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Exact out-of-time-ordered correlation functions for an interacting lattice fermion model
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Exact solutions for local equilibrium and nonequilibrium out-of-time-ordered correlation (OTOC) functions
are obtained for a lattice fermion model with on-site interactions, namely, the Falicov-Kimball (FK) model, in the
large dimensional and thermodynamic limit. Our approach is based on the nonequilibrium dynamical mean-field
theory generalized to an extended Kadanoff-Baym contour. We find that the density-density OTOC is most
enhanced at intermediate coupling around the metal-insulator phase transition. In the high-temperature limit, the
OTOC remains nontrivially finite and interaction dependent, even though dynamical charge correlations probed
by an ordinary response function are completely suppressed. We propose an experiment to measure OTOCs of
fermionic lattice systems including the FK and Hubbard models in ultracold atomic systems.

DOI: 10.1103/PhysRevA.95.011601

There is a growing interest in the scrambling and spreading
of information in quantum many-body systems in wide areas of
physics ranging from condensed matter to black holes [1-22].
A useful measure to diagnose the sensitivity of time-evolving
quantities on the initial condition is the out-of-time-ordered
correlation (OTOC) function [23] of two operators W and V,

C(1) = =([W®),VO)). 6]

In the semiclassical picture, if we choose W = p;,V = py,
C(t) ~ ([apj(t)/3qk(0)]2) (p; and gy are canonical momenta
and coordinates), so that OTOCs reflect how the system is
scrambled and the initial-condition dependence is amplified.
In chaotic systems, OTOCs are expected to grow exponentially
in time (butterfly effect). It has been conjectured based on the
holographic principle that there is a universal bound for the
exponential growth rate of OTOCs (analogous to the Lyapunov
exponent) [9]. Recently, the OTOC has been analytically
evaluated for the Sachdev-Ye-Kitaev (SYK) model, a model
of fermions having all-to-all four-body random interactions
without hopping [6,24-28]. It was found to show exactly such
a chaotic behavior with the bound saturated [6].

An immediate question is how OTOCs grow in the lattice
fermion models with short-range interactions that are typi-
cally used to describe strongly correlated condensed-matter
systems. To evaluate Eq. (1), one needs to compute quantities
such as (W()V(0)W(z)V (0)), which are incompatible with
the usual time-ordered sequence of operators on the Keldysh
or Kadanoff-Baym contour C (0 — t — 0 — —iB, B is the
initial inverse temperature) [29-31]. This is in contrast to
ordinary response functions. For example, a nonlinear optical
susceptibility is given by a combination of current correlators
suchas ([[[j(?),j ()], @], j(t")]) with a causality constraint
t >t >t" >t [32], which can always be defined on C.
Due to the unconventional ordering, OTOCs have not been
much studied for correlated lattice fermion models. Up to
now, OTOC functions have been calculated mostly by exact
diagonalization for spin [10,13-15,19] and boson [16] systems
of small size.

In this Rapid Communication, we generalize the nonequi-
librium dynamical mean-field theory (DMFT) [33,34] to
an extended Kadanoff-Baym contour, which allows one to
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calculate OTOC functions for lattice fermion models in the
infinite-dimensional and thermodynamic limit. We apply this
technique to the Falicov-Kimball (FK) model [35,36], which
admits an exact solution due to infinitely many conserved
quantities. The FK model exhibits intriguing properties such
as ametal-insulator transition, non-Fermi-liquid behavior [36],
and Anderson localization in two dimensions [37]. Its nonequi-
librium aspects have also been studied [33,38—-43]. We show
that OTOCs provide yet another insight into the physics of
this model, that cannot be obtained from ordinary response
functions. Finally, we propose an experimental scheme with
ultracold atoms to measure OTOCs in a fermion model.

