgroup of PLo([a, d]) generated by two PL-
homeomorphisms f and g with the following properties:

(i) supp f = ]a, c[ and f (t) < t for t ∈ supp f ,

(ii) supp g = ]b, d[ and g(t) < t for t ∈ supp g,

(iii) a < b < c < d and f (g(c)) ≤ b.

Then G is isomorphic to Thompson’s group F.

Proof. Set h = f ◦ g and note that h(t) < t for every t ∈ ]a, d[ . Property (iii)
then implies that h(c) ≤ b and so the supports of g and that of h f = h ◦ f ◦ h−1
are disjoint, as are the supports of g and that of h2 f . The first fact implies that g
commutes with hf and leads to the chain of equations

(8-4) h◦h f = f(g◦hf
) = f(hf

) = f ◦hf.

The second fact leads to the equations

(8-5) h◦h2 f = f(g◦h2f
) = f(h2f

) = f ◦h2f.

Thompson’s group F, on the other hand, has the presentation〈
x, x1

∣∣ x2x1 = x1xx1, x3x1 = x1x2x1
〉;

see, e.g., [Bieri and Strebel 2016, Examples D15.11]. The assignments x �→ h,
x1 �→ f extend therefore to an epimorphism ρ : F � G. As the derived group of F
is simple (see, e.g., [Cannon et al. 1996, Theorem 4.5]) and as G is nonabelian, ρ

must be injective, hence an isomorphism, and so the proof is complete. �

Our next result shows that the assumptions of the previous lemma can be satisfied

by PL-homeomorphisms with preassigned values for the slopes in the end points.

Lemma 8.2. Let sf , sg be positive reals with sf < 1< sg and let a, b, c, d be real
numbers with a < b < c < d. Then there exist PL-homeomorphisms f and g that
satisfy properties (i) through (iii) listed in Lemma 8.1 and, in addition,

(iv) f ′(a) = sf and g′(d) = sg.

Proof. The generators f and g will both be affine interpolations of 5 interpolation
points. To define them fix numbers t1, t2, t3, t4 so that

a < t1 < b < t2 ≤ t3 < c < t4 < d.

Next choose t0 ∈ ]a, t1[ so that (t0 − a)/(t1 − a) = sf . Then a < t1 < t3 < c < d
and a < t0 < b < c < d and so the affine interpolation, given by the 5 points

(a, a), (t1, t0), (t3, b), (c, c), (d, d),
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exists and is an increasing PL-homeomorphism, say f, with f ′(a) = sf . Next, there

exists a number t5 ∈ ]t4, d[ so that (d − t4)/(d − t5) = sg. Then a < b < c < t5 < d
and a < b < t2 < t4 < d and so the affine interpolation, given by the 5 points

(a, a), (b, b), (c, t2), (t5, t4), (d, d),

exists and is an increasing PL-homeomorphism, say g; the definition of t5 implies,
in addition, that g′(d) = sg. Finally, f (g(c)) = f (t2) ≤ f (t3) = b. �

Remarks 8.3. (a) In the statement of Lemma 8.2 the slopes sf and sg have been

chosen so that sf < 1< sg . This requirement can be weakened to sf �= 1 and sg �= 1;
indeed the four pairs { f, g}, { f, g−1} and { f −1, g}, { f −1, g−1} generate the same
group.

(b) The generators fs , gs and hs of the groups Gs , constructed in Section 8A, are

simpler then those used in Lemma 8.2 in that they are defined by affine interpolations

of 3 rather than of 5 points. But a variant of the Lemma 8.2 holds even in this more

restricted setup.

Suppose s1 = s2 = 2 and s3 ≥ 2. The function fs is then given by the formula

(8-6) fs(t) =
{

1
2
t, if 0≤ t ≤ 1

2
,

2
(
t − 1

2

)+ 1
4
, if 1

2
≤ t ≤ 3

4
,

and it is the identity outside of ]0, 3
4
[, while gs is defined by

(8-7) gs(t) =
{
1
2

(
t − 1

4

)+ 1
4
, if 1

4
≤ t ≤ 3

4
,

2
(
t − 3

4

)+ 1
2
, if 3

4
≤ t ≤ 1,

and it is the identity outside of ] 1
4
, 1[. The function hs , finally, is defined by

