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1 Experimental details

1.1 Photoemission experimental details

The ARPES experiments were performed at the Advanced Resonant Spectroscopies (ADRESS) beamline at the Swiss
Light Source (SLS). Data were collected using circularly-polarized light with an overall energy resolution of 50-80 meV.
The samples were cleaved in situ at about 25 K and measured in a vacuum always better than 5× 10−11 mbar. The
experimental geometry is described in Ref. [1]. Figure 1 (a)-(f) shows the ARPES intensity maps at various binding
energies obtained from our high-quality MoS2 single crystals. The ARPES intensity maps as a function of energy and
k along high symmetry lines are shown in panels (g),(h). The top of the valence band at M and K is about 1.35, and
0.7 eV below the value at Γ, respectively, in good agreement with the values obtained in our LDA calculations (see
Fig. 1 (b) bottom panel in the main text and [2]).

The spin resolved ARPES measurements were performed at the COPHEE end station of SIS beamline [3]. The
three-dimensional spin information is obtained by means of two orthogonally oriented classical Mott detectors, each of
which measures two spatial components of the photoelectron spin expectation value. All measurements were performed
at a base pressure better than 4 × 10−10 mbar, both at 25 K. Incoming light comes at 45◦, the sample is tilted 23◦

degree perpendicularly to the mirror-plane resulting in the angles θph = 48.3◦ and φph = 71◦ with respect to the
sample surface (φph = 0◦ for light coming in the plane defined by surface normal and the direction of the outgoing
electrons).

2 Theoretical details

2.1 Band structure calculation details

Density functional theory calculations were performed using the linearly augmented plane waves (LAPW) method
implemented in the WIEN2K package [4]. Lattice parameters used in the calculation are a = 3.15 Å, c = 12.3 Å.
Spin-orbit interaction is included via a second variational step using the scalar-relativistic eigenfunctions as basis.

2.2 Three step model of Spin-resolved ARPES

The interaction Hamiltonian in presence of radiation is given by:

Hint = − e

cme
A(q) · p. (1)

The vector potential is A(q) = Aεeiq·r and in p, s, CL and CR polarization ε is given by:

εp =

 − cos θph cosφph
− cos θph sinφph

sin θph

 εs =

 + sinφph
− cosφph

0

 εCR/L = εp ± iεs (2)

For the final state we use the free-electron approximation 〈r|Ψf 〉 = eip·r |χσ′u′〉, while for the initial state we use a tight
binding (TB) expansion:

〈r|Ψi〉 =
1√
N

∑
γ,σ,µ,`

bσi,µ,γe
ik·R`φµ,γ,`(r) |χσu〉 =

1√
N

∑
γ,σ,µ,`

bσi,µ,γe
ik·R`φγ

(
Rµ(r−R` − dµ)

)
|χσu〉 (3)
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Figure 1: Experimental ARPES intensity maps of MoS2 acquired at hν = 431 eV. (a)-(f) Constant binding energy
maps map at E − EV = 0,−0.5,−1,−1.5,−2, 2.5 eV, respectively. (g),(h) ARPES spectra along K ′ − Γ − K and
M − Γ directions.

where γ = (n, l,ml) labels the spherical harmonics, φγ(r) = Rn,l(r)Y
ml
l (r̂), R` are the Bravais lattice vectors, the dµ

are the position inside the unit cell and Rµ is the rotation of frame for the local atom site. In MoS2, considering only
the states coming from Mo atoms, the µ index indicates the layer number.

In the two equations above u,u′ are versor indicating the quantization directions of the spin on the initial state
and on the detector, respectively. In this case the final state momentum inside the crystal is given by:

k = kin

 sin θin cosφin
sin θin sinφin

cos θin

 (4)

with

kin =

√
2me

~2

(
~ω − φwf − Eb + V0

)
, kin‖ = kout‖ , φin = φout, θin = sin−1

(
kin‖ /k

in
)
.

For the case of electron emitted from the valence band of MoS2 surface at the K̄ = ( 4π
3a , 0, kz(hν)) we use k‖ = 4π

3a ,
φin = 0◦ [5] , V0 = 10 eV (inner potential of the crystal), Eb = 1.35 eV, φwf = 4.5 eV and ~ω = 50 eV.

