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Abstract

Although observations of species-rich communities have long served as a primary

motivation for research on the coexistence of competitors, the majority of our empirical

and theoretical understanding comes from two-species systems. How much of the

coexistence observed in species rich communities results from indirect effects among

competitors that only emerge in diverse systems remains poorly understood. Resolving

this issue requires simple, scalable, and intuitive metrics for quantifying the conditions for

coexistence in multispecies systems, and how these conditions differ from those expected

based solely on pairwise interactions. To achieve these aims, we develop a structural

approach for studying the set of parameter values compatible with n-species coexistence

given the geometric constraints imposed by the the matrix of competition coefficients.

We derive novel mathematical metrics analogous to stabilizing niche differences and

fitness differences that measure the range of conditions compatible with multispecies

coexistence, incorporating the effects of indirect interactions emerging in diverse systems.

We show how our measures can be used to quantify the extent to which the conditions

for coexistence in multispecies systems differ from those that allow pairwise coexistence,

and apply the method to a field system of annual plants. We conclude by presenting new

challenges and empirical opportunities emerging from our structural metrics of

multispecies coexistence.

Keywords:

community dynamics, feasibility, invasion criterion, multiple competitors, niche and fitness

differences, pairwise effects, structural stability

2

ht
tp
://
do
c.
re
ro
.c
h



Introduction

The impressive diversity of species in ecological communities has long motivated ecologists

to explore how this diversity is maintained (Darwin, 1859; Hutchinson, 1961). Given that

some species are better competitors than others, and that competitive imbalances should

lead to the exclusion of inferiors, the factors enabling the coexistence of so many species

pose an ecological puzzle. Although observations of species-rich communities have served

as a primary motivation for research on coexistence (Hutchinson, 1961; Hubbell, 2001),

the majority of our empirical and theoretical understanding of this topic comes from the

study of pairwise mechanisms (Case, 2000; Chesson, 2000; Kraft et al., 2015). The reason

is one of practicality—experiments and theory devoted to understanding the interaction

of two species are simpler and more tractable than efforts to understand the dynamics of

many species (Case, 2000). Nonetheless, the focus on pairwise coexistence misses some

process that only emerge in diverse systems of competitors and may ultimately maintain

coexistence in diverse ecosystems in nature (Billick and Case, 1994).

Theory shows that embedding pairwise competitive interactions into a network of other

(still pairwise) competitive interactions causes species to have indirect effects on one

another via changes in the abundance of other species in the community (Vandermeer,

1970, 1975; Levine, 1976; Wootton, 1993; Spiesman and Inouye, 2015). These “interaction

chains” can reverse pairwise competitive outcomes and strongly affect conditions for

coexistence. For example, “rock-paper-scissors” intransitive competition can favor the

coexistence of three species, even though each pair cannot coexist in isolation (May and

Leonard, 1975; Kerr et al., 2002; Godoy et al., 2017b). With a different set of

interactions, conditions for coexistence may be constrained by the more complex network

of interactions in diverse communities (May, 1971; Roberts, 1974; Svirezhev and Logofet,

1983; Stone, 1988). Although advancing our understanding of coexistence in systems with
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many competitors remains a priority for studies of species diversity maintenance

(Logofet, 2005; Edwards and Schreiber, 2010; Allesina and Levine, 2011; Saavedra et al.,

2014; Barabás et al., 2016), tools for dissecting how coexistence emerges from population

dynamics in higher dimensional systems are only beginning to be developed.

To understand how the structure of diverse competitive networks influences the

maintenance of species diversity, ecologists require metrics that both characterize the

opportunities for coexistence in n-species systems and quantify how much of this

coexistence depends on mechanisms that require more than two species. The approach

most commonly applied to understanding coexistence in diverse communities is local

stability analysis (May, 1972; Logofet, 1993; Case, 2000). Though related to concepts of

stability across the natural sciences, local stability has some central limitations. First,

local stability may consider a system stable when not all the constituent species from the

community attain positive abundances at equilibrium. This means the system is stable

but not feasible (Roberts, 1974; Rohr et al., 2014). Second, the degree to which species

coexistence depends on mechanisms that require more than two species cannot be readily

calculated from the local stability properties of the n-species equilibrium. Finally and

most fundamentally, in local stability analysis the perturbations act on state variables,

limiting the analysis to changes in species abundances only. These perturbations may not

represent realistic scenarios of changes in species abundances and demographics.

Therefore, opportunities for coexistence may be more intuitively and directly evaluated

by measuring the robustness of coexistence to both large and small changes in the

demographic rates and interactions of the competitors (i.e., the parameters of population

dynamics models).

To address these issues above, one can study coexistence from a mutual invasibility

perspective, where species’ invasion growth rates can be decomposed into stabilizing
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niche differences that increase the conditions for coexistence and average fitness

differences that drive competitive exclusion (Chesson, 2000; Adler et al., 2007). Because

coexistence requires each of the two competitors to have a positive growth rate when

rare, the stabilizing niche difference can be regarded as a metric of the opportunity for

coexistence (i.e., how large a fitness difference can be tolerated). Under Modern

Coexistence Theory (MCT) (Chesson, 2000), niche differences include all processes that

cause intra-specific interactions to be more limiting than interspecific interactions, and

thereby benefit species that drop to low relative abundance. Fitness differences include

all factors that favor one competitor over the other, and can arise for example from

species differences in their innate demographic potential or tolerance of competition (e.g.,

species differences in their R∗ sensu Tilman, 1982).

Unfortunately, this two species framework based on invasion growth rates is not easily

extended to include mechanisms that only emerge with more than two species. More

formally, the invasion criterion can only be used to evaluate n-species coexistence when

depressing each species to low abundance allows the remaining n-1 species to coexist (See

Appendix S1). Consider, for example, the coexistence of three species via

rock-paper-scissors competition. Depressing any one species to low density leads to the

elimination of one of the residents. The fact that each species can invade a system with

one resident is insufficient to conclude that all three species can coexist (Barabás et al.,

2016). Past efforts have extended the two species coexistence framework by quantifying

the determinants of population growth rate when invading a system with multiple

resident species (Chesson, 2003). This advance has proven useful for understanding how

functional trade-offs (Angert, 2009), seed pathogens and predators (Chesson and Kuang,

2010; Stump and Chesson, 2015), and bioclimatic factors (Holt and Chesson, 2014)

influence community level metrics of niche differentiation (see also Carroll et al., 2011).
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Nonetheless, by building from invasion growth rates and/or averaging over the pairwise

niche and fitness differences, these approaches do not readily reveal the contribution of

higher dimensional mechanisms to coexistence. In sum, the current set of tools for

evaluating species coexistence in diverse communities are not well-suited for

differentiating the effects of pairwise mechanisms from those emerging due to the indirect

effects among a diverse set of competitors.

In this manuscript, we propose that quantifying the opportunities for coexistence in

diverse systems requires moving from mutual invasibility to structural approaches.

Recognizing the value of the coexistence metrics developed for two species systems, we

develop structural measures analogous to niche differences that quantify opportunities for

coexistence in systems of n-competing species. The new measures we propose are based

on a structural stability approach previously used to understand the persistence of

ecological networks (Rohr et al., 2014; Saavedra et al., 2014, 2016a,b). Developing

m tidimensional metrics is important because ecologists ultimately aim to understand

the coexistence of many species, not just pairs of competitors. Moreover, the structural

metrics we develop allow ecologists to both visualize and quantify the contribution to

coexistence of interaction chains that only emerge in systems with more than two species.

