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1 Introduction

The purpose of this paper is to give a survey on some techniques used to study
fixed points of smooth torus actions on closed manifolds. We will discuss and
apply fixed point formulas as well as rigidity and vanishing theorems for classical
operators and elliptic genera. These techniques have numerous applications in
the study of differentiable transformation groups and, more recently, in the
study of positively curved manifolds with symmetry.

The theory of transformation groups, even if one restricts to torus actions,
is a vast field and our exposition is by no means complete. In particular, we
will not focus on the question of existence of torus actions and will not describe
techniques specific to manifolds with non-trivial fundamental group.

We hope that our survey will be useful for mathematicians working in the
field and will fill a gap in the literature. For a discussion of some of the many
other aspects, we refer to [1,17,21,22,34,46,48,50].

In the first part of this paper, we recall the localization theorems and fixed
point formulas in cohomology, K-theory, and index theory. The fixed point
formulas are then applied in a more or less systematic way to describe various
conditions under which a torus must act with fixed points. We also apply the
fixed point formulas to give more precise information on the cohomology of the
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fixed point manifold for a large class of manifolds including cohomologically
symplectic manifolds and manifolds with cohomology generated by classes of
degree two. These results should be well-known to the experts as they only use
techniques from the 1950s and 1960s. In the cases where we could not find a
reference proofs are indicated for the convenience of the reader (see for example,
Theorem 3.11).

In the second part of this paper, we discuss rigidity and vanishing theorems
for classical operators and elliptic genera as well as applications to positively
curved manifolds. We first recall the rigidity of classical operators, namely,
of the signature, Dirac and Dolbeault operator, and then describe the rigidity
theorems for elliptic genera of level 2 and higher level due to Witten, Taubes,
Bott, Hirzebruch and others.

The rigidity under compact connected Lie group actions often forces related
invariants to vanish. For elliptic genera, these invariants are given by the
coefficients in the expansion in certain cusps. Their vanishing is related to
finite cyclic subactions with fixed point manifold of large codimension and
extends the classical vanishing in the cusps to vanishing of higher order. For
example, for the elliptic genus of level 2 (the signature on the free loop space) of
a spin manifold, one obtains higher order versions of the Â-vanishing theorem of
Atiyah and Hirzebruch. For (stably) almost complex manifolds with first Chern
class divisible by N � 2, similar results hold for the elliptic genus of level N.
This gives new information on the fixed point manifold. Another interesting
consequence of the higher order vanishing is that it provides obstructions to
isometric actions on manifolds of positive curvature.

To a large part, this paper is of expository nature and most of the results
are well-known, at least to the experts. The higher order vanishing results for
the elliptic genus of level N presented in this paper and applications thereof to
manifolds of positive curvature are new and have not been published.

The paper is structured as follows. In Section 2, we review the localization
theorem and fixed point formula for ordinary cohomology, topological K-theory,
and index theory. In Section 3, we apply the fixed point formulas to derive
various fixed point theorems. Next to existence results for fixed points, we will
also discuss some structure results for the fixed point manifold of smooth torus
actions. In Section 4, we review the rigidity and vanishing theorems for the
indices of classical operator and relations to positive/nonnegative curvature. In
Sections 5 and 6, we recall the rigidity of elliptic genera of level � 2 and explain
related higher vanishing results. These are then used to describe obstructions
to isometric actions on manifolds of positive curvature.

2 Localization and fixed point formulas

In this section, we will review the localization theorems and fixed point formulas
for ordinary cohomology, topological K-theory, and index theory. These
formulas will be applied in the next sections to derive various fixed point
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theorems, to study the structure of fixed point sets, to discuss rigidity and
vanishing theorems for elliptic genera, and to describe applications for
manifolds of positive curvature.

We begin by recalling the Borel construction. Let G be a compact Lie group,
EG → BG a classifying bundle for G and X a G-space. Note that G acts freely
on EG × X via the diagonal action and EG × X is homotopically equivalent
to X. Following Borel [17], one associates to the G-space X the fiber bundle
π : XG → BG with fiber X, where

XG := EG ×G X := (EG × X)/G

is the quotient by the free G-action. The space XG is called the Borel
construction of X or homotopy quotient of X by G.

The use of this construction is motivated by the idea that the behavior of the
G-action is partially reflected in the cohomological properties of the fiber bundle
π : XG → BG with respect to a chosen cohomology theory, e.g., ordinary
cohomology, topological K-theory, cobordism, etc. For example, the existence
of a fixed point pt of the G-action implies that the homomorphism in
cohomology induced by π is injective since the equivariant map j : pt → X
induces a section jG : ptG = BG → XG of the projection π. This approach to
group actions has been developed in Borel’s seminar on transformation groups
in the late 1950s [17]. For de Rham cohomology, a different construction using
differential forms was already carried out by Cartan in the early 1950s (see
[37]).

An important relation between the cohomological properties of the fiber
bundle XG → BG and the fixed point set is expressed by the localization
theorem. Roughly speaking, this theorem says that after localization the
inclusion of the fixed point set XG ↪→ X induces an isomorphism in the
equivariant cohomology theory under consideration. The first example of this
kind was Borel’s localization theorem for cohomology [17, Ch. IV]. A few years
later, after topological K-theory was introduced by Atiyah and Hirzebruch
[7,8], the localization theorem for K-theory was established by Atiyah and
Segal [10,69].

Localization theorems are known to hold for a wide range of equivariant
multiplicative cohomology theories (see, for example, [33,67,68], [34, Ch. III.3],
[48, Ch. 6.2]). Here, we will restrict to ordinary cohomology and topological
K-theory. Also, we will formulate the localization theorems only in the case of
smooth torus actions. This will be sufficient for the purposes of this paper.

The localization theorems lead to corresponding fixed point formulas. In
equivariant K-theory and index theory, these formulas were established in the
1960s by Atiyah, Bott, Segal and Singer and were used at that time to derive
various fixed point formulas in cohomology for equivariant characteristic classes
[4,13]. Bott’s residue formula provides another approach to cohomological fixed
point formulas via Chern-Weil theory [18,19] (see also [50, Ch. II, §6]). The full
fixed point formulas for ordinary cohomology apparently were not considered
prior to the influential work of Atiyah-Bott and Berline-Vergne on their de
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Rham version of the fixed point formula in the early 1980s [5,14].

2.1 Cohomology

Let T be a torus of rank r and let S be the multiplicative set of non-zero
cohomology classes in H∗(BT ; Z). For any H∗(BT ; Z)-module A, let S−1A be
its localization with respect to S. Note that if we identify H∗(BT ; Z) with
Z[u1, . . . , ur], u1, . . . , ur ∈ H2(BT ; Z) a basis, then S−1Z[u1, . . . , ur] is the quo-
tient field Q(u1, . . . , ur) and S−1A is identified with A⊗Z[u1,...,ur ] Q(u1, . . . , ur).

For any T -space X, let H∗
T (X; Z) := H∗(XT ; Z). We apply corresponding

notations for other coefficients and other group actions. Note that H∗
T (X; Z) is a

H∗(BT ; Z)-module with respect to the module action induced by the projection
XT → BT. We can now state the localization theorem (see [17, Ch. IV], [67,
Thm. 4.4], [21, Ch.VII], [46, Ch. III, §2], [1, Ch. 3]).

Localization theorem for cohomology 2.1 Let M be a manifold with
smooth T -action. Then the inclusion of the fixed point manifold MT induces
an isomorphism

S−1H∗
T (M ; Z)

∼=→ S−1H∗
T (MT ; Z). �

Note that since MT is a trivial T -space, we have

(MT )T = MT × BT, H∗
T (MT ; Z) ∼= H∗(MT ; Z) ⊗ H∗(BT ; Z)

by the Künneth theorem.
The localization theorem above basically says that the torsion-free part of

the H∗(BT ; Q)-module H∗
T (M ; Q) is geometrically carried by the fixed point

manifold MT . Also, if M is n-dimensional, then H i
T (M ; Q) → H i

T (MT ; Q) is an
isomorphism for i > n (see, for example, [21, Ch.VII, Thm. 1.5]; for a refined
version of the localization theorem, see [67, Thm. 4.4]).

The proof of the localization theorem and the properties mentioned above
uses the Leray-Serre spectral sequence for MT → BT together with the fact that
H∗

T (M − MT ; Q) is a torsion H∗(BT ; Q)-module. Corresponding results hold
for elementary p-abelian groups (see [17, Ch. IV], [21, Ch.VII], [46, Ch. III, §2],
[1, Ch. 3]). If one describes S−1H∗

T (M ; Z) in terms of generators and relations,
then the number of connected components and their localized cohomology can
be computed in principle from the ideal of defining relations (see [46, Ch. IV,
§1] for a precise statement).

From the localization theorem, one readily sees the following fixed point
criterion:

MT �= ∅ ⇐⇒ H∗
T (M ; Q) is not a torsion H∗(BT ; Q)-module.

We now turn to the fixed point formula for ordinary cohomology. Let us
first recall that ordinary integral cohomology is oriented with respect to oriented
vector bundles. Hence, an oriented vector bundle comes with a Thom class and
a Thom isomorphism [63,75]. This allows to define a push-forward f! (also
called Gysin homomorphism or umkehr homomorphism) for an oriented map
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f : X → Y between closed smooth manifolds (see, for example, [5]).1) Let k
denote the difference of the dimensions of Y and X. Then f! is an H∗(Y ; Z)-
module homomorphism from H∗(X; Z) to H∗+k(Y ; Z), where H∗(Y ; Z) acts on
H∗(X; Z) via f∗. If X and Y are oriented, then f! is given by pre- and post-
composing the induced homomorphism f∗ : H∗(X; Z) → H∗(Y ; Z) in homology
with the Poincaré isomorphisms for X and Y.

Similarly, one can consider push-forward maps in the equivariant setting
using the Borel construction (see, for example, [5]). We will not give the details
on the construction here and will only mention the following two basic cases
for an n-dimensional oriented closed manifold M with a smooth action by the
torus T.