Without losing generality, we consider the u to be oriented along z and using the Fermi-golden rule gives I(Ef ) ∝∑
i e
−βEi | 〈Ψfin|Hint|Ψi〉 |2δ(Ef − Ei − hν), the sum on the degenerate initial states i, we find:

Iσ′,u′(k,p,q, Ef ) ∝
∑
i

e−βEi
∣∣Mσ′

i,u′(k,p,q)
∣∣2δ(Ef − Ei − hν) (5)

Mσ′

i,u′(k,p,q) ∝ 1

N

∑
σ,γ,µ,`

bσi,µ,γe
ik·R` 〈eip·rχσ

′

u′ |
e

mec
A · p|φγ

(
Rµ(r−R` − dµ)

)
χσz 〉

=
e~
mec

δp−q,kAε ·
∑
σ,µ,γ

bσi,µ,γm
σ′,σ
u′,zκγ,µ(p− q) (6)

where:

mσ′,σ
u′,z = 〈χσ

′

u′ |χσz 〉 = (m
u′,z

)σ′,σ

m
u′,z

=

(
cos(θs/2) eiφs sin(θs/2)
sin(θs/2) −eiφs cos(θs/2)

)
κγ,µ(k) = −i

∫
Ω

e−ik·r∇φγ
(
Rµ(r− dµ)

)
d3r

(7)
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where (θs, φs) are the polar and azimuthal angles of the finals state spin. Thanks to the relations (in the approximation
Ω = Ω′′):

κγ,µ(k) = −ie−ik·dµ
∫

Ω′
e−ik·r

′
∇φγ(Rµr

′) d3r′

= −ie−ik·dµ
∫

Ω′′
e−ik·R

−1
µ r′R−1

µ ∇φγ(r′′) d3r′′

= e−ik·dµR−1
µ κγ(Rµk) (8)

with κγ(k) calculated for d = 0 and R−1
µ = I the above relations give:

Mσ′

i,u′(k) =
∑
σ,µ,γ

bσi,µ,γe
−ik·dµmσ′,σ

u′,zε ·R
−1
µ κγ(Rµk)

where we dropped the constant factor e~
mec

A.
In case of multi-layer structure the influence of the mean free path λe can be included by adding an artificial

exponential decay of the TB coefficients:

bσi,µ,γ → bσi,µ,γδµ µ = 1, 2, .., nl; δµ = e−
D(µ−1)
λe = δµ−1

In this convention µ = 1 is the top layer, D = c/2 is the distance between two adjacent layers and δ = e−D/λe . Thus,
including the effect of the mean free path:

Iσ′,u′(k, Ef , hν) ∝
∑
i

e−βEi
∣∣Mσ′

i,u′(k)
∣∣2δ(Ef − Ei − hν)

Mσ′

i,u′(k) =
∑
σ,µ,γ

bσi,µ,γδµe
−ik·dµmσ′,σ

u′,zε ·R
−1
µ κγ(Rµk)

(9)

(10)

We note that in the ideal case of T = 0, the sum over the initial states in eq. (9) runs over all the degenerate ground
states of the system. Interesting, the choice of the initial states is arbitrary since any independent linear combinations
of these states are still eigenvectors of the Hamiltonian with the same eigenvalue. However it is easy to show that the
I resulting from the eq. (9) is independent of the choice made for the initial states (see 2.10).

2.3 Initial state of MoS2

Monolayer

The Hamiltonian for MoS2 mono-layer around the K point, on the basis {|dz2〉 , 1√
2
(|dx2−y2〉+ iτ |dxy〉)} or equiv-

alently in terms of spherical harmonics {|2, 0〉 , |2, τ2〉} [7] (the radial part is not explicitly given for the moment):

H =

(
∆ at(τqx + iqy)

at(τqx − iqy) 0

)
=at(τqxσ̃x − qyσ̃y) +

∆

2
(σ̃z + I) (11)

where τ = ±1 is the valley index (+1 at K, −1 at K ′). For q = 0 (at K and K ′) the H is diagonal in the basis,
|2, 0〉 , |2, τ2〉 are the eigenfunctions for conduction and valence band, respectively, and ∆ is the band-gap. In absence
of SO coupling the valence band is spin degenerate.

