Supporting information

1. Sampling

The randomness of the sampling procedure safeguards the unbiasedness of the estimation, hence, great care
must be giving to this step. The random selection of the sampled particles from the entire population are given
by a slightly adapted version of a systematic uniform random sampling (SURS) procedure. In short, an
automated SURS procedure is used: tilt series are recorded if:
- A particle is in the field of view
- A particle is partially in the field of view, but touching the upper part or right part of the field of view
In these two cases, the field of view was manually adjusted to bring the particle in the center of the field of
view. Particles were not selected if:
- They were partially in the field of view, but touching the left part or bottom part of the field of view.
- If more than one particle was in the field of view, then the most near the center was chosen (least
manual movement)
- Nearby gridbars cast shadows thereby limiting the tilt angle range resulting in poor tomographic
reconstruction. Positions not allowing a 120° tilt range were excluded.
When the field of view was empty, no tilt series was recorded.
Practically, the SURS was carried out by a software (SerialEM) script:

// Distance 20 means that the stage shift between adjacent images will be 20 micrometer
Distance = 20

// Steps 5 means a grid of 4 x 4 (or 16 positions)

Steps = 4

// Information of where to save the data

SetDirectory D:\Data\Tomography Batch

SetNewFileType 1

OpenNewFile TomographyTilts.mrc

//nitialization, including homing of the holder to the goniometer 0,0 position (thereby steeing the first random

position)

Xsteps = $Steps

Ysteps = $Steps

Yback = 0O

Counter = 0

Xstart = $Xsteps - 1

Xstart = $Xstart /7 2

Xstart = -1 * $Xstart * $Distance
Ystart = $Ysteps - 1

Ystart = $Ystart / 2

Ystart = -1 * $Ystart * $Distance

MoveStageTo 0O O

MoveStage $Xstart $Ystart
Totalimage = $Steps * $Steps
Echo Starting

/I Meandering through the 4 x 4 positional grid in a systematic and uniform procedure
Loop $Ysteps
Loop $Xsteps
G1
NormalizelLenses 7
P
S A
Counter = $Counter + 1
Echo $Counter of $Totalimage
MoveStage $Distance O
EndLoop
Xback = $Xsteps * $Distance * -1



Yback = $Yback + $Distance
MoveStage $Xback $Distance
EndLoop

CloseFile
MoveStageTo O O
Echo finished

The initial randomness is provided because:

- The deposition of particles during sample preparation process (drying) is random and beyond the
control of the user;

- The grid rotation in the sample holder is random;

- The 0,0 position of the stage is not necessarily the center of the grid. The sample holder has a diameter
depression of 3.5 mm into which the 3.05 mm grid loosely fits. This variation, 450 um, is about 10 000
times the size of the objects under study.

Therefore, we can probably make the assumption that all particles have the same chance to be sampled.

2. Nanostars morphology

Figure SI-1. Orthogonal XY tomographic planes (thickness: 0.307 nm) through the first 9 Au
nanostars. The dark signal of the particles is the effect of the strong electron scattering of Au. The
enveloping polymer shell surrounding the particles is carbon-based and scatters much less strongly. The 5
nm round, dark particles inside the envelope are trapped fiducial markers (spherical Au nanoparticles)
The bright artifacts, usually in the equatorial region of the particles are the effect of the under-sampling,
originating in the technical impossibility to tilt over a 180° range.

Figure SI-2. 3D rendering (by manually tracing) of an Au nanostar (left, yellow) and together with its
surrounding PVP shell (right in red).



Video SI-1

Video SI-1. The video shows the virtually browsing through the orthogonal XY tomographic slices
(thickness: 0.307nm) of the first 9 Au nanostars.

Video SI-2

Video SI-2. Video of the raw tomographic data of the first 9 Au nanostars: the tilting series between
tilt angles -60° and +60° at 2° increment. The reconstructed tomograms are shown in Video SI-1.

