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In this article our main concern is to prove the quantitative unique estimates for
the p-Laplace equation, 1 < p < ∞, with a locally Lipschitz drift in the plane. To
be more precise, let u ∈W 1,p

loc
(R2) be a nontrivial weak solution to

div(|∇u|p−2∇u) +W · (|∇u|p−2∇u) = 0 in R
2,

where W is a locally Lipschitz real vector satisfying ‖W‖Lq(R2) ≤ M̃ for q ≥
max{p, 2}. Assume that u satisfies certain a priori assumption at 0. For q >
max{p, 2} or q = p > 2, if ‖u‖L∞(R2) ≤ C0, then u satisfies the following asymptotic
estimates at R� 1

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR1− 2
q logR,

where C > 0 depends only on p, q, M̃ and C0. When q = max{p, 2} and p ∈ (1, 2],
if |u(z)| ≤ |z|m for |z| > 1 with some m > 0, then we have

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ C1e
−C2(logR)2

,

where C1 > 0 depends only on m, p and C2 > 0 depends on m, p, M̃ . As an
immediate consequence, we obtain the strong unique continuation principle (SUCP)
for nontrivial solutions of this equation. We also prove the SUCP for the weighted
p-Laplace equation with a locally positive locally Lipschitz weight.
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1. Introduction

In this paper, we study the unique continuation principle (UCP) for certain nonlinear elliptic partial
differential equations in the plane. This principle, which states that any solution of an elliptic equation that
vanishes in a small ball must be identically zero, is a fundamental property that has various applications
e.g. in solvability questions, inverse problems, and control theory.

This problem has significant differences for linear and nonlinear equations. For linear elliptic PDEs,
Garofalo and Lin [11,12] have obtained even the strong unique continuation principle (SUCP) for solutions
in all dimensions. As for nonlinear elliptic PDEs, very little is known. As a matter of fact, it remains
unknown even for the p-Laplace equations in higher dimensions; see [2,14] and the references therein for
partial positive results in higher dimensions. The difficulty in establishing such a unique continuation result
for nonlinear equations (such as the p-Laplace equation) lies in the fact that the best a priori regularity
available for (viscosity or weak) solutions of the PDE is C1,α and consequently, one cannot linearize the
corresponding nonlinear equation and apply the known unique continuation results for linear equations.

When restricted to the planar case, the situation is slightly different. For instance, the UCP holds for
solutions of the p-Laplace equations or even more general nonlinear elliptic equations in the plane; see [6,13,
17]. The main reason for this is that planar nonlinear elliptic equations are naturally tied with the complex
function theory. In the linear equation case, the real part and the complex part of an analytic function
are harmonic and each harmonic function (locally) raises as the real part of an analytic function. In the
nonlinear p-Laplace equation case (1 < p < ∞), as discovered by Bojarski and Iwaniec [6], the complex
gradient of a p-harmonic function is a quasiregular mapping. The nice properties of quasiregular mappings
in return yield many surprising results for planar p-harmonic functions, in particular, the UCP holds for
these functions.

We will mainly consider the SUCP for two variants of the p-Laplace equations in this paper. The first
one is the following p-Laplace equation, 1 < p <∞, with a locally Lipschitz drift term

div(|∇u|p−2∇u) +W · (|∇u|p−2∇u) = 0 in R
2, (1.1)

where W = (W1,W2) is a real vector-valued locally Lipschitz function with bounded Lq-norm for
max{2, p} ≤ q <∞. As we will see in a moment, the SUCP for solutions of (1.1) will be a simple consequence
of certain lower estimate of the decay rate under certain a priori assumptions for the solutions. The decay
estimate will also yield quantitative uniqueness estimates of the solutions at large scale.

This kind of quantitative decay estimate problem was originally posed by Landis in the 60s [20]. He
conjectured that if u is a bounded solution of

div(∇u) + V u = 0 in R
n, (1.2)

with ‖V ‖L∞(Rn) ≤ 1 and |u(x)| ≤ Ce−C|x|1+ , then is identically zero. This conjecture was disproved by
Meshkov [24], who constructed a V (x) and a nontrivial u(x) with |u(x)| ≤ Ce−C|x|

4
3 satisfying (1.2). He also

showed that if |u(x)| ≤ Ce−C|x|
4
3 + , then u ≡ 0 in R

n. A quantitative form of Meshkov’s result was derived
by Bourgain and Kenig [7] in their resolution of Anderson localization for the Bernoulli model in higher
dimensions. It should be noted that both V and u constructed by Meshkov are complex-valued functions;
see also [9,22] for positive quantitative results along this direction.

In a recent paper of Kenig–Silvestre–Wang [18], the authors studied Landis’ conjecture for second order
elliptic equations in the plane in the real setting, including a special case of (1.1). In particular, it was proved
there that if u ∈ W 2,q

loc (R2) is a real-valued solution of (1.1) with p = 2, q = ∞ such that |u(z)| ≤ eC0|z|,
|∇u(0)| = 1, and ‖W‖L∞(R2) ≤ 1, then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR logR for R	 1, (1.3)

2



where the constant C depends only on C0. Later, Kenig and Wang [19] obtained similar estimates as (1.3)
for Eq. (1.1) with p = 2 under an Lq-boundedness assumption for W for 2 ≤ q < ∞. To be more precise,
let u ∈ W 2,q

loc (R2) be a real solution of (1.1) with p = 2. Suppose 2 < q < ∞. If |u(z)| ≤ C0, |∇u(0)| = 1,
‖W‖Lq(R2) ≤ M̃ , then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR1− 2
q logR for R	 1, (1.4)

where C depends only on q, M̃ and C0. Similar quantitative estimates (but of different order) hold for the
case q = 2 as well.

Our first main result is the following quantitative lower bound decay for nontrivial solutions of (1.1) that
generalizes the above-mentioned result of Kenig and Wang [19].

Theorem 1.1. Let u ∈W 1,p
loc (R2), 1 < p <∞, be a weak solution of (1.1) with W being locally Lipschitz.

(i) q > max{2, p}: If ‖u‖L∞(R2) ≤ C0, |∇u(0)| = 1, and ‖W‖Lq(R2) ≤ M̃ , then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR1− 2
q logR (1.5)

for R	 1, where C depends only on p, q, M̃ and C0.
(ii) q = max{2, p} and p > 2: If ‖u‖L∞(R2) ≤ C0, |∇u(0)| = 1, and ‖W‖Lp(R2) ≤ M̃ , then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR1− 2
p logR (1.6)

for R	 1, where C depends only on p, M̃ and C0.
In addition, instead of considering bounded solutions, if we only assume that the solution u has

polynomial growth condition, i.e., precisely |u(z)| ≤ |z|m for |z| > 1, with some m > 0, then the similar
estimates as (1.5) and (1.6) are also true.

(iii) q = max{2, p} and 1 < p ≤ 2: If we assume ‖u‖L∞(R2) ≤ C0, ‖∇u‖Lp(B1) ≥ 1, and ‖W‖L2(R2) ≤ M̃ ,
then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ R−C , (1.7)

for R	 1, where C > 0 depends on p, M̃ and C0.
Moreover, if |u(z)| ≤ |z|m for |z| > 1, with some m > 0, ‖∇u‖Lp(B1) ≥ 1, and ‖W‖L2(R2) ≤ M̃ ,

then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ C1e
−C2(logR)2

, (1.8)

where C1 > 0 depends only on m, p and C2 > 0 depends on m, p, M̃ .