Including the SO coupling, in the approximation of spherical symmetric potential:

Hso =
1

2m2
ec

2
(∇V × p) · S =

~
4m2

ec
2

1

r

∂V

∂r
(r× p) · σ (12)

the two states |2, τ2, ↑〉 , |2, τ2, ↓〉 split. To get the Hamiltonian on the basis {|2, 0, ↑〉 , |2, τ2, ↑〉 , |2, 0, ↓〉 , |2, τ2, ↓〉} first
one evaluates the matrix elements of the radial part of the initial states:
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Hso = 〈R42|Hso|R42〉 = λsoL · S =
λso~2

2

L

~
· σ (13)

with

λSO =

∫ ∞
0

drr2ξso(r)|R42(r)|2, ξso(r) =
1

2me
2c2

1

r

dV (r)

dr
. (14)

The Hamiltonian which includes the spin-orbit coupling of the valence becomes:

H =


∆ 0 0 0
0 ∆ 0 0
0 0 +λso~2τ 0
0 0 0 −λso~2τ

 (15)

Given that 〈2, τ2, ↓ |H ′so|2, 2τ ↑〉 = 0 (so the |2, 2τ〉 |σ〉 are the good eigenstates for the degenerate perturbation theory),
that 〈2, τ2|Li|2, 2τ〉 = 0 for i = x, y and 〈2, 2τ |Lz|2, τ2〉 = 2τ~ (see [5]):

〈2, τ2, σ|H ′so|2, τ2, σ〉 =
λso~2

2
(2τ)(±1) for σ =↑, ↓

∆Eso = 2λso~2

(16)

The valence states closest to EF are |2, 2, ↑〉 and |2,−2, ↓〉 at the K and K ′ points, respectively. For the photoe-
mission calculation for the top of the valence band for a monolayer we have for the bσγ :

bσ(4,2,−2) = 0

bσ(4,2,+2) = δσ,↑ (17)

at the K point (at K ′ bσ4,2,−2 = δσ,↓, b
σ
4,2,2 = 0). This state is non-degenerate and there is just one initial state state

which is fully spin polarized and I is directly given by the squared absolute value of eq. (10).

Bi-layer

A bi-layer of MoS2 can be formed by adding a monolayer rotated by 180◦ below the original monolayer. Given the
rotation, the basis wave functions at K for the lower layer will be the one of the monolayer at K ′. For conduction band
inter-layer hopping is forbidden by symmetry of the |2, 0〉 orbitals and we can just consider the inter-layer hopping of
valence band bases [8]. Using the notation |l,m〉µ we get:

H =


+λso~2τ t⊥ 0 0

t∗⊥ −λso~2τ 0 0
0 0 −λso~2τ t⊥
0 0 t∗⊥ +λso~2τ

 (18)

in the basis {|2, τ2, ↑〉1 , |2,−τ2, ↑〉2 , |2, τ2, ↓〉1 , |2,−τ2, ↓〉2}. Note that H is block diagonal, implying that spin along
z direction is good quantum number.

The eigenvectors of H can be easily calculated and we get that the top of the valence band is doubly degenerate
(spin-degeneracy), at K the two degenerate states [8]:

|nl = 2, i = 1〉 =
1√
2

(
cosα |2, 2〉1 + sinα |2,−2〉2

)
|↑〉

|nl = 2, i = 2〉 =
1√
2

(
sinα |2, 2〉1 + cosα |2,−2〉2

)
|↓〉

(19)

with cos 2α = λso/
√
λ2
so + t2⊥ and du = 0, dl = ( 1

2a,
2
3a,−

1
2c) and using µ = 1 (µ = 2) for the upper (lower) layer.
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This results, for |nl = 2, i = 1〉 and |nl = 2, i = 2〉, in the following bσi,µ,γ :

bσ1,1,(4,2,−2) = 0

bσ1,1,(4,2,+2) = δσ,↑ cosα

bσ1,2,(4,2,−2) = δσ,↑ sinα

bσ1,2,(4,2,+2) = 0

bσ2,1,(4,2,−2) = 0

bσ2,1,(4,2,+2) = δσ,↓ sinα

bσ2,2,(4,2,−2) = δσ,↓ cosα

bσ2,2,(4,2,+2) = 0

(20)

Now, the initial state is doubly degenerate, and in the photoemission intensity of eq. (9) the sum is over two terms.

nl-layers

In absence of conduction band hopping for nl layers we have:

H =

(
H↑ 0
0 H↓

)
(21)

H↑ =


+λso~2τ t12

⊥ t13
⊥ ... t1n⊥

t12∗

⊥ −λso~2τ t23
⊥ ... t2n⊥

t13∗

⊥ t23∗

⊥ +λso~2τ ... t3n⊥
... ... ... ... ...