3. Holmes effect

The Holmes effect is an overprojection issue resulting in bias introduced if the slices are too thick: objects are
seen as larger in projection since variations within the slice along the axial axis (the Z axis) are not considered,
causing and their size to be overestimated. Estimators such as the Cavalieri volume estimator multiply the result
of the probe count with the slice thickness and are therefore prone to the Holmes effect.

The projection of a perfect sphere will yield a circle in all orthogonal projections. However, the resolution along
the axial dimension is a function of the slice thickness. Contained within one slice will project such object as a
circle onto the XY plane, making it indiscernible from a cylinder. Hence, the volume will be overestimated by
27%. If the sphere is cut into 5 slices, the Holmes effect will be minimized since the upper and lower slices (the
polar regions) will report lower areas. For a sphere cut into 5 equally-thick slices (1/5 or the dimeter), an
overestimation of 16% can be contributed to the Holmes effect. Increasingly thinner slices will diminish the
Holmes effect, until a theoretical infinitely thin slice thickness will eliminate the effect.
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Figure SI-3. The Holmes effect. The estimate of the volume of a perfect sphere (radius = 10) is
overestimated as a function of the axial resolution (the slice thickness). The schemes show the object in
the axial plane (orthogonal side view, top), the projection of the top plane (second row), a 3D rendering of
the modelled object (third row) and the estimated volume (bottom row). The mathematical computation
is shown in the left column. A one-slice approach (second from left column) transforms the object
essentially into a cylinder resulting in a large Holmes effect. Thinner slices (two rightmost columns)



model the sphere as a stack of thinner cylinders. The thinner the cylinder, the better it will resemble the
mathematical sphere and the lower the volume overestimation.

Entirely overcoming the Holmes effect can be challenging but reducing it is not impossible. Subtracting the
largest projected area was suggested (Gundersen, 1986) to remove most of the bias. Another possibility is to
oversample along the z-axis, i.e. producing thinner planes and using not using every plane in the stereological
analysis. It could be shown that using only every k™ section reduces the total Holmes effect by a factor k. The
high resolution of the TEM provides a very small axial pixel size in the tomographic dataset (0.305 nm for the
nanostars datasets). This is positive for two reasons: (1) it highly reduces the Holmes effect and (2) it allows a
high k factors (practically, a k value of 15 was used for the nanostars, 12 for the aggregates), greatly increasing
the efficiency of the analysis.

However, the concept of pixel size must not be confused with resolution. Axial resolution is a very tricky
concept in tomography, which explain the general use of pixel size as surrogate. Conventionally, the resolution
is calculated using the Crowther criterion(RA et al., 1970):

D
m= ——
d
Where m is the number of views, D is the size of the object (the diameter) and d is the resolution. For an
approximately 40 nm particle, recorded with 61 views follows that d = 2.06 nm. In fact, the distance U (see
below) was chosen to be larger than the axial resolution in order to avoid issues with resolving structures
between planes.

4. Example the procedure with one nanostars, including calculation of
the coefficient of error for the Cavalieri probe.

The 3D tomographic dataset is a set of parallel section planes with a constant separation t. The set of section
planes is randomly positioned on the object, i.e. the first section to hit the object is random within an interval of
length t. Note that since the set of sections must have a random position on the object, the number of planes of
thickness t containing something of the object is a random variable and not the same for each orthogonal
dimension.

By convention, the orientation of the planes in the 3D tomographic dataset when opened are known as the
XY plane. The following script was then applied to each dataset. The output is single stack containing the object
sliced in XY, XZ and YZ plane, reduced along the z-axis with a resolution (4.6 nm) matching the distances
between crosses (4.6 nm, area per cross = 4.62 nm = 20.2 nm?) and the distance between lines (4.6 nm). The
one-stack option allows to analyze the three orthogonal dimensions most efficiently, ie. Without open and
closing data and therefore without the need to take the attention away from the data. The green crosses and
magenta lines overlay allow to perform both a fakir probe and Cavalieri point count with the same dataset. The
script was written in ImageJ and is understood as IJ1 macro. It assumes the tomogram is open.