Note that since we are dealing with the nonlinear equation (1.1), the a priori assumption u ∈ W 2,q
loc (R2)

from [19] has to be replaced with the substantially weaker assumption u ∈W 1,q
loc (R2). For technical reasons,

we have also assumed that the drift W is locally Lipschitz and we believe that it is sufficient to assume that
W is locally bounded; see the discussion in Section 6.

In the formulation of (i) and (ii) in Theorem 1.1, we have an a priori global L∞-boundedness assumption
on the solution u. This assumption can be weakened to the pointwise boundedness assumption as in (iii)
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of Theorem 1.1: see Theorem 3.6. As a matter of fact, upon changing the form of the lower bound in
Theorem 1.1, one can impose any a priori upper growth condition on the solution.

As in [19], a key reduction we will use in this paper is the scaling argument introduced by Bourgain and
Kenig [7]. It allows us to reduce our problem to certain estimate of the maximal vanishing order of the
solution v to the equation

div(|∇v|p−2∇v) +A · (|∇v|p−2∇v) = 0 in B8, (1.9)

with A = (A1, A2) being Lipschitz and ‖A‖Lq(B8) ≤ M . The proof of the maximal vanishing order of
v relies on a nice reduction of (1.9) to a quasilinear Beltrami equation. Using the well-known theory of
Beltrami operators, we may represent the solutions of the Beltrami equation via quasiregular mappings
(cf. Theorem 3.1). Unlike the linear case p = 2 in [19], we need a version of the Hadamard’s three
circle theorem for quasiregular mappings (cf. Proposition 3.3) to derive the vanishing order. The case
q = max{2, p} needs special attention due to the fact that the Cauchy transform fails to be a bounded
mapping from L2 to L∞.

As in the linear case [19], a quantitative form of the estimate of the maximal vanishing order of v provides
us the strong unique continuation property (SUCP) for (1.9).

Theorem 1.2. Let Ω ⊂ R
2 be a domain. Let v ∈W 1,p

loc (Ω), 1 < p <∞, be a weak solution of

div(|∇v|p−2∇v) +A · (|∇v|p−2∇v) = 0 in Ω ,

where A is locally Lipschitz in Ω . If for some z0 ∈ Ω and for all N ∈ N, there exist CN > 0 and rN > 0
such that

|v(z)− v(z0)| ≤ CN |z − z0|N , ∀ |z − z0| < rN ,
then

v(z) ≡ v(z0).

The second class of equations we are considering in this paper is the following weighted p-Laplace equation
in a planar domain Ω for 1 < p <∞:

div(σ |∇u|p−2∇u) = 0 in Ω , (1.10)

where σ ∈ W 1,∞
loc (Ω) is a locally positive locally Lipschitz continuous function. Here by saying that σ is

locally positive,1 we mean that for each K ⊂⊂ Ω , there exists a positive constant cK such that σ > cK in
K. The main result is the following SUCP for solutions of (1.10). Note that the UCP for solutions of (1.10)
are well-known; see e.g. [1,23] for the constant conductivity σ, and [13,15] for more general case.

Theorem 1.3. Let Ω ⊂ R
2 be a domain and σ ∈ W 1,∞

loc (Ω) a locally positive locally Lipschitz weight. Let
v ∈ W 1,p

loc (Ω) be a weak solution of the weighted p-Laplace equation (1.10) with 1 < p < ∞. If for some
z0 ∈ Ω and for all N ∈ N, there exist CN > 0 and rN > 0 such that

|v(z)− v(z0)| ≤ CN |z − z0|N , ∀ |z − z0| < rN ,
then

v(z) ≡ v(z0).

1 This terminology is not standard. The term “locally positive” is mainly used to distinguish the term “positive” in inverse
problems, which usually means a uniform positive lower bound (cf. [15]).
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One can also prove a version of Theorem 1.1 for the weighted p-Laplace equation (1.10) and deduce
Theorem 1.3 as an immediate consequence of that: see Remark 5.3. As our interest lies in the SUCP for
Eq. (1.10), we do not formulate our theorem in that fashion.

The main idea of the proof relies on similar localizing arguments as in the previous case. Namely, it
suffices to consider our problem in the disk B8. We will show that the estimate of the maximal vanishing
order of the solution v, Theorem 5.2, to the equation

div(A |∇v|p−2∇v) = 0 in B8, (1.11)

with A ∈ W 1,∞
loc (B8), being a positive Lipschitz coefficient, is sufficient to establish Theorem 1.3. As in the

previous case (p-Laplace with a locally Lipschitz drift), we will reduce the original Eq. (1.11) to certain
quasilinear Beltrami equation (5.5). Then the derivation of the estimate of the maximal vanishing order for
v will follow from the explicit representation of solutions of the Beltrami equation, the appropriate use of
Caccioppoli’s inequality for the weighted p-Laplace equation, and the Hadamard’s three circles theorem for
quasiregular mappings. When 1 < p ≤ 2, the local Lipschitz regularity assumption on σ can be weakened
and we discuss this improvement in Section 5.3.

This paper is organized as follows. Section 2 contains the basic definition of weak solutions to (1.1) and
some partial regularity result of the gradient of solutions for Eq. (1.1). In Section 3, we consider the case
q > max{p, 2} for the proof of Theorem 1.1 and the case q = max{p, 2} is treated in Section 4. Section 5
contains the proof of Theorem 1.3. The final section, Section 6 contains a short remark on reducing the
local regularity assumption in Theorem 1.1. Throughout the paper, C stands for an absolute constant whose
dependence will be specified if necessary. Its value may vary from line to line.

2. Partial regularity of weak solutions

Throughout this paper, Ω ⊂ R
2 will be a domain, i.e., an open connected set in R

2. A real function
u ∈W 1,p

loc (Ω) is said to be a weak solution of (1.1) if∫
Ω

|∇u|p−2∇u · ∇ηdx =
∫
Ω

W · (|∇u|p−2∇u)ηdx (2.1)

for all η ∈ C∞0 (Ω). Note that W ∈ L∞loc(Ω) and u ∈ W 1,p
loc (Ω), the right-hand side of (2.1) is integrable.

(As a matter of fact, since |∇u|p−2∇u ∈ Lp/(p−1)
loc (Ω), it suffices to assume W ∈ Lsloc(Ω) for s bigger than

the dual exponent of p/(p − 1)). Moreover, it is clear from our assumption that if u ∈ W 1,p
loc (Ω) is a weak

solution of (2.1), then (2.1) holds for all η ∈W 1,p
0 (Ω).

If u ∈W 1,p
loc (B8) is a weak solution of (2.1), we consider the mapping F = |∇u|(p−2)/2∇u. It is clear that

F ∈ L2
loc(B8). When W is locally Lipschitz, the next lemma implies that F enjoys higher regularity. The

proof is similar to that used in [3, Theorem 16.3.1].

Lemma 2.1. Assume that W is locally Lipschitz in B8. Then F ∈W 1,2
loc (B8,R

2).

Proof. Since most of the argument we are adapting here is similar to [3, Proof of Theorem 16.3.1], see also
[6, Proposition 2], we will only outline the main steps and differences, and refer the interested readers to
[3,6] for the omitted details. We first consider the case p ≥ 2.

For a compact set K ⊂ B8 and choose h ∈ R
2 such that |h| < d(K, ∂B8). Note that both functions

φ(z) = η2(z)
(
u(z + h)− u(z)) and φ(z − h)

belong to W 1,p
0 (B8). Thus it is legitimate to write the identities∫

B8

|∇u(z)|p−2∇u(z) · ∇φ(z)dz =
∫
B8

|∇u(z)|p−2W (z) · ∇u(z)φ(z)dz
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and ∫
B8

|∇u(z + h)|p−2∇u(z + h) · ∇φ(z)dz =
∫
B8

|∇u(z + h)|p−2W (z + h) · ∇u(z + h)φ(z)dz.