We begin by noting that an out-of-time-ordered function
(W@)V(0)W(r)V(0)) is rewritten as

Trle PHOUO,0)W UE,0)V UO,0)W U(t,0)V ]
Tr[e—FHO)]
Tr[Zg e~ e MHOW, Vo W,_Vy_]
= TI‘[']E;” e_if5 dtH(t)]
= (T W, VoW, Vo),

where U(t,t") is the unitary evolution operator, Cis a
doubly folded Kadanoff-Baym contour with time running as
0=0_) —» t(=t-) - 0(=0,) — t(=ty) - 0(=0,) > —iB
[see Fig. 1(a)] [44], and 7; is the time-ordering operator along
C. We can also unfold the contour C as shown in Fig. 1(b),
where time runs as 0 — 2f — 0 — —if8. From ¢ to 2t, the
time evolution is reversed, i.e., the system evolves with the
Hamiltonian —H (2t — f) (t <t < 2t). These two types of
contours are equivalent. It is straightforward to extend a field
theory from C to C. The nonequilibrium Green’s function
is defined on C as G(t,t') = —i(Tz c(t)ct(t))) [c (c!) is the
fermion annihilation (creation) operator]. By replacing C
with C, the nonequilibrium DMFT is generalized as explicitly
constructed below.

We consider the FK model with the Hamiltonian
H(t)= Z J,-jcjcj + Z (—p,nf + Efn;.f) + U(I)Znifnf,
ij i i
(2
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FIG. 1. Two types of extended [(a) doubly folded and (b) singly
folded] Kadanoff-Baym contours C, which are equivalent. In (a),
the system evolves with the Hamiltonian H(7) (0 < 7 < ¢), while in
(b) the system evolves with H(f) for 0 < 7 < t and —H (2t — ) for
t << 2t

where nf ECjC[, n;.f = fjf;, Jij and p are the hopping

amplitude and the chemical potential for the ¢ particles, E ¢
is the energy level for the f particles, and U(¢) is the on-site
interaction, which can be time dependent. The model is exactly
solvable in any dimension in the sense that [ H nlf ] = Oforalli,
i.e., it has infinitely many conserved quantities. The immobile
f particles act as arandom potential for the itinerant ¢ particles.

In the infinite-dimensional limit (d — oo) with the hopping
scaled as J;; & J*/«/E (J, is a fixed constant) [45], the lattice
model can be exactly mapped onto an impurity problem
with a self-consistently determined dynamical mean field
(hybridization function) A(¢,t") [36,46-49], where the action
is given by

Simp = / didt’ t()A 1))
¢

+/~dt[—,unc(t)+ E /() + U@n! n(1)]. (3)
C

The mapping is constructed such that the local lattice Green’s
function is equal to the impurity Green’s function. In the
large-d limit, the lattice self-energy becomes local and can
be identified with the impurity self-energy. The single-particle
Green’s function for the FK model can be expressed as

G(t,t) = =i(Te c(t) (1)) 5y = Y WaRa(t,t),  (4)

where ¢ = 0 and 1 correspond to empty and occupied f-
particle configurations, w; = (n/), wo = 1 — wy, and R, (z,t")
is a configuration-dependent Green’s function, which satisfies
the Dyson equation,

[i9, + n — U@®a]Ry(t,t) — /dt_A(t,t_)R(,(t_,t’) = 8s(t,1").
¢
(5)

Here, the integral is taken along the contour C, and 8s(t,t")
is the generalized contour delta function [50]. Ry(¢,t") is
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the usual Weiss Green’s function in the nonequilibrium
DMFT [34]. Throughout this Rapid Communication, we
consider the half-filled case (i.e., u = U/2, w; = 0.5) on the
Bethe lattice with infinite coordinations, with the density of
states D(e) = \/4J2 — €2/(2J?), and use J, (J; ') as the
unit of energy (time). In this case, A(¢,t’) is related to the local
Green’s function via A(t,t') = J2G(t,t') [49]. Within DMFT,
the model shows a metal-to-Mott insulator transitionat U = 2,
and the metallic phase is a non-Fermi liquid [36].