(8-8) hs(t) =
{

1
s3

(
t − 1

4

)+ 1
4
, if 1

4
≤ t ≤ 3s3

4(s3+1) + 1
4
,

s3
(
t − 3s3

4(s3+1) − 1
4

)+ 3
4(s3+1) + 1

4
, if 3s3

4(s3+1) + 1
4

≤ t ≤ 1,
and is the identity outside of ] 1

4
, 1[. The function gs is not differentiable at

1
4
, 3
4
,

and 1, while the function hs has singularities at
1
4
, t∗ = 3s3

4(s3+1) + 1
4
, and 1. Since

s3 ≥ s2 = 2, the inequality t∗ ≥ 3
4
holds, as one verifies easily. The calculation

fs
(
hs

(
3
4

)) = fs
(
1
s3

(
3
4
− 1

4

)+ 1
4

) = fs
(
1
2s3

+ 1
4

) ≤ fs
(
1
4
+ 1

4

) ≤ 1
4
.

then shows that the functions fs and hs fulfill the assumptions imposed on the

functions f and g in Lemma 8.1. It follows that the groups gp( fs, hs) are isomorphic

to each other for every s3 ≥ s2 = 2.

154



8C. A criterion. The groups Gs studied in Section 8A are generated by 3 elements;

in addition the image of χ
� is infinite cyclic and that of χr is free abelian of rank 2.

Any isomorphism β : Gs −→∼ Gs′ between two such groups must therefore induce

an homeomorphism β∗ : S(Gs′) −→∼ S(Gs) with β∗([χ′
r ]) = [χr ]. This consequence

amounts to say that there exists a positive real number u so that χ′
r ◦β = u ·χr and

this new condition implies the equality

(8-9) imχ′
r = u · imχr .

In Section 8A we did not study this condition in general; we dealt only with the

special case where

imχr = �(ln s3) + �(ln s2) and imχ′
r = �(ln s ′

3) + �(ln s2)

and exploited then the fact that, in this particular case, condition (8-9) involves basi-

cally only the two numbers ln s3 and ln s ′
3. In this final section we shall investigate

another special case. It is reminiscent of a situation considered in Section 6E.

Let B1 and B2 be finitely generated subgroups of �add and suppose there exists

a positive real number u with B2 = u · B1. If B2 coincides with B1, then u is a
unit of B1 and the results of Section 6E apply. They show, in particular, that u = 1

whenever B is the image under ln of a subgroup P of�×
>0 that is generated by finitely

many algebraic numbers. The proof of this consequence relies on Theorem 6.11,

the Gelfond–Schneider theorem. Below we give an analogue of this criterion, but

dealing with the equation B2 = u · B1. In the proof, both the Gelfond–Schneider
theorem and the Siegel–Lang theorem will be used.

Lemma 8.4. Let P1 and P2 be subgroups �×
>0 and set B1 = ln P1 and B2 = ln P2.

Suppose there exists a prime number π that occurs with nonzero power in the
factorization of an element in P1, but not in that of an element of P2. If the rank of
B1 is at least 3, then B2 is distinct from u · B1 for every positive real number u.

Proof. Let p1∈ P1 be an element with a prime factorization that involves the prime π ,

and let u be a positive real number. Assume first that u ∈ �. Then π occurs in the

prime factorization of pu
1 , so qu

1 /∈ P2, and thus u · B1 = u ln P1 �= ln P2 = B2. Now
suppose that u is irrational and that u ·ln p1 ∈ B2. There exists then a rational number
p2 ∈ P2 with u = ln p2/ ln p1 and so u is transcendental by the Gelfond–Schneider
theorem. Choose, finally, three �-linearly independent elements z1, z2 and z3 in
B1 (this is possible as the rank of B1 is at least 3) and consider the six numbers

exp(1 · zj ) with j = 1, 2, 3, and exp(u · zj ) with j = 1, 2, 3.

The first three of them are in P1, and hence rational. As the subsets {1, u} and
{z1, z2, z3} are both linearly independent over �, Theorem 6.13 implies therefore
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that at least one the remaining three numbers, say exp(u · z j∗), is transcendental.

This number is therefore outside of P2 and so u · z j∗ ∈ u B1� B2. �
We end with an application of the preceding lemma.

Example 8.5. Given a nonempty set of prime numbers P, let GP be a subgroup of
PLo([0, 1]) generated by a set { fp, gp | p ∈P} of elements that satisfy the conditions
(i) σ�( fp) = p, σ�(gp) = 1 and σr ( fp) = 1, σ�(gp) = 1 for every p ∈ P;
(ii) the union of the supports of the generators fp and gp is ]0, 1[.
The group GP admits then an epimorphism ψ : GP � gp(P) that is fixed by

every automorphism of GP (use Corollary 6.10). Moreover, if P1 and P2 are distinct
sets of primes of cardinality at least 3, the groups GP1 and GP2 are not isomorphic
in view of Lemma 8.4 and the considerations at the beginning of Section 8C.
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