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Adapting behavior to thermal cues is essential for animal

growth and survival. Indeed, each and every biological and

biochemical process is profoundly affected by temperature and

its extremes can cause irreversible damage. Hence, animals

have developed thermotransduction mechanisms to detect

and encode thermal information in the nervous system and

acclimation mechanisms to finely tune their response over

different timescales. While temperature-gated TRP channels

are the best described class of temperature sensors, recent

studies highlight many new candidates, including ionotropic

and metabotropic receptors. Here, we review recent findings in

vertebrate and invertebrate models, which highlight and

substantiate the role of new candidate molecular thermometers

and reveal intracellular signaling mechanisms implicated in

thermal acclimation at the behavioral and cellular levels.
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Variations in ambient temperature have dramatic effects

on animal behavior, survival, and reproduction. One

dramatic example is the response of a waddle of Emperor

penguins to variations in ambient temperature: the colder

the temperature, the more likely penguins are to huddle

and to huddle more tightly [1]. The social behavior of

huddling is essential for thermoregulation, energy con-

servation, and to complete the breeding cycle. Thus,

animals have evolved behavioral and metabolic strategies

for minimizing their exposure to rapid fluctuations and for

adapting to slow seasonal variations. Such thermal accli-

mation behaviors depend on the animal’s ability to link

information provided by specialized thermosensory neu-

rons to appropriate behaviors. Laboratory studies in ani-

mals that are amenable to genetic dissection such as fruit

flies, nematodes, and mice, have revealed many relevant

sensory neurons and thermoreceptor proteins. In this

review, we consider candidate thermoreceptor proteins

and signaling pathways as well as molecular mechanisms

for responding to changing thermal environments,

highlighting recent key results and emerging opportu-

nities for discovery in this area.

Molecular basis of thermosensing
To function as a thermoreceptor, a protein or signaling

pathway should exhibit several properties. First, the

protein(s) should localize to the presumptive site of

temperature-sensing within sensory neurons embedded

in tissues subjected to thermal fluctuations [2�]. Second,

the proteins(s) should be required for cellular and behav-

ioral responses to thermal cues. Third, the protein(s)

should confer extraordinary temperature sensitivity on

heterologous cells and, fourth, protein function should

itself be exquisitely temperature-sensitive. Distinguish-

ing ordinary from extraordinary thermal sensitivity is not

easy, however. One useful rule of thumb is to focus on

proteins or signaling pathways with Q10 values that ex-

ceed those typical of biochemical reactions such as active

transport of ions (ca. 3) across biological membranes [3].

Though imperfect (see Ref. [2�]), the Q10 metric is

frequently used to assess the effect of temperature on

cell function; for ion channels, Q10, is commonly estimat-

ed from the ratio of the current measured at temperature,

T + 10 8C, to that measured at temperature T.

Several classes of membrane proteins satisfy at least some

of these requirements and are thought to enable thermo-

sensory neurons to detect minute thermal fluctuations.

Beyond their common status as membrane proteins,

however, these proteins share few, if any sequence or

structural motifs, having variable transmembrane domain

numbers, and acting either as ion channels or receptors.

Whereas thermosensitive ion channels are likely to func-

tion as direct thermo-electrical transducers, thermosensi-

tive receptors seem to function indirectly, enabling the

temperature-dependent synthesis of second messengers

that modulate ordinary ion channels. Receptors linked to

temperature sensing have homologs in most organisms.

The ion channel proteins have a narrower distribution.

While all organisms face thermal fluctuations and mem-

brane proteins proposed as thermoreceptors are widely
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distributed across phyla [4�], little is currently known

about their function outside of metazoa (Figure 1).

Transient receptor potential (TRP) channels
Transient receptor potential (TRP) channels are the most

extensively studied temperature-gated channels so far. At

least eleven mammalian TRP channels display extraor-

dinary and steep temperature dependence [2�,5], but only

a few fulfill the criteria that define a bona fide thermore-

ceptor protein. TRPV1 and TRPM8 are two TRP chan-

nels widely believed to serve this function. They are

expressed in thermosensory neurons, are required for

normal behavioral responses to thermal stimulation,

and confer extraordinary temperature sensitivity on het-

erologous cells [6].