// open data
rename("'XYplane™);

// Duplicate into 3 orthogonal planes: XY, XZ and YZ;
/7
// XY to XZ plane

run(*'Duplicate...”, "title=XZplane duplicate);
selectWindow(*"XZplane™);

run("'Reslice [/]-...", "output=0.307 start=Left avoid");
selectWindow(*'XZplane'™);
close();

selectWindow(*'Reslice of XZplane™);
rename(*'XZplane');

// XY to YZ plane

selectWindow(*'XYplane');

run(*'Duplicate...", "title=YZplane duplicate");
selectWindow(*'YZplane™);

run(*'Reslice [/]-...", "output=0.307 start=Top avoid™);
selectWindow(*'YZplane™);

close();

selectWindow(*'Reslice of YzZplane™);

rename(*'YZplane™);



// Concatenate the three stacks into one z-stack
run(*‘Concatenate...", " title=[Concatenated Stacks] imagel=XYplane image2=XZplane
image3=YZplane image4=[-- None --]");

//Reduce the Z resolution (k factor = 15) and assure the XY resolution is correct
selectWindow(*"Concatenated Stacks');

run(*'Reduce...", "reduction=15");

run(*'Set Scale...", "distance=3.2573 known=1 pixel=1 unit=nm");

// Place colored overlays

run(*"Grid...", "grid=Crosses area=21.2 color=Green™);
run("Flatten”, "stack™);
run(*'Grid...", "grid=[Horizontal Lines] area=21.20 color=Magenta');

run(*"Flatten”, "stack™);

The resulting stack can be immediately interpreted according to the following convention. Incidents of the
magenta lines (the fakir probe) crossing the object are counted as line intercepts and events of a cross (produced
by the short green vertical line and the magenta line) on the object are count as (Cavalieri) points. In the zoom-
in depicted below, most events are straightforward to interpret, with the exception of incidents involving the
round small object on the left and the line crossing second from bottom on the right (open cyan arrowhead). The
small round object of the first case is a fiducial marker and is not part of the object. Hence, the interpretation is
to disregard these events (two line interceps, one cross point). The corss of the second case may be interpreted
as edge-on. In such a case, the operator must faithfully interpret the situation. Here, it was decided that the cross
was inside the object and therefore it was counted. In situations where one pixel may decide, and thus exceeding
the precision of the cross, which is hiding the pixel underneath, the pixel in the upper left corner of the cross was
used. the results of this selection are 10 line intercepts (yellow open arrows) and 13 point counts (cyan
arrowheads).

Figure SI-4. Line counting and point counting on a zoomed-in part of a plane.

The sweeping tangent method comprises the visual inspection of the plane and detecting the number of
occations of convex and concave curves with respect to the horizon. In the example below, the red lines denote
where the object is curves outward (i.e. convex) and the green lines denote hollowed out, convex incidents (with
the horizon as reference).



Figure SI-5. Tangent sweep probe of a plane.

These three probes are applied to each 15% slide (the k factor) of the object:
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Figure SI-6. Line counting, point counting and tangent sweep counting on an entire object. In the XY
plane, a total of 376 line interceps and 492 cross pints were registered. The sweeping tangent yielded 83

convex and 29 concave events.

The procedures are repeated for the XZ plane:



Figure SI-7. Line counting, point counting and tangent sweep counting on an entire object. The XZ plane
yielded a total line intercept count of 302, whereas the crosses count was 524. The sweeping tangent count

yielded 73 convex and 20 concave events.

A final repetition in the YZ plane is performed. The YZ planes are the ones suffering the most from the missing
wedge effect, which renders them most prone to interpreter bias.



Figure SI-8. Line counting, point counting and tangent sweep counting on an entire object. On the YZ
plane a total line intercept count of 320, whereas the crosses count was 505. 76 convex and 19 concave
incidents were counted.