In the first case, we consider the projection of M to a point pt. The
projection induces a push-forward∫

M
: H∗

T (M ; Z) → H∗−n
T (pt; Z) ∼= H∗−n(BT ; Z).

If the T -action is trivial, then
∫
M is given by evaluation on the fundamental

cycle of M.
In the second case, we consider a connected component Y of codimension k

of the fixed point manifold MT . Let jY : Y ↪→ M denote the inclusion and let νY

be the T -equivariant normal bundle of Y. Note that Y and νY are orientable and
orientations for them determine each other if one requires compatibility with
the given orientation of M. For fixed orientations, the inclusion jY induces a
push-forward (jY )! : H∗

T (Y ; Z) → H∗+k
T (M ; Z), which is given by multiplication

with the equivariant Thom class of νY . For later reference, we recall that the
restriction of this class to Y is the equivariant Euler class eT (νY ) ∈ Hk

T (Y ; Z).
We are now ready to state the

Fixed point formula for cohomology 2.2 Let M be an n-dimensional
oriented closed manifold with a smooth action by the torus T. Let v ∈ H∗

T (M ; Z).
Then ∫

M
v =

∑
Y⊂MT

∫
Y

j∗Y (v)
eT (νY )

.

Note that the left-hand side is an element in H∗(BT ; Z) whereas each
summand on the right-hand side is an element in the localized ring
S−1H∗(BT ; Z). Since the homomorphism H∗(BT ; Z) → S−1H∗(BT ; Z) is
injective, the identity in the fixed point formula above holds in S−1H∗(BT ; Z)
and also in H∗(BT ; Z). For the convenience of the reader, we recall the proof.

Proof The fixed point formula follows from properties of the push-forward
and the localization formula. Let j : MT ↪→ M be the inclusion of the fixed
point manifold and let j! denote the push-forward for a fixed orientation of MT .
Similarly, let jY : Y ↪→ M denote the inclusion of a fixed point component of

1) The map f is called oriented if the bundle TX � f∗(TY ) is oriented (for the general
concept of orientability, see, for example, [73, Ch. 14])
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codimension k and let (jY )! be the push-forward with respect to the orientation
of Y ⊂ MT . By functoriality,

∫
Y factorizes as

∫
M ◦(jY )!. The composition

j∗Y ◦ (jY )! : H∗
T (Y ; Z) → H∗+k

T (Y ; Z)

is given by multiplication with eT (νY ). Since T acts without fixed points outside
of the zero section of νY , the restriction of eT (νY ) to a point of Y is non-zero.
This together with the nilpotency of H>0(Y ; Z) implies that eT (νY ) is invertible
in the localization S−1H∗

T (Y ; Z), where S denotes the multiplicative set of non-
zero elements in H∗(BT ; Z).

Recall from the localization theorem that

j∗ : S−1H∗
T (M ; Z) → S−1H∗

T (MT ; Z)

is an isomorphism. Hence,

v =
∑

Y⊂MT

(jY )!
( j∗Y (v)

eT (νY )

)
∈ S−1H∗

T (M ; Z)

since both sides have the same image under j∗. This gives
∫

M
v =

∑
Y⊂MT

∫
M

(jY )!
( j∗Y (v)

eT (νY )

)
=

∑
Y⊂MT

∫
Y

j∗Y (v)
eT (νY )

. �

In the case of a circle action with isolated fixed points, the fixed point
formula for equivariant characteristic numbers takes the form of Bott’s residue
formula [18]. Other cases of this formula were formulated at that time using
the fixed point formulas for equivariant K-theory and equivariant index
theory [4,13]. A de Rham version of Fixed point formula 2.2 is due to Atiyah
and Bott [5] as well as Berline and Vergne [14] (see also [77] for the historical
development).

2.2 K-theory and index theory

As mentioned before, localization theorems exist not only for ordinary
cohomology but also can be established for a wide class of multiplicative
cohomology theories. Of fundamental importance are the localization theorem
for topological K-theory and the fixed point formulas for K-theory and index
theory which we will briefly recall.

The K-theory K(X) of a compact Hausdorff space X is defined by turning
the semi-ring of isomorphism classes of complex vector bundles over X into
a ring via the Grothendieck construction [3,7,8]. If X is a locally compact
Hausdorff space, then K(X) shall denote K-theory with compact support (see
[10,69]).2)

2) The K-theory with compact support of a locally compact Hausdorff space is isomorphic
to the reduced K-theory of its one-point compactification.

6

ht
tp
://
do
c.
re
ro
.c
h



This construction refines directly in the presence of a group action. In
fact, if a compact Lie group G acts on X, then, by considering G-equivariant
complex vector bundles over X, one obtains the equivariant K-theory of X,
KG(X), which is a finer invariant than K(XG) by the Atiyah-Segal completion
theorem. For example, for a point pt, the equivariant K-theory KG(pt) is
isomorphic to the complex representation ring R(G) whereas K(ptG) ∼= K(BG)
is the completion of R(G) with respect to the augmentation ideal [11].

The localization theorem for K-theory takes for an action by a torus T the
following form (see [69], [10, Localization theorem 1.1]).

Localization theorem for K-theory 2.3 Let X be a locally compact T -
space and let i : XT ↪→ X denote the inclusion of the fixed point set. Then the
homomorphism induced by the inclusion

i∗ : KT (X) → KT (XT )

becomes an isomorphism when localized with respect to the multiplicative set of
non-zero elements of R(T ). �

We now turn to the fixed point formula for K-theory. The reasoning is
analogous to the one for cohomology. We will skip the details since we will
mainly use in the following sections the index theoretical version 2.4 (see [10,
Lemma 2.5] for details).

Let us first recall that K-theory is oriented for complex vector bundles (or,
more generally, for spinc vector bundles) [6]. This property allows to define
push-forward maps. We will only need the following two basic cases for an
almost complex manifold M with a smooth action by a torus T preserving the
structure.

In the first case, consider the projection πM : M → pt. The projection
induces a push-forward

πM
! : KT (M) → KT (pt) ∼= R(T ),

which is a KT (pt)-module homomorphism.
In the second case, we consider a connected component Y of the fixed point

manifold MT . Let νY be the T -equivariant normal bundle of Y. Note that the
almost complex structure on M induces an almost complex structure on Y and
a T -equivariant complex structure on νY .

With respect to the complex structure of the normal bundle, the inclusion
jY : Y ↪→ M induces a push-forward (jY )! : KT (Y ) → KT (M), which is a
KT (M)-module homomorphism with respect to the action of KT (M) on KT (Y )
via j∗Y .

The push-forward (jY )! is given by multiplication with the equivariant K-
theoretical Thom class of νY . For later reference, we recall that the restriction
of this class to Y is the equivariant K-theoretical Euler class Λ−1(νY ) ∈ KT (Y ),
where

Λt(νY ) :=
∑
i�0

Λi(νY )ti
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and Λi(νY ) is the ith exterior power of νY . We are now ready to state the fixed
point formula for v ∈ KT (M) :

πM
! (v) =

∑
Y⊂MT

πY
!

( j∗Y (v)
Λ−1(νY )

)
.

The formula also holds under the weaker condition that M has a T -equivariant
spinc structure. The K-theoretical Euler class Λ−1(νY ) is non-zero in R(T )
after restriction to any point of Y. This implies that Λ−1(νY ) is invertible in
the localization (see [10, Lemma 2.5]). The proof now follows the same line of
reasoning as the proof of Fixed point formula 2.2.

Next, we will recall the fixed point formula for equivariant index theory.
This will be our main tool when we discuss rigidity and vanishing theorems for
elliptic genera and applications thereof to group actions.

Let M be a closed n-dimensional smooth manifold with tangent bundle
πM : TM → M. Note that the tangent bundle of TM is isomorphic to the pull
back via πM of TM⊕TM and the manifold TM comes with an almost complex
structure. This allows to define the push-forward map with respect to the map

πTM := (πM )∗ : TM → Tpt ∼= pt

as follows:
πTM

! : K(TM) → K(pt) ∼= Z.

Now, let D be an elliptic differential operator on M, respectively, an elliptic
complex

· · · Di−1−→ Γ(Ei)
Di−→ Γ(Ei+1)

Di+1−→ Γ(Ei+2) → · · · ,

with symbol σ(D) ∈ K(TM) and index

ind(D) = dim(ker(D)) − dim(coker(D)),

respectively,

ind(D) =
∑

i

(−1)i dim(ker(Di)/im(Di−1)) ∈ Z.

By the celebrated Atiyah-Singer index theorem [12], the index of D can be
computed by applying the push-forward to the symbol of D, i.e.,

ind(D) = πTM
! (σ(D)).

Prominent applications of the index theorem are to the signature operator
for orientable manifolds, the Dolbeault operator for almost complex manifolds,
and the Dirac operator for spin manifolds, which lead to the signature theorem,
the Riemann-Roch theorem, and the integrality theorem for the Â-genus,
respectively (see [13] for details).
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Next, we recall the equivariant index theorem. Suppose that a compact
Lie group G acts smoothly on M and D is a G-equivariant elliptic differential
operator, respectively, G-equivariant elliptic complex. In this situation, the
index ind(D) is an element of the representation ring R(G), the symbol σ(D) is
an element of the equivariant K-theory KG(TM), and the index theorem [12]
asserts that

ind(D) = πTM
! (σ(D)) ∈ R(G),

where
πTM

! : KG(TM) → KG(pt) ∼= R(G)

is the push-forward for the G-equivariant map

πTM : TM → Tpt ∼= pt.

We now come to the fixed point formula for index theory. Let G be
topologically cyclic generated by g ∈ G. Let jY : Y ↪→ M be the inclusion of a
fixed point component Y ⊂ Mg = MG and let νY be the normal bundle. We
note that the normal bundle of j : TY ↪→ TM comes with a complex structure
which allows to define a push-forward KG(TY ) → KG(TM). The normal bundle
together with this complex structure defines the element νY ⊗ C ∈ KG(TY ).
We are now ready to state the fixed point formula for equivariant index theory
(see [10, Prop. 2.8], [11, Prop. 2.10, Thm. 2.12]).