Though we acknowledge that in species-rich systems each species’ per capita effect on

another can be modified by the presence of a third species (higher-order interactions-

Billick and Case, 1994), this paper will only explore coexistence in competitive systems

with species interactions that are fundamentally pairwise. Doing so facilitates

quantitative analysis, and also permits the closest connection between our metrics and

empirical approaches designed to readily quantify pairwise interactions.

In the first half of the paper, we provide background on the concept and mathematical

conditions for species coexistence as achieved through traditional approaches and
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compare these to the structural approach developed here. We show how

structurally-derived measures map onto the stabilizing niche difference and average

fitness difference developed algebraically for systems of two competing species, and then

demonstrate how they can be extended to n-species communities. In the second half of

the paper, we use our structural measures to develop an approach for quantifying the

contribution to coexistence of indirect interactions that only emerge with more than two

competitors. We then quantify the contribution of indirect effects to coexistence of three

and four species assemblages of annual plant species occurring in California. We conclude

by presenting the empirical and theoretical challenges and opportunities emerging from a

structural approach.

Species coexistence in simple models

To study species coexistence, first we require a dynamical system describing the change

in species abundances through time. The simplest competitive system (but still

incorporating the basic elements of a competitive dynamic) for which we have the most

analytic results is the Lotka-Volterra model (Volterra, 1931; Lotka, 1932; Case, 2000):

dNi/dt = Ni(ri −
n∑

j=1

αijNj),

where the variable Ni denotes the abundance (or biomass depending on the chosen

dimension) of species i; and the parameters ri > 0 and αij ≥ 0 represent the intrinsic

growth rate of species i and the competitive effect of species j on species i, respectively.

Note that the term inside the parenthesis (ri −
∑S

j=1 αijNj) is called the per-capita

growth rate of species i. Importantly, this simple dynamical system can exhibit various

complex behaviors: a unique globally stable equilibrium point, multiple locally stable

equilibrium, or even limit cycles (Hofbauer and Sigmund, 1998; Case, 2000).
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Analyses of the Lotka-Volterra population dynamics model have analytically

demonstrated that a necessary condition for species coexistence (see Appendix S2 for

further details) is the existence of a feasible equilibrium point (Hofbauer and Sigmund,

1998). An equilibrium point N∗
i is called feasible when the abundance of each species is

positive (N∗
i > 0). If such a feasible equilibrium point exists, it has to be the solution of

the following set of i linear equations (with one equation for each species i):

ri =
S∑

j=1

αijN
∗
j .

These equations make explicit that one needs a particular combination of species

demographic parameters (ri) and interspecific interactions (αij) to have a positive

solution and provide the necessary conditions for species coexistence.

However, feasibility is necessary but not sufficient to guarantee species coexistence in

n-species systems. For example, in the textbook case of two competing species (Hofbauer

and Sigmund, 1998; Case, 2000), the equilibrium point may be feasible but unstable, and

thus one of the competitors will go extinct. While the stability of a feasible equilibrium

point is not required for coexistence in higher dimensional systems (Hofbauer and

Sigmund, 1998), it has been shown that the global stability of a feasible equilibrium point

is a sufficient condition for species coexistence (persistence) (Svirezhev and Logofet, 1983;

Logofet, 1993, 2005; Rohr et al., 2014; Saavedra et al., 2016b,a). Therefore, species

coexistence can be studied by looking into the necessary conditions for species

permanence (that is feasibility) and the necessary and sufficient conditions (that is

feasibility and global stability) for species persistence (Hofbauer and Sigmund, 1998;

Takeuchi, 1996; Rohr et al., 2014). Unfortunately, in many cases, global stability is very

difficult to prove (Logofet, 1993), and one may only rely on the necessary conditions for

species coexistence.
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Traditional algebraic approach for evaluating

2-species coexistence

To illustrate how species coexistence has traditionally been approached by theory, let us

assume that the population dynamics of two competing species can be described by the

Lotka-Volterra model, i.e.,

⎧⎪⎨
⎪⎩

dN1

dt
= N1

(
r1 − α11N1 − α12N2

)
dN2

dt
= N2

(
r2 − α21N1 − α22N2

) . (1)

Then, if one is interested in the sufficient conditions for coexistence, one needs to find

whether there exists a feasible equilibrium point (N∗
1 > 0, N∗

2 > 0) and if it is globally

stable (see Appendix S3 for a review of global stability).

Traditionally, to find these feasibility and stability conditions, one can draw the

non-trivial isoclines, i.e., the two lines defined by r1 − α11N1 − α12N2 = 0 and

r − α21N1 − α22N2 = 0 (see Fig. 1A for a graphical example). A feasible equilibrium

point exists if the two isoclines cross at a positive abundance, and this equilibrium point

is globally stable under the condition α11α22 > α12α21 (Case, 2000). The solution of this

dynamical system is given by N∗
1 =

α22r1 − α12r2
α11α22 − α12α21

and N∗
2 =

−α21r1 + α11r2
α11α22 − α12α21

. Because

the denominator of these two expressions is assumed to be positive, the feasibility

conditions can be written as:

⎧⎪⎨
⎪⎩

α22r1 − α12r2 > 0

−α21r1 + α11r2 > 0

. (2)

These two inequalities can be combined into one equation (given that all parameters are

strictly positive):
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α11

α21

>
r1
r2

>
α12

α22

, (3)

which gives the upper and lower bounds within which the relationship of intrinsic growth

rates need to fall to allow the feasibility of the system (i.e., a positive solution of the

system).

Under the MCT framework (Chesson, 2000), one derives niche and fitness difference

metrics from the mutual invasion criterion (rather than the intersecting isocline analysis

above, see Appendix S1). Importantly, these metrics for the Lotka Volterra model can

also be produced by multiplying each term of Equation (2) by
√

α22α21

α11α12
. This multiplier

describes the ratio of species’ sensitivities to competition. This results in the inequalities

between niche overlap and the fitness difference, given by:

√
α11α22

α12α21︸ ︷︷ ︸
(Niche overlap)−1

>
r1
r2

√
α22α21

α11α12︸ ︷︷ ︸
Fitness difference

>

√
α12α21

α11α22︸ ︷︷ ︸
Niche overlap

. (4)

By assuming that the niche overlap is less than one, i.e., α12α21 < α11α22, the global

stability of the equilibrium point in a 2-species Lotka-Volterra competition model is

guaranteed (Case, 2000).

In this framework, two competing species will coexist if the stabilizing effect of their niche

difference (1-Niche overlap) exceeds their average fitness difference (Fig. 2) (Chesson,

1990, 2000, 2012). The greater the stabilizing niche difference (or the smaller the niche

overlap), the greater the opportunity for coexistence. Stabilizing niche differences emerge

from functional differences between species that cause intra-specific limitation to exceed

interspecific limitation, as may arise, for example, from species differences in phenology,

habitat specialization, or interactions with specialist consumers (Levine and
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HilleRisLambers, 2009; Kraft et al., 2015; Carroll et al., 2011). The average fitness

difference is a measure of average competitive ability reflecting species differences in their

demographic potential and sensitivity to competition. In the absence of stabilizing niche

differences, the species with the higher average fitness excludes the fitness inferior.