In the FK model, the impurity action (3) can be block-
diagonalized into f-particle configuration sectors (¢ = 0,1),
in which the ¢ particles behave as free fermions in an effective
potential U(#)a — p. This makes it possible to calculate
arbitrary local dynamical correlation functions exactly. Let
us look at the two-point charge correlation function, which is
given by the sum of contributions from the two sectors,

Ca(tr, ) = (Ten“(t)n (1)) = ) we (Tp n(t)n (1)) s,
(6)
where Sip = Jedtdt' @)A1 )e(t) + [odiU () —
wlet(t)e(t) is the sector a (n/ = a) of the impurity action.
Since Si‘fnp is quadratic with respect to the c-particle operators,

we can analytically evaluate the right-hand side of Eq. (6) by
Wick’s theorem [51]. The result is

GCotry) = Z Wa [Ro (11, 12) Ry (12,11) — Ro(t1,11) Re(t2,12)].

(7

Here, R,(t,t’) at equal times (¢ = t’) should be read as a lesser
component (i.e., ' =t 4+ 0). Equation (7) is symmetric with
respect to the exchange t; <> 1,, and satisfies the boundary
condition limy,_,,, Ca(t1,52) = (n°(t1)).

As shown in Ref. [52], Eq. (7) correctly reproduces the
previous result for the dynamical charge susceptibility [36,53—
55]

x(t.t") = i0(t — ) {[n(t).n“(")]). ®)

In the infinite-dimensional limit, the local dynamical charge
susceptibility is equal to the lattice charge susceptibility
Xq(t,t") at general momentum ¢ (randomly chosen from
the Brillouin zone), since x(z,t') = Nq_' >, Xq(2,t') and
general momenta ¢ make equal and dominant contributions
to the momentum sum. In fact, we can confirm by explicit
calculations that expression (7) gives the correct dynamical
charge susceptibility for the general momentum [52].

The calculation can straightforwardly be generalized to
arbitrary n-point local charge correlation functions. The three-
point function is given by

C3(t1,12,13)
= (T n“(t)n‘ (L)n“ (1))
=Y weli[Ra(t1,1) Ra(t2,13) Re(t3,11) + (1 term)]

—i[Ry(t1,t1)Re(t2,13) Re (23, 12) + (2 terms)]
+ iRy (11,11 Re(t2,) Ro (13,13)}, &)
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and the four-point function by

Ca(t1,02,13,14)
= (T n“(t)n (12)n" (13)n (14))
=Y wa{—[Ru(t1,1) Ra(t2,13) Ro(13,13) Re (ta, 1)

o

=+ (5 terms)]

+ [Ro(t1,11) Ra(t2,13) R (13, 14) Ry (14, 12) + (7 terms)]
— [Ro(f1,11) Ra(t2,12) Ro (13, 14) Ry (14, 13) + (S terms)]
+ [Ro(t1,12) Ro(t2,11) Ro (13, 14) Ry (14, 13) + (2 terms)]
+ Ro(t1,11) Re (12, 12) Ro(13,13) Ry (14, 14) }. (10)

In Egs. (9) and (10), we group the terms by topologically
equivalent Wick contractions, and in each group one repre-
sentative term is spelled out. As a consistency check, one can
see that the right-hand sides of Egs. (9) and (10) are invariant
under arbitrary permutations #; <> ;. We can also confirm that
these correlation functions satisfy the boundary conditions
limy,_,, C3(t1,12,13) = Ca(t1,12) and limy,_,, Cua(t1,12,13,14) =
Cs(t1,12,13).

The OTOC function (1) for W = V = n° can be expressed
as

C(t) = — Cy(t4,0.,t_,0_) — C4(04,24,0.,2_)
+ C3(14,0c,1-) + C3(04,74,0c), (11)

where 74, 04, O, are the time points on C defined in Fig. 1
(we can also calculate the OTOC function for W =¢, V =
cf [52]). Let us emphasize that the result (11) is valid not only
in equilibrium but also out of equilibrium. For details of the
numerical implementation, we refer to Ref. [34].