Lefschetz fixed point formula 2.4 Let M be a closed manifold with smooth
G-action, where G is topologically cyclic generated by g ∈ G. Let D be a G-
equivariant elliptic differential operator (or complex) on M with symbol u :=
σ(D). Then its index ind(D) ∈ R(G) evaluated at g is given by

ind(D)(g) =
∑

Y⊂Mg

aY ,

where

aY = πTY
!

( u(g)|TY

Λ−1(νY ⊗ C)(g)

)
. �

Here, u(g)|TY denotes the restriction of u(g) to TY, i.e., the image under
the restriction homomorphism

K(TM) ⊗ C → K(TY ) ⊗ C.

The Lefschetz fixed point formula can also be phrased in terms of rational
cohomology using the natural transformation from K-theory to cohomology
via the Chern character (see [13, Lefschetz Theorem 3.9]). The cohomological
version, which will be described in Subsection 4.1, will be our main tool when
we discuss rigidity and vanishing theorems for elliptic genera.
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3 Fixed points

In this section, we will apply Fixed point formula 2.2 to derive various fixed
point theorems. All the results presented here can be equally well shown using
the fixed point formulas for K-theory or index theory. Next to existence results
for fixed points, we will also discuss some structure results for the fixed point
manifold. As before, we will restrict to smooth torus actions. From now on, all
manifolds will be assumed to be connected.

3.1 Existence of fixed points

Let M be a closed oriented n-dimensional smooth manifold and let T be a torus
of rank r which acts smoothly on M. Suppose that the fixed point set MT is
empty. Then, by Fixed point formula 2.2 for any class v ∈ H∗

T (M ; R), one has∫
M v = 0. For further reference, we single out this classical observation in the

following form.

Fixed point criterion 3.1 Suppose that there exists an equivariant class
v ∈ H i

T (M ; R) such that∫
M

v ∈ H i−n
T (pt; R) = H i−n(BT ; R)

is non-zero. Then MT is non-empty.

The following well-known special case already accounts for many
applications.

Theorem 3.2 Suppose that there exists a cohomology class w in the image
of the restriction map Hn

T (M ; R) → Hn(M ; R) such that
∫
M w �= 0 ∈ R. Then

MT is non-empty.

Proof Let v be a pre-image of w with respect to Hn
T (M ; R) → Hn(M ; R). Since

the restriction map commutes with integration and H0
T (pt; R) → H0(pt; R) is

an isomorphism, it follows that∫
M

v =
∫

M
w �= 0.

Hence, MT is non-empty. �
Let us say that w ∈ H∗(M ; R) has an equivariant extension if there exists a

class v ∈ H∗
T (M ; R) which maps to w under the restriction map H∗

T (M ; R) →
H∗(M ; R).

Since the T -action on M extends to an action on the tangent bundle TM via
differentials, all characteristic classes of M have equivariant extensions. Hence,
one can apply the last theorem to the Euler class (unstable characteristic class)
and to the Pontrjagin classes (stable characteristic classes) of M.

Taking w to be the Euler class e(M) and noting that
∫
M e(M) is the Euler

characteristic χ(M), one obtains the following fixed point theorem, which is a
special case of a classical result of Hopf on the zeros of vector fields [45].

10

ht
tp
://
do
c.
re
ro
.c
h



Proposition 3.3 Let M be an oriented closed manifold with χ(M) �= 0. Then
any smooth action by a torus T on M has at least one fixed point. �

The orientability condition here is not necessary. If M is not orientable,
one can lift a two-fold action to the orientation cover and conclude that the
T -action on M has a fixed point.

Taking w ∈ Hn(M ; Z) to be a polynomial in the Pontrjagin classes of M
so that

∫
M w is a Pontrjagin number, one obtains the following classical result

(see, for example, [50, Ch. II, §6]).
Proposition 3.4 Let M be an oriented closed manifold for which not all
Pontrjagin numbers vanish. Then any smooth action by a torus T on M has
at least one fixed point. �

As shown by Thom [63,76], all torsion in the oriented bordism ring is finite
and a closed oriented manifold represents a torsion class in the oriented bordism
ring if and only if all its Pontrjagin numbers vanish. Hence, the last proposition
implies the following well-known result.

Corollary 3.5 If S1 acts smoothly on M without fixed points, then M is
rationally zero in the oriented bordism ring, i.e., a non-zero multiple of M is
the boundary of an oriented (n + 1)-dimensional compact manifold. �

The result above can be refined in the presence of a reduction of the stable
structure group of M. To illustrate this, let us take a look at stably almost
complex manifolds. Recall that a stably almost complex structure on M
is given by a complex structure of its stable tangent bundle, i.e., an
endomorphism J of TM ⊕ εk with J2 = −id (here, εk denotes the trivial
k-dimensional real vector bundle over M). The manifold M together with
a stably almost complex structure is called a stably almost complex manifold
or unitary manifold. Note that such a structure defines an orientation on M
and (after fixing a J-equivariant Riemannian metric) a reduction of the stable
structure group to U((n + k)/2) ↪→ SO(n + k). Now, applying Theorem 3.2 to
the equivariant Chern numbers gives the following classical result.

Proposition 3.6 Let M be a stably almost complex manifold for which not
all Chern numbers vanish. Then any smooth action by a torus T on M which
lifts to the stably almost complex structure has at least one fixed point. �

From the work of Milnor [62] and Novikov [65], one knows that a stably
almost complex manifold represents the zero element in the unitary bordism
ring if and only if all its Chern numbers vanish. Hence, the last proposition
implies the following well-known result.

Corollary 3.7 Let M be a stably almost complex manifold. Suppose that S1

acts smoothly on M and the action lifts to the stably almost complex structure.
If S1 acts without fixed points, then M is zero in the complex bordism ring, i.e.,
M is the boundary of an (n + 1)-dimensional stably almost complex compact
manifold. �
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The situation is quite similar for other reductions of the structure group.
Here, we only point out the following fixed point theorem. Let H be a compact
Lie group. Suppose that M admits a stable reduction of its structure group
to H. More precisely, we have an H-principal bundle P → M together with
a homomorphism of Lie groups ρ : H → SO(n + k) and an isomorphism of
oriented vector bundles

P ×ρ Rn+k ∼=−→ TM ⊕ εk.

Now, let f : M → BH be a classifying map for P → M and consider the (real)
characteristic ring f∗(H∗(BH; R)) ⊂ H∗(M ; R). The characteristic numbers of
P are defined by

∫
M v for v ∈ f∗(Hn(BH; R)).

Let T act smoothly on M and linearly on εk. Now, suppose that the action
lifts to P, i.e., P → M is a T -equivariant principal bundle and the isomorphism
P ×ρ Rn+k

∼=−→ TM ⊕ εk is equivariant with respect to the T -action. Then
the characteristic ring is in the image of H∗

T (M ; R) → H∗(M ; R). Arguing as
before, one gets the following generalization of Proposition 3.6.

Proposition 3.8 Let M be an oriented closed manifold and P → M a stable
reduction of its structure group for which not all characteristic numbers of P
vanish. Then any smooth T -action on M which lifts to P has at least one fixed
point. �

We remark that this result can be generalized further from equivariant
stable reductions to equivariant B-structures (see [57] for the definition of a
B-structure). We will not give the details here. A particular case of such a
fixed point theorem is given in the next theorem.

Note however that it is, in general, difficult to decide whether the T -action
on M lifts to the principal bundle P → M. Also the question whether a
cohomology class w ∈ H∗(M ; R) has an equivariant extension, i.e., is in the
image of the homomorphism H∗

T (M ; R) → H∗(M ; R), has often to be left open.
A simple well-known criterion for a positive answer is given in the next lemma,
which follows from an inspection of the Leray-Serre spectral sequence for the
Borel-construction M ↪→ MT → BT.

Lemma 3.9 If b2i+1(M) = 0 for 0 < 2i + 1 < 2k, then any cohomology class
of degree 2k has an equivariant lift. �

In particular, any cohomology class of degree 2 has an equivariant extension
if b1(M) = 0, e.g., if M is simply connected. This already leads to some
interesting fixed point theorems. For oriented manifolds, for example, one has:

Proposition 3.10 Let M be an oriented closed manifold with b1(M) = 0.
Suppose that there exist cohomology classes x1, . . . , xl ∈ H2(M ; Z) and
Pontrjagin classes pi1(M), . . . , pis(M) such that

∫
M

l∏
i=1

xi ·
s∏

j=1

pij (M) �= 0.
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Then any smooth action by a torus T on M has at least one fixed point.

Proof Let

w :=
l∏

i=1

xi ·
s∏

j=1

pij (M).

Since b1(M) = 0, the classes xi admit equivariant extensions. It follows that
the same is true for w. Since

∫
M w �= 0, the fixed point manifold MT is not

empty by Theorem 3.2. �
If b1(M) �= 0, then the conclusion holds if there exist equivariant extensions

of the classes xi. We invite the interested reader to formulate corresponding
fixed point theorems in the presence of an equivariant reduction of the structure
group and/or if b2i+1(M) = 0 for 0 < 2i + 1 < 2k and k > 0.

3.2 Structure of MT

In the remaining part of this section, we will apply the cohomological fixed point
formula to give some information on the structure of the fixed point manifold
for a large class of manifolds including cohomologically symplectic manifolds
and manifolds with cohomology generated by classes of degree two.

A general theorem which relates the localized equivariant cohomology of
the manifold to the localized equivariant cohomology of the individual fixed
point components is due to Hsiang [46, Thm. IV.1, p. 47]. This theorem can
be nicely applied to recover the structure results for the fixed point set of
cohomology spheres or cohomology projective spaces (see [46, Ch. IV, §1]). For
more complicated spaces, other techniques like the fixed point formulas are
often easier to use to obtain information on the structure of the fixed point
components. This will be illustrated in Theorem 3.11. As before, we will
restrict to smooth actions to simplify the exposition and refer to [21,46] for
generalizations.

As a partial motivation for the following, let us first recall the classical
structure theorem for circle actions on cohomology complex projective spaces.