A structural approach for species coexistence

As shown in the prior section, the classic algebraic approach for finding the conditions for

both feasibility and global stability of a two-competitor system is straightforward.

However, this approach becomes difficult if not impossible for n-species (Svirezhev and

Logofet, 1983; Logofet, 1993; Takeuchi, 1996; Logofet, 2005). In Box 1, we illustrate how

extending this algebraic approach to study the feasibility conditions of more than two

species gets into a circularity problem with no solution. Moreover, as noted in the

introduction, the mutual invasion criterion—an alternative approach to evaluating

coexistence—does not work with more than two species when the depression of one

competitor to low density leads to the loss of residents (see Appendix S1). Thus, with

traditional approaches, ecologists have limited tools to evaluate the conditions for

feasibility and stability in n-species systems. To address this challenge, we suggest to

shift from an algebraic to a structural approach (Vandermeer, 1970; Svirezhev and

Logofet, 1983; Logofet, 1993). Importantly, this structural approach allows ecologists to

evaluate the contribution of indirect effects emerging in multispecies systems to

coexistence in diverse communities.

The structural approach involves the study of how the qualitative behavior (e.g., species

coexistence as defined by globally stable and feasible solutions) of a dynamical system

depends on the parameters of the system itself (Thom, 1972). Nonetheless, as we detail

below, this approach parallels developments in coexistence theory aiming to characterize
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coexistence as a function of stabilizing niche and fitness differences. Thus, the approach

is conceptually aligned with how ecologists have been approaching the problem of the

coexistence of two species.

Contrary to the algebraic approach where it is necessary to solve the system of linear

equations to derive the inequalities leading to feasibility (N∗
1 > 0 and N∗

2 > 0), the

structural approach directly evaluates the set of intrinsic growth rates (r1 and r2) leading

to feasibility given by the geometric constraints imposed through the matrix of

competition coefficients α. The elements of this matrix correspond to the change in the

per capita growth rate of species i under a small change in the density of species j. The

matrix α defines then the stability constraints and the range of conditions (parameter

values) compatible with feasible solutions (see Appendix S3 for a review about stability

conditions). That is, changes in the matrix of competition coefficients correspond to

changes in the range of stability and feasibility conditions. This approach has been used

to estimate the maximum number of coexisting species (Bastolla et al., 2005, 2009), or

how the conditions of feasibility (assuming explicitly global stability) are modulated by

species interaction networks (Rohr et al., 2014; Saavedra et al., 2016b,a).

Focusing on the feasibility conditions in the structural approach, given a fixed matrix of

competition coefficients (α), the set of intrinsic growth rates leading to a feasible

equilibrium point is the so-called feasibility domain DF (α). Following a Lotka-Volterra

model, this domain can be mathematically written as:

DF (α) =

⎧⎪⎨
⎪⎩r =

⎡
⎢⎣r1
r2

⎤
⎥⎦ ∈ R2, such that α−1r > 0

⎫⎪⎬
⎪⎭ . (5)

Note that the expression α−1r > 0 corresponds to the condition for an equilibrium point

to be feasible (positive solution, N∗ > 0), that is when the two non-trivial isoclines cross
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at a positive abundance for both species. The elements of the feasibility domain can be

written as positive linear combinations of the competitive interaction strengths α, i.e,

DF (α) =

⎧⎪⎨
⎪⎩
⎡
⎢⎣r1
r2

⎤
⎥⎦ = N∗

1

⎡
⎢⎣α11

α21

⎤
⎥⎦+N∗

2

⎡
⎢⎣α12

α22

⎤
⎥⎦ , with N∗

1 > 0 and N∗
2 > 0

⎫⎪⎬
⎪⎭ . (6)

Geometrically, the feasibility domain is described by the set of elements between the lines

ned by the two column-vectors [ α11
α21 ] and [ α12

α22 ]. These two lines have a slope of

α /α11 and α22/α12, respectively. Figure 1B provides an illustration of the feasibility

domain, and shows that this domain is structurally described by a cone. Note that the

inequalities derived under an algebraic approach define the exact same domain. Indeed, a

vector of intrinsic growth rates will fall inside the feasibility domain, if and only if its

slope given by r2/r1 is, respectively, larger and smaller than the slope of the line defining

the bottom border of the feasibility cone (r2/r1 > α12/α11) and the slope of the line

defining the top border of the feasibility cone (r2/r1 < α22/α12), which is equivalent to

the inequalities of equation (2).

It is worth noting that the feasibility domain is defined in the same way for any

dynamical model for which the feasible equilibrium point can be described by a linear

equation, i.e., r = αN∗. The Lotka-Volterra model is the classical example of such a

model, but a large class of competition models can be described in this way, including

models with saturating effects of each additional competitor, the discrete time

Lotka-Volterra model, and even the seed banking annual plant competition model.

In the next sections, we illustrate our structural approach with the Lotka-Volterra model.

However, in Appendix S4 we summarize models to which our structural framework can

be applied; explain how the feasibility domain can be computed; and show how the
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stability constraints of a feasible equilibrium can be studied. Note that for the majority

of population models, the strongest condition of stability that one can derive is local

asymptotic stability. However, this does not preclude us from applying the structural

framework to find the necessary conditions for species coexistence (feasible solutions) in

different models. The conditions for stability then remain under the scope and limits of

the research question.

onditions for coexistence in a 2-species system

Here we show how one can derive structural measures that parallel algebraic metrics of

niche and fitness differences for understanding pairwise coexistence. The structural

analog of the niche difference, what we call Ω, corresponds to the normalized solid angle

of the cone describing the feasibility domain. This normalization is done such that when

the cone of feasibility covers the entire set of positive growth rates (the entire quadrant

shown in Fig. 2A), the solid angle equals one (Ω = 1). Note that the absolute magnitude

of the growth rates does not change the angle, only the direction. This gives a

probabilistic interpretation to the structural analog of the niche difference, i.e., it

corresponds to the fraction of positive intrinsic growth rate vectors leading to feasible

solutions when sampling uniformly with a fixed norm (e.g., the vector shown in Fig. 2A)

(Svirezhev and Logofet, 1983; Logofet, 1993; Saavedra et al., 2016a). The structural

analog of the fitness difference, what we called θ, corresponds to the extent to which the

vector of intrinsic growth rates (r) deviates from the centroid of the domain of feasibility.