The results for the OTOC function C(t)=
—{[n°(¢),n°(0)]>) are shown in Fig. 2 (red curves) for
several U and . As a comparison, we also plot the dynamical
charge susceptibility x(t) = x(¢,0) [Eq. (8)] (blue), which is
a usual response function obeying causality. Both C(¢) and
x(t) grow after t = 0, peak out within ¢ < 1, and gradually
decay to zero. By definition, C(¢) > 0, while x(¢) oscillates
around zero. Initially the correlations build up as C(z) oc 12
and y(z) oct. Both of them show a long-time asymptotic
behavior ~¢ 3, reflecting the power-law decay of the Green’s
function, RX(¢,0) ~ +=3/2 [52].

In the SYK model or other systems that show the anti—de
Sitter (AdS)—conformal field theory (CFT) correspondence,
one finds a separation of the relevant time scales; the time scale
of the change of C(¢) (scrambling time) is longer than that of
ordinary response functions such as x (¢) (thermalization time)
by a factor of log N [9], where N is the number of sites for the
SYK model or the number of colors in CFTs. In contrast, there
is no clear separation of the two time scales in the FK model
(Fig. 2), indicating that the AdS-CFT correspondence cannot
be applied here. Given this circumstance, we do not clearly
see an exponential growth (butterfly effect) of the deviation of
the OTOC from the initial value. In this sense, the FK model
does not describe a chaotic system, which is consistent with
the expectation that systems with infinitely many conserved
charges are not chaotic (and do not thermalize [39]).
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FIG. 2. Dynamical charge susceptibility x(z) (blue curves) and
out-of-time-ordered charge correlation function C(¢) (red) for the FK
model with (a) U = 1, (b) U = 2, and (c) U = 8. The solid, dashed,
and dotted curves correspond to 8 = 10, 0.5, and 0.1, respectively.
The inset shows the corresponding log-log plot for the absolute values,
compared with the asymptotic behavior oct .

Nevertheless, if we look at the temperature dependence of
C(¢#) in Fig. 2, it is very different from that of the ordinary
response function y(z). As the temperature increases, the
amplitude of yx(¢) vanishes irrespective of U, whereas C(¢)
is enhanced in the insulating phase [U > 2, Fig. 2(c)], more
or less unchanged at the critical point [U = 2, Fig. 2(b)], and
suppressed in the metallic phase [U < 2, Fig. 2(a)]. In partic-
ular, C(¢) remains nonvanishing and interaction dependent in
the high-temperature limit, even though the dynamical charge
correlations are completely suppressed (x () — 0).

To quantify the temperature and interaction dependence of
the OTOC at low energy, we compute the OTOC spectral
function C(w) = [;° dt ¢ C(t) and the dynamical charge
susceptibility spectrum y(w) = fooo dt ' x(t,0). C(w = 0)
measures how much the OTOC grows during the entire
dynamics. Figure 3 plots x(w = 0) and C(w = 0) for several
U and B. x (w = 0) monotonically decreases as a function of U
at arbitrary fixed temperature. At sufficiently low temperature,
the charge gap opens in the insulating phase (U > 2), where
x(w = 0) vanishes. As the temperature increases, thermal
excitations take place above the charge gap, leading to an
increase in x (w = 0) in the insulating phase. If the temperature
further increases, charge correlations disappear and yx(w)
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FIG. 3. Comparison between (a) the dynamical charge suscepti-
bility x(w) and (b) the OTOC spectral function C(w) at v = 0 for
the FK model. The dashed curves correspond to interaction quenches
Up = 10 — U with initial temperatures § = 1 and 0.1.

approaches zero. In contrast, C(w = 0) is a nonmonotonic
function of U; it reaches the maximum at some intermediate
coupling (1 £ U < 3) around the metal-insulator transition
point [Fig. 3(b)], and decays to zero in the U — oo limit. In
particular, the high-temperature limit of C(w = 0), which is
close to that of 8 = 0.1 in Fig. 3(b), shows a highly nontrivial
nonzero spectral weight amplified in the insulating phase,
whereas the ordinary response function becomes trivial. The
overall temperature dependence of C(w = 0) is similar to that
of C(t) discussed above.