It follows that∫
B8

〈|∇u(z + h)|p−2∇u(z + h)− |∇u(z)|p−2∇u(z),∇φ(z)〉dz

=
∫
B8

(|∇u(z + h)|p−2W (z + h) · ∇u(z + h)− |∇u(z)|p−2W (z) · ∇u(z))φ(z)dz. (I)

Substituting the form

∇φ(z) = 2η(z)(u(z + h)− u(z))∇η(z) + η(z)2(∇u(z + h)−∇u(z))
in (I) and using some elementary inequalities (cf. [3, Proof of Theorem 16.3.1]), we conclude that∫

B8

η(z)2|F (z + h)− F (z)|2dz

≤ 2
∣∣∣∫
B8

η(z)[u(z + h)− u(z)]〈|∇u(z + h)|p−2∇u(z + h)− |∇u(z)|p−2∇u(z),∇η(z)〉dz
∣∣∣

+
∣∣∣∫
B8

(|∇u(z + h)|p−2W (z + h) · ∇u(z + h)− |∇u(z)|p−2W (z) · ∇u(z))φ(z)dz∣∣∣. (II)

By the proof of Theorem 16.3.1, the first term in (II) can be bounded from above by

T = O(|h|)
(∫
B8

η(z)2|F (z + h)− F (z)|2dz
)1/2
.

Thus it suffices to show that the second term can be bounded by O(|h|2) or T . To this end, we write∫
B8

(|∇u(z + h)|p−2W (z + h) · ∇u(z + h)− |∇u(z)|p−2W (z) · ∇u(z))φ(z)dz = III + IV,

where

III =
∫
B8

〈|∇u(z + h)|p−2∇u(z + h)− |∇u(z)|p−2∇u(z),W (z + h)〉φ(z)dz

and

IV =
∫
B8

|∇u(z)|p−2〈W (z + h)−W (z),∇u(z)〉φ(z)dz.

By the elementary inequality from [3, Proof of Theorem 16.3.1], |III| can be bounded from above by

‖W‖L∞(B8)

∫
B8

∣∣∣ |∇u(z + h)|p−2∇u(z + h)− |∇u(z)|p−2∇u(z)|
∣∣∣φ(z)|dz

≤ c(p)‖W‖L∞(B8)

∫
B8

(
|∇u(z + h)|p + |∇u(z)|p

)(p−2)/2p
|F (z + h)− F (z)| |φ(z)|dz.

By Hölder’s inequality, we have∫
B8

(
|∇u(z + h)|p + |∇u(z)|p

)(p−2)/2p
|F (z + h)− F (z)| |φ(z)|dz

≤ c
(∫
B8

|u(z + h)− u(z)|pdz
)1/p
·
(∫
B8

|∇u(z + h)|p + |∇u(z)|pdz
)(p−2)/2p

·
(∫
B8

η(z)2|F (z + h)− F (z)|2dz
)1/2

≤ O(|h|)
(∫
B8

η(z)2|F (z + h)− F (z)|2dz
)1/2

= T.
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It remains to estimate |IV|. Note that W is locally Lipschitz. By Hölder’s inequality, we have the bound

L|h|
(∫
B8

|∇u(z)|pdz
)(p−1)/p(∫

B8

|u(z + h)− u(z)|pdz
)1/p

= O(|h|2),

where L depends on the Lipschitz constant of W in B8. In conclusion, we have shown that(∫
B8

η(z)2|F (z + h)− F (z)|2dz
)1/2

= O(|h|)

and thus F ∈W 1,2
loc (B8).

We now consider the case 1 < p < 2. In this case, we follow the approach used in [23, Proof of Theorem 1].
Namely, consider the regularized equation

div((ε+ |∇v|2)(p−2)/2∇v) +A · ((ε+ |∇v|2)(p−2)/2∇v) = 0

Fix an open ball B ⊂⊂ B8, consider the above equation with boundary value u. Denote by uε the solution of
the prescribed boundary value problem. Similar as in [23, Proof of Theorem 1], we have uε → u in W 1,p(B).
For the regularized equation, our preceding proof gives that F ε := |∇uε|(p−2)/2∇uε ∈ W 1,2(B). Moreover,
by choosing appropriate η, we have ‖DF ε‖L2(B) ≤ c(n,p)

d(B,∂B8)‖F ε‖L2(B). Since F ε → F in L2(B), we conclude
that ‖F ε‖W 1,2(B) ≤ C‖F‖L2(B), where the constant C does not depend on ε. By the weak compactness
of Sobolev spaces and the fact that F ε → F ∈ L2(B), we infer that F ∈ W 1,2(B). This completes the
proof. �

3. SUCP I: q > max{p, 2}

Our main concern in this section is to consider Eq. (1.1) with ‖W‖Lq(R2) ≤ M̃ for 1 < p < ∞ and
max{p, 2} < q < ∞. As pointed out in the introduction, by using the scaling argument from [7], we only
need to consider the problem in the disc B8. It is convenient for us to restate the problem as follows: Let v
be a solution of

div(|∇v|p−2∇v) +A · (|∇v|p−2∇v) = 0 in B8, (3.1)

with A = (A1, A2) being Lipschitz in B8, ‖A‖Lq(B8) ≤M,M ≥ 1.
We will need the planar theory of quasiconformal mappings and quasiregular mappings in a sequence of

results below and we refer the readers to the excellent book [3] for a comprehensive treatment.

3.1. Auxiliary results

In this section, we prepare some auxiliary results that are necessary for the proof of Theorem 1.1.
Denote by G = vx− ivy the complex gradient of v. Our aim is to derive a non-linear Beltrami equation for

(certain function of) G. In order to do that we mainly follow the approach by B. Bojarski and T. Iwaniec [6].
Define F = |G|aG, where a = (p − 2)/2. By Lemma 2.1, F ∈ W 1,2(B8) and so we may apply a simple

computation (cf. [6]) to deduce that F satisfies the following quasilinear Beltrami equation

∂F

∂z
= q1
∂F

∂z
+ q2
∂F

∂z
+ q3F,

where

q1 := −1
2

(
p− 2− a
p+ a + a

a+ 2

)
F

F
,

q2 := −1
2

(
p− 2− a
p+ a − a

a+ 2

)
F

F
,
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and

q3 := −2(a+ 1)
a+ p

[
A1

(
1 + F
F

)
+ iA2

(
1− F
F

)]
.

The following representation result should not surprise any expert and the proof we have adapted here is
very similar to that used in [5, Theorem 4.3].

Theorem 3.1. Let F satisfy the following quasilinear Beltrami equation

∂F

∂z
= q1
∂F

∂z
+ q2
∂F

∂z
+ q3F in B8, (3.2)

where

q1 := −1
2

(
p− 2
p+ 2 + p− 2

3p− 2

)
F

F
,

q2 := −1
2

(
p− 2
3p− 2 −

p− 2
p+ 2

)
F

F
,

and

q3 := − 2p
3p− 2

[
A1

(
1 + F
F

)
+ iA2

(
1− F
F

)]
.

Then the solution is represented by

F (z) = h
(
φ(z)
)
eω(z) in B8,

where φ : B8 → φ(B8) is a K-quasiconformal mapping, h : φ(B8)→ R
2 is holomorphic, and

ω(z) = T (g(z)) = − 1
π

∫
B8

g(ξ)
ξ − z dξ

for some g ∈ Lδ(B8) with δ ∈ [2,min{p0, q}), where T is the Cauchy transform of g. Moreover, the quasi-
conformality coefficient K and the constant p0 > 2 depending, explicitly, only on p.