The above three panels (SI-6, SI-7 and SI-8) are availble at a high resolution for closer inspection. All the counts

are summarized in the table below.

Line intercepts

Cross points

Sweeping tangent (convex /
concave)

Plane XY | Xz ]

YZ

XY

| xz |

YZ

XY | xz | vz




1 18 22 2 31 19 2 3/1 2/0 2/0
2 38 38 6 42 46 3 6/0 6/0 2/0
3 46 38 8 59 75 6 9/3 8/0 2/0
4 52 30 14 75 67 9 8/2 6/3 4/0
5 42 34 20 77 59 16 6/4 5/1 140
6 34 24 32 80 64 45 7/5 5/3 10/3
7 38 20 28 71 64 50 6/4 6/4 4/2
8 28 30 38 46 43 62 7/5 7/5 6/2
9 22 28 32 35 47 70 9/5 4/0 6/4
10 20 20 36 26 21 69 6/0 5/2 7/3
11 16 12 30 17 11 70 6/0 9/2 6/4
12 14 4 42 10 6 75 6/0 4/0 7/1
13 8 2 32 3 2 28 4/0 2/0 6/0
14 2 18 1 17 2/0 4/0
15 14 12 2/0
16 6 5 2/0
17 4 2 2/0
Total 376 302 320 572 524 505 83/29 | 69/20 | 76/19

Table SI-1. Summary of the counts (Line intersect, Cavalieri counts, Tangent sweep) on one entire
object.

Surface estimation

The unbiased surface area estimation is based on the random intersection of the geometrical fakir probe (the
horizontal magenta lines), which is an isotropic set of parallel lines with a spacing of u=4.6 nm through the 3D
object. The parallel lines transect the object. The surface area is then given by

) n
Est(S) za' u?- Z(Ixy t1,+ Iyz)
1

Where @ the number of dimensions (=3), U the length between two parallel test lines (=4.6 nm) and Ixy, Lz

and Ly, the total number of intersections between the object and the fakir probe over the 7 planes. The surface of

the example can therefore be estimated by:
17

2
Est(S) =3 4.6%- 2(376 + 302 + 320) = 14 109 nm?
1

Volume estimation

For unbiased volume estimation the Cavalieri probe is required: points (generated by the intersection of the
magenta fakir probe lines with vertical short green lines at the same spacing U fall on the object of interest and
are counted. This total sum of these counts relates to the volume of the object according to:

n
1
Est(V)=E-ZPi-Ap-u
1

Where Pt the total number of points falling on the particle in plane i, 7 is the total number of planes (17), 4

is the thickness of the planes (4.6 nm), and “"»is the associated area per point (u2 = 21.2 nm?). This yields for
the example above:

17
1
Est(V) = 2(572 + 524 + 505) - 20.2 - 4.6 = 49 587 nm®
1

The precision of the estimate, expressed by the coefficient of error (CE), is quite challenging: variance
estimators such as coefficient of error are only valid for n independent observations. However, a strong
dependence between areas of systematic sections exists, even from very irregularly shaped objects: if a




particular section in the systematic series happens to be relatively large then very likely the previous and the
following sections will also be large.

We used the solution proposed by Gundersen and Jensen. (Gundersen and Jensen, 1987) In short: 3 factors A, B
and C are calculated for each plane, taking into account the changes in subsequent planes. A is the number of

2
points counted squared ((Pi) . B is the number of points multiplied with the number of points on the next plane

(P i " Pivo) and C is the number of points multiplied with the number of points of the plane after that ((
Py Piyo)