This deviation is computed by the angle between the centroid of the feasibility domain,

what we called rc, and the actually observed vector of intrinsic growth rates. Thus, the

centroid of the feasibility domain corresponds on average to the best set of intrinsic

growth rate values that can tolerate small random changes without pushing any of the
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species to extinction (Rohr et al., 2014; Saavedra et al., 2014; Rohr et al., 2016). Figure

3A shows a graphical representation of the structural analogs of the niche and fitness

differences for two species.

thematically, the normalized solid angle (Ω) is computed as follows:

Ω(α) =
2

π
arcsin

(
α11α22 − α12α21√

α2
11 + α2

21

√
α2
12 + α2

22

)
, (7)

and the centroid of the feasibility domain is defined by the following vector:

rc =
1

2

⎛
⎜⎝ 1√

α2
11 + α2

21

⎡
⎢⎣α11

α21

⎤
⎥⎦+

1√
α2
12 + α2

22

⎡
⎢⎣α12

α22

⎤
⎥⎦
⎞
⎟⎠ . (8)

Similarly, analogous to the fitness difference, the deviation (measured in degree) between

a given vector of intrinsic growth rates r (i.e., that observed in nature), and that which

maximizes the likelihood of a feasible solution rc is computed based on the scalar product

of the two vectors:

θ = arccos

(
r · rc

‖r‖ · ‖rc‖
)
. (9)

Therefore, following a structural approach, the feasibility conditions of two-competing

species will be fulfilled when the vector defining the intrinsic growth rates of species falls

inside the feasibility domain, i.e., when the structural analog of the fitness difference (θ)

is small enough relative to the structural analog of the niche difference (Ω). Specifically,

these feasibility conditions will be guaranteed as long as θ < 45 · Ω (taking θ as degree).

Figure 3B illustrates this inequality, which is qualitatively in line with Modern

Coexistence Theory’s notions (Chesson, 2000) of niche and fitness differences for species

coexistence. In general, the figure shows that the higher the structural analog of the

niche difference (Ω), the higher the tolerated structural analog of the fitness difference (θ)

15

ht
tp
://
do
c.
re
ro
.c
h



leading to feasible solutions. Note that in this 2-species case, the global stability

conditions only depend on the matrix of competition coefficients α and are fulfilled when

α α21 < α11α22.

tension to multispecies coexistence

The power of the structural approach is that it is readily extended to n-species, and

thereby includes and quantifies the contribution to coexistence of the indirect interactions

that emerge in systems of three or more competitors. To do so, as in the 2-species case,

we need to study the set of intrinsic growth rates compatible with the feasibility of

equilibrium points of the system given by a matrix of competition coefficients α. The

2-species feasibility domain (Equ. 5) can easily be extended to n-species. As in the

2-species case, we assume that the feasible equilibrium of the dynamical system is the

solution of a linear system (r = αN∗). This framework can be extended to other

population models, such as the seed banking annual plant model (see Appendix S4). The

feasibility domain for an n-species community, can be written as

DF (α) =
{
r ∈ Rn

>0, such that α−1r > 0
}
. (10)

Writing the elements of the interaction strength matrix α into column vectors, we obtain

α =

⎡
⎢⎢⎢⎢⎢⎣
α11 · · · α1n

...
. . .

...

αn1 · · · αnn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...

v1 v2 . . . vn

...
...

...

⎤
⎥⎥⎥⎥⎥⎦ , (11)

and the elements of the feasibility domain are explicitly given by all the positive linear

combinations of these column vectors. Thus, the feasibility domain can be rewritten in
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the form:

DF (α) = {r = N∗
1v1 +N∗

2v2 + · · ·+N∗
nvn, with N∗

1 > 0, N∗
2 > 0, . . . , N∗

n > 0} . (12)

This domain is the conical hull made by the positive combinations of the vectors v1, v2,

. . . , vn forming the columns of the matrix of competition coefficients α. Geometrically,

such a domain is called an algebraic cone. In Figure 4, this algebraic cone is represented

by the volume formed by the column vectors of a given matrix of competition coefficients

α (green lines). Therefore, the structural analogs of the niche and fitness differences for

n-species coexistence can be calculated in a similar fashion as in the 2-species case. The

structural analog of the niche difference (Ω) corresponds to the normalized solid angle of

the cone describing the feasibility domain. As for two species, the normalization is done

such that in the absence of interspecific competition (αij = 0 for all species i �= j) the

structural analog of niche difference is equal to one.

The structural analog of the fitness difference (θ) corresponds to the angle between the

vector of intrinsic growth rates r and the centroid of the cone defining the feasibility

domain (rc). Feasible solutions will be granted as long as the vector of growth rates is

inside the cone defining the domain of feasibility. As in the 2-species case, the structural

analog of the niche difference Ω in the general n-species case gives the probability of

feasible solutions. Note that in n-dimensional systems, the structural analog of fitness

difference is inherently a community-level measure, while in MCT it is a pairwise measure

even when averaged over multiple invader-resident pairings. See Discussion and Appendix

S5 for a detailed comparison between the structural approach and MCT).
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The mathematical expressions of these quantities are the following:

Ω(α) =
| det(α)|

n
√

π/2

∫
· · ·
∫
Rn
≥0

e−xTαTαxdx. (13)

rc =
1

n

(
v1

‖v1‖ +
v2

‖v2‖ + · · ·+ vn

‖vn‖
)

(14)

θ = arccos

(
r · rc

‖r‖ · ‖rc‖
)

(15)

The mathematical derivation, as well as the numerical evaluation, of the structural

analog of niche difference Ω are provided in Appendix S6. Note that Svirezhev and

Logofet (1983) have already developed a similar formula to compute the normalized solid

angle of the feasibility domain for competition systems (see also Saavedra et al. (2016a)).

Their formula estimated the proportion of the feasibility domain intersecting the unit

simplex, and can be interpreted as a normalized solid angle in what is called the topology

L . Note that a unit simplex is the generalization of a triangle with unit area to

n-dimensions. The R-code for computing the structural niche and fitness difference is

provided on Dryad (Saavedra et al., 2017)

It is worth recalling that the feasibility condition, in and of itself, is a necessary but

insufficient condition for persistence or permanence and therefore coexistence (see

Appendix S2). Assuming the feasibility conditions are satisfied, the global stability of the

feasible equilibrium point is a sufficient condition of coexistence. In dimension 2 the

global stability condition is trivial (Case, 2000), but it may become very difficult in

dimension n. These types of conditions have been intensively investigated for linear and

non-linear Lotka-Volterra models (Svirezhev and Logofet, 1983; Logofet, 1993; Takeuchi,

1996; Logofet, 2005). We summarized these stability conditions in Appendix S3 and then

we explain how they can be applied to several population dynamical models in Appendix
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S4.

As mentioned above, the feasibility domain is geometrically represented by a cone. To

simplify this geometric representation, we can draw one of its sections by projecting it on

the unit simplex (Svirezhev and Logofet, 1983; Logofet, 1993). For instance, in the

2-species case this projection is given by a line (Fig. 5A). The gray line represents the full

domain of the parameter space of intrinsic growth rates, but normalized such that their

sum is equal to one (projection on the unit simplex). Each ending of the gray line

represents the case where only one species has an intrinsic growth rate of 1. In turn, the

green line represents the projection of the cone defining the feasibility domain on the unit

simplex. The two green dots and the orange dot correspond to the two green lines and

the orange line of Figure 3A, respectively. Therefore, they define the borders and the

centroid of the feasibility domain on the geometric projection, respectively.