Proof. Let F be the solution of the quasilinear Beltrami equation (3.2) and let qi, i = 1, 2, 3, be given as in
Theorem 3.1. It is clear that if F satisfies (3.2), then it is a solution of the following differential inequality∣∣∣∂F

∂z

∣∣∣ ≤ k∣∣∣∂F
∂z

∣∣∣+ oF in B8, (3.3)

where

k = ‖q1‖L∞(B8) + ‖q2‖L∞(B8) ∈ (0, 1)

and o ∈ Lq(B8). We next express Eq. (3.3) as

∂F

∂z
= o1
∂F

∂z
+ o2F in B8, (3.4)

where ‖o1‖L∞(B8) ≤ k and |o2(z)| ≤ o(z) for a.e. z ∈ B8.

Denote by ôi, i = 1, 2, the zero extension of oi, i.e., simply define oi ≡ 0 outside B8. Consider the integral
equation

(I − ô1S)g = ô2 in R
2, (3.5)

where S is the Beurling transform of g defined as

Sg(z) := − 1
π

∫
B8

g(ξ)
(ξ − z)2 dξ.
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In view of our assumptions (A1, A2) ∈ Lq(B8), q > 2, we have ô2 ∈ Lq(R2) with compact support. In
particular, ô2 ∈ Lδ(R2) for any δ ≤ q. Note also that the Beltrami coefficient ô1 is a bounded function with
compact support. By the well-known Lδ-theory of Beltrami operators (cf. [3, Chapter 14] or [4, Theorem 1]),
we know that for each δ ∈ (1 + k,min{q, p0}), where p0 = 1 + 1

k , there exists a unique solution g ∈ Lδ(R2)
that solves (3.5). Set

ω(z) = T (g(z)) = − 1
π

∫
B8

g(ξ)
ξ − z dξ,

where T is the well-known Cauchy transform of g.

We now consider the function

f(z) = F (z)e−ω(z).

Using the well-known facts (cf. [3, Chapter 4]) that
∂ω

∂z̄
= g and ∂ω

∂z
= S(g),

we easily obtain

fz̄ = ∂F
∂z̄
e−ω − ge−ωF and fz = ∂F

∂z
e−ω − Fe−ωS(g).

Since g solves (3.5), we have[
∂f

∂z
− o1 ∂f
∂z

]
eω = ∂F

∂z
− F (g − o1S(g))− o1 ∂F

∂z

= ∂F
∂z
− o1 ∂F
∂z
− o2F = 0 in B8.

Since eω is non-negative, we infer that f solves the following Beltrami equation

∂f

∂z
− o1 ∂f
∂z

= 0 in B8. (3.6)

Note that ‖o1‖L∞(B8) ≤ k < 1. Applying [8, Theorem 3.3] or [3, Corollary 5.5.4], we obtain

f(z) = h(φ(z))

where φ : B8 → φ(B8) is K-quasiconformal with K = 1+k
1−k (depending only on p) and h : φ(B8) → R

2 is
holomorphic. Consequently, each solution of (3.2) is of the form

F (z) = h(φ(z))eω(z),

where φ : B8 → φ(B8) is a K-quasiconformal mapping, h : φ(B8)→ R
2 is holomorphic, and

ω(z) = T (g) = − 1
π

∫
B8

g(ξ)
ξ − z dξ

with g ∈ Lδ(B8) being the solution of (3.5). �

Remark 3.2. It is easy to compute that

k =

⎧⎪⎪⎨
⎪⎪⎩
p− 2
p+ 2 if p ≥ 2

2− p
3p− 2 if 1 < p ≤ 2

and p0 = 1 + 1
k . It is also clear from the proof of Theorem 3.1 that if 2 ≤ q < 1 + 1

k , then the conclusion of
Theorem 3.1 remains valid with δ ∈ [2, q].
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The following proposition will serve as the key for our later proofs.

Proposition 3.3. Let φ : B8 → R
2 be a K-quasiregular mapping. Then for each r ∈ (0, 1

4 ), there exists
θ = E

log E′r
∈ (0, 1), where E and E′, depending only on K, such that

‖φ‖L∞(B1) ≤ C
(
r−1‖φ‖L2(Br/2)

)θ‖φ‖1−θL2(B7).

Proof. Since φ : B8 → R
2 is K-quasiregular, by the well-known factorization (cf. [8, Theorem 3.3] or

[5, Theorem 3.3] or [3, Corollary 5.5.4]), φ = F ◦ f , where F : f(B8) → R
2 is an analytic function and

f : B8 → f(B8) is a K-quasiconformal mapping such that f(0) = 0 and f(B6) = B6. In particular, f |B6 is
η-quasisymmetric with η depending only on K (cf. [16, Theorem 11.19]). Then it follows (from [16, Theo-
rem 11.3]) that there exist positive constants C0 and α ∈ (0, 1], depending only on K (and the dimension
n = 2) such that

C−1
0 |x− y|1/α ≤ |f(x)− f(y)| ≤ C0|x− y|α (3.7)

for all x, y ∈ B6.

We next show that

‖φ‖L∞(B1) ≤ ‖φ‖θL∞(Br/4)‖φ‖1−θL∞(B6). (3.8)

Write r1 = r/4, r2 = 1 and r3 = 6. We may select r̃1 and r̃2, quantitatively, so that f(Br1) ⊃ Br̃1 and that
f(Br2) ⊂ Br̃2 . For instance, we could choose r̃1 =

(
r1
C0

)1/α and r̃2 = 6− ( 6−r2
C0

)1/α.

Then it follows from our choice and the Hadamard’s three circle theorem for analytic functions that

‖φ‖L∞(Br2 ) = ‖F ◦ f‖L∞(Br2 ) ≤ ‖F‖L∞(Br̃2 )

≤ ‖F‖θL∞(Br̃1 )‖F‖1−θL∞(B6) ≤ ‖φ‖θL∞(Br1 )‖φ‖1−θL∞(B6),

where

0 < θ = θ(r) =
log r3r̃2
log r3r̃1

=
log 6

6−
(

5
C0

)1/α

log 6(
r
C0

)1/α

< 1.

For later purpose, we will refer the above result as the Hadamard’s three circle theorem for quasiregular
mappings.

We next point out the following standard fact about quasiregular mappings from [17, Section 14.35]: If
f : Ω → R

2 is a K-quasiregular mapping and if u : f(Ω) → R is a harmonic function, then v = u ◦ f is
A-harmonic (of type 2) in Ω . Here v being A-harmonic (of type 2) means that v is a weak solution for

divA(x,∇v(x)) = 0,

where A : R
2 × R

2 → R
2 satisfies

(i) A(x, ξ) · ξ ≥ α|ξ|2;
(ii) |A(x, ξ)| ≤ β|ξ|;
(iii)
(A(x, ξ1)−A(x, ξ2)

) · (ξ1 − ξ2) > 0 for all ξ1, ξ2 ∈ R
2 with ξ1 �= ξ2;

(iv) A(x, λξ) = λA(x, ξ) whenever λ �= 0.

For i = 1, 2, the coordinate function xi is a harmonic function and so the component function φi of the
K-quasiregular mapping φ is A-harmonic (of type 2). Since φi is A-harmonic (of type 2), standard interior

10



estimates (see for instance [17, Section 3]) imply that

‖φi‖L∞(Br/4) ≤ Cr−1‖φi‖L2(Br/2)

and that

‖φi‖L∞(B6) ≤ C‖φi‖L2(B7).