Counts A B C A B C A B C
Plane XY XZ YZ
1 31 961 1302 | 1829 19 361 874 1425 2 4 6 12
2 42 1764 | 2478 | 3150 | 46 | 2116 | 3450 | 3082 3 9 18 27
3 59 3481 | 4425 | 4543 75 5625 | 5025 | 4425 6 36 54 96
4 75 5625 | 5775 | 6000 | 67 | 4489 | 3953 | 4288 9 81 144 405
5 77 5929 | 6160 | 5467 59 | 3481 | 3776 | 3776 16 256 720 800
6 80 6400 | 5680 | 3680 | 64 | 4096 | 4096 | 2752 | 45 | 2025 | 2250 | 2790
7 71 5041 | 3266 | 2485 64 | 4096 | 2752 | 3008 50 | 2500 | 3100 | 3500
8 46 2116 | 1610 | 1196 | 43 1849 | 2021 903 62 | 3844 | 4340 | 4278
9 35 1225 910 595 47 | 2209 987 517 70 | 4900 | 4830 | 4900
10 26 676 442 260 21 441 231 126 69 | 4761 | 4830 | 5175
11 17 289 170 51 11 121 66 22 70 | 4900 | 5250 | 1960
12 10 100 30 0 6 36 12 6 75 5625 | 2100 | 1275
13 3 9 0 0 2 4 2 0 28 784 476 336
14 1 1 0 0 17 289 204 85
15 12 144 60 24
16 5 25 10 0
17 2 4 0 0
Total 572 33616 | 32248 | 29256 | 524 | 28925 | 27245 | 24330 | 505 | 30187 | 28392 | 25663

Table SI-2. Calculation of the factors required in the calculation of the coefficient of error.

These three factors can be inserted in the formula for the components of the coefficient of error (adapted from

(Gundersen and Jensen, 1987)). The two components are noise and variation due to sampling (VARSURS):

b
Noise =0.0724 - — -
NG
(3:(A-noise)-4-B+0()
240

VARG ps =

b

Where n is the number of planes and the factor \/a is the boundary length of the object in a plane divided by the
root of the area of the object in that plane. The boundary length for each plane was extracted using the ImageJ
“Analyze particles” routine (where it is called “Perimeter”). This routine also delivers the area of the objects in

each plane. The area was already found using the stereological approach: P-4, results in the estimated area.
The total variation is the sum of these two components and the coefficient of error (CE), is the calculated as:

(Jnoise + VARg;ps
CE =

n

>

1

From the above example, the noise, VARSURS, total variation and CE was calculated for each orthogonal
dimension:

noise | VARgyps | Total | CE |




Variation
XY 34.9 4.20 39.1 1.09%
XZ 34.7 8.42 43.1 1.25%
YZ 38.8 10.6 49.4 1.30%
Average | 36.2 7.73 43.9 1.21%

Table SI-3. The coefficient of error for one object, dissected into its components for each orthogonal
dimension.

The coefficient of error (CE) was calculated for the example volume estimate at 1.21%, based on a total of
1638 point counts (572 in XY, 525 in XZ and 541 in YZ). The missing wedge effect causes a higher variation in
XZ and especially in YZ, where the effect is the strongest. In average over the three dimensions, 82.4% of the
variation derives from the noise (and 17.6% from the sampling).

Curvature estimation

Curvature, and in particular the integrated mean curvature in its normalized form (M is defined as the
algebraic average of the two curvatures in each point on the surface integrated over the surface), is obtained by a
tangent count(Dehoff): a horizontal line is swept down across each orthogonal slide and sites of tangents with
convex (T, dotted yellow in figure 2D) and concave (T, dashed green line in Figure 2D) boundaries are

counted. M, is the volume corrected integral mean curvature. The M, is calculated as:

1 T Z
Est(tM )=—-—+———- E T.-T
( 17) d ESt(S) - cx cc
1 b4 Z um
Est(MV)=—-—- E 228-68= 11875——
3 14109 - um

Concave
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Figure SI-9. Falso-colored 3D rendering of an Au nanostars. The color represents local curvature
(Blue: concave, Red, Conves)

5. Thermal reshaping of Au nanostars
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Figure SI-10. Spectral evolution of Au nanostars subjected at thermo-treatment: 140 °C in DMF.
Right: TEM images of Au nanostars before (top) and after (bottom) thermal reshaping.

