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Abstract In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the
northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within
the ice sheet. The base and its wastes were abandonedwithminimal decommissioning in 1967, under the
assumption theywould be preserved for eternity by perpetually accumulating snowfall. Here we show that a
transition in ice sheet surfacemass balance at CampCentury fromnet accumulation to net ablation is plausible
within the next 75 years, under a business-as-usual anthropogenic emissions scenario (Representative
Concentration Pathway 8.5). Net ablationwould guarantee the eventual remobilization of physical, chemical,
biological,andradiologicalwastesabandonedatthesite.WhileCampCenturyandfourothercontemporaneous
ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their
abandonedwastes,previously regardedassequestered, representsanentirelynewpathwayofpoliticaldispute
resulting from climate change.

1. Historic and Climatic Context

The advent of long-range aircraft capable of deploying nuclear bombs drew military attention to the Arctic,
the shortest route between the U.S. and USSR, during the Cold War. In April 1951, the U.S. and Denmark
signed the Defense of Greenland Agreement. Three air bases, including Thule Air Base (AB) in northwestern
Greenland, opened later that same year. In 1959, after several years of intensive ice sheet research, the U.S.
Army Corps of Engineers (USACE) built Camp Century 204 km east of Thule Air Base on the main divide of
the Greenland Ice Sheet (GrIS) [Clark, 1965]. Camp Century was excavated at 8m depth in the ice sheet’s
porous near-surface firn using a cut-and-cover trenching technique (Figures 1 and S1 in the supporting
information) [Abele, 1964]. The subsurface base provided year-round accommodation for between 85 and
200 soldiers, was powered by a portable nuclear generator, and logistically supported by pulling supplies
across an over-snow trail from Thule AB. At Camp Century the USACE studied the feasibility of Project
Iceworm, which sought to deploy ballistic missiles within the ice sheet but was never realized [Weiss, 2011].

Because firn deformation is acceleratedby the latent heat associatedwithmeltwater, CampCenturywas delib-
erately established in thedry snowzoneof the ice sheet,where virtually no surfacemeltingoccurs [Clark, 1965].
In 1962, following the successful installation of an experimental subsurface railway at Camp Century, the U.S.
Army proposed Project Iceworm to U.S. Joint Chiefs of Staff [Weiss, 2011]. The project envisioned subsurface
railway beneath 1.3 · 105 km2 of the GrIS to support 600 ballistic missiles. However, Project Iceworm was
rejected in 1963 and year-round operations at Camp Century ceased in 1964. Seasonal operations continued
until 1967, when the base was abandoned with minimal decommissioning, as engineering design of the era
assumed that the base would be “preserved for eternity” by perpetual snowfall [Clark et al., 1962]. The last
reported USACE visit to the abandoned Camp Century site was in 1969 [Kovacs, 1970]. Aside from the reaction
chamber of the portable nuclear generator, which was removed for destructive testing [Clark, 1965], all
infrastructure remained in the collapsing tunnel network after the 1969 survey.

Since the 1960s, however, the scientific community has recognized the GrIS to be more sensitive to climate
forcing than previously thought. The GrIS lost 75 ± 29Gt a�1 of mass between 1900 and 1983, and recent
anthropogenic climate change has accelerated this mass loss, especially since circa 1990 [Kjeldsen et al.,
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2015]. The ice sheet lost 262 ± 21Gt a�1 between 2007 and2011, with themajority of this ice loss due to declin-
ing surface mass balance (SMB), meaning enhanced melt and runoff, rather than increased iceberg discharge
[Andersen et al., 2015]. Ice loss due to recent climate change is readily observable in northwestern Greenland.
The ice drainage system downslope of Camp Century (“Basin 8.2”) lost 14 ± 2Gt a�1 of ice between 2007 and
2011, and the majority (80%) of this ice loss was due to decreasing SMB [Andersen et al., 2015].