Substituting these estimates in (3.8), we have

‖φi‖L∞(B1) ≤ C
(
r−1‖φi‖L2(Br/2)

)θ‖φi‖1−θL2(B7),

from which our claim follows. �

Finally, we need the following Caccioppoli’s inequality.

Lemma 3.4. Let v be a real solution of the p-Laplace equation (3.1), 1 < p <∞, with the lower order gradient
term. Then the following Caccioppoli’s inequality holds true.

∫
Br

|∇v|p dx ≤
Cmax{1, ‖A‖pLp(B8)}

(ρ− r)p ‖v‖pL∞(Bρ),

for 0 < r < ρ < 8, where the positive constant C depends only on p.

Proof. Let η ∈ C∞0 (B8) be a smooth cut-off function, i.e., 0 ≤ η ≤ 1 in Bρ, η ≡ 0 in B8 \ Bρ, η ≡ 1 in Br
and |∇η| ≤ 4

ρ−r in Bρ \Br. Then vηp ∈W 1,p
0 (B8) is an admissible test function and so∫

B8

(
div
(|∇v|p−2∇v)+ |∇v|p−2A · ∇v

)
vηpdx = 0.

Integrating by parts, we have

−
∫
|∇v|p−2∇v · (∇vηp + pvηp−1∇η)dx+

∫
|∇v|p−2A · ∇vvηpdx = 0.

It follows ∫
|∇v|pηpdx = −p

∫
v|∇v|p−2ηp−1∇v · ∇ηdx+

∫
|∇v|p−2A · ∇vvηpdx

=: I1 + I2.

By Hölder’s inequality,

|I1| ≤ p
∫
|η∇v|p−1|v∇η|dx

≤ p
(∫
ηp|∇v|pdx

)1− 1
p
(∫
|v|p|∇η|pdx

) 1
p

.

Similarly,

|I2| ≤
∫
η|A| |v||η∇v|p−1dx

≤
(∫
ηp|∇v|pdx

)1− 1
p
(∫
|v|p|A|pηpdx

) 1
p

.
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Combining these estimates, we obtain∫
|∇v|pηpdx ≤ pp

∫
|v|p|∇η|pdx+

∫
|v|p|A|pηpdx

≤ c(p)
(ρ− r)p ‖v‖

p
L∞(Bρ) + ‖v‖pL∞(Bρ)‖A‖pLp(B8)

≤
c(p) max{1, ‖A‖pLp(B8)}

(ρ− r)p ‖v‖pL∞(Bρ),

from which our lemma follows. �

3.2. Proofs of the main results

With all the necessary auxiliary results at hand, the proofs of our following main results go along the
same line as [19, Section 2].

Theorem 3.5. Let v ∈ W 1,p
loc (B8) be a real solution of (3.1). Assume that v satisfies ‖v‖L∞(B8) ≤ C0 and

supz∈B1 |∇v(z)| ≥ 1. Then

‖v‖L∞(Br) ≥ CC1
0 r
C2 logC0rC3M (3.9)

where C1, C2, C3 are positive constants depending only on p and q.

Proof. Set

δ =

⎧⎪⎨
⎪⎩
q if q < 1 + 1

k
3k + 1

2k otherwise,

since max{2, p} < q and 0 ≤ k < 1, δ ∈ (2, 1 + 1
k ).

Recall that, F = |G| p−2
2 G, where G = vx − ivy and that v satisfies (3.1). Due to Theorem 3.1, the

nonlinear function F satisfies the following quasilinear Beltrami equation

∂F

∂z
= q1
∂F

∂z
+ q2
∂F

∂z
+ q3F,

where q1, q2, q3 are Beltrami coefficients given as in Theorem 3.1. Moreover, each solution of this Beltrami
equation is of the form

F (z) = h(φ(z))eω(z) in B8

with φ : B8 → φ(B8) is a K-quasiconformal mapping with K depending only on p, h : φ(B8) → R
2 is

holomorphic, and ω is the Cauchy transform of certain Lδ-function g that solves (3.5).

By the Caccioppoli’s inequality, Lemma 3.4, we have∫
Br

|∇v|p dx ≤
Cmax{1, ‖A‖pLp(B8)}

(ρ− r)p ‖v‖pL∞(Bρ)

≤
Cmax{1, ‖A‖pLq(B8)}

(ρ− r)p ‖v‖pL∞(Bρ), 0 < r < ρ < 8.

Since ‖A‖Lq(B8) ≤M , M ≥ 1, we have∫
Br

|∇v|p dx ≤ CMp

(ρ− r)p ‖v‖
p
L∞(Bρ). (3.10)
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Note that, the Cauchy transformation T (g(z)) = ω(z) is a bounded linear operator from Lδ(B8) to
L∞(B8) for 2 < δ < ∞ (cf. [3, Section 4.3.2]) and that the Beltrami operator I − ô1S has quantitative
bounded inverse norm from Lδ(B8) to Lδ(B8) (cf. [4, Theorem 1]) for all δ ∈ (2, 1 + 1

k ). It follows that

‖ω‖L∞(B8) ≤ c(q)‖g‖Lδ(B8) ≤ c(q, k)‖q3‖Lδ(B8) ≤ c(q, k)‖A‖Lq(B8) ≤ c(q, k)M.
Now, using the Caccioppoli’s inequality above, we have

‖h ◦ φ‖2L2(Br/2) =
∫
Br/2
|F |2 ∣∣e−ω(z)∣∣2

≤ Ce2CM ∫
Br/2
|∇v|p

≤ e2CM C2Mp

(r/2)p ‖v‖pL∞(Br),

where C is a positive constant depending only on p and q (since k depends only on p). Similarly,

‖h ◦ φ‖2L2(B7) ≤ C2e2CMMp‖v‖pL∞(B8).

Since h is holomorphic and φ is K-quasiconformal, the composition h ◦ φ is K-quasiregular. Replacing φ by
h ◦ φ in Proposition 3.3 yields

‖h ◦ φ‖2L∞(B1) ≤ C
(
r−2‖h ◦ φ‖2L2(Br/2)

)θ‖h ◦ φ‖2(1−θ)
L2(B7),

with 0 < θ < 1 satisfying θ = E

log E′r
and r ∈ (0, 1

4 ), where E,E′ are the positive constants depending only
on K (and thus only on p). As a consequence,

e−2CM‖∇v‖pL∞(B1) ≤ C
[
r−2e2CM

C2Mp

rp
‖v‖pL∞(Br)

]θ [
C2e2CMMp‖v‖pL∞(B8)

]1−θ
. (3.11)

Recall that we have following assumptions on v:

(1) |v(z)| ≤ C0 for all z ∈ B8.
(2) supz∈B1 |∇v(z)| ≥ 1.
(3) v ∈W 1,p

loc (B8).

Therefore, the estimate (3.11) becomes,

‖v‖L∞(Br) ≥ r
1+ 2

p e−
4CM
θp

[MC
1
pC1−θ

0 ] 1
θ

.

Substituting the explicit expression of θ = E

log(E′r )
in the above estimate, we obtain that

‖v‖L∞(Br) ≥ CC1
0 r
C2 logC0rC3M ,

where C1, C2, C3 are positive constants depending only on p and q. �

With the aid of Theorem 3.5, we are ready to prove our main result of this section. The idea of the proof
is similar to that used in [19, Corollary 3.3].

Theorem 3.6. Let u ∈W 1,p
loc (R2), 1 < p <∞, be a real solution of

div(|∇u|p−2∇u) +W · (|∇u|p−2∇u) = 0 in R
2.