Let M be an oriented closed 2m-dimensional manifold with smooth S1-
action. Suppose that M is an integral cohomology complex projective space
(i.e., the integral cohomology ring of M is isomorphic to the integral cohomology
ring of the complex projective space CPm). Let x ∈ H2(M ; Z) be a generator,
let Y1, . . . , Yl ⊂ MS1

be the connected fixed point components, and let 2mi :=
dimYi.

Then one has the following information for the fixed point components: each
Yi is an integral cohomology CPmi , the restriction of x to Yi is a generator of
H2(Yi; Z), and

∑
i(mi + 1) = m + 1. If M is a rational or real cohomology

complex projective space, then the statement holds after replacing integer
coefficients by rational or real coefficients, respectively (see [21, Ch.VII, §2],
[46, Thm. IV.3]). For a K-theoretical approach, see [66, Ch. II].

As we will explain certain aspects of this structure result can be carried over
to many other manifolds using Fixed point formula 2.2.
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For the applications in the following sections, it will be convenient to rather
work with complex line bundles than with cohomology classes of degree two.
To begin with, we will briefly discuss lifting of group actions to complex line
bundles.

Let M be an oriented closed manifold on which a torus T acts smoothly.
Let L → M be a complex line bundle. Suppose that the T -action lifts to L. For
a fixed lift, the restriction of the equivariant complex line bundle L to a point
of a fixed point component Y ⊂ MT reduces to a complex one dimensional
T -representation. The T -weight wY of this representation is independent of the
point in Y but may depend on Y. We call wY the local weight of L at Y. We
may change the torus action on L by taking the tensor product L ⊗ χ, where
χ is a one-dimensional complex T -representation of weight w. Note that L ⊗ χ
and L are canonically isomorphic as non-equivariant line bundles. For the new
T -action, the local weight at Y is wY +w. Hence, the local weights of L change
simultaneously by a global weight w. In particular, we may choose for a given
fixed point component Y ⊂ MT , the lift of the T -action to L such that the
local weight at Y vanishes, i.e., such that T acts trivially on the restriction L|Y .
Conversely, any two lifts of the T -action to L differ by a global weight.

The question whether an action lifts to L has been studied by Stewart, Su,
Hattori-Yoshida and others. It turns out that the only obstruction to a lift is
the necessary condition that the first Chern class c1(L) of L has an equivariant
extension (see [39,70,72]). As pointed out before, this is, for example, the case
if b1(M) = 0.

We now come to an application of Fixed point formula 2.2 which generalizes
certain aspects of the structure result for cohomology complex projective spaces
to many other manifolds.

Let us say that a closed connected 2m-dimensional oriented manifold M
can be oriented by degree 2 classes or M is H2-orientable, for short, if there
are classes x1, . . . , xm ∈ H2(M ; Z) such that

∫
M (x1 · · · · · xm) �= 0, i.e., if

x1 · · · · · xm defines an orientation on M. We note that this class of manifolds
includes, for example, cohomologically symplectic manifolds or oriented closed
manifolds for which the real cohomology ring is generated by classes of degree
2 (e.g., manifolds of the cohomological type of a quasitoric manifold).

In the situation where a torus T acts on M, we say that M is
equivariantly H2-orientable if M is H2-orientable and the classes x1, . . . , xm

all have an equivariant extension.

Theorem 3.11 Let M be an oriented closed connected 2m-dimensional
manifold. Let T be a torus which acts smoothly on M with fixed point
components Y1, . . . , Yl and dimYi = 2mi. Suppose that M is equivariantly H2-
orientable. Then

m + 1 �
l∑

i=1

(mi + 1).

Moreover, if equality holds, then each component Yi is H2-orientable.
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This result should be well-known to the experts as the proof only uses
techniques from the 1960s. Since we could not find a reference, we give a proof
for the convenience of the reader (see also [32, §4]).
Proof Let x1, . . . , xm ∈ H2(M ; Z) be classes with

∫
M (x1 · · · · · xm) �= 0 such

that each xi, i = 1, . . . ,m, has an equivariant extension. Let Li be the complex
line bundle over M with c1(Li) = xi, i = 1, . . . ,m. From the lifting properties
discussed above, we conclude that the T -action lifts to each of the line bundles.

Now, assume that

m + 1 �
l∑

i=1

(mi + 1).

We will choose equivariant extensions of the classes x1, . . . , xm such that at
least l−1 summands in the fixed point formula for

∫
M (x1 · · · · ·xm) will vanish.

We adjust the lift of the T -action to the first (m1+1) line bundles such that T
acts trivially on L1, . . . , Lm1+1 after restriction to Y1. In other words, we choose
the lift such that the local weights at Y1 vanish for the first (m1+1) line bundles.
Next, we choose a lift to the (m2 + 1) line bundles Lm1+2, . . . , Lm1+m2+2 such
that T acts trivially on these bundles after restriction to Y2. We continue in
this way for the fixed point components Y3, . . . , Yl−1.

For the remaining m − ∑l−1
i=1(mi + 1) � ml line bundles, we fix a lift of the

T -action such that their local weights at Yl are all zero.
Let vi ∈ H2

T (M ; Z) be the equivariant extension of xi given by the
equivariant first Chern class of Li. Let

y1 := v1 · · · · · vm1+1,

y2 := vm1+2 · · · · · vm1+m2+2,
. . . ,

yl := vk · vk+1 · · · · · vm,

where

k :=
l−1∑
i=1

(mi + 1) + 1.

Let
v := v1 · · · · · vm = y1 · · · · · yl ∈ H2m

T (M ; Z)

be the product of the equivariant first Chern classes of the line bundles. By
construction, v is an equivariant extension of x1 · · · · · xm.

Also by construction, the restriction j∗Yi
(yi) of yi to Yi vanishes for i =

1, . . . , l − 1. If m + 1 >
∑l

i=1(mi + 1), then j∗Yl
(yl) also vanishes. If m + 1 =∑l

i=1(mi + 1), then

j∗Yl
(yl) = j∗Yl

(xk · · · · · xm) ∈ H2ml(Yl; Z).
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By Fixed point formula 2.2, we have

∫
M

(x1 · · · · · xm) =
∫

M
v =

l∑
i=1

a(Yi),

where the local datum a(Yi) is equal to
∫
Yi

j∗Yi
(v)

eT (νYi
) . Note that j∗Yi

(yi) = 0 implies

a(Yi) = 0. Since
∫
M (x1 · · · · · xm) �= 0, we conclude that a(Yi) = 0 for i < l,

a(Yl) �= 0 and m + 1 =
∑l

i=1(mi + 1). Since the local datum

a(Yl) =
∫

Yl

j∗Yl
(yl) ·

j∗Yl
(y1 · · · · · yl−1)

eT (νYi)

is non-zero, j∗Yl
(yl) does not vanish.

Now, j∗Yl
(yl) ∈ H2ml(Yl; Z) is equal to x̃k · · · · · x̃m ∈ H2ml(Yl; Z), where

x̃i ∈ H2(Yl; Z) is the restriction of xi to Yl. Hence, Yl is H2-orientable. Of
course, an analogous reasoning applies to any Yi. This finishes the proof. �
Corollary 3.12 Let M be an oriented closed connected manifold of
dimensional 2m with b1(M) = 0. Let T be a torus which acts smoothly on
M with fixed point components Y1, . . . , Yl of dimension dimYi = 2mi. Suppose
that M is H2-orientable. Then m + 1 �

∑l
i=1(mi + 1). Moreover, if equality

holds, then each component Yi is H2-orientable. �
In the corollary, the condition b1(M) = 0 is used to guarantee that the

action lifts to the line bundles. If b1(M) �= 0, then this may still be true. For
example, if the torus action extends to an action by a semi-simple Lie group G,
then the G-action and hence the torus action lifts to any line bundle [39,70,72].

Note that by the theorem above, the number of (not necessarily isolated)
fixed points of a torus action on a 2m-dimensional manifold which is
equivariantly H2-orientable is � m + 1. If the condition m + 1 =

∑l
i=1(mi + 1)

holds, then the theorem implies that the sum of even Betti numbers of MT is
� m + 1. Both lower bounds can be realized by linear actions on CPm.

We close this section with some remarks concerning actions with few fixed
points. Let M be an oriented closed manifold of positive dimension. Assume
that a torus T acts on M smoothly with at least one fixed point.

The first thing we would like to recall is that the action cannot have precisely
one fixed point. To see this, let us apply Fixed point formula 2.2 to the unit
element in the integral cohomology ring of M which extends trivially to the
equivariant class v = 1 ∈ H0

T (M ; Z).
Since M is of positive dimension,

∫
M v = 0. The local datum at a fixed point

component Y is equal to
∫
Y

j∗Y (v)
eT (νY ) . It is easy to verify that the local datum is

non-zero if Y is a point. Hence, T cannot act with precisely one fixed point. A
proof using index theory which also applies to the action by a group of order pl,
p an odd prime, was given by Atiyah and Bott [4, Thm. 7.1], for a proof using
bordism, see [23, §8], for a cohomological proof, see [21, IV Cor. 2.3].
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If the torus T acts on M with precisely two fixed points, then the
representations at the two fixed points are equivalent [52, 6. Appendix]. This
can be shown using the rigidity of the signature following the line of reasoning
in [4, Thm. 7.15].

For actions with precisely three fixed points, the local situation at the
fixed points is more complicated since there are many more examples of such
actions including homogeneous actions on the complex projective space CP2,
the quaternionic projective plane HP2, the rational quaternionic projective
plane G2/SO(4), and the Cayley plane F4/Spin(9). It would be interesting
to understand to what extend the fixed point formulas and the rigidity and
vanishing theorems of the following sections determine the local geometry and
the bordism type for actions with three fixed points.