This geometric projection on the unit simplex can be, in a similar way, extended to

n-species. Figures 5B and 5C provide an illustration for the case of 3 and 4 species. In

the case of 3 species, the unit simplex is represented by the gray triangle and the

feasibility domain is represented by the inner green triangle. For 4 species, the unit

simplex is represented by a pyramid (gray) with triangular faces, and the feasibility

domain by an inner green pyramid. In these two cases, as in the 2-species case, the green

dots represent the extreme borders of the feasibility domain, and the orange dot

corresponds to the centroid. The R-code for reproducing the figures is provided on Dryad

(Saavedra et al., 2017)
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Disentangling the sources of coexistence

As mentioned in the introduction, one of longest-standing questions in community

ecology concerns the importance for coexistence of indirect interactions that emerge when

pairwise interactions are embedded into a network of competitors (Yodzis, 1988;

Wootton, 1993; Billick and Case, 1994). A central challenge has been differentiating the

effects of pairwise interactions from those emerging from the indirect effects generated in

the population dynamics of multispecies systems. While the indirect effects of

competitors, as emerge in rock-paper-scissors competitive dynamics, have been studied

under a game theoretical approach (Kerr et al., 2002; Allesina and Levine, 2011) and

partly determine the stability properties of the community matrix (Case, 1990), it has

remained unclear how to embed these population dynamics into metrics that show their

influence on the potential for coexistence, such as the stabilizing niche difference.

Our basic approach for evaluating the contribution of interaction chains to coexistence

(i..e, how much of the conditions for community coexistence is due to indirect

competitive effects versus pairwise niche differences) involves two steps. First, the

structural approach is used to calculate the feasibility domain of a community, what we

denoted by DF . Note that this feasibility domain is the region of intrinsic growth rates

compatible with the coexistence of n species as defined by the matrix of competition

coefficients. Second, the structural approach is used to identify the region of intrinsic

growth rates compatible with the coexistence of each pair of species, what we denote by

D . In turn, the intersection of all the pairwise feasibility domains corresponds to the

region of intrinsic growth rates compatible with the coexistence of all pairs, what we

denote by Dall = D12 ∩D1n ∩ . . . ∩Dm1 ∩ . . . ∩Dmn, but not necessarily the same as the

simultaneous coexistence of all competitors DF .
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We illustrate this approach for the coexistence of three species based on an arbitrary and

globally stable three-species competition system given by the positive definite matrix

α =
[

1 0.4 0.3
0.5 1 0.6
0.05 0.5 1

]
in Fig. 6. The feasibility domain for the pair formed by species 1 and 2

(D 2) is represented by the green inner triangle (Fig. 6A). This feasibility domain

corresponds to the set of vectors of growth rates over which species 1 and 2 will coexist

assuming species 3 is absent. Away from the bottom axis of the simplex, species 3 has

positive growth and is therefore present in the system. However, in these projections of

purely pairwise coexistence, the ratio of the growth rates of species 1 and 2 compatible

with their coexistence is independent of the effects of species 3. Hence, with increasingly

greater growth of species 3 (moving upward in Fig. 6A), a green triangle is drawn that

retains the ratio of species 1 and 2’s growth rates compatible with their coexistence. This

pairwise feasibility domain can then be illustrated for all three species pairs, as in Fig.

6B. The intersection of the three green inner triangles (the darkest green area) gives the

domain of coexistence for all pairs (Dall), i.e., each pair of species can coexist in the

absence of the third species. Importantly however, and consistent with predictions from

algebraic approaches (e.g., Case, 1990), the intersection of the three pairwise feasibility

domains does not properly predict the conditions for 3-species coexistence (see Fig. 6C).

The different set of growth rates compatible with the coexistence of all pairs (Dall) versus

the coexistence of the triplet (DF ) is visualized by overlaying the two feasibility domains

(see Fig. 6D).

Our example (Fig. 6D) identifies three regions of community dynamics with a different

match between pairwise coexistence (Dall) and the full community coexistence (DF ): (i)

All pairs show coexistence as does the triplet (the region of overlap, Dall ∩DF �= ∅). (ii)

All pairs show coexistence but not the triplet (the region of Dall not overlapping with

D ). (iii) Not all pairs show coexistence but the triplet does (the region of DF not
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overlapping with Dall). Importantly, these cases illustrate the varying effects that indirect

effects among competitors can have on coexistence. These indirect effects can create

conditions for coexistence that do not otherwise occur with purely pairwise mechanisms

(as in iii), they can constrain coexistence (as in ii), or they can have no effect on the

qualitative outcome of competition (as in i).

The example in Fig. 6, where the feasibility domain for the full community (DF ) is only

partially the same as that predicted by the intersection of pairwise coexistence (Dall)

proves to be just one of three general cases. The first general case is that in which the

n-species feasibility domain may lie entirely within the feasibility domain predicted by

the coexistence of all pairs (Figure 7A), as occurs with the globally stable matrix defined

by interaction coefficients α =
[

1 0.4 0.5
0.5 1 0.6
0.4 0.5 1

]
. In this case, the indirect interactions emerging

in the three-species system contract the conditions for coexistence relative to that

predicted by pairwise mechanisms alone. For instance, if the set of intrinsic growth rates

is located anywhere inside the dark region (e.g., orange point), species in all the three

pairs and the triplet will coexist.

The second general case is that shown in Figure 7B (the same network is shown in Fig.

6), where there is partial overlap between the feasibility domain of the entire community

and that of pairwise coexistence. Importantly, even though the two feasibility domains

are of roughly comparable area, the indirect interactions in this case cause three species

coexistence to require different competitor growth rates than the coexistence of all pairs.

For instance, if the set of intrinsic growth rates is located at the orange point (inside the

region of overlap), the species in all the pairs and the triplet will coexist. However, if the

set of intrinsic growth rates is located at the red point (outside the region of overlap),

then we can observe triplet coexistence but not the coexistence of the pair formed by

species 2 and 3.
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The third general case is that in which there is no overlap between the feasibility domain

of the entire community and that of pairwise coexistence. This is exemplified by Figure

7C, where the interaction coefficients α =
[

1 1.5 0.1
0.1 1 0.6
1.6 0.5 1

]
produce a rock-paper-scissors

competitive loop. In this example, the feasibility domains for all three pairs do not

overlap and thus there exists no set of growth rates that allow all pairs to coexist

(D ll = ∅). If one chooses a vector of intrinsic growth rates in the middle of the darker

region (red point), species 3 outcompetes species 2 in absence of species 1 (the point is

outside of the pair-wise region described by the left side of the outer triangle, and closer

to species 3), species 1 outcompetes species 3 in absence of species 2 (the point is outside

of the pair-wise region described by the right side of the outer triangle, and closer to

species 1), and species 2 outcompetes species 1 in absence of species 3 (the point is

outside of the pair-wise region described by the bottom side of the outer triangle, and

closer to species 2). Nonetheless, the feasibility domain for the full three-species systems

is not empty, indicating that the indirect interactions caused by the rock-paper-scissors

competitive structure increase the opportunity for coexistence.

To quantify the contribution to coexistence of indirect interactions only emerging with

more than two competitors, one can calculate a pair of related metrics. The first metric,

what we call community-pair differential (Δ), quantifies the degree to which coexistence

is more or less easily obtained with the inclusion of indirect effects only emerging with

more than two species. Specifically, one can calculate the difference in the size of the

feasibility domain for the full n-species community versus that allowing the coexistence of

all pairs. Mathematically, this is given by Δ = Ω− Ωall, where Ω is the structural analog

of niche difference and Ωall is the fraction of intrinsic demographics compatible with the

coexistence of all pairs in the community. We calculated Ωall using a simple Monte Carlo

approach by randomly sampling vectors of intrinsic growth rates uniformly on the sphere
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(R-code provided on Dryad (Saavedra et al., 2017)). Note that this metric can only take

values between [−1, 1]. A positive value indicates greater opportunities for coexistence in

the full community (as in Figure 7C), a negative value indicates less opportunities for

coexistence (as in Figure 7A). In other words, a positive value of community-pair

differential indicates that indirect interactions promote more opportunities of coexistence

as it would be expected from the intersection of pairwise niche differences, and vice versa

for negative values.