Assume also that ‖W‖Lq(R2) ≤ M̃ with q > max{2, p} and |∇u(0)| = 1.
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(i) If u satisfies |u(z)| ≤ C0, then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ e−CR1− 2
q logR (3.12)

for R	 1, where C depends only on p, q, M̃ and C0.
(ii) If u satisfies |u(z)| ≤ |z|m for |z| > 1 with some m > 0, then the similar estimate (3.12) also holds true.

Proof. (i) Similar as in [19, Corollary 2.2], we use the scaling argument from [7]. Let |z0| = R, R 	 1 and
we define uR(z) = u(Rz+ z0). Then uR satisfies the following weighted p-Laplace equation with lower order
gradient term:

div(|∇uR|p−2∇uR) +WR · (|∇uR|p−2∇uR) = 0 in B8,

where WR(z) = RW (Rz + z0). Since q > max{2, p}, we have(∫
B8

|WR|q
) 1
q

≤ R1− 2
q

(∫
R2
|W |q
) 1
q

≤ M̃R1− 2
q . (3.13)

Note that ∣∣∣∇uR (−z0
R

)∣∣∣ = R |∇u(0)| = R > 1.

The desired estimate follows by applying (3.9) with M = M̃R1− 2
q and r = R−1.

(ii) The proof is similar to part (i). The only difference is that, in this case, we use the polynomial
boundedness assumption on the solution uR. Our assumption on uR implies that,

‖uR‖L∞(B8) ≤ 9mRm

i.e., C0 = 9mRm. Therefore the estimate (3.12) can be achieved by replacing C0 = 9mRm,M = M̃R1− 2
q

and r = R−1 in (3.9). �

As an immediate consequence of Theorem 3.5, we are now able to prove the SUCP for (1.1).

Proof of Theorem 1.2. Using translation and scaling if necessary, we may assume that z0 = 0 and B8 ⊂ Ω .
Note that ‖A‖L∞(B8) = M < ∞. We prove the claim by a contradiction argument. If v(z) �≡ v(0) in B1,
then supz∈B1 |∇v(z)| ≥ C for some C > 0. Therefore, applying Theorem 3.5 with q = ∞, we infer that
v(z) − v(0) cannot vanish at 0 in an infinite order. Hence v(z) ≡ v(0) in B1. Using the standard chain of
balls argument, we thus conclude that v(z) ≡ v(0) in Ω . �

4. SUCP II: q = max{p, 2}

In this section, we deal with the case q = max{p, 2}. It should be noticed that if 2 < p < ∞, then
q = p and we may apply the exact argument as in the previous section to show the quantitative uniqueness
estimates. Thus, throughout this section, we will assume that 1 < p ≤ 2. In particular, this implies that
q = 2. As before, we assume that ‖A‖L2(B8) ≤M for some constant M > 1.

The main difficulty we face in this case is that the Cauchy transform is not a bounded operator from
L2(B8) to L∞(B8). Instead, we will use the fact that it is a bounded operator from L2(B8) to W 1,2(B8).
This fact, together with certain Trudinger type inequality from [19], will enable us to repeat the previous
arguments to conclude the proof.
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4.1. Auxiliary result

We will need the following upper Harnack type estimate for quasiregular mappings.

Lemma 4.1. If φ : B8 → R
2 is a K-quasiregular mapping, then for each r ∈ (0, 1) we have

‖φ‖L∞(Br/2) ≤ C 1
|Br|
∫
Br

|φ| dx,

where the constant C > 0 depends only on K.

Proof. As noticed in the proof of Proposition 3.3, the component functions φi = xi ◦ φ, i = 1, 2, are
A-harmonic of type 2. Thus, the standard regularity theory of elliptic PDEs (cf. [17, Section 3]) implies that
for each i = 1, 2, we have

‖φi‖L∞(Br/2) ≤ C 1
|Br|
∫
Br

|φi| dx.

The claim follows by summing up the above estimates. �

4.2. Proofs of the main results

Theorem 4.2. Let v ∈ W 1,p
loc (B8), 1 < p ≤ 2, be a real solution of (3.1). If |v(z)| ≤ C0, (C0 ≥ 1) for all

z ∈ B8, and ‖∇v‖Lp(B6/5) ≥ 1, then

‖v‖L∞(Br) ≥ C1C
−C2
0 rC3 logC0rC4M

2
(4.1)

for all 0 < r � 1, where the positive constants C1, C2, C3, C4 depend only on p.

Proof. Recall that, F satisfies the following Beltrami equation

∂F

∂z̄
= q1
∂F

∂z
+ q2
∂F

∂z
+ q3F in B8, (4.2)

where k = ‖q1‖L∞(B8) + ‖q2‖L∞(B8) < 1 with k = 2−p
3p−2 and ‖q3‖L2(B8) ≤ CM , where C depends on p. The

solution of (4.2) is represented by

F (z) = (h ◦ φ)(z)e−ω(z) in B8,

where h is holomorphic in φ(B8), φ is K-quasiconformal and

−ω(z) = (Tg)(z) = − 1
π

∫
B8

g(ξ)
ξ − z dξ, g ∈ L

2(B8),

see for instance the proof of Theorem 3.1. Due to the fact that Cauchy transform is bounded from L2(B8)
to W 1,2(B8) (cf. [3, Section 4.3.2]) and that the operator I − ô1S is invertible from L2(B8) into L2(B8), we
obtain

‖ω‖W 1,2(B8) ≤ C‖g‖L2(B8) ≤ C‖q3‖L2(B8) ≤ CM.
In the second inequality we used the property that, the following integral equation, see (3.5),

(I − ô1S) g = ô2, in R
2,

has a unique solution in L2(R2) and the solution is bounded by q3 in terms of the L2(R2) norm. With the
above representation of the solution and the auxiliary lemmata at hand, we proceed our proof similar to
[19, Section 3].

15



Applying the Hadamard’s three circle theorem (cf. the proof of Proposition 3.3) to the K-quasiregular
mapping (h ◦ φ)(z) = F (z)eω(z), we have

‖Feω‖L∞(B6/5) ≤ ‖Feω‖θL∞(Br/4)‖Feω‖1−θL∞(B2), (4.3)

where

0 < θ = θ(r) =
log 2

2−
(

4
5C0

)1/α

log 2(
r

4C0

)1/α

< 1, α ∈ (0, 1], (4.4)

with C0 being a positive constant depending on K (which is in particular depending on p). Using Lemma 4.1
and Hölder’s inequality, we obtain that

‖Feω‖L∞(Br/4) = ‖h ◦ φ‖L∞(Br/4)

≤ C∣∣Br/2∣∣
∫
Br/2

∣∣∣F (z)eω(z)
∣∣∣ dz

≤ C
(

1∣∣Br/2∣∣
∫
Br/2

e2|ω|
)1/2(

1∣∣Br/2∣∣
∫
Br/2

|F |2
)1/2

.

Note that, by [19, Lemma 3.3], we have the following integral estimate:

1∣∣Br/2∣∣
∫
Br/2

e2|ω| ≤ Cr−2CMe2CM
2
.

Therefore, applying Caccioppoli’s inequality, Lemma 3.4, we conclude that

‖Feω‖L∞(Br/4) ≤ Cr−(C1+CM)eCM
2

(∫
Br/2

|∇v|p
)1/2

, 1 < p ≤ 2,

≤ Cr−(C1+CM)eCM
2 max{1, ‖A‖p/2Lp(B8)}

(r/2)p/2 ‖v‖p/2L∞(Br)

≤ CMr−(C1+CM)eCM
2‖v‖p/2L∞(Br),

where the constant C1 > 0 depends only on p. Substituting the above estimate in (4.3), the right hand side
of the Hadamard’s three circle theorem becomes

‖Feω‖θL∞(Br/4)‖Feω‖1−θL∞(B2) ≤
(
CMr−(C1+CM)eCM

2‖v‖p/2L∞(Br)

)θ (
CM8−(C1+CM)eCM

2‖v‖p/2L∞(B8)

)1−θ
.