4 Rigidity and vanishing of classical operators

In this section, we review the rigidity and vanishing theorems for the signature
operator, the Dirac operator, and the Dolbeault operator. In particular cases,
the indices of these operators are obstructions to smooth circle actions and/or
to actions with a lower bound on the codimension of the fixed point manifold.
For example, by the celebrated Â-vanishing theorem of Atiyah and Hirzebruch
[9], the index of the Dirac operator obstructs smooth non-trivial circle actions
on spin manifolds. And the signature obstructs S1-actions for which the
codimension of the fixed point manifold with respect to the involution in S1 is
larger than half of the dimension. More refined results based on the rigidity
and vanishing theorems for elliptic genera will be described in the following
section. Towards the end of this section, we will also mention some relations to
manifolds of positive or nonnegative curvature.

Throughout the section, we will use the cohomological version of the index
theorem and the Lefschetz fixed point formula which will be reviewed first.

4.1 Cohomological form of Lefschetz fixed point formula

As explained by Atiyah and Singer, the K-theoretical Lefschetz fixed point
formula 2.4 can be translated into cohomology using the Chern character. We
will only illustrate this in the basic examples below. For the details, we refer
to [13, §3, Lefschetz Theorem 3.9] (see also [42, Ch. 5]).

Let M be an oriented closed Riemannian 2m-dimensional manifold, E0, . . . ,
El complex vector bundles over M, and Di : Γ(Ei) → Γ(Ei+1) differential
operators such that

· · · Di−1−→ Γ(Ei)
Di−→ Γ(Ei+1)

Di+1−→ Γ(Ei+2) → · · ·

is an elliptic complex D. Suppose that the bundles Ei are associated to the
tangent bundle. Then the index ind(D) of the complex D can be computed
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cohomologically by the formula

ind(D) =
∫

M

∑l
i=0(−1)i · ch(Ei)

e(TM)
· td(TMC).

Here,

td(TMC) =
m∏

i=1

( xj

1 − e−xj
· −xj

1 − exj

)

is the Todd class and ±x1, . . . ,±xm are the roots of the complexified tangent
bundle TMC. The same is true if the bundles Ei are associated to a reduction
of the structure group of the stable tangent bundle satisfying a certain
condition (see [13, Condition 2.17]) which will be always satisfied in the
situations considered in this paper.

Next, suppose that a compact Lie group G acts smoothly on M and the
complex D is a G-equivariant elliptic complex. Let g ∈ G. Recall from Lefschetz
fixed point formula 2.4 that the index ind(D) ∈ R(G) of D evaluated at g is
given by a sum of local data

ind(D)(g) =
∑

Y⊂Mg

aY .

In terms of cohomology, the local datum aY at a connected fixed point
component Y can be computed by the following recipe (see [13, §3], [42, Ch. 5.6]
for details).

Let us first replace G by the compact Lie group generated by g. The normal
bundle of Y splits with respect to the action of G as a sum of subbundles
corresponding to the different representations. The roots of each subbundle
refine to equivariant roots. Similarly, the roots of the bundles Ei refine to
equivariant roots with respect to the action of G. Now, consider the
cohomological expression

∑l
i=0(−1)i · ch(Ei)

e(TM)
·

m∏
i=1

( xj

1 − e−xj
· −xj

1 − exj

)
(1)

in the index formula. Note that (1) is an expression in the roots of M and the
roots of the bundles Ei. At a fixed point component Y, as indicated above, the
roots of M refine to the equivariant roots of the normal bundle and the roots
of Y.

To obtain the cohomological expression for the local datum aY , one replaces
in expression (1) the roots of M by its equivariant roots evaluated at g, replaces
the roots of the bundles Ei by its equivariant roots evaluated at g, replaces the
Euler class e(TM) by e(TY ) and integrates over Y. We will make this explicit
in the basic examples below. For details, we refer to [13, §3], [42, Ch. 5.6].
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4.2 Signature operator

Let M be an oriented closed Riemannian 2m-dimensional manifold. Then one
can define the signature operator on M acting on certain spaces of differential
forms [13, §6]. Its index can be identified via Hodge theory with the signature
sign(M) ∈ Z. The latter is a purely cohomological invariant which is defined as
the signature of the intersection form of M. By the index theorem, the index of
the signature operator is equal to the L-genus. This gives an index theoretical
proof of the celebrated Hirzebruch signature theorem.

Suppose that a compact Lie group G acts on M by isometries. Then the
signature operator refines to a G-equivariant operator, the equivariant signature
operator. Its index is a virtual complex G-representation and is denoted by
sign(M)G ∈ R(G). The latter can be described in terms of the G-action on
certain subspaces of the space of harmonic forms [13, p. 578]. If G is connected,
then the action of G on harmonic forms is trivial, by homotopy invariance, and
one gets the following

Rigidity theorem for the signature 4.1 If G is connected, then the
equivariant signature sign(M)G is constant as a character of G, i.e.,

sign(M)G = sign(M) ∈ Z. �
Because of the significance of rigidity phenomenons for the subsequent

discussion, we will indicate a different argument using the cohomological form
of Lefschetz fixed point formula 2.4.

The cohomological expression (1) for the index of the signature operator
simplifies (see [13, (6.4)], [42, p. 65]) and one obtains

sign(M) =
∫

M
e(TM) ·

2m∏
i=1

1 + e−xi

1 − e−xi
.

Suppose that G = S1 is a circle acting isometrically on M and Y ⊂ MS1

is a fixed point component. We will consider the complex structure on the
normal bundle νY of Y ⊂ M which is induced by the action of a generator
λ = e2πi·z ∈ S1, z > 0 small, on the fibers of νY . The complex vector bundle
νY splits as a sum of complex subbundles corresponding to the irreducible
representations of S1 of positive S1-weight. We equip Y with the orientation
compatible with the complex structure of νY and the orientation of M.

The equivariant roots of the S1-equivariant complex normal bundle νY are
of the form xi + 2πi · mi · z, where all mi are positive integers. Let ±yj denote
the roots of Y, i.e., the equivariant roots with zero S1-weight.

Using the recipe above, one computes for the local datum aY (λ), λ ∈ S1,
that

a(Y )(λ) =
∫

Y
e(TY ) ·

∏
j

1 + e−yj

1 − e−yj
·
∏

i

1 + e−(xi+2πi·mi·z)

1 − e−(xi+2πi·mi·z)

=
∫

Y
e(TY ) ·

∏
j

1 + e−yj

1 − e−yj
·
∏

i

1 + e−xi · λ−mi

1 − e−xi · λ−mi
. (2)
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Note that each local datum aY (λ), λ ∈ S1, extends to a meromorphic
function on the complex plane with possible poles only on S1 and which is
bounded in ∞. On the other hand, the index is a character of S1 and, hence,
determines a meromorphic function on the complex plane with possible poles
only in 0 and ∞. Now, both meromorphic functions, the character, and the sum
of local data, agree on a dense set of S1. Hence, the two functions are equal
and bounded holomorphic on C. It follows that they are constant in λ and

sign(M)S1 = sign(M) ∈ Z

(for details, see, for example, [20,42]).
For a connected compact Lie group G acting isometrically on M, the rigidity

of sign(M)G follows since a character of G is constant if and only if its restriction
to all S1-subgroups is constant.

Remark 4.2 Taking the limit λ → ∞ in (2), it follows from the rigidity of
the signature that

sign(M) =
∑

Y⊂MS1

sign(Y ).

The rigidity is not true in general if G is non-connected. Nevertheless,
there are interesting applications of the fixed point formula for such actions,
see [4,13,44]. Related to the rigidity of the signature is the following vanishing
result.

Vanishing theorem for the signature 4.3 Suppose that S1 acts smoothly
on an oriented closed manifold M. Let σ ∈ S1 be of order two and let Mσ be
its fixed point manifold. If dimMσ < 1

2 dimM, then sign(M) = 0. �
We note that after averaging a Riemannian metric over S1, we may assume

that S1 acts by isometries. The vanishing result 4.3 is due to Hirzebruch [40,
p. 153]. He used the cohomological version of the Lefschetz fixed point formula
for the equivariant signature with respect to the action of the involution σ ∈ S1

to show that
sign(M)S1(σ) =

∑
Y⊂Mσ

sign(Y ◦ Y ), (3)

where Y ◦ Y denotes a transversal self-intersection in M of the fixed point
component Y (for an elementary proof not relying on the index theorem, see
[47]). If dimY < 1

2 dimM, then the transversal self-intersection is empty. By
the rigidity of the signature,

sign(M) = sign(M)S1(σ).

Hence, one obtains

dimMσ <
1
2

dimM =⇒ sign(M) = 0.
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This rigidity implies vanishing phenomenon will be a recurring theme in the
following sections.

By the vanishing result 4.3, the non-vanishing of the signature implies the
existence of a fixed point component Y ⊂ Mσ with 2 dim Y � dimM (see [22,
§27] for an earlier result involving the Euler characteristic). In this connection,
we would also like to mention that by a result of Boardman [15], a manifold M
bounds as an unoriented manifold if it admits a smooth action by an involution
σ with dimMσ < 2

5 dimM (see also [53]).

4.3 Dirac operator

Let M be a closed 4m-dimensional spin manifold. Then one can define a Dirac
operator acting on spinors of M [13, §5]. By the index theorem, the index of
the Dirac operator is the Â-genus Â(M) ∈ Z, a topological invariant which can
be computed from the Pontrjagin classes of M.

Now, suppose that a compact Lie group G acts on M preserving the spin
structure. Then the Dirac operator refines to an equivariant operator with
equivariant index Â(M)G ∈ R(G). In [9], Atiyah and Hirzebruch proved the
following

Vanishing theorem for the Â-genus 4.4 Let M be a connected spin
manifold and let G be a connected compact Lie group which acts non-trivially
on M preserving the spin structure. Then Â(M)G = 0 ∈ R(G). �

The proof of Atiyah and Hirzebruch is based on the cohomological form of
Lefschetz fixed point formula 2.4 applied to the symbol of the equivariant Dirac
operator. The argument roughly runs as follows.

Suppose first that G = S1 is a circle and Y ⊂ MS1
denotes a fixed point

component. By the cohomological version of the index theorem, the index of
the Dirac operator is equal to

Â(M) =
∫

M
e(TM) ·

2m∏
i=1

1
exi/2 − e−xi/2

.