Increasingmeltwater production is also having a profound effect on themelt distribution and firn structure of
the ice sheet [Humphrey et al., 2012; Machguth et al., 2016]. The ablation zone of the ice sheet, where annual
meltwater runoff exceeds snowfall (negative SMB), is expanding in the present-day climate. Given the
approximately parabolic profile of the ice sheet surface, upslope migration of the equilibrium line altitude
(ELA) results in a nonlinear increase in ablation area. Ascent of the ELA in western Greenland has already
doubled the width of the ablation zone there from 1996 to 2012 [McGrath et al., 2013]. At higher elevations,
projections suggest that by 2025 there is a 50% chance that the ice sheet will no longer have a dry snow area
[McGrath et al., 2013]. In July 2012, 98% of the GrIS surface area was melting during an extreme event [Nghiem
et al., 2012]. Over the coming decades, increased surfacemelting will affect higher ice sheet elevations, where
melt previously did not regularly occur.

2. Abandoned Wastes

We first inventory the nature and quantity of abandoned wastes buried at the Camp Century site (supporting
information). Physical waste, such as buildings and railway, is approximately 9.2 · 103 t. Chemical waste is an
estimated 2.0 · 105 L of diesel fuel and a nontrivial quantity of polychlorinated biphenyls (PCBs). Biological
waste consists of at least 2.4 · 107 L of grey water, including sewage, disposed in unlined sumps. Previously
acknowledged radiological waste (coolant for the portable nuclear generator) had a bulk radioactivity of
1.2 · 109 Bq at the time of its disposal (1960–1963) in an unlined sump. While nontrivial in absolute terms, this
radiological waste is small compared to the>4.6 · 1012 Bq accidentally dispersed in the vicinity of Thule AB in
1968 [Christensen, 2009].

Persistent organic pollutants (POPs), including PCBs, are one of three broad classes of chemical toxins of
global significance [Noyes et al., 2009]. Due to relatively low air temperatures, which favor persistent POP

Figure 1. (a) Surfaceelevation [Howat et al., 2014] and (b) surfacevelocity [Joughin et al., 2010] in thevicinity of CampCentury
(“C”). Thule Air Base (“T”), Qaanaaq (“Q”), and the over-snow trail (black line) shown for context. The grey boundary denotes
GrIS Basin 8.2 [Andersen et al., 2015]. The velocity color bar is logarithmic. Both color bars saturate at extreme values. The
northeast portal to Camp Century during construction in 1959 (C) and again in 1964 (D; U.S. Government Photos). Inset: The
location of Camp Century in Northwest Greenland.
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deposition, the Arctic has so far been a global sink for POPs released at lower latitudes. Glacierized regions are
now poised to become a POP source; however, as rapid warming there remobilizes POPs that have been
stored in the cryosphere [Grannas et al., 2013; Sharma et al., 2015]. While substantial PCB remediation efforts
have been undertaken at the majority of 63 former Distant Early Warning (DEW) bases built along the Arctic
Circle in the 1960s [Poland et al., 2001], Camp Century is only one of five abandoned and unremediated ice
sheet bases in the vicinity of Thule AB [Lufkin and Tobiasson, 1969]. PCBs were well suited for Arctic use in
insulating fluids and paints, given their high heat capacity, low flammability, and physical flexibility, and
the PCB concentration in some paints used by DEW bases exceeds 5% by weight [Poland et al., 2001]. We
therefore speculate that PCBs are the most consequential waste at Camp Century.