t1n
∗

⊥ t2n
∗

⊥ t3n
∗

⊥ ... (−1)(nl+1)λso~2τ

 (22)

H↓ =


−λso~2τ t12

⊥ t13
⊥ ... t1n⊥

t12∗

⊥ +λso~2τ t23
⊥ ... t2n⊥

t13∗

⊥ t23∗

⊥ −λso~2τ ... t3n⊥
... ... ... ... ...

t1n
∗

⊥ t2n
∗

⊥ t3n
∗

⊥ ... (−1)nlλso~2τ

 (23)

The matrices can be easily diagonalized numerically (we use tµ,µ
′

⊥ = δµ′,µ±1t⊥). Given the block diagonal form
the eigenstates are either fully spin up or spin down. In case of nl even each state with spin up has a corresponding
state with spin down at the same energy. So the top of the valence band is still doubly degenerate, as it should be
in the bulk system. The state at higher energy (Emax) is the one with the coefficients of the eigenvector of the same
sign (corresponding to kz = 0 point in a tight binding picture). The coefficients are give in terms of the eigenvector
components a↑µ, a

↓
µ of H↑ and H↓ corresponding to the eigenvalue Emax:

bσ1,1,(4,2,−2) = 0

bσ1,1,(4,2,+2) = δσ,↑a
↑
1

bσ1,2,(4,2,−2) = δσ,↑a
↑
2

bσ1,2,(4,2,+2) = 0

...

...
bσ1,nl,(4,2,−2) = δσ,↑a

↑
nl

bσ1,nl,(4,2,+2) = 0

bσ2,1,(4,2,−2) = 0

bσ2,1,(4,2,+2) = δσ,↓a
↓
1

bσ2,2,(4,2,−2) = δσ,↓a
↓
2

bσ2,2,(4,2,+2) = 0

...

...
bσ2,nl,(4,2,−2) = δσ,↓a

↓
nl

bσ2,nl,(4,2,+2) = 0

(24)

2.4 Evaluation of Matrix element integrals

We are then left with the problem of obtaining κγ(k) at k given by eq. (4). Now by using the relation ∇ = −me~2 [H, r]
and the spherical harmonics expansion of the initial state φγ(r), of the final state eik·r:

e−ik·r = 4π
∑
lk,mk

(−i)lkjlk(kr)Y mk∗lk
(r̂)Y mklk

(k̂), (25)

and of the position operator:

r =

√
4π

3
r


1√
2

[
Y −1

1 (r̂)− Y +1
1 (r̂)

]
i√
2

[
Y −1

1 (r̂) + Y +1
1 (r̂)

]
Y 0

1 (r̂)

 (26)

we can rewrite the vector κγ(k), as function of the parameters κνn,l,m(k), (ν = −1, 0, 1):
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κνn,l,m(k) = 4πi
∑
lk,mk

(−i)lk(−1)mkY mklk
(k̂)g(l,m, lk,−mk, 1, ν)ρlkn,l(k) (27)

ρlkn,l(k) =

√
4π

3

meω

~

∫
r3jlk(kr)Rn,l(r) dr (28)

κγ(k) =


1√
2

[
κν=−1
γ (k)− κν=+1

γ (k)
]

i√
2

[
κν=−1
γ (k) + κν=+1

γ (k)
]

κν=0
γ (k)

 (29)

In this equation jlk(kr) are the spherical Bessel functions and g(l,m, lk,mk, L,M) are the Gaunt coefficients defined
according to eq. (46).

2.5 Radial-part parameters

For the initial state of a single layer of MoS2 |R42〉 |2, τ2〉 we have to fix the radial part to evaluate the radial integrals.
To do so we approximate the potential as a Yukawa potential:

V (r) = −ZV0
e−

r
d

r
(30)

where V0 = e2

4πε0
. The advantage of this approximation is that the eigenstates of Yukawa potential can be calculated

analytically [9]. The free parameters in V are obtained demanding that the λSO in eq. (14)-(16) matches the value
obtained from first principle calculations. Using Z = 21 and d = 0.65 abohr we have λso~2 = 73 meV, the same value

obtained from LDA calculations [5]. With this values we get ρ ≡
ρ3

4,2

ρ1
4,2

= 1.8.