The community-pair differential, however, tells us nothing about the degree to which the

pairwise mechanisms actually explain the coexistence of all n species, i.e., the degree to

which the two feasibility domains overlap. Thus, the second metric, what we call

community-pair overlap (ω), involves calculating the proportion of the feasibility domain

for the entire community (DF ) that lies inside the feasibility domain under which all

pairs coexist (Dall). We calculated ω following the same Monte Carlo approach used for

the previous metric (Code in R provided as Supplemental Material). This metric can

only take values between [0, 1]. The smaller the value, the more the coexistence of the

n-species requires demographic rates different than those allowing pairwise coexistence.

In other words, the smaller the value the stronger the importance of indirect interactions

for species coexistence. For instance, a value of one would indicate complete overlap as in

the case shown in Figure 7A, whereas a value of zero would indicate no overlap as in the

case of Figure 7C.

In sum, these two metrics evaluate whether the coexistence of all n-species is more easily

obtained than the equivalent coexistence for all pairs of n species (Δ), and the degree to

which the conditions for pairwise coexistence are the same as those required for the

coexistence of all species in the community (ω). Of course, the alternative arrangements

of the feasibility domains can be visually inspected in the three species simplex. However,

24

ht
tp
://
do
c.
re
ro
.c
h



for systems with more than three species, where the feasibility domains cannot be directly

examined, these metrics are essential for evaluating the effects of indirect interactions.

Note that this approach can be applied to any competition matrix regardless of its

stability properties (with its corresponding dynamical interpretation). Both the

community-pair differential and the community-pair overlap describe regions of the

feasibility domain, which correspond to the necessary conditions for species coexistence.

Quantifying the sources of coexistence in a field

system

To illustrate how the structural approach can quantify the extent to which indirect effects

influence coexistence in nature, we applied our methods to a field system of annual plant

competitors occurring on serpentine soils. In prior work (Godoy et al., 2014; Kraft et al.,

2015), we have quantified the pairwise interactions between 18 annual plant species in

experimental gardens established in the field in California. We did so by establishing a

density gradient of each competitor, and sowing all competitors as focal individuals into

that density gradient. We then fit relationships between the fecundity of the focal

individuals and the density of a surrounding competitor to estimate each pairwise

interaction coefficient. In addition, we quantified all key demographic rates for the 18

species (germination, survival of ungerminated seeds, and innate fecundity), which in

combination with the fitted interaction coefficients (α), can be used to parameterize a

standard model of competing annual plants with a seed bank (see Appendix S4). Data

are provided on figshare (Godoy et al., 2017a).

Using the fitted pairwise interactions, we formed all possible communities of three and

four species of the 18 species, and filtered (giving 27% and 6% of the total number of
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triplets and quadruplets) those that generated D-stable matrices. Note that D-stable

matrices are those that are locally stable for any feasible equilibrium point (see Appendix

S3). Recall that conditions for global stability with this annual plant model in

n-dimensional systems are not known (Case, 2000). Importantly, our results were

qualitatively the same without filtering. We then calculated the metrics of

community-pair differential (Δ) and community-pair overlap (ω) for all D-stable triplets

and quadruplets. Thus, results correspond to the necessary conditions for species

coexistence and D-stable systems.

As an illustration of the empirical cases, Figure 8 shows the feasibility domains

(projected onto a unit simplex) of two different triplets and one quadruplet formed with

the empirically measured pairwise interactions. These feasibility domains can be located

anywhere within the unit space of species demographic values, and can overlap (Panel A)

or not overlap (Panel B) the feasibility domain allowing for the coexistence of all pairs

within the triplet. In fact, we found that in only 11 out of 138 stable triplets (7%) the

feasibility domain of the community DF lies completely inside the intersection of all

pairwise feasibility domains Dall. In 80% of cases DF lies partially inside Dall, and in the

other 13% of cases DF is completely different from Dall. For empirically-constructed

quadruplets, we found that in 51 out of 81 (63%) cases DF lies partially inside Dall, and

in the remaining 37% of cases DF has no overlap with Dall. Thus, these qualitative

analyses indicate that indirect effects among competitors frequently change the

demographic rates required for coexistence. To provide a quantitative analysis of these

effects, we can apply the community-pair differential and community-pair overlap

measures to all these communities.

We find that the feasibility domain for the triplets and quadruplets is most frequently of

comparable size to the domain allowing the coexistence of all pairs (Δ ≈ 0) (Figure 9A).
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In some cases the opportunity for coexistence is less than that for all pairs of species, and

in modestly more cases, the opportunity for coexistence is greater. This suggests that

indirect effects have no systematic effect on the conditions for coexistence in triplets and

quadruplets of the studied annual plant species. A related question is how much of the

opportunity for coexistence in the three or four-species assemblages rests on indirect

effects, i.e., demographic rates different than those allowing the coexistence of all pairs.

Figure 9B shows that although in the majority of cases the feasibility domains of the

triplets and quadruplets overlap with the domains that allow all pairs to coexist (w > 0),

only in about 15 percent of triplets and less than 5 percent of quadruplets this overlap is

more than 0.9. In fact, the most likely community-pair overlap is near zero (ω ≈ 0)

indicating that demographic rates allowing the coexistence of all three species in the

triplets and quadruplets are completely different than those allowing the coexistence of

all pairs within the communities. In these cases, coexistence at least partly depends on

indirect effects among the competitors as the reduction of the system to a series of

isolated pairs would not give the coexistence of all species.

Overall, these results reveal that in this annual plant community, indirect effects

emerging with more than two species can help stabilize coexistence, but these effects are

almost equally likely to harm coexistence, and in most cases, have modest effects.

Moreover, as one may anticipate, pairwise interactions become less reliable indicators of

species coexistence with increasing species richness.

scussion

derstanding the processes enabling the coexistence of three or more competitors has

long proven challenging because the outcome of their interaction depends on the
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combined effects of pairwise coexistence mechanisms and those emerging from the

indirect interactions that only emerge in multispecies systems (Levine, 1976; Stone,

1988). A major hurdle to understanding has been the dearth of metrics that can be used

to characterize opportunities for coexistence in multispecies systems. We believe that the

structural approach developed here better positions ecologists to overcome these

challenges.

The proposed structural measures of multispecies coexistence are directly derived from

the population dynamics of the n-competing species, as can be described by a range of

continuous and discrete time models (see Appendix S4). Different from an algebraic

approach, the structural approach allows one to compare the coexistence predicted by

simple pairwise interactions to that predicted when those interactions are embedded in a

network of other interactions. With these metrics, ecologists parameterizing models of

competition can evaluate the extent to which observed coexistence rests on the indirect

interactions that emerge when species are embedded in competitive networks. It is

important to recall that these metrics allow us to understand the necessary (feasibility)

conditions for species coexistence. Sufficient conditions (e.g., global stability) are very

difficult to derive for n-dimensional systems in some population dynamics models

(Hofbauer and Sigmund, 1998; Logofet, 1993), but they can certainly be investigated in

future research.