6. Simulation scripts

The object was simulated in ImageJ macro language according to the following code:

newlmage(*'Untitled", "8-bit black', 400, 400, 400);

//Tiducials
Ffiducial=50;

// shell

stack depth=400;

Max_radius=300; //diameter

start_color=140;

end_color=40;

step=(start_color-end_color)/Max_radius;

gray_range=start_color;

starting_slice=(stack depth/2-Max_radius/2);

for (e=starting_slice;e<Max_radius+starting slice+l;e++){
setSlice(e);
radius=sqrt(abs(Max_radius*Max_radius)-( (Max_radius-2*( e-

starting_slice))* (Max_radius-2*( e-starting_slice))));
gray_range=abs(gray_range-step);
setForegroundColor(gray_range,gray_range,gray_range);
makeOval (stack depth/2-(radius/2), stack depth/2-(radius/2),radius,

radius);

if (radius > 0) {
run(C"Fill", “slice");
¥

}

// particle

stack depth=400;

Max_radius=200; //diameter

start_color=255;

end_color=60;

step=(start_color-end_color)/Max_radius;

gray_range=start_color;

starting_slice=(stack depth/2-Max_radius/2);

for (e=starting_slice;e<Max_radius+starting_slice+l;e++){
setSlice(e);



radius=sqrt(abs(Max_radius*Max_radius)-( (Max_radius-2*( e-
starting_slice))* (Max_radius-2*( e-starting_slice))));

gray_range=abs(gray_range-step);

setForegroundColor(gray_range,gray_range,gray_range);

makeOval (stack depth/2-(radius/2), stack depth/2-(radius/2),radius,
radius);

if (radius > 0) {

run("Fill™, "slice™);
}

}

// Tiducials
stack depth=400;
Max_radius=50;
setForegroundColor (255, 255, 255);
X_shift=100;
Y_shift=100;
for (e=1;e<stack depth+1l;e++){
slice=(stack_depth-Max_radius/2)-((stack depth-Max_ radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-
e)));
makeOval (X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C""Fill", “slice™);
}

}

stack depth=400;

Max_radius=50;

setForegroundColor (255, 255, 255);

X_shift=100;

Y_shift=-100;

for (e=1;e<stack depth+1l;e++){
slice=(stack_depth-Max_radius/2)-((stack depth-Max_radius))+e/2;
setSlice(slice);
radius=sqgrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e))):;

makeOval (X_shift+(stack depth-radius)/2,Y_shift+(stack _depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C'Fill", “slice™);
}

}

stack_depth=400;

Max_radius=50;
setForegroundColor (255, 255, 255);
X_shift=-100;

Y_shift=-100;

for (e=1;e<stack depth+1l;e++){
slice=(stack_depth-Max_radius/2)-((stack depth-Max_ radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-
e)));

makeOval (X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C"Fill", “slice™);



}
}
stack depth=400;
Max_radius=50;
setForegroundColor (255, 255, 255);
X_shift=Fiducial;
Y_shift=Fiducial;
Z shift=300;
for (e=1;e<stack depth-Z shift;e++){
slice=(-1/2)*Max_radius+Z_shift+(stack depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqgrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-
€)));

makeOval (X_shift+(stack depth-radius)/2,Y_shift+(stack _depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C'Fill", “slice™);
}

}

stack_depth=400;

Max_radius=50;

setForegroundColor (255, 255, 255);

X_shift=-1*Fiducial;

Y_shift=Fiducial;

Z_shift=300;

for (e=1;e<stack_depth-Z_shift;e++){
slice=(-1/2)*Max_radius+Z_shift+(stack depth-Max_radius/2)-

((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-

e)));

makeOval (X_shift+(stack depth-radius)/2,Y_shift+(stack _depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C'Fill", “slice™);
}