2.6 Spin flipping transition in the final states

Final states spin flips can be induced by the interacting Hamiltonian HSO
int = − e~

mec
A(q) · 1

4mec2r
∂V
∂r (σ × r) obtained

by the Peierls substitution in the HSO given in eq. (12). Using the substitution eq. (26), the matrix elements can be
evaluated similarly to the ones for A · r and the radial part is given by

βlkn,l(k) =

√
4π

3

1

4mec2

∫
r2 ∂V

∂r
jlk(kr)Rn,l(r) dr (31)

The ratio ρ/β can be estimated by comparing the terms differing in the two expressions, i.e., r3meω
~ and r2 ∂V

∂r
1

4mec2
.

For the first term, since the cut off of the integral is of the order of aBohr (given by R4,2) r3 is of the order of a3
Bohr in

that interval. For the Yukawa potential in eq. (30) r2 ∂V
∂r ≈ ZV0. Using this two values the ratio ρ/β is of the order

of 106, suggesting that the contribution of HSO
int to the photoemission intensity is negligible. Calculations using the

analytic solutions of the Yukawa potential give β1
4,2/ρ

3
4,2 = 2× 10−5 and β3

4,2/ρ
3
4,2 = 8× 10−6 in good agreement with

our estimate.

2.7 MoS2 bilayer at normal incidence

For MoS2, given that R−1
µ κγ(Rµk) = κγ(k) and excluding spin flip transition in the final state, the photoemision

intensity is diagonal in the spin index, and can be written as:

Iεσ′,z ∝ Σi|Σγησ
′

i,γκγ · ε|2

with ησ
′

i,γ = Σµb
σ′

i,µ,γδµe
−ik·dµ . For MoS2 bilayer using eq. (20) we find:

Iε↑,z ∝ | cos(α)κ2,2 · ε+ sin(α)δe−ik·dlκ2,−2 · ε|2 (32)

Iε↓,z ∝ | sin(α)κ2,2 · ε+ cos(α)δe−ik·dlκ2,−2 · ε|2 (33)
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Direct calculation of the κ from eq. (27)-(29) gives for l = 2,m = ±2:

κl,m = Σl′,m′C
m,m′

l,l′ em,m′ , em,m∓1 =

 1
±i
0

 , em,m =

 0
0
1

 (34)

with Cm,m
′

l,l′ = C−m,−m
′

l,l′ and Cm,m
′

l,l′ 6= 0 only for l′ = l ± 1,m′ = m,m ± 1 and |m′| ≤ l′, in agreement with selection
rules for electric dipole transitions. At normal emission em,m′ ·εnCR/L ∝ δm,m±1 and thus m′−m = ±1 for CR and CL,

respectively, as required by the conservation of total angular momentum. In case of light coming at normal incidence
we have:

κ2,2 · εnp = −[C2,1
2,1 + C2,1

2,3 + C2,3
2,3 ]

κ2,2 · εns = −i[C2,1
2,1 + C2,1

2,3 − C
2,3
2,3 ]

κ2,2 · εnCR = −2[C2,3
2,3 ]

κ2,2 · εnCL = −2[C2,1
2,1 + C2,1

2,3 ]

κ2,−2 · εnp = −[C−2,−1
2,1 + C−2,−1

3 + C−2,−3
2,3 ] = κ2,2 · εnp

κ2,−2 · εns = −i[C−2,−3
2,3 − C−2,−1

2,1 − C−2,−1
2,3 ]

κ2,−2 · εnCR = −2[C−2,−1
2,1 + C−2,−1

2,3 ] = κ2,2 · εnCL
κ2,−2 · εnCL = −2[C−2,−3

2,3 ] = κ2,2 · εnCR

(35)

The C coefficients can be written more explicitly as Cm,m
′

l,l′ = cm,m
′

l,l′ Y m
′

l′ (k̂) and:

cm,m±1
l,l′ =

4πi√
2

(−i)l
′
(−1)m±1ρl

′

n,l(k̂)
[
g
(
l,m, l′,−(m± 1), 1,−1

)
− g
(
l,m, l′,−(m± 1), 1, 1

)]
cm,ml,l′ = 4πi(−i)l

′
(−1)mρl

′

n,l(k̂)g(l,m, l′,−m, 1, 0)

(36)

The values of the c2,m
′

2,l′ are given by:

l′
m′

1 2 3

1 −
√

12π
5 ρ1

4,2 0 0

3 −
√

6π
35 ρ

3
4,2 −

√
12π
7 ρ3

4,2

√
18π
7 ρ3

4,2

For electrons at the K point we obtain C2,1
2,1 = 0.33, C2,1

2,3 = 0.51, C2,2
2,3 = −0.49 and C2,3

2,3 = −0.09 (in unit of ρ1
4,2).