Deciphering the role of a given TRP channel in thermo-

sensation is complicated by several factors, including the

fact that TRP channels integrate many signals [7] and

interact with other proteins, including other TRP chan-

nels [8,9]. These factors affect interpretation of experi-

ments performed in vivo and in heterologous systems,

which are often somewhat responsive to temperature

themselves [10]. Furthermore, certain TRP channels

have species-specific functions, exist as multiple iso-

forms, or control different aspects of thermosensation.

TRPA1 channels illustrate this situation especially well.

They are heat sensors in frogs, snakes, chickens and

insects, cold sensors in mammals and in the nematode

C. elegans and sensors responsive to both cold and heat or

temperature-insensitive in zebrafish [10–12]. In mam-

mals, TRPA1 is often co-expressed with TRPV1 and

they can form heteromers [8]. In Drosophila, two TRPA

channels Painless and dTRPA1 cooperate to generate

noxious heat-evoked thermocurrents in class IV polymo-

dal nociceptors [13]. A two-step process was proposed in

which heat activates dTRPA1, thereby triggering the

initial entry of Ca2+, which in turn activates the Ca2+-

dependent Painless channel. Thus, distinct TRPA chan-

nels fulfill different roles in thermotransduction.

Other ion channels
Other thermosensitive channels include the two-pore

domain K+ channels (K2P), the Ca2+-activated Cl� chan-

nel, Anoctamin-1, as well as the STIM1/ORAI1 complex.

Their putative role in temperature sensing is covered in

several recent reviews [5,6,14]. Additionally, a new link

between the insect ionotropic receptors (IRs), and tem-

perature sensing was recently uncovered in the dorsal

organ cool cells (DOCC) of Drosophila larvae [15��]. The

IRs are membrane receptors better studied for their

contribution to insect chemosensation and members of

the superfamily of membrane proteins that also includes

NMDA and AMPA receptors [16]. The DOCC cells are

critical for avoiding temperatures below 20 8C, are acti-

vated by tiny, transient decreases in temperature [17] and

rely on IR21a and IR25a to sense cooling [15��]. Impor-

tantly, IR21a confers cool-sensing abilities to other neu-

rons in fruit fly larva. Whereas other members of the

Drosophila IR family appear to form odor-gated cation

channels in Xenopus oocytes [18], efforts to reconstitute a

cooling-activated IR channel complex have yet to suc-

ceed. The recent work of Ni, Klein and colleagues [15��]
suggests not only that IR21a and IR25a might function as

thermoreceptors, but that other ionotropic receptors

might also serve this function.

Single-pass membrane receptors

Receptor guanylate cyclases (rGCs) are multifunctional

proteins consisting of an intracellular enzyme domain that

catalyzes the synthesis of cyclic GMP from GTP and a

large extracellular domain linked by a single transmem-

brane domain. Certain rGCs are constitutively active,

while others are activated by extracellular peptide li-

gands. The rGCs present in vertebrate photoreceptors

are an example of the former and receptors for atrial

natriuretic peptide (ANP) in mammals are examples of

the latter [19].

In C. elegans, three rGCs, GCY-8, GCY-18 and GCY-23,

are required for certain behavioral responses to thermal

cues and co-expressed only in the AFD thermosensory

neurons that detect minute thermal fluctuations of less

Figure 1
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Taxonomy of established and putative molecular thermoreceptors.

TRP, transient receptor potential channel proteins; K2P, two-pore K

channels; ORAI, calcium-release activated channels; CACC, calcium-

activated chloride channels; rGCs, receptor guanylate cyclases;

GCPR, G-protein coupled receptors. Solid lines indicate that

experimental support exists for thermoreceptor function of one or

more proteins; dashed lines indicate where proteins are present or

predicted from genome sequence, but not linked to thermosensation

in experimental studies. Information synthesized from investigation of

the PFAM database and the following reports:

[15��,22��,23�,26,30,32,59,60]. The following PFAM accession numbers

were used: TRP, PF06011; K2P, n.a.; ORAI, PF07856; CACC,

PF04547; rGC, PF01094; GCPR, CL0192; IR:PF00060.
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than 0.05 8C. These three rGCs localize to specialized

sensory endings, which appear to contain all of the cellular

machinery required to detect thermal cues [20]. Loss of

all three proteins eliminates temperature-evoked mem-

brane currents [21], calcium transients [22��], and impairs

temperature-evoked behaviors. Thus, these three pro-

teins have at least two of the characteristics expected from

a thermoreceptor.