}

stack depth=400;
Max_radius=50;
setForegroundColor (255, 255, 255);
X_shift=Fiducial;
Y_shift=-1*Fiducial;
Z_shift=300;
for (e=1;e<stack depth-Z_ shift;e++){
slice=(-1/2)*Max_radius+Z_shift+(stack depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-
e)));
makeOval (X_shift+(stack_depth-radius)/2,Y_shift+(stack_depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C"Fill", “slice™);
}

}

stack depth=400;
Max_radius=50;



setForegroundColor (255, 255, 255);
X_shift=-1*fiducial;
Y_shift=-1*Fiducial;
Z_shift=300;
for (e=1;e<stack depth-Z shift;e++){
slice=(-1/2)*Max_radius+Z_shift+(stack depth-Max_radius/2)-
((stack_depth-Max_radius))+e/2;
setSlice(slice);
radius=sqgrt(abs(Max_radius*Max_radius)-((Max_radius-e)*(Max_radius-
e)));
makeOval (X_shift+(stack depth-radius)/2,Y_shift+(stack _depth-
radius)/2,radius, radius);
if (radius > 0) {
run(C"Fill", “slice");

}

}

7. Detailed result for all Au nanostars
Nanostars

Particle # Surface Volume (CE) Curvature
1 9288.2 34 732.2 (1.73%) 0.027 8
2 11182.6 40 168.2 (1.38%) 0.0201
3 8015.9 27 798.8 (1.69%) 0.0258
4 8468.3 32 876.8 (1.66%) 0.0228
5 7040.4 29914.6 (2.18%) 0.0189
6 7648.3 19 726.1 (1.5%) 0.0311
7 10532.3 33820.7 (1.50%) 0.0239
8 137415 45 181.1 (1.30%) 0.0231
9 103344 35708.7 (1.67%) 0.0200
10 11126.1 32811.7 (1.37%) 0.024 5
11 12 016.7 39 680.0 (1.85%) 0.0235
12 8284.5 30272.7 (1.25 %) 0.0270
13 8397.6 50226.6 (1.75%) 0.0315
14 9274.1 33853.3(1.77%) 0.0201
15 9500.3 35480.9 (1.77%) 0.0256
16 10292.0 39 126.6 (1.49%) 0.0253

Mean 9696.5 nm? 35 086.2 nm3(1.62 %) 0.024 4 nm/nm3
SD 1772.1 nm? 7219.9 nm3 0.003 9 nm/nm?3
Figure S1-4. Volume, surface and mean local curvature for all nanostars in the study.
8. Detailed result for all Au nanospheres
Nanospheres

Particle # Surface Volume (CE) Curvature
1 6833 45511 (2.72%) 0.0141
2 6990 37 675 (3.05%) 0.0141
3 5341 29 688 (4.28%) 0.0171
4 7226 47 320 (2.73%) 0.016 0
5 7618 59 225 (2.23%) 0.0145




6 8011 52 594 (2.45%) 0.016 8
7 7933 52 896 (2.44%) 0.0157
8 8561 56 965 (2.32%) 0.0147
9 7147 44 004 (2.80%) 0.017 8
10 7383 42 950 (2.79%) 0.016 2
11 7697 50 485 (2.49%) 0.0133
12 7304 47 018 (2.77%) 0.0157
13 7304 48 073 (2.49%) 0.0157
14 6362 35415 (3.20%) 0.0154
15 7226 45662 (2.71%) 0.0141
16 5733 30743 (3.53%) 0.0205
17 6833 36 469 (3.16%) 0.016 6
18 6755 38 881 (2.95%) 0.017 8
19 6833 42 648 (2.74%) 0.016 2
20 8482 54 252 (2.46%) 0.017 8
Mean 7179 nm? 44 923 nm? (2.82%) 0.0160
nm/nm3

SD 799 nm? 8287 nm3 0.0017
nm/nm3

Figure SI-5. Volume, surface and mean local curvature for all spherical nanoparticles in the study.