(4.5)

On the other hand, we have

1 ≤ ‖∇v‖pLp(B6/5) =
∫
B6/5

|F |2

≤
∫
B6/5

|h ◦ φ|2
∣∣∣e2|ω|∣∣∣

≤
(∫
B6/5

e4|ω|
)1/2

‖h ◦ φ‖2L4(B6/5)

≤ Ce2CM2‖h ◦ φ‖2L4(B6/5)

≤ Ce2CM2‖h ◦ φ‖2L∞(B6/5). (4.6)

Finally, our claim follows by combining the estimates (4.3), (4.5), (4.6) and the form of θ (cf. (4.4)). �
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Theorem 4.3. Let u ∈W 1,p
loc (R2), 1 < p ≤ 2, be a real solution of the equation

div(|∇u|p−2∇u) +W · (|∇u|p−2∇u) = 0 in R
2.

Assume that ‖W‖L2(R2) ≤ M̃ and ‖∇u‖Lp(B1) ≥ 1.

(i) If u satisfies |u(z)| ≤ C0 for some C0 > 0, then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ R−C ,

for R	 1, where C > 0 depends only on M̃, p and C0.
(ii) If u satisfies |u(z)| ≤ |z|m for |z| > 1 with some m > 0. Then

inf
|z0|=R

sup
|z−z0|<1

|u(z)| ≥ C1e
−C2(logR)2

,

for R	 1, where C1 > 0 depends only on m, p and C2 > 0 depends only on m, p, M̃ .

Proof. (i) Let |z0| = R,R	 1. Define v(z) = u(Rz + z0). Then v solves

div(|∇v|p−2∇v) +WR · (|∇v|p−2∇v) = 0 in B8

with WR(z) = RW (Rz + z0). Since ‖W‖L2(R2) ≤ M̃ , we also have ‖WR‖L2(B8) ≤ M̃ . The final proof is
similar to [19, Theorem 1.1, Part (ii)].

(ii) Under the assumption on uR, we have,

‖uR‖L∞(B8) ≤ 9mRm,

i.e., C0 = 9mRm. Finally, replacing r = 1
R , C0 = 9mRm in (4.1), we obtain

‖u‖L∞(B1(z0)) = ‖uR‖L∞(Br(0))

≥ C1(9mRm)−C2R−C3 log(9mRm)R−C4M̃
2

≥ C̃1e
(−C̃2(logR)2), for R	 1

where C̃1 depends on m, p and C̃2 depends on m, p, M̃ . �

5. SUCP for the weighted p-Laplace equation

In this section, we consider the weighted p-Laplace equation, p ∈ (1,∞),

div(σ |∇u|p−2∇u) = 0 in Ω , (5.1)

where σ ∈W 1,∞
loc (Ω) is a locally positive locally Lipschitz continuous function, i.e., σ is locally Lipschitz and

for each K ⊂⊂ Ω , there exists a positive constant cK such that σ > cK in K.
The main idea of the proof relies on localizing the problem on a small region and then one uses the scaling

argument as discussed in the previous sections. We show that the estimate of the maximal vanishing order
of the solution v to the equation

div(A |∇v|p−2∇v) = 0 in B8, (5.2)
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with A being a positive Lipschitz coefficient, would be enough to establish Theorem 1.3. Similar to the
previous case, we first reduce the problem into certain quasilinear Beltrami equation. Then the derivation
of the estimate of the maximal vanishing order for v follows from the explicit solution of the Beltrami type
equation, the appropriate use of Caccioppoli’s inequality for the p-Laplace equation and the Hadamard’s
three circles theorem.

5.1. Auxiliary result

The following Caccioppoli’s inequality will be useful in our later proofs.

Lemma 5.1. Let v be a weak solution of (5.2). Then the following Caccioppoli’s inequality holds true:∫
Br

|∇v|p dx ≤
C‖A‖pLp(B8)

(ρ− r)p ‖v‖
p
L∞(Bρ),

for 0 < r < ρ < 8, where C depends only on p.

Proof. Since v is a weak solution of the weighted p-Laplace equation (5.2),∫
B8

A |∇v|p−2∇v · ∇ηdx = 0 (5.3)

for all η ∈W 1,p
0 (B8).

Let ζ ∈ C∞0 (B8) be a smooth cut-off function, i.e., 0 ≤ ζ ≤ 1 in Bρ, ζ ≡ 0 in B8 \ Bρ, ζ ≡ 1 in Br and
|∇ζ| ≤ 4

ρ−r in Bρ \Br. Set

η = ζpv,
∇η = ζp∇v + pζp−1v∇ζ.

Then Hölder’s inequality implies∫
B8

ζp |∇v|p dx = −p
∫
B8

Aζp−1v |∇v|p−2∇v · ∇ζdx

≤ p
∫
B8

|ζ∇v|p−1 |Av∇ζ| dx

≤ p
{∫
B8

ζp |∇v|p dx
}1−1/p{∫

B8

|A|p |v|p |∇ζ|p dx
}1/p
,

i.e., ∫
B8

ζp |∇v|p dx ≤ pp
∫
B8

|A|p |v|p |∇ζ|p dx. (5.4)

In particular, ∫
Br

|∇v|p dx ≤ pp

(ρ− r)p
∫
Bρ

|A|p |v|p dx

≤ pp

(ρ− r)p ‖v‖
p
L∞(Bρ)

∫
Bρ

|A|p dx

≤
C‖A‖pLp(B8)

(ρ− r)p ‖v‖
p
L∞(Bρ),

where 0 < r < ρ < 8 and the constant C > 0 depends only on p. �
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We follow the computation from [15, Appendix A3] to transform the weighted p-Laplace equation (5.2)
to a certain Beltrami type equation. Let G = Avx − iAvy, where v solves (5.2) and define F = |G|aG with
a = p−2

2 . Then F satisfies

∂F

∂z̄
= q1
∂F

∂z
+ q2
∂F

∂z
+ q3F, in B8, (5.5)

where

q1 = −1
2

(
p− 2
p+ 2 + p− 2

3p− 2

)
F

F
,

q2 = −1
2

(
p− 2
3p− 2 −

p− 2
p+ 2

)
F

F

and

q3 = A p

p+ 2

[
F

F

∂

∂z

(
1
A

)
− ∂
∂z̄

(
1
A

)]
−Ap−2 p

3p− 2

[
F

F

∂

∂z

(
1
Ap−2

)
+ ∂
∂z̄

(
1
Ap−2

)]
.

Since A ≥ c0 and A is Lipschitz in B8, it is easy to check that k = ‖q1‖L∞(B8) + ‖q2‖L∞(B8) < 1 and
‖q3‖L∞(B8) ≤ M (we may assume that M > 1). For δ ∈ (2, 1 + 1

k ), we know that ‖q3‖Lδ(B8) ≤ CM , where
k is explicitly calculated in Remark 3.2 and the constant C > 0 depends eventually only on p. Therefore, by
the proof of Theorem 3.1, the solution of the Beltrami equation (5.5) has the following representation:

F (z) = (h ◦ φ)(z)eω(z) in B8

where φ : B8 → φ(B8) is K-quasiconformal (with K depending only on p), h : φ(B8)→ R
2 is holomorphic,

and ω(z) = (Tg)(z) is the Cauchy transform of g for some g ∈ Lδ(B8) with 2 < δ < (1 + 1
k ).