Are the AFD-rGC proteins sufficient to confer extraordi-

nary temperature sensitivity on heterologous cells? The

work of Takeishi, Yu and colleagues [22��] answers this

question in the affirmative: ectopic expression of all three

AFD rGCs together confers extraordinary thermosensi-

tivity on other C. elegans sensory neurons. Ectopic expres-

sion of GCY-23 alone, but not GCY-8 is sufficient to

impart thermosensitivity. GCY-18 expression resulted in

calcium signals at high temperatures outside of AFD’s

normal operating range, providing an opportunity to

explore which domain(s) set the thermal threshold. Anal-

ysis of chimeric proteins indicates that not only the

extracellular and intracellular domains, but also the trans-

membrane segment influence the thermosensitivity of

rGCs-mediated calcium signaling.

The homology between the AFD rGC proteins and other

rGCs strongly implies that they catalyze the synthesis of

cGMP. Indeed, Singhvi and collaborators [23�] have

recently shown that C. elegans GCY-8 functions as a

constitutively active, chloride-inhibited guanylate cyclase

in mammalian cells. While it is not yet known how GCY-8

activity depends on temperature, prior analysis of another

C. elegans rGC revealed that warming increases and then

decreases GCY-12 activity in mammalian cells [24]. The

significance of Cl� inhibition remains obscure, but some

intriguing possibilities are emerging. For instance, KCC-3

is a putative K-Cl co-transporter expressed in a glial-like

cell that surrounds the AFD sensory ending and is re-

quired for normal thermotaxis [23�,25�]. While loss of

KCC-3 dramatically alters calcium signals evoked by a

thermal ramp, it does not eliminate such responses [25�].
The persistence of warming-evoked calcium signals in

kcc-3 mutants establishes that this co-transporter is not

essential for initiating AFD’s response to thermal stimuli

in intact, living animals.

Collectively, these studies support the idea that AFD

rGCs function as thermoreceptor proteins. Of note, the

AFD rGCs are not the only rGCs linked to thermosensa-

tion: in mice, the GC-G protein is expressed in thermo-

sensory neurons activated by cooling and functions as a

cooling-activated enzyme in heterologous cells [26].

Multi-pass membrane receptors

Membrane receptors linked to temperature sensing in-

clude GR28b(D) and rhodopsin. GR28b(D) is a member

of the family of gustatory receptors (GRs) and is encoded

by a complex genetic locus gathering several closely

related receptors in Drosophila melanogaster fruit flies

[27]. GRs are a family of seven-pass membrane proteins

linked to chemical sensing in fruit flies and other insects

[28]. However, whether they assemble as dimers, func-

tion as ion channels, or signal via G-protein mediated

pathways remains unclear. GR28b(D) is expressed in

three hot cells (HCs), which are peripheral sensory neu-

rons embedded in the antenna. GR28b(D) ectopic ex-

pression is sufficient to confer temperature-sensitivity on

motor neurons and muscles [29��]. These findings suggest

that GR28b(D) functions as a thermoreceptor protein in

Drosophila HCs.

Rhodopsin is a classical G protein-Coupled Receptor

(GPCR) known for its central role as a photon detector

critical for vision. It belongs to a large family of opsin-like

proteins, some of which are expressed outside the nervous

system. In fruit fly larvae, disrupting genes encoding

rhodopsin [30] and its downstream signaling elements

[31] alters thermotaxis behavior. In support of the idea

that they have a conserved function in thermotaxis, opsins

and downstream signaling elements such as phospholi-

pase C (PLC) have been linked to sperm thermotaxis in

mammals, including humans [32]. Whether or not rho-

dopsin functions as a bona fide thermoreceptor protein is

controversial, however, since it also functions as a highly

thermostable photon detector [33]. Additional work is

needed to examine this question and to more fully

elucidate the role that opsins play in thermotaxis beha-

viors in animals and in mammalian sperm.