We would also like to stress that the approach to quantifying pairwise niche differences

and average fitness differences under MCT (Chesson, 2000) and the structural approach

presented here are similar to one another but not the same. The similarity lies in the fact

that coexistence requires the (structural) fitness differences to lie within the bounds set

by the (structural) niche difference. However, the fitness difference defined under MCT

includes species differences in their innate demographic potential discounted by their
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general sensitivity to competition (with details varying by model), as this determines the

competitive dominant in the absence of any stabilizing niche difference. By contrast, in

the structural approach, species differences in their sensitivity to competition shift the

feasibility domain and can affect its width. Moreover, in contrast to the 2-species case,

multispecies coexistence cannot be predicted with structural analogs of the niche and

fitness differences only. This arises because feasibility domains of the same extent can

differ in their geometry (see Appendix S7), implying that communities with the same

likelihood of coexistence may be robust to different directions of environmental

disturbances (changes to the demographic rates).

Unfortunately the limitation above for multispecies systems is not easily solved, but one

possible solution involves computing the asymmetry of the feasibility domain to study

how different drivers can change regions of coexistence. This asymmetry can be

estimated by the variation among all the n-faces of the given multidimensional cone, and

computed by the variance of all the n-structural analog of niche differences generated

after independently removing each of the n-species from the community (see Appendix

S7). This measure of asymmetry may lead to a better understanding of the dynamical

relationship between a community’s tolerance to perturbation and changing pairwise

interactions. We acknowledge that ideally the MCT and structural approaches would

perfectly match, but the structural approach we develop here has the advantage of being

scalable to multispecies communities, and we encourage future work to find better

analogs between the MCT and structural approaches.

Importantly, our structural approach gives empirical ecologists new tools to explore the

controls over coexistence in networks of pairwise interactions. Prior approaches show how

one can quantify the impact of species on one another via chains of indirect interactions

(Wootton, 1993; Yodzis, 1988), and classic theory can be used to evaluate how the
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addition or removal of species from communities influences local stability of the

multispecies equilibrium (May, 1972; Roberts, 1974). But these methods do not easily

reveal the contribution to coexistence of indirect effects that only emerge in multispecies

systems, as can be understood from the structural stability metrics developed here.

Of course, using these metrics requires that empiricists parameterize models of

competition with field data, a task that can be quite labor intensive in diverse systems.

Nonetheless, an increasing number of studies parameterize competition models with

information on the demographic performance of focal individuals, and their response to

variation in competitor density and identity (e.g., Godoy et al., 2014; Chu and Adler,

2015). These parameterization should be constrained to the spatial scale under

investigation. With the structural metrics developed here, one can then evaluate a range

of problems about multispecies coexistence in field settings. First, the structural analog

of niche difference reveals the likelihood of coexistence given different innate growth rates

for the competing species. This metric can therefore be compared across communities in

different experimental contexts to evaluate how different factors contribute to the

robustness of coexistence. For example, one can ask how climate warming modifies

opportunities for coexistence in systems of three or more competitors, and whether its

effects on diversity result from changes to the interaction coefficients or species’ innate

growth rates. Second, by quantifying how robust coexistence is to variation in the growth

rates of competitors, ecologists can evaluate the variation among species pairs in the

strength of their niche differences. One can ask, for example, how evenly distributed is

niche differentiation among the members of a community, revealing whether the

persistence of some species is more robust to changing growth rates than others.

Finally, and as demonstrated here for assemblages of annual plant species, one can

evaluate how chains of interactions among competitors contribute to, or detract from,
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multispecies coexistence. As illustrated in Figures 6-9, this contribution or detraction can

be measured by predicting the growth rates compatible with the coexistence of all species

pairs (in isolation from the rest of the community), and comparing this region to the

growth rates compatible with the coexistence of all species embedded in the full matrix of

interaction coefficients. Based on the analysis of the annual plant system presented here,

we anticipate that many communities should exhibit regions of separation between

n-species and pairwise coexistence, indicating a significant contribution of indirect effects

to possible coexistence. Further empirical measures of interaction coefficients in other

systems are of course needed to properly test the generality of these predictions. More

generally, our field annual plant example illustrates that the structural approach can be

applied with competition models quite different than Lotka Volterra, and that it can be

fully parameterized with field data.

Looking ahead, we see several interesting theoretical directions following from the work

developed here. As we have shown, one challenge that arises from mechanisms of

coexistence emerging in n-dimensional systems is that the coexistence of the entire

community in no way guarantees that sub-units of that community are also feasible and

stable (Fig. 7). This raises the interesting question of how such communities assemble

from less diverse systems (consider assembling a community with rock-paper-scissors

competition one species at a time). Fortunately, our metrics and approach could also be

useful for understanding the most likely order of assembly and disassembly in ecological

communities. Each change in the composition of a community brings together a change

in the feasibility domain, widening or shrinking the conditions compatible with the

coexistence of all residents with a new species. In fact, previous work has shown that

during the assembly and disassembly of ecological communities, feasibility is either

maximized or preserved through time (Saavedra et al., 2016a,b), suggesting that the
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order of assembly and disassembly might be anticipated based on the feasibility

properties of the community.

A second promising opportunity to build on the approach developed here involves the

inclusion of higher-order interactions that emerge in species-rich competitive systems.

The insights gained from our metrics rest on the assumption that the interactions

between species are fundamentally pairwise. A more holistic view of indirect interactions

in diverse competitive communities acknowledges that species can affect one another by

altering the abundance of shared competitors, but also by modifying the per capita effect

of one species on another (Wootton, 1993; Billick and Case, 1994). Ecologists have

limited understanding of the importance of these higher-order interactions, in part

because quantifying their importance in field systems with many competitors is

exceedingly difficult. Thus, while our approach focused on pairwise interactions is a

useful and realistic first step for empirical studies (Vandermeer, 1969), future theory

exploring how and whether higher-order interactions in multispecies systems influence

coexistence would be an important next step.
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Box 1: Algebraic approaches to feasibility cannot be extended to more
than two species.

One might attempt to extend the two species isocline approach to evaluate feasible
equilibria in systems of n-competing species. However, the inequalities derived for
two species do not exist for three or more species. That is, first one would have to
solve the linear equations defining the feasible equilibrium point:

⎧⎪⎨
⎪⎩

N∗
1 = 1

det(α)
((α22α33 − α23α32)r1 + (α13α32 − α33α12)r2 + (α12α23 − α22α13)r3)

N∗
2 = 1

det(α)
((α23α31 − α33α21)r1 + (α11α33 − α13α31)r2 + (α13α21 − α23α11)r3)

N∗
3 = 1

det(α)
((α21α32 − α31α22)r1 + (α12α31 − α32α11)r2 + (α11α22 − α12α21)r3)

,

which is basically the inverse of the matrix α multiplied by the vector of intrinsic
growth rates r. Then the feasibility constraints would result in the following three
inequalities:⎧⎨

⎩
(α22α33 − α23α32)r1 + (α13α32 − α33α12)r2 + (α12α23 − α22α13)r3 > 0
(α23α31 − α33α21)r1 + (α11α33 − α13α31)r2 + (α13α21 − α23α11)r3 > 0
(α21α32 − α31α22)r1 + (α12α31 − α32α11)r2 + (α11α22 − α12α21)r3 > 0

.