We next assess the extent and depth of these abandoned wastes. The Camp Century tunnel network covers an
area of 1.1×0.5 km (55ha; Figure 2). Based on modeled vertical advection rates, the majority of solid waste is
now likely buried at approximately 36m depth (supporting information). Due to the relatively efficient movement
of liquids within permeable firn, the burial depth of refrozen sumps is less certain, but it is unlikely they are now
shallower than 65m depth. A notable exception is diesel fuel, which was stored in rigid tanks at tunnel depth, and
may even remain liquid to date, although the tanks have likely ruptured. Independent airborne ice-penetrating
radar observations [Gogineni, 2012] record strong, anomalous reflections at locations and depths consistent with
inferred tunnel positions andmodelled waste depths (Figure 3). Unfortunately, these observations alone are insuf-
ficient to delineate the extent and depth of all abandonedwastes at CampCentury. Our inferred vertical advection
rate profile suggests that solid and liquid wastes will reside at depths of 67 and 93m, respectively, in 2090.

3. Climatic Projections

We now evaluate GrIS SMB using the regional climate model MAR3.5 [Fettweis et al., 2013] to assess whether
increased surface melting associated with climate change could remobilize abandoned wastes at Camp
Century. We use simulations that are forced by the Canadian Earth System Model version 2 (CanESM2) and
Norwegian Earth System Model version 1 (NorESM1) global circulation models, using historical simulations
for 1950–2005 and Representative Concentration Pathway (RCP) 8.5 for 2006–2100. The RCP8.5 climate sce-
nario may be regarded as a business-as-usual scenario that assumes little deviation from recent trends in
anthropogenic greenhouse gas emissions [Church et al., 2013]. Both simulations, which are calibrated to
observed mean SMB during 1950–1999 to correct for systematic biases (supporting information), predict
increased surface melting in northwestern Greenland through 2100 (Figure 4). At Camp Century, MAR3.5
forced by NorESM1 projects that increases in snowfall will exceed increases in melt, maintaining consistently

Figure 2. (a) Camp Century “as built”map georeferenced to 1960 (grey) and 2020 (black) locations [Kovacs, 1970], based on
past surveys of the borehole location and horizontal advection associated with ice flow (Supplementary Methods). The red
points denote decadal borehole location from 1960 to 2020. The green lines denote radar profiles shown in Figure 3. (b)
Estimated Camp Century solid and refrozen liquid waste depths in 1960, 2015, and 2090, based on vertical advection rates
(Figure S3). The horizontal extent of the liquid waste, while large relative to tunnel width, is small relative to camp width.

Geophysical Research Letters 10.1002/2016GL069688

COLGAN ET AL. RECONSIDERING CAMP CENTURY 8093



positive SMB (net accumulation) through 2100. Conversely, MAR3.5 forced by CanESM2 projects that
increases in surface melt will not be offset by increases in snowfall, resulting in a transition to negative
SMB (net ablation) around 2090.

While these two simulations highlight the uncertainty associated with SMB projections at Camp Century, the
key result is that at least one such simulation (CanESM2 forced) now suggests that the ELA will migrate inland
of Camp Century within the next 75 years under a business-as-usual scenario. Even the NorESM1 forced
scenario predicts a substantial inland migration of the ELA, and thus should not be interpreted as suggesting
net accumulation (positive SMB) in perpetuity (Figure S2). As theNorESM1 andCanESM2 forced scenarios have
systematic biases of +179and�49mmWE a�1 relative to the 50 yearmeanobserved SMB, theCanESM2 forced

Figure 3. Airborne UHF accumulation radar profiles across Camp Century, acquired (a) 2 May 2011 and (b) 1 May 2014 by
NASA Operation IceBridge [Gogineni, 2012]. Locations of the radar profiles are shown in Figure 2. Strong, anomalous reflec-
tions indicate thepresenceof buriedphysicalwastes atdepths consistentwith thosepredicted for theCampCentury tunnels.