With the notation of the last subsection, the recipe gives for the local datum
at Y :

a(Y )(λ) =
∫

Y
e(TY ) ·

∏
j

1
eyj/2 − e−yj/2

·
∏

i

1
e(xi+2πi·mi·z)/2 − e−(xi+2πi·mi·z)/2

=
∫

Y
e(TY ) ·

∏
j

1
eyj/2 − e−yj/2

·
∏

i

1
exi/2 · λmi/2 − e−xi/2 · λ−mi/2

. (4)

One computes that each local datum aY (λ), λ ∈ S1, extends to a meromorphic
function on the complex plane which vanishes in 0 and ∞ and with possible
poles only on S1. On the other hand, the equivariant index of the Dirac operator
is a character of S1 and, hence, determines a meromorphic function on the
complex plane with possible poles only in 0 and ∞. Now, both meromorphic
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functions, the character, and the sum of local data, agree on a dense set of S1.
Hence, the two functions are equal, bounded holomorphic on C and vanish in
∞. It follows that they are constant zero in λ and

Â(M)S1 = Â(M) = 0 ∈ Z

(for details, see [9], see also [20,42]).
For a connected compact Lie group G which acts non-trivially on M

preserving the spin structure, the equivariant index Â(M)G also vanishes. This
follows from the above since Â(M)S1 is rigid for any subgroup S1 ⊂ G, Â(M)S1

vanishes if S1 acts non-trivially and a character of G vanishes if and only if its
restriction to all S1-subgroups vanishes.

4.4 Dolbeault complex

In this subsection, we assume that M is an almost complex closed manifold
of real dimension 2m. The results below extend to stably almost complex
manifolds. To simplify the discussion, we will restrict to the unstable case.

Using the Dolbeault operator ∂̄, one can define the Dolbeault complex

· · · ∂̄−→ Γ(Ap,q−1) ∂̄−→ Γ(Ap,q) ∂̄−→ Γ(Ap,q+1) ∂̄−→ · · · ,

where Γ(Ap,q) is the space of sections in the vector bundle Λp(T ∗M)⊗Λq(T ∗M).
For fixed p, let χp(M) denote the index of this complex (we are following the

notation of [42]). By the index theorem (see [13, §4]), χp(M) can be computed
from the Chern classes of M. In particular, χ0(M) is equal to the Todd genus
Td(M). For

χy(M) :=
m∑

p=0

χp(M) · yp ∈ Z[y],

one obtains by the index theorem that

χy(M) = Tdy(M) :=
∫

M

m∏
i=1

(
(1 + y · e−xi) · xi

1 − e−xi

)
.

Here x1, . . . , xm are the roots of the almost complex structure. This gives
a generalization of the Hirzebruch-Riemann-Roch theorem to almost complex
manifolds.

Now, suppose that a compact Lie group G acts on M preserving the
almost complex structure. Then the Dolbeault complex refines to an equivariant
complex and

χ0(M) = Td(M) ∈ Z,

respectively,
χy(M) = Tdy(M) ∈ Z[y],

refine to equivariant indices which we denote by Td(M)G ∈ R(G), respectively,
Tdy(M)G ∈ R(G)[y]. If G is connected then, like for the signature and Dirac
operator, one has rigidity.
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Rigidity theorem for the Todd genus 4.5 Let M be an almost complex
manifold and G a compact connected Lie group which acts on M preserving the
almost complex structure. Then the equivariant index Tdy(M)G ∈ R(G)[y] is
rigid, i.e.,

Tdy(M)G = Tdy(M) ∈ Z[y].

In particular, Td(M)G is rigid. �
This was first shown by Lusztig [61] for holomorphic actions with isolated

fixed points using the Lefschetz fixed point formula (see also Kosniowski [51,
Thm. 5]). The proof carries directly over to almost complex manifolds, for
details, see, for example, [42, §5.7]. The genus Tdy extends to a two-parameter
genus Tdx,y which is rigid for compact connected Lie group actions on (stably)
almost complex manifolds preserving the structure and is characterized by this
property, as shown by Krichever [54] and Musin [64], respectively.

The rigidity of Tdy generalizes to the rigidity of elliptic genera of level N.
Whereas the rigidity of Tdy does not lead directly to a vanishing theorem, the
rigidity of elliptic genera of level N implies vanishing results which are similar
to the Â-vanishing theorem above (see Section 6).

4.5 Connections to curvature

We close this section by mentioning some relations between the indices of
classical operators and the existence of metrics of nonnegative or positive
curvature.

Concerning the signature, one has the following absolute bound which is a
consequence of Gromov’s Betti number theorem [36].

Theorem 4.6 (Gromov) If M is connected and of nonnegative sectional
curvature, then the sum of the Betti numbers of M is bounded from above by a
constant C which depends only on the dimension of M. In particular,

|sign(M)| < C. �

The Dirac operator is intimately related to scalar curvature by the work
of Licherowicz, Gromow-Lawson, Schoen-Yau, Stolz and others. Lichnerowicz
[59] used the Weitzenböck-formula for the Dirac operator to prove

Theorem 4.7 (Lichnerowicz) If M is a spin manifold with positive scalar
curvature, then Â(M) = 0. �

For Kähler manifolds of positive Ricci curvature, one has Bochner’s theorem
[16], [58, §IV, Cor. 11.12].

Theorem 4.8 (Bochner) If M is a connected Kähler manifold of positive
Ricci curvature, then Td(M) = 1. �

23

ht
tp
://
do
c.
re
ro
.c
h



5 Elliptic genera of level 2

In this section and the following section, we review the rigidity and vanishing
theorems for elliptic genera. The vanishing results are consequences of the
rigidity and are related to finite cyclic subactions for which the fixed point
manifold is of large codimension. This gives new information on the fixed point
manifold. We will also remark on connections to manifolds of positive sectional
curvature.

We begin the discussion with the elliptic genus of level 2 of a spin
manifold M which, according to Witten, should be thought of as the
equivariant signature of the free loop space L M. This genus emerged from
the work of Landweber, Ochanine, Stong, Witten and others in the 1980s (see
[56] and references therein).

5.1 Twisted indices

To define the elliptic genus of level 2, we need to recall the computation of
twisted signature and twisted Dirac operators via the index theorem.

Let M be an oriented closed 4m-dimensional Riemannian manifold and
E → M a complex vector bundle. After choosing a connection on E, one
can define the signature operator twisted with E. Its index will be denoted by
sign(M,E) ∈ Z and is called a twisted signature. By the index theorem [13],
sign(M,E) can be computed from the Pontrjagin classes of M and the Chern
character of E :

sign(M,E) =
∫

M
e(TM) ·

2m∏
i=1

1 + e−xi

1 − e−xi
· ch(E).

Now, suppose that a compact connected Lie group G acts on M by
isometries and the action lifts to the bundle E. Then the twisted signature
operator refines to an equivariant operator and the twisted signature refines to
a virtual complex G-representation denoted by sign(M,E)G ∈ R(G).

In contrast to the ordinary signature, a twisted signature does not need to
be rigid. For example, if M is the projective plane CP2 and E is its complexified
tangent bundle TMC, then for any nontrivial homogeneous action of S1 on M,
the equivariant twisted signature sign(M,E)S1 is a non-trivial character.

Next, let M be spin and let E → M be a complex vector bundle. After
choosing a connection on E, one can define the Dirac operator twisted with E.
Its index will be denoted by Â(M,E) ∈ Z and is called a twisted Dirac index. By
the index theorem [13], Â(M,E) can be computed from the Pontrjagin classes
of M and the Chern character of E :

Â(M,E) =
∫

M
e(TM) ·

2m∏
i=1

1
exi/2 − e−xi/2

· ch(E).

Now, suppose that a compact connected Lie group G acts on M by
isometries and the action lifts to the spin structure and to the bundle E.
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Then the twisted Dirac operator refines to an equivariant operator and the
twisted Dirac index refines to a virtual complex G-representation denoted by
Â(M,E)G ∈ R(G). Again, there are examples where Â(M,E)G is non-zero and
not rigid.

5.2 Signature of free loop space (elliptic genus of level 2)

Following Witten, the elliptic genus of level 2 should be thought of (up to a
normalization factor) as the equivariant signature of the free loop space L M.
Here, the action on L M is the natural action of S1 by rotation of loops. The
fixed point set of this action is the manifold of constant loops M = (L M)S

1
.

Until now, a solid mathematical description for Witten’s heuristic is still
missing. However, by applying the Lefschetz fixed point formula formally to the
natural S1-action on L M, Witten derived the following well-defined invariant
for the underlying manifold M (see [81], see also [42]).

Definition 5.1

sign(L M) := sign
(

M,

∞⊗
n=1

SqnTMC ⊗
∞⊗

n=1

ΛqnTMC

)

=
∞∑

m=0

sign(M,Rm) · qm

= sign(M) + 2 sign(M,TMC) · q + · · · .

Here,

St :=
∑

i

Si · ti
(

resp., Λt :=
∑

i

Λi · ti
)

denotes the symmetric (resp., exterior) power operation and TMC is the
complexified tangent bundle. The bundles Rm are computed by taking the
coefficients in the q-power series

∞⊗
n=1

SqnTMC ⊗
∞⊗

n=1

ΛqnTMC,

the first few are

R0 = 1, R1 = 2TMC, R2 = 2(TMC + TMC ⊗ TMC), . . . .

We shall call sign(L M) the signature of the free loop space of M. The definition
does not require a spin structure. By the index theorem, sign(L M) can be
computed from the Pontrjagin classes of M.

The series sign(L M) converges for |q| < 1 to a meromorphic function
Φ(M)(τ) on the upper half plane, where q = e2πiτ . It turns out that Φ(M)(τ)
is a modular function of weight zero for the congruence subgroup

Γ1(2) :=
{

A =
(

a b
c d

)
∈ SL2(Z)

∣∣ (
a b
c d

)
≡

(1 b
0 1

)
mod 2

}
,
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(for an explanation of these facts, see [20,42,81]).
It follows from the construction that Φ is a ring homomorphism from

the oriented bordism ring to the ring of modular functions for Γ1(2). Up to
a normalization constant, Φ is equal to the universal elliptic genus of level 2
considered by Ochanine, Landweber and Stong (see [56]). We will also call Φ
an elliptic genus (of level 2).