9. Precision of the stereological estimates of nanostars surface
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Figure SI-11. Development of the standard error of mean of the surface area (estimated by the Fakir
probe) with increasing number of experiments (particles). After 5 Au nanostars, no further reduction of
SEM is observed.

10. Size analysis of single Au nanospheres used in aggregates

25 images were recorded automatically recorded in SURS fashion (SI-11A), imported in Image] and
thresholded (SI-11B) using the default setting. The analysis modelled the particles as ovals and calculated the
major and minor axes (SI-11C). Finally, a histogram plot of half the major axis, as a marker for the particle
radius, of 27363 particles (line in SI-11D) was plotted above the histogram of the radii estimated by the Cavaieri
probe (n=48). The number of bin adapted to the number of observations (n) using the following this function

B= \/ﬁ There is no significant difference.
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Figure SI—12. TEM mlcrogijféph (A); thresholrded'h(B) and omodellled ('C:‘:)Wo‘fy ori'e of 25 images used for the
radius calculation from single particles. The histograms for major axis of single, non-aggregated particles
(line) overlaps with the box histogram of particle radius inside the aggregate.
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11. Sandbox method for fractal dimension in 3D

Figure SI-13. Graphical representation of the expansion of the sandbox method in 3D. The volume of the
aggregate is assessed within each box. The fractal dimension is a function of the natural logarithm of the
aggregate’s volume within each box, plotted against the natural logarithm of the volume of that box.

12. Time and resources

All tomographic recordings and stereological analysis were performed by one person. The time and resources
required for these experiments according to these categories:

Sample preparation

It is assumed that the objects are available at the start of the quantification steps. The preparation of the objects
(by dropcasting or nebulization) takes little time, but a sufficient long period of time must be allowed for drying
(3h), as no water may enter the transmission electron microscope. No special instruments are required.

Data recording / 3D reconstruction

The recording of a single tilt series takes about 30 minutes and is automated. The alignment and reconstruction
requires hands-on action and takes about the same period of time. Ideally, the first tilt series is reconstructed by
the time the second tilt series has finished its recording. Working this efficiently, about 16 datasets can be
recorded in a typical day. A conventional TEM and an up-to-date PC are required.



Pilot study

Once the datasets are recorded, a decision must be made on variables in the stereological analysis. In particular,
the area per point, the distance between lines and the k factor influence the time needed to analyze the data and
the final precision. This step also includes the design of the spreadsheet data. Estimated time: a half day per
study. A normal laptop sufficed.

Stereological analysis

Once setup, the analysis per se is a comparatively short affair. The use of a mechanical click-counter tool makes
the procedure even more efficient. The counts were entered in spreadsheet software, which was the most
demanding step, as it may take concentration the analysis itself. In average, about 10 minutes per Au nanostars
were needed, or less than 3 hours for the entire study. The analysis of the Au aggregates was performed within 1
day, since the precision was chosen to be lower and smaller aggregates were processed faster. A normal laptop
sufficed.

Summarizing data

Finally, the data is summarized spreadsheet and formulas, e.g. for the calculation of the CE, as programmed in
the spreadsheet. Time required: 1 hour. A normal laptop sufficed.

1: 1 day
2: 2 days
3 1 day

4 2 days

5 2 days

13. Agreement of fractal dimension measurement

The Bland-Altman plot is used to show the agreement between the two methods used (Cavalieri estimate and
scaling) to estimate the fractal dimension. The mean difference between the methods is 0.08.



Bland Altman plot of fractal dimension
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Figure SI-14. Bland-Altman plot of the results of the two methods used to estimate the fractal dimension.
The upper and lower dotted lines denote 1.96 standard deviations. The central line the mean difference
between the methods.

The Students’t test was used to assess significant differences between the two sets of results. The prerequisites
for the Student’s t test were fulfilled: normal distribution (Saphiro-Wilk test: W=0.97361, p=0.3609 for the
Cavalieri estimates) and independent from each other. The statistic t was calculated at 1.3101, with a p value of
0.1948.
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