Noticing that C2,3
2,3 � (C2,1

2,1 + C2,1
2,3 ) we get that |κ2,∓2 · εnCR/L | � |κ2,±2 · εnCR/L | and equations (32)-(33) simplifies in:

ICR↑,z ≈ 4 sin2(α)δ2(C1
1 + C1

3 )2 ICR↓,z ∝ 4 cos2(α)δ2(C1
1 + C1

3 )2

ICL↑,z ≈ 4 cos2(α)(C1
1 + C1

3 )2 ICL↓,z ∝ 4 sin2(α)(C1
1 + C1

3 )2

Thus in case of normal incident light we obtain:

P
CR/L
z ≈ ∓

(
cos2(α)− sin2(α)

)
= ∓ cos 2α. (37)

The interpretation of this formula is quite simple. Taking for example the case of CR light, the electron photoemitted
must have an initial m = −2. Based on eq. (19) most of them (proportionally to cos2 α) have spin down while the
rest (proportionally to sin2 α) have spin up.

2.8 Interference effects

The possibility of coherent interference between distinct degenerate initial states is not included in our analysis of the
photoemission process. The summation in eq. (9) over degenerate initial state is indeed carried out in incoherent
way, and only interference within the same state, such as interference between different layers, is included. On the
one hand, given that the initial states of nl-layers are purely spin up and down along z, and that Hint conserves the
spin, taking the coherent sum, i.e. summing the initial states before performing the modulus square, doesn’t affect
the calculation of Pz. In fact, for even number of layers:

I↑(↓),z ∝
∣∣∣∣ 〈eik·r, ↑ (↓)|Hint|1〉+ 〈eik·r, ↑ (↓)|Hint|2〉

∣∣∣∣2 =

∣∣∣∣ 〈eik·r|Hint|u(v)〉
∣∣∣∣2 (38)
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where we used the notation |1〉 = |u〉 |↑〉 and |2〉 = |v〉 |↓〉. For the bilayer, the above result is equivalent to eq. (32),

(33) and results in P
CR/L
z ≈ ∓ cos 2α, once the |u〉 and |u〉 from equation (19) are used. On the other hand, the

coherent summation results in a non vanishing P‖. In particular, we still have I↑,y = I↓,y but now:

I↑(↓),x ∝
∣∣∣∣ 〈eik·r|Hint|u〉 〈↑x (↓x)| ↑〉+ 〈eik·r|Hint|v〉 〈↑x (↓x)| ↓〉

∣∣∣∣2
=

1

2

∣∣∣∣ 〈eik·r|Hint|u〉 ± 〈eik·r|Hint|v〉
∣∣∣∣2. (39)

Using these results for calculating Px with circular light at normal incidence with |κ2,∓2 · εnCR/L | � |κ2,±2 · εnCR/L | we

obtain:

P
CR/L
x ≈ sin 2α. (40)

For the bilayer calculations shows that cos 2α = 0.863 [8], and thus our simple calculation at normal emission would
predict Pz = 0.86 and Px = 0.26, not far from the our experimental observation (see Fig. 2).

Another possible source of interference could be related to modification of eigenstates of the monolayer. In an
unperturbed MoS2 monolayer the VB1 eigenstates at K and K ′ are |2, 2, ↑〉 and |2,−2, ↓〉, respectively. However
perturbation like mirror symmetry breaking induced by a substrate or VB1-VB2 interband impurity scattering can
modify the eigenstate resulting in a phenomenological eigenstate:

|nl = 1,K〉 = A

(
|2, 2〉

(
|↑〉+ a |↓〉

)
+ b |2,−2〉

(
|↓〉+ c |↑〉

))
(41)

where b = 0 with preserved mirror symmetry (σh) and a = c = 0 in absence of interlayer mixing due to scattering.
Note that spin along z on a given layer is opposite for VB1 and VB2 as given by the SO interaction. These terms can
give rise to interference of spin states and can thus be a source of rotation of the spin polarization vector measured by
spin resolved ARPES [6]. In the simple case of bilayer, focusing on the interband mixing only we get:

|nl = 2, i = 1, a〉 = A

(
cosα |2, 2〉1

(
|↑〉+ a1,1 |↓〉

)
+ sinα |2,−2〉2

(
|↑〉+ a1,2 |↓〉

))
|nl = 2, i = 2, a〉 = A

(
sinα |2, 2〉1

(
|↓〉+ a2,1 |↑〉

)
+ cosα |2,−2〉2

(
|↓〉+ a2,2 |↑〉

)) (42)

where ai,µ is proportional to the mixing of VB1 state i with states from VB2 on the layer µ. In this case equations
(32) and (33) are modified since the I is not any more diagonal in the spin index and we obtain:

Iε↑,z = I1,ε
↑,z + I2,ε

↑,z ∝| cos(α)κ2,2 · ε+ sin(α)δe−ik·dlκ2,−2 · ε|2 + |a2,1 sin(α)κ2,2 · ε+ a2,2 cosαδe−ik·dlκ2,−2 · ε|2

Iε↓,z = I1,ε
↓,z + I2,ε

↓,z ∝|a1,1 cos(α)κ2,2 · ε+ a1,2 sin(α)δe−ik·dlκ2,−2 · ε|2 + | sin(α)κ2,2 · ε+ cos(α)δe−ik·dlκ2,−2 · ε|2
(43)

In the approximation ai,µ ≈ a the Pz for circular light at normal emission is:

P
CR/L
z ≈ ∓1− |a|2

1 + |a|2
cos 2α. (44)

Thus, since (1− |a|2)/(1 + |a|2) ≈ 1− |a|2 for |a| � 1, interference correction to the Pz are of order of |a|2 and can be
neglected. With the assumption of a real a, i.e. of an in-phase coherent mixing of the state in VB1 and VB2 we get

P
CR/L
y = 0 and:

P
CR/L
x ≈ 2a

1 + 2a2
(45)

where we used the relations |↑〉+ a |↓〉 = 1+a√
2
|↑x〉+ 1−a√

2
|↓x〉 and |↓〉+ a |↑〉 = 1+a√

2
|↑x〉 − 1−a√

2
|↓x〉. The induced Px is

of order of a and thus is not negligible. For a ≈ 0.1 correction to Pz are about 1% while Px in increased from 0 to 0.2,
in qualitative agreement with our experimental observation (see Fig. 2).
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Figure 2: (a)-(f) Spin-resolved intensities (top) and spin polarization curves (bottom) at the K-point along x (top
row), y (bottom row) acquired at hν = 50 with p−, CL and CR polarized light.
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2.9 Gaunt Coefficients

Now for the coefficient g(l,m, lk,mk, L,M), they are the so-called Gaunt-coefficient,defined by the relation:

Y ml (r̂)Y mklk
(r̂) =

∑
L,M

g(l,m, lk,mk;L,M)YM∗L (r̂). (46)

In Condon-Shortley convention they are given by:

g(l,m, lk,mk;L,M) =

√
(2lk + 1)(2l + 1)

4π(2L+ 1)
(−1)M 〈lk,mk; l,m|lk, l;L,−M〉 〈lk, 0; l, 0|lk, l;L, 0〉

where Clebsh-Gordan are defined as:

|j,m; l1, l2〉 =
∑
m1,m2

〈l1,m1; l2,m2|l1, l2; j,m〉 |l1,m1〉 |l2,m2〉 .

2.10 Photoemission from degenerate initial states

Given the set of degenerate wavefunctions Ψi bases of the sub-space relative to energy E. Any unitary linear combi-
nation of them, defined by a matrix b:

|Φj〉 =
∑
i

bij |Ψi〉 ⇔ |Ψi〉 =
∑
j

b∗ij |Φj〉

leaves the photoemission intensity invariant. In fact:

I ∝
∑
i

| 〈Ψi|Hint|Ψfin〉 |2 = 〈HintΨfin|
(∑

i

|Ψi〉 〈Ψi|
)
|HintΨfin〉

= 〈HintΨfin|
(∑

i

∑
l,m

b∗i,l |Φl〉 bi,m 〈Φm|
)
|HintΨfin〉

= 〈HintΨfin|
(∑
l,m

|Φl〉 〈Φm|
)(∑

i

b∗i,lbi,m

)
|HintΨfin〉

= 〈HintΨfin|
(∑
l,m

|Φl〉 〈Φm|
)
δl,m|HintΨfin〉

=
∑
l

| 〈Φl|Hint|Ψfin〉 |2

where we used that b is unitary, i.e. b†b = I.
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