By the definition of Φ(M), the expansion of this modular function in the
cusp i∞ (signature cusp) is equal to sign(L M). Another interesting expansion
is obtained by taking the cusp 0. The expansion of Φ(M) in the cusp 0 (the
Dirac cusp) can be computed to be a Laurent series in q1/2 with a pole of finite
order.

Now, assume that M is spin. After replacing q1/2 by q, this Laurent series
can be shown, with the help of the index theorem, to be equal to the following
series of twisted Dirac indices:

C · Â
(

M,
⊗

n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)

= C · (Â(M) − Â(M,TMC) · q + Â(M,Λ2TMC + TMC) · q2 + · · · ).
Here, C ∈ Z[q−1][[q]] is a constant depending only on the dimension of M

which has a pole of order 1
8 dimM.

Thus, the elliptic genus of level 2 provides a connection between twisted
signatures and twisted Dirac indices. This has led to many applications
including an elegant proof of the divisibility theorem for the signature of
Ochanine-Rochlin [42, Ch. 8].

5.3 Rigidity

Let M be a closed spin manifold and let G be a compact Lie group which acts
on M preserving the spin structure. Then G acts on the spin principal bundle
and on all vector bundles associated to the spin principal bundle. In particular,
the coefficients in the expansion of Φ(M) in the signature cusp (resp., Dirac
cusp) refine to equivariant twisted signatures (resp., equivariant Dirac indices).
That is, the expansion of the equivariant elliptic genus Φ(M)G in the signature
cusp takes the form

sign(L M)G = sign
(

M,

∞⊗
n=1

SqnTMC ⊗
∞⊗

n=1

ΛqnTMC

)
G

= sign(M)G + 2sign(M,TMC)G · q + · · ·
∈ R(G)[[q]]

and the expansion in the Dirac cusp takes the form

C · Â
(

M,
⊗

n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)
G

= C · (Â(M)G − Â(M,TMC)G · q + Â(M,Λ2TMC + TMC)G · q2 + · · · )
∈ R(G)[[q]].
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We are now in the position to state the

Rigidity theorem 5.2 (Witten, Taubes, Bott-Taubes) Let M be a closed
spin manifold and let G be a compact connected Lie group which acts on M
preserving the spin structure. Then Φ(M)G and its expansion in the two cusps
are rigid, i.e., each coefficient in the expansions above is constant as a character
of G. �

The rigidity of the elliptic genus was conjectured by Witten [81] and then
shown by Taubes [74] and Bott-Taubes [20]. The proof of Bott and Taubes
uses the Lefschetz fixed point formula together with arguments from elliptic
function theory and a technical transfer argument. A simpler proof based on
the Lefschetz fixed point formula and modularity invariance of Jacobi functions
was later given by Liu [60].

5.4 Higher order vanishing

The rigidity of the elliptic genus leads to vanishing results for finite cyclic sub-
actions. For involutions, such results were shown by Hirzebruch and Slodowy
[43] using a formula involving the transversal self-intersection of the fixed point
manifold similar to formula (3) for the signature. An extension to finite cyclic
subactions of higher order was given in [26,29] using different arguments.

Let M be a closed spin manifold with an action of S1 by isometries. If
the S1-action does not lift to the spin structure, then the non-trivial two-fold
covering of S1 lifts to the spin structure. In this case, one can show, using
the Lefschetz fixed point formula and the rigidity theorem, that the equivariant
elliptic genus with respect to the two-fold S1-action vanishes identically. This
implies the vanishing of sign(L M)S1 for the original S1-action. Hence, for the
following vanishing results we may, without mentioning, always assume that
the action lifts to the spin structure.

Let σ ∈ S1 be of order two. Consider the fixed point manifold Mσ and its
transversal self-intersection Mσ ◦ Mσ. In [43], Hirzebruch and Slodowy used
the cohomological version of the Lefschetz fixed point formula 2.4 to compute
that sign(L M)S1(σ) is equal to sign(L (M ◦M)). Note that this is completely
analogous to formula (3) for the ordinary signature. Now, by the rigidity, it
follows that

sign(L M) = sign(L (M ◦ M)), Φ(M) = Φ(M ◦ M).

Changing to the Dirac cusp and comparing the pole order, Hirzebruch and
Slodowy [43] arrived at the following vanishing result.

Theorem 5.3 (Hirzebruch-Slodowy) Let M be a closed spin manifold and let
S1 act smoothly on M. Let σ ∈ S1 be of order two. If the codimension of Mσ

is > 4r, then the first (r + 1) coefficients in the expansion

Â

(
M,

⊗
n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)
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vanish. �
Here, the codimension of a submanifold is defined as the minimum of the

codimension of its connected components.
Note that this result provides a new way to prove the Atiyah-Hirzebruch

vanishing for the Â-genus. In fact, if S1 acts effectively and M is connected,
then codimMσ > 0 and, hence, Â(M) = 0.

If codim Mσ > 4, then

Â(M) = Â(M,TMC) = 0;

if codimMσ > 8, then

Â(M) = Â(M,TMC) = Â(M,Λ2TMC) = 0,

and so on. Thus, if the codimension of Mσ increases, one obtains higher order
vanishing for the elliptic genus (see [43]).

This higher order vanishing phenomenon generalizes to elements σ ∈ S1 of
arbitrary finite order. Suppose that S1 acts effectively on M and let σ ∈ S1 be
of order o � 2. Then one can show [27,29] the following

Theorem 5.4 If codim Mσ > 2o · r, then the first (r + 1) coefficients in the
expansion

Â

(
M,

⊗
n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)

vanish. �
The proof of Hirzebruch-Slodowy only works for σ of order two. The proof

of Theorem 5.4 involves the rigidity, arguments from function theory and a
detailed study of the local contributions in the fixed point formula. It also
leads to higher order vanishing for elliptic genera of level N (see Section 6).

Example 5.5 If σ is of order 3 and codimMσ > 6, then

Â(M) = Â(M,TMC) = 0.

5.5 Connections to positive curvature

In the last subsection, we have described various situations where the existence
of isometric actions for which the fixed point manifold has large codimension
forces certain Dirac indices to vanish. On the other hand, the fixed point
components of isometric actions are totally geodesic submanifolds and these
submanifolds enjoy in the presence of positive sectional curvature special
properties.

For example, Frankel [35] used a Synge type argument to prove that two
totally geodesic connected submanifolds N1, N2 in a manifold M of positive
sectional curvature must intersect if

dimN1 + dimN2 � dimM.
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By combining Frankel’s intersection theorem with the vanishing results for
elliptic genera from the last subsection, one obtains obstructions to the existence
of metrics of positive sectional curvature with symmetry. More precisely, such
obstruction arise for closed positively curved spin manifolds of arbitrarily large
dimension with a fixed lower bound on the symmetry rank (the symmetry
rank of a Riemannian manifold is defined as the rank of its isometry group).
Improved obstructions can be obtained if one also uses Wilking’s connectivity
lemma for totally geodesic submanifolds [79, Thm. 1].

This interplay between elliptic genera and positive curvature was first
studied in [27,28]. For example, one has the following result (see [27, Th. 2.1],
[29, Th. 3]).

Theorem 5.6 Let M be a connected spin manifold of dimension > 12r − 4.
Suppose that M admits a metric of positive sectional curvature and of symmetry
rank � 2r. Then the first (r + 1) coefficients in the expansion

Â

(
M,

⊗
n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)

vanish. �
The theorem gives new obstructions to positive sectional curvature if a torus

of rank � 2 acts isometrically and effectively. In the case of an isometric effective
action by S1, one can show the following result (see [27, Th. 1.2], [29, Th. 1]).

Theorem 5.7 Let M be closed 2-connected of dimension > 8. If M admits a
metric of positive sectional curvature and of symmetry rank � 1, then

Â(M) = Â(M,TMC) = 0. �

Corollary 5.8 Let M be a closed 2-connected manifold of dimension > 8 with
Â(M,TMC) �= 0. Then any metric of positive sectional curvature must be quite
unsymmetric. �

We like to stress that the symmetry assumptions in the results above are
rather mild since for a given symmetry rank, no upper bound on the dimension
of the manifold M is required! Similar results also hold for manifolds with
positive kth Ricci curvature (see, for example, [29, Prop. 19]).

Much more is known for manifolds of positive sectional curvature with large
symmetry and we refer the interested reader to the survey articles [80,82] and
references therein. Here, we will only mention the following results concerning
the symmetry rank. In [79], Wilking obtained strong classification results for
manifolds M of positive sectional curvature and lower linear bound on the
symmetry, e.g., symmetry rank � 1

6 dimM.
More recently, Kennard [49] has found severe restrictions on the cohomology

ring (in terms of periodicity) for manifolds of positive sectional curvature for
lower logarithmic bound and derived consequences for the Hopf conjecture.
Kennard combined the connectivity lemma of Wilking with a topological result
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on manifolds with periodic cohomology to show, among other things, that the
Euler characteristic is positive for a 4m-dimensional manifold M of positive
sectional curvature if the symmetry rank is > 2 log m. There is also interesting
subsequent work by Amann and Kennard (see, for example, [2]). For the elliptic
genus, Weisskopf has proved higher order vanishing using Kennard’s work.

Theorem 5.9 [78] Let M be a connected spin manifold of large dimension.
Suppose that M admits a metric of positive sectional curvature and of symmetry
rank s. Then, M is rationally 4-periodic or the first 2s−3 coefficients in the
expansion

Â

(
M,

⊗
n=2m+1>0

Λ−qnTMC ⊗
⊗

n=2m>0

SqnTMC

)

vanish. �

In the next section, we will discuss rigidity and vanishing results for elliptic
genera of higher level.