Finally, let us discuss how to experimentally measure the
OTOC C(¢) in many fermion systems. We consider ultracold
atomic systems in an optical lattice. There have been several
proposals on the measurement of OTOCs. One strategy is to
take an interferometric approach with a qubit control [10-13].
Another approach is a time-reversal protocol [20,21]. Since
ultracold atomic systems offer full control over the Hamilto-
nian parameters with negligible dissipation on the time scale
of interest, we propose, based on the latter approach, a serial
protocol (Fig. 4) implemented along the contour in Fig. 1(b)
that is feasible with available experimental techniques for
atomic gases.

We prepare a Mott-insulating state with the initial Uy =
oo tuned by a Feshbach resonance, and measure the number
(=N)) of ¢ particles at site j nondestructively. (Note that the
Mott insulator is an eigenstate of the particle density.) Then
we quench the interaction Uy = co — U att = 0, and let the
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FIG. 4. Illustration of the proposed measurement protocol of the
OTOC in ultracold atomic systems with two fermionic species (blue
and green). At t = 1, a local pulse is applied to site i, and at t = 0
and t = 21y the particle density is measured at site j.

t=2to

system time-evolve for a duration of #y. At = t;, we apply an
instantaneous local potential pulse § H(t) = 8(t — to)n{(t) by
using a focused laser to shift the energy level of site i [56]. After
that, we change the hopping J;; — —J;; by shaking the lattice
periodically [41], or applying a 7t pulse [57], or using a Raman
process [58] to induce a 7 -phase shift in the kinetic term [59].
At the same time, we quench the interaction U — —U. With
these, we can flip the sign of the Hamiltonian, H — — H [60],
which enables the system to effectively propagate backward in
time (similar to a Loschmidt-echo experiment). After letting
the system evolve for another #;, we measure the c-particle
density (=N,) at site j. We repeat this procedure to measure
the expectation value of 2NN, — N, [61]. If we expand it
with respect to &, we obtain

<2N1 N> — Nz)
= Tr[;0(0)1/1(—to)eievnfz,{(to)n_‘]‘.L{(_to)e—isn;'u(to)(an )]

= (n5(0)) + 82([nf(to),nj(0)]2) + 0(?), (12)

where p(0) is the initial density matrix, and U (¢,t') = Ut —
t"). The leading-order contribution is exactly the OTOC C(t)
for the nonequilibrium system subject to the interaction quench
Uy — U. In Fig. 3 (dashed curves), we show x(w = 0)
and C(w = 0) for the interaction quench where the initial
interaction is chosen to be large but finite (Uy = 10). We can
see the nonmonotonic behavior and characteristic temperature
dependence of C(w = 0), similar to the results obtained in
equilibrium. This scheme is applicable not only to the FK
model but also to the Hubbard model. To realize the FK
model in ultracold atomic systems, we need a mass imbalance
between two fermionic species.

To summarize, we have obtained an exact solution for
the OTOCs of the FK model in the thermodynamic limit
by generalizing the nonequilibrium DMFT to the extended
Kadanoff-Baym contour C. We find that the OTOC C(¢) is
most enhanced around the metal-insulator transition point,
and remains nontrivial in the high-temperature limit, which
can be measured in ultracold atomic systems. Our work is a
first step toward an analysis of OTOCSs in more complicated
fermionic lattice models, such as the Hubbard model. It is of
interest to investigate whether those models, especially in the
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“strange-metal” phase, show a chaotic behavior, and, if so,
how fast they are scrambled.
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