Thermosensory plasticity
Go for a swim in cool water on a summer day. The water

will feel very cold at first, but within minutes, you will

acclimate and feel more comfortable. Later, you will be

able to detect mild thermal variations while swimming

through slightly cooler or warmer streams. Such adapta-

tion is common in sensory systems and influences thresh-

olds for the sensation of noxious heat and cold in animals,

including humans [34]. It can involve diverse mecha-

nisms operating in various locations, from primary recep-

tor neurons to the central nervous system, and over

various time scales, from seconds to days.

Recent studies in animal models provide insight into the

molecular and cellular mechanisms occurring in primary

sensory neurons and controlling thermal acclimation

in vivo. In a systematic analysis, Brenner and collaborators

found that withdrawal responses evoked by both warm

and cold stimuli depend on a dynamic temperature ‘set-

point’, that is modified by past experience in mice [35��].
Using genetic knockout and pharmacologic inhibition

approaches, they showed that phospholipase C (PLC)

activity and TRPM8 are needed for full adaptation to

cooler ambient temperatures. Since depletion of mem-

brane PIP2 by the Ca2+-sensitive PLCd decreases
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TRPM8 sensitivity in vitro [36], it is possible that PLC

signaling acts directly on TRPM8 activity to mediate

adaptation of cold temperature responses. How PLC

activation is controlled in this context in vivo is yet

unknown, but it is possible that Ca2+ signals could be

implicated, thus constituting a relatively direct feedback

loop coupling TRPM8 channel activity, which triggers

Ca2+ entry, with its own down-regulation (Figure 2a).

Additional insights come from studies of temperature-

evoked behaviors in C. elegans. These animals use noxious
heat avoidance to limit damage, thermotaxis to find a pre-

ferred temperature in the innocuous temperature range

and isothermal tracking to stay close to this preferred

temperature [20,37–39]. All three behaviors are modulat-

ed by previous temperature experience, implying some

sort of memory. Indirect evidence has long suggested that

AFD thermosensory neurons could themselves encode

the memory of past thermal experience relevant for

thermotaxis and isothermal tracking [40,41]. This was

demonstrated by Kobayashi and collaborators, showing

that cultured AFD neurons harbor all of the necessary

machinery to store and update a thermal memory [42�],
although ex vivo responses were more variable than in vivo
responses. In another study, the same group showed that

in worms navigating in a continuous temperature gradi-

ent, the combination of motion-imposed thermal varia-

tions and short-term adaptation properties produced

intermittent activity peaks in AFD [43]. Discrete AFD

activity events correlated with turns in well-fed, but not

starved animals. Given that starvation suppresses ther-

motaxis [44], these findings suggest that varying the

degree of coupling between the activity of AFD and

downstream behavioral responses is a plausible neural

mechanism through which feeding state regulates tem-

perature-dependent behavior.

The AFD thermosensory neuron operates in a tempera-

ture range that depends on past thermal experience and is

modulated by cGMP levels [45]. Thermal re-setting or

adaptation takes place in two phases in AFD: a short one

(minute timescale) and a long one (hour timescale) [46�].

Figure 2
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Molecular mechanisms of thermal acclimation in vivo. Schematic representation of recently identified molecular mechanisms underlying thermal

acclimation in mice (a) and in the nematode C. elegans (b). TRPM8, transient receptor potential M8; PLC, phospholipase C; PIP2,

phosphatidylinositol biphosphate; rGC, receptor guanylate cyclase; cGMP, cyclic guanosine monophosphate; CNGC, cyclic nucleotide gated

channel; CMK-1, Ca2+/calmodulin-dependent protein kinase 1; TRPV, transient receptor potential V.
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Both resetting phases require intact CMK-1 signaling and

adaptation to warmer temperatures is linked to CMK-1

translocation to the nucleus and regulation of rGC gene

expression (Figure 2b). CaM kinase signaling is well

known to couple cell excitation with transcriptional ac-

tivity [47]. Thus, AFD might use this feedback pathway

to ensure long term adaptation (hour timescale) by con-

tinuously adjusting thermosensory protein expression

levels as a function of its thermo-dependent activity.