Figure 4. (a) Surface mass balance in Northwest Greenland during the 1950s (1950–1959) and (b) 2090s (2090–2099) as
simulated by MAR v3.5 forced by CanESM2 under RCP8.5 [Fettweis et al., 2013]. The color bars saturate at minimum and
maximum values. The blue shading denotes the accumulation area where surfacemass balance is positive. (c) Surfacemass
balance, and its components, at Camp Century during 1950–2100 as simulated by MARv3.5 and forced by CanESM2. The
dashed line denotes polynomial trend. The NorESM1 simulation is shown in Figure S2.
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historical simulation appears to represent recent SMB at Camp Century more accurately than the NorESM1
forced historical simulation. A transition to net ablation at Camp Century would make the eventual coastward
remobilization of abandonedwastes inevitable by either surface exposure of abandonedwastes via persistent
ablation of overlying firn and ice or subsurface hydrology via meltwater percolation through overlying firn.

Given an anticipated 2090 solid waste depth of 67m (44m water equivalent, WE), 88 years of persistent
0.5mmWE a�1 ablation (or 44 years at 1.0mWE a�1) would be required to melt all overlying firn and expose
wastes at the ice sheet surface. However, meltwater can interact with deep firn more rapidly via vertical per-
colation. Observations indicate that surface meltwater can percolate downward 10m through firn in a single
summer melt season [Humphrey et al., 2012]. Liquid meltwater can also persist year-round within GrIS firn,
forming an active englacial aquifer that saturates pore space below 20m depth [Forster et al., 2014]. PCBs
could therefore be remobilized from Camp Century by englacial water flow decades before surface runoff
is observed at the site [Pavlova et al., 2015]. Such hydrologic remobilization, primarily via dispersion, and
subsequent englacial flowwould transport these toxins down hydraulic gradient from Camp Century, deeper
into the ice, before eventually reaching proglacial regions [Sharma et al., 2015].

4. Political Context

The general existence of Camp Century was understood by both the Danish and U.S. governments, which
together signed the 1951 Defense of Greenland Agreement under the auspices of the North Atlantic Treaty
Organization (NATO) [Petersen, 2008]. USACE reports acknowledge the presence of Danish liaisons involved
in the planning and environmental monitoring of Camp Century. These reports, for example, suggest Danish
permission for the operational disposal of 1.9 · 109 Bq of radiological waste in the ice sheet [Nicoll et al., 1962;
Clark, 1965]. However, it is unclear whether Denmark was sufficiently consulted regarding the specific decom-
missioning of Camp Century, and thus whether the abandonedwastes there remain U.S. property. Article XI of
the 1951 treaty states that “All property provided by the Government of the United States of America and
located in Greenland shall remain the property of the Government of the United States of America. … [it]
may be removed from Greenland free of any restriction, or disposed of in Greenland by the Government of
the United States of America after consultation with the Danish authorities…” (emphasis added). Given the
multinational origin andmultigenerational legacy of CampCentury, there appears to be substantial ambiguity
surrounding the political and legal liability associated with mitigating the potential remobilization of its
pollutants. Interests likely differ across NATO members, particularly Denmark, the U.S. and Canada, partly
because of their distinct levels of historical participation and their future potential for pollutant exposure.

Our study highlights that Camp Century now possesses unanticipated political significance in light of anthro-
pogenic climate change. The potential remobilization of wastes that were previously regarded as properly
sequestered, or preserved for eternity [Clark et al., 1962], is an instance, possibly the first, of a potentially
new pathway to political dispute associated with climate change. Several such pathways have already been
identified, including disputes over emissions reductions [Victor, 2011], changing agricultural patterns [Raleigh
et al., 2014], forced migration [Barnett and Adger, 2007], and newly accessible Arctic resources [Borgerson,
2008]. While we have focused on cryospheric change in the Arctic, the effects of climate change are multifa-
ceted and far-reaching. Sea level rise, for example, is now poised to remobilize hazardous wastes at low-lying
decommissioned sites, civilian and military alike [Flynn et al., 1984; Gerrard, 2015]. Climate change is thus
likely to amplify political disputes associated with abandoned wastes in a variety of settings. In this context,
the shifting fate of abandoned ice sheet military bases under climate change may provide a microcosm
through which to examine the multinational and multigenerational challenges presented by climate change.
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