These inequalities would have to assume that det(α) > 0, which is a necessary con-
dition for global stability. At the point at which one would try to combine these
inequalities, we would enter into a circularity problem without any way to solve it.
For example, let us take the two first inequalities and let us derive and upper and
lower bound between which the ratio r1/r2 has to fall to provide a positive solution
to the system. Inevitably, these upper and lower bounds will be a function of the
intrinsic growth rate of the third species (r3). The same schema repeats with species
2 and 3, and with species 3 and 1, in a circular way. Therefore, we cannot derive sim-
ple inequalities defining the feasibility of n-species, such as those given in two-species
systems.
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Figure 1: Algebraic and structural representation of two species coexistence.
Panel A shows the classic algebraic approach of assessing whether two competing species
coexist by looking at the non-trivial isoclines. Panel B depicts the structure or parameter
space (feasibility domain) leading to species coexistence, given a matrix of competition
coefficients. The feasibility domain is given by the area between the two green lines, and
it is defined by the range of intrinsic growth rates under which the two isoclines cross
at positive abundances (in Panel A). To ensure coexistence (provided that the stability
condition is satisfied, see Appendix S2), the intrinsic growth rates (represented by the
brown vectors) have to fall inside the two green lines.

Figure 2: Modern coexistence theory for 2-species coexistence. This figure il-
lustrates how the niche and fitness difference define the domain of coexistence of pairs
of species. It is derived from Equation 4 and assuming, without loss of generality, that
r > r2.

Figure 3: Structural analogs of the niche and fitness differences defining 2-species
coexistence. Panel A shows the structural analogs of the niche difference (Ω) and fitness
difference (θ) for an arbitrary matrix of competition coefficients α fulfilling global stability
conditions (see Appendix S3). The green lines define the border of the feasibility domain.
The normalized solid angle Ω between these two green lines corresponds to the structural
analog of the niche difference. The brown vector (r) corresponds to a given set of intrinsic
growth rates, the dashed orange line corresponds to the centroid of the cone (rc), and
the angle (measured in degree) between the centroid and the vector of intrinsic growth
rates corresponds to the structural analog of the fitness difference. Panel B corresponds to
the analysis of 2-species coexistence following the structural approach. The bottom green
region corresponds to the area of coexistence.

Figure 4: Illustration of the structural approach for multispecies coexistence.
For an arbitrary positive-definite matrix of competition coefficients α with 3 competing
species, the figure illustrates the structural analogs of the niche Ω and fitness differences
θ. The coordinates in the figure correspond to the parameter space of intrinsic growth
rates. The structural analog of the niche difference is the solid angle (Ω) of algebraic cone
of feasibility, under which the community can sustain stable and feasible solutions. This
cone is delimited by the column vectors of the matrix of competition coefficients α. The
structural analog of the fitness difference corresponds to the angle (θ) between any observed
vector of intrinsic growth rates r (brown solid vector) and the centroid of the feasibility
domain rc (dashed line).
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Figure 5: Geometric projection of the cone defining the feasibility domain. For
arbitrary, positive-definite, interaction strength matrices α, Panels A-C illustrate the ge-
ometric projection of the feasibility domain on the unit simplex for 2, 3, and 4 species,
respectively. These projections give an easier geometric representation of the feasibility
domain. The unit simplex is defined by the set of all positive intrinsic growth rates that
sum to one. In each panel, each of the extremes on the line corresponds to the case where
one species has an intrinsic growth rate of 1 and the others have an intrinsic growth rate
of zero. In the middle of each line, the two corresponding species have the same intrinsic
growth rate of 0.5. In the 2-species case, this geometric projection corresponds to a line,
in the 3-species case corresponds to a triangle, and in the case of 4-species corresponds to
a pyramid.

Figure 6: Community versus pairwise effects on coexistence. Panel A depicts the
feasibility domain of the pair formed by species 1 and 2 (D12). If one chooses a vector of
intrinsic growth rates inside the green triangle, then in absence of species 3, species 1 and
2 will coexist. Panel B shows the three domains of feasibility for each pair of species (Dij).
Note that if one chooses a vector of intrinsic growth rates at the intersection of these three
domains, then any pair of species will coexist in the absence of the third species (Dall).
Panel C shows the domain of feasibility of the three species together (DF ). Panel D shows
the overlap between the domain of feasibility of the triplet (DF ) with the pairwise domains
(D ll). This is depicted by scenario (i). It can also be seen that pairwise coexistence does
not automatically imply triplet coexistence (ii), and vice versa (iii).The difference between
these two domains is indicative of the importance of indirect interactions for multispecies
coexistence.

Figure 7: Three general cases of community and pairwise coexistence. Panel A
shows an example where the feasibility domain of the triplet (DF ) is completely inside
the pairwise coexistence domain (Dall). If the vector of intrinsic growth rates is located
at the orange dot, each pair coexists in isolation and the three species can coexist. Panel
B shows the case where pairwise (Dall) and community coexistence (DF ) do not fully
overlap. The orange dot corresponds to the scenario describe in Panel A, whereas the red
dot corresponds to a scenario where the triplet coexists, but not species 2 and 3 in isolation.
Panel C corresponds to a rock-paper-scissors case. This figure shows a community in which
the feasibility domain of the three pairs do not intersect (Dall = ∅). If we choose the vector
of intrinsic growth rate at the red dot, we obtain a rock-paper-scissors dynamic, i.e, each
species is out-competed by another species in absence of the third.
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Figure 8: Illustration of feasibility domains for triplets and quadruplets of annual
plant species in a California field system. Panels A and B show the feasibility
domains for two triplets, and Panel C for a quadruplet based on the empirically measured
interaction coefficients (Godoy et al., 2014; Kraft et al., 2015). These feasibility domains
are all projected on a unit simplex as shown for artificially-constructed interaction matrices
in Figures 5-7. Here, the demographic rates compatible with coexistence correspond to the
seeds produced per seed lost from the system as explained in Appendix S4. The four letter
species codes correspond to Agoseris heterophylla (AGHE), Centaurea melitensis (CEME),
Hemizonia congesta (HECO), Lasthenia californica (LACA), Lotus wrangeliensis (LOWR),
Clarkia purpurea (CLPU), Navarretia atractyloides (NAAT), and Geranium carolinianum
(GECA).

Figure 9: Quantifying the sources of multispecies coexistence in annual plant as-
semblages. For fitted competition coefficients obtained in an annual plant system (Godoy
et al., 2014; Kraft et al., 2015), panels A and B show the community-pair differential (Δ)
and the community-pair overlap (ω), respectively. The community-pair differential eval-
uates whether the coexistence of all n-species is more easily obtained than all pairs of
n species. Positive values indicate that the feasibility domain for the community (DF )
is larger than the feasibility domain of pairwise coexistence (Dall). The community-pair
overlap evaluates the degree to which the conditions for pairwise coexistence are the same
as those required for the coexistence of all the species in the community. The smaller the
value, the more the feasibility domain of the community differs from the feasibility domain
allowing pairwise coexistence.
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47

ht
tp
://
do
c.
re
ro
.c
h



Figure5.
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