One could speculate that the expression level of the

different relevant rGCs (GCY-8, GCY-18 and GCY-23)

or their ratio might affect the thermal set point. In an

independent study based on a novel mutagenesis screen,

Schild and collaborators also identified the CMK-1 path-

way as controlling behavioral plasticity in noxious heat

avoidance. This behavior relies on at least two classes of

sensory neurons: AFD and the thermo-nociceptor neuron

FLP [48]. Of note, CMK-1 has an active role in FLP

neurons to adjust the threshold of thermal avoidance

[49�]. Upon heat pre-exposure, CMK-1 translocates to

the nucleus of FLP neurons, where it has an active role to

decrease avoidance. Interestingly, cytoplasmic CMK-1

activity has the opposite effect, suggesting a bi-direction-

al switch based on CMK-1 subcellular localization and

able to adjust avoidance behaviors (Figure 2b). The

pertinent molecular targets downstream of CMK-1 sig-

naling in FLP neurons are not currently known. However,

it seems that FLP in cmk-1 mutants has at least superfi-

cially intact thermo-detection abilities and that CMK-1

signaling might rather adjust the nature or the degree of

neurotransmission to secondary neurons. This situation

might be reminiscent of the apparent uncoupling be-

tween thermosensation and behavior observed upon star-

vation in AFD [43].

Conclusions
Signals generated by thermosensory systems are respon-

sible not only for acute responses to thermal fluctuations,

but also for the sustained changes in signaling underpin-

ning thermal acclimation. One largely unsolved question

is how biological molecules convert temperature, which is

a continuous physical property of matter, into useful

neural signals.

Among animal thermoreceptor proteins, the thermoTRP

channels are probably the most intensively studied. Two

models of temperature-dependent gating are frequently

discussed–one posits that temperature-dependent chan-

nel activation is conferred by specific protein domains,

while another states that the activation process reflects

temperature-dependent protein unfolding that leads to

the exposure of previously buried amino acid residues

[7,50]. The currently booming cryo-electron microscopy

structural biology approach [51] has provided the first

high-resolution structures of two thermoTRPs [52,53]

and such structures are already providing a critical sub-

strate for computational and experimental work.

Still, animal thermoreceptor proteins share few, if any

functional domains. Yet, all are membrane proteins — an

observation that suggests that the membrane-protein

interface could prove critical for their function. In support

of this idea, the bacterial membrane protein DesKC

responds to temperature-driven variations in membrane

thickness and fluidity, biasing the catalytic activity of its

cytoplasmic domain toward kinase activity upon cooling

and toward phosphatase activity upon heating [54��].
Further analysis of this protein has revealed that one of

its transmembrane segments undergoes a conformational

switch in response to changes in bilayer thickness [55].

Perhaps an analogous biophysical mechanism is behind

the extraordinary temperature-dependence of animal

sensory neurons and the diversity of membrane proteins

linked to this function in both invertebrates and verte-

brates.

Other outstanding questions include whether and how

thermoreceptor protein activity is linked to short- and

long-term adaptation. During thermal acclimation, for

instance, CMK-1 CaM-kinase accumulates in the nuclei

of the AFD and FLP thermosensory neurons in C. elegans
and is presumed to affect gene transcription upon arrival

(Figure 2b). But, thermal stimuli alone are insufficient to

stimulate the movement of CMK-1, since thermal condi-

tioning does not affect CMK-1’s cytoplasmic-nuclear

distribution in other neurons [49�]. One possibility, con-

sistent with studies of related CaM kinases in mammals

[56], is that CMK-1 is sequestered in the cytoplasm under

steady-state conditions and released in response to heat-

ing-evoked calcium transients, enabling its subsequent

nuclear transport. More investigations are needed to

understand how thermal information is integrated over

time to produce adaptive sensory acclimation via CaM

kinase and other pathways.

The complex landscape of molecular signaling pathways

that allows animals to respond to temperature in changing

environments is starting to take shape. Expanding the

work leveraging classical genetic models, as well as ex-

ploring a wider spectrum of animals [57,58] and single-

cell organisms are all promising avenues to reveal new

functional insights into thermosensation. Deepening our

understanding of the molecular and cellular biophysics of

extraordinary temperature-sensitivity holds the promise

of deciphering how animals detect tiny thermal fluctua-

tions, literally extracting signals from thermal noise.
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