One can also define an elliptic genus of level one. The definition is due
to Witten, who derived this genus from a heuristic argument involving a
hypothetical Dirac operator on the free loop space. This genus, called the
Witten genus, is expected to have interesting properties if the free loop space
is spin. The latter condition is satisfied if the underlying manifold M is string,
i.e., if M is spin and p1

2 (M) = 0. One interesting property is the rigidity and
vanishing of the equivariant Witten genus under certain group actions (see
[24,25,60]). Another conjectural property, formulated by Stolz, is the vanishing
of the Witten genus for string manifolds of positive Ricci curvature. For more
information on this conjecture, see [71] (see also [30]).

6 Elliptic genera of level N

In this section, we first review the rigidity theorems for elliptic genera of level
N � 2. We will then state higher vanishing results for these genera which
are analogous to the ones given in Theorems 5.3 and 5.4. As in the level 2
case, these higher vanishing results are consequences of the rigidity and are
related to finite cyclic subactions for which the fixed point manifold is of large
codimension. Details as well as applications will appear in [31].

To define the elliptic genus of level N, we need to recall the index theory
for twisted Dolbeault operators.

6.1 Twisted Dolbeault indices

In this subsection, we assume that M is an almost complex closed manifold
of real dimension 2m. The results below extend to stably almost complex
manifolds. To simplify the discussion, we will restrict to the unstable case.

Let E → M be a complex vector bundle. For fixed p, one can twist the
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Dolbeault complex

· · · ∂̄−→ Γ(Ap,q−1) ∂̄−→ Γ(Ap,q) ∂̄−→ Γ(Ap,q+1) ∂̄−→ · · ·
with E to obtain a new elliptic complex. Its index will be denoted by χp(M,E).
By the index theorem (see [13, §4]), χp(M,E) can be computed from the Chern
classes of M and E. In particular, χ0(M,E) is equal to

Td(M,E) :=
∫

M

( m∏
i=1

xi

1 − e−xi

)
· ch(E).

Here, x1, . . . , xm are the roots of the almost complex structure.
For

χy(M,E) :=
m∑

p=0

χp(M,E) · yp ∈ Z[y],

one obtains, by the index theorem,

χy(M,E) = Tdy(M,E) :=
∫

M

( m∏
i=1

(
(1 + y · e−xi) · xi

1 − e−xi

))
· ch(E).

Note that
Tdy(M,E) =

∑
p

Td(M,ΛpT ∗M ⊗ E) · yp.

Now, suppose that a compact Lie group G acts on E and on M preserving
the almost complex structure. Then the Dolbeault complex refines to an
equivariant complex and

χ0(M,E) = Td(M,E) ∈ Z,

respectively,
χy(M,E) = Tdy(M,E) ∈ Z[y],

refine to equivariant indices which we denote by Td(M,E)G ∈ R(G),
respectively, Tdy(M,E)G ∈ R(G)[y].

From now on, we will assume that c1(M) ≡ 0 mod N for some fixed integer
N � 2. Let K = det(T ∗M) be the canonical line bundle. Since c1(M) ≡
0 mod N, there is a complex line bundle K1/N on M which represents an Nth
root of K. Now, suppose that the G-action lifts to K1/N . Then one can consider
the equivariant index

χy(M,Kα/N )G = Tdy(M,Kα/N )G ∈ R(G)[y]

for α ∈ Z.
For G connected, one has the following rigidity and vanishing results. If

α = 0, then
Tdy(M,Kα/N )G = Tdy(M)G
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is rigid as shown by Lusztig and Kosniowski (see Theorem 4.5).
If 0 < α < N and y = 0, one has

Tdy(M,Kα/N )G = Td(M,Kα/N )G = 0.

This is due to Krichever [55] and Hattori [38]. Both statements, the rigidity
statement, respectively, the vanishing statement, can be shown by applying
the cohomological form of Lefschetz fixed point formula 2.4 to conclude that
the equivariant index extends to a holomorphic function on the complex plane
which is bounded, respectively, which is bounded and vanishes at infinity.

Note that for N = 2 and α = 1, one has Td(M,Kα/N ) = Â(M) and
one recovers the Atiyah-Hirzebruch vanishing theorem for the Â-genus in the
framework of almost complex manifolds.

The rigidity of Tdy generalizes to the rigidity of elliptic genera of level N.
This leads to higher vanishing results. We first give a definition of the elliptic
genus of level N following Witten’s heuristic.

6.2 T dy of free loop space (elliptic genus of level N)

Let M be an almost complex manifold with c1(M) ≡ 0 mod N. As for the
signature, one can try to derive an invariant of M starting with a hypothetical
index χy on its free loop space L M. Doing so, one obtains (see [42, §7.4,
Appendix III]) the series

Tdy(L M) :=
∞∑

n=0

Tdy(M,Rn) · qn ∈ Z[y][[q]],

where y = −e2πi/N and the virtual bundles Rn are determined by

∞∑
n=0

Rn · qn =
∞⊗

n=1

ΛyqnT ∗M ⊗
∞⊗

n=1

Λy−1qnTM ⊗
∞⊗

n=1

Sqn(TM + T ∗M).

For example,

R0 = 1, R1 = (1 + y) · T ∗M + (1 + y−1) · TM.

Note that Tdy(L M) can be computed from the Chern classes of M and
defines a genus for the unitary bordism ring. Also note that for N = 2, the
series Tdy(L M) depends only on the Pontrjagin classes of M and is equal to
sign(L M).

The series Tdy(L M) converges for |q| < 1 to a meromorphic function
Φ1/N (M)(τ) on the upper half plane, where q = e2πiτ . Under the condition
y = −e2πi/N , it follows that Φ1/N (M) is a modular function for the congruence
subgroup

Γ1(N) :=
{
A =

(
a b
c d

)
∈ SL2(Z)

∣∣ (
a b
c d

)
≡

(1 b
0 1

)
mod N

}
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(for an explanation of these facts, see [41,42,81]).
The genus Φ1/N is called elliptic genus of level N . By construction,

Tdy(L M) is the expansion of the modular function Φ1/N (M) in the cusp i∞.
Like for the elliptic genus of level 2, the elliptic genus of level N can be expanded
in other cusps. Up to constants, these expansions can be identified with

Td

(
M,ΛyT

∗M⊗Kα/N⊗
∞⊗

n=1

ΛyqnT ∗M⊗
∞⊗

n=1

Λy−1qnTM⊗
∞⊗

n=1

Sqn(TM+T ∗M)
)

for
y = −e2πi(ατ+β)/N , 0 � α, β < N, (α, β) �= (0, 0).

The values of Φ1/N (M) in the different cusps are given (up to constants) by

Td(M,Kα/N ), 0 < α < N, Tdy(M), y = −e2πiβ/N , 0 < β < N.

Note that for N = 2, these values are

Td(M,K1/2) = Â(M), Td1(M) = sign(M).

6.3 Rigidity of elliptic genus of level N

Suppose that a compact Lie group G acts on M preserving the almost
complex structure and the G-action lifts to K1/N . Then the elliptic genus
of level N, Φ1/N (M), refines to an equivariant elliptic genus Φ1/N (M)G and
its expansions refine to series of virtual G-representations. For example, the
expansion Tdy(L M) refines to

Tdy(L M)G =
∞∑

n=0

Tdy(M,Rn)G · qn ∈ R(G)[y][[q]].

We are now in the position to state the

Rigidity Theorem for the elliptic genus of level N 6.1 (Witten,
Hirzebruch, Bott-Taubes) If G is connected, then Φ1/N (M)G and its
expansions are rigid, i.e., each coefficient in the expansions is constant as a
character of G. �

The rigidity of the elliptic genus of level N was conjectured by Witten [81]
and then shown by Hirzebruch [41] and Bott-Taubes [20] (see also [42, Appendix
III]). The proof uses the fixed point formula and elliptic function theory.

6.4 Higher order vanishing for level N

Let M be, as before, an almost complex manifold with c1(M) ≡ 0 mod N.
Suppose that S1 acts on M preserving the almost complex structure. If the
S1-action does not lift to K1/N , then a connected covering of S1 will lift. In
this case, one can show, using the Lefschetz fixed point formula and the rigidity
theorem, that the equivariant elliptic genus of level N vanishes identically (see
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[41, Thm. on p. 58]). Hence, for the following vanishing results we may, without
mentioning, always assume that the S1-action lifts to K1/N .

As pointed out by Hirzebruch in [41, §11], the rigidity of the elliptic genus
of level N can be used to show the vanishing of Td(M,Kα/N ), 0 < α < N.
This is another manifestation of the rigidity implies vanishing phenomenon and
provides an alternative proof of the theorem of Krichever [55] and Hattori [38].
We note that this kind of reasoning is completely analogous to the one for the
vanishing of the Â-genus using the rigidity of the elliptic genus of level 2.

Recall from Theorems 5.3 and 5.4 that for certain S1-actions next to the
Â-genus, additional coefficients in the expansion of the elliptic genus of level 2
vanish. It turns out that the idea of the proof of these higher vanishing results
which is given in [29, §5] also applies to elliptic genera of level N. This leads
to new vanishing results for Φ1/N (M) and applications to positively curved
manifolds (see the forthcoming preprint [31] for details). We close this section
with two sample applications.

Theorem 6.2 Let M be an almost complex manifold with c1(M) ≡ 0 mod N.
Suppose that S1 acts on M preserving the almost complex structure and let
σ ∈ S1 be the element of order 2. If codim Mσ � 6, then Td(M,T ∗M ⊗Kα/N )
vanishes for 0 < α < N/2. �
Theorem 6.3 Let M be a connected almost complex manifold with c1(M) ≡
0 mod N. Suppose that M has positive sectional curvature and a torus T of
rank 3 acts isometrically and effectively on M preserving the almost complex
structure. Then Td(M,T ∗M ⊗ Kα/N ) vanishes for 0 < α < N/2. �

Similar results hold if one replaces positive sectional by positive kth Ricci
curvature.

Final Remarks 6.4 (1) If c1(M) = 0, the rigidity and vanishing results
above can be used to prove corresponding statements for the SU -elliptic genus.

(2) Based on [25], similar results can be shown for spinc manifolds.
(3) If M is a Fano manifold with c1(M) ≡ 0 mod N, then some of the higher

vanishing results for the elliptic genus of level N hold without any symmetry
assumption.
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