5.2. Proofs of the main results

We are now able to prove the following estimate of the maximal vanishing order for the solution v of (5.2).

Theorem 5.2. Let v ∈W 1,p
loc (B8) be a weak solution of the weighted p-Laplace equation (5.2) with A satisfying

that A ≥ c0 and that A is M -Lipschitz in B8. If ‖v‖L∞(B8) ≤ C0 and supz∈B1 |∇v(z)| ≥ 1, then

‖v‖L∞(Br) ≥ CC1
0 r
C2 logC0rC3M (5.6)

where C1, C2, C3 are positive constants depending only on p, c0, and M .

Proof. The proof is similar to Theorem 3.5. For the convenience of the readers, we would like to add a few
lines here. In the view of the mapping properties of the Cauchy transform and the operator I − ô1S, we see
that

|ω(z)| ≤ CM, for z ∈ B8. (5.7)

Also, using the Caccioppoli’s inequality, see Lemma 5.1, we have the following estimate for theK-quasiregular
map h ◦ φ,

‖h ◦ φ‖2L2(Br/2) ≤ e2CM
C2Mp

(r/2)p ‖v‖
p
L∞(Br), (5.8)

where C > 0 depends only on p. We also remark from Proposition 3.3 that

‖h ◦ φ‖2L∞(B1) ≤ C
(
r−2‖h ◦ φ‖2L2(Br/2)

)θ‖h ◦ φ‖2(1−θ)
L2(B7), (5.9)

with an appropriate θ between 0 and 1.
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Combining (5.7), (5.8) and (5.9), we can deduce the estimate (3.11). Finally, our result follows based on
the estimate (3.11). �

Proof of Theorem 1.3. With the help of Theorem 5.2, the proof is the same as the proof of Theorem 1.2. �

Remark 5.3. With Theorem 5.2 at hand, we could also obtain a version of Theorem 1.1 for the weighted
p-Laplace equation (1.10) under certain global a priori boundedness assumption on the weak solution. In
particular, for the standard p-Laplace equation, this will give certain lower bound on the decay rate of
p-harmonic functions, which might be of independent interest.

5.3. Weakening the regularity on σ when 1 < p ≤ 2

In this section, we only consider the case p ∈ (1, 2]. The aim is to prove strong unique continuation
principle (SUCP) for the weighted p-Laplace equation (5.2) under weaker assumptions on the weight σ. To
be more precise, throughout this section, we assume that

(1) σ is locally positive, i.e., for each compact set K in Ω , there exists a positive constant cK > 0 such that
σ > cK in K;

(2) σ ∈ L∞loc(Ω) if p = 2 and σ ∈ C0,α
loc (Ω), 0 < α < 1 if p ∈ (1, 2).

Theorem 5.4. Let v ∈ W 1,p
loc (Ω) be a weak solution of (5.1) with 1 < p ≤ 2. If for some z0 ∈ Ω and for all

N ∈ N, there exist CN > 0 and rN > 0 such that

|v(z)− v(z0)| ≤ CN |z − z0|N , ∀ |z − z0| < rN ,
then

v(z) ≡ v(z0).

As in the previous section, the proof is based on the localization argument and we will do much of the
analysis to Eq. (5.2), where A satisfies

(1) A > c0 in B8;
(2) A ∈ L∞(B8) if p = 2 and A ∈ C0,α(B8) if p ∈ (1, 2).

We start with the following lemma concerning the existence of weighted q-harmonic conjugate.

Lemma 5.5. Let v ∈W 1,p(B8) be a nontrivial weak solution of (5.2). Then there exists a weighted q-harmonic
function w ∈W 1,q(B8) satisfying div(A1−q|∇w|q−2∇w) = 0 such that

wx = −A|∇v|p−2vy and wy = A|∇v|p−2vx,

where p and q are the conjugate exponents.

Proof. For non constant v, the equation div(A|∇v|p−2∇v) = 0 can be written as

∂

∂x

(
A|∇v|p−2vx

)
+ ∂
∂y

(
A|∇v|p−2vy

)
= 0. (5.10)

Introduce φ such that φ = (φ1, φ2) where

φ1 = −A|∇v|p−2vy and φ2 = A|∇v|p−2vx.
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Then (5.10) becomes
∂φ1
∂y

= ∂φ2
∂x
.

Hence, from Cauchy–Riemann equation, there exists w ∈ W 1,q
loc (Ω) with w(0) = 0 (unique up to constant)

such that
∂w

∂x
= φ1 and ∂w

∂y
= φ2,

from which the result follows. �

Note that if p = 2, then both v and w lie in W 1,2(B8). If p ∈ (1, 2), then v ∈ C1,β(B8) (cf. [21]) and
hence both v and w belong to W 1,2(B8). In particular, the mapping F := v + iw belongs to W 1,2(B8).

Lemma 5.6. Let v and w be given as in Lemma 5.5. Then we have the following two identities:

(i)

∂F

∂z
= 1−A|∇v|p−2

1 +A|∇v|p−2
∂F

∂z
,

where F is defined as F := v + iw.
(ii)

∂F

∂z
= 1−A|f |p−2

1 +A|f |p−2
f

f

∂F

∂z
,

where f is defined as f := vx − ivy �= 0.

Proof. Define F := v + iw. Calculating the complex derivatives of F , we obtain
∂F

∂z
= ∂v
∂z

+ i∂w
∂z

= 1
2(1−A |∇v|p−2)(vx + ivy)

and
∂F

∂z
= ∂v
∂z

+ i∂w
∂z

= 1
2(1 +A |∇v|p−2)(vx − ivy).

Combining the above two identities the proof of (i) follows immediately.

In order to establish the second equation, simply notice that vx − ivy = −iA |f |p−2
f and that

vx + ivy = iA |f |p−2
f . The claim follows by substituting these two identities in (i). �

Note that, f = vx − ivy = 2vz and |f | = 2 |vz| = (v2x + v2y)1/2 = |∇v|. If we rewrite F as F =
v + iw = Re(F ) + iIm(F ) and |f | = 2 |(Re(F ))z| = |∇v|, then Lemma 5.6 implies that

∂F

∂z
= 1− 2p−2A |(Re(F ))z|p−2

1 + 2p−2A |(Re(F ))z|p−2
∂F

∂z
,

= μ∂F
∂z
,

where μ is a function depending on the complex derivative of the real part of F .
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Theorem 5.7. Let F satisfies the following nonlinear Beltrami equation
∂F

∂z
= μ∂F
∂z

in B8,

where μ is defined as

μ := 1− 2p−2A |(Re(F ))z|p−2

1 + 2p−2A |(Re(F ))z|p−2 .

Then each weak solution F ∈W 1,2(B8) is represented by

F (z) = (h ◦ φ)(z) in B8,

where φ : B8 → φ(B8) is a K-quasiconformal mapping and h : φ(B8) → R
2 is holomorphic. Moreover, the

quasiconformality coefficient K depends only on p, α, ‖v‖L∞(B8),
‖A‖L∞(B8)

c0
and c0 when p ∈ (1, 2) and on

c0 when p = 2.

Proof. Case 1. p = 2:

In this case,

μ := 1−A
1 +A.

In view of our assumptions on A, we have ‖μ‖L∞(B8) ≤ μ0 < 1, where μ0 > 0 is a constant depending only
on c0. The solution of the above linear Beltrami equation can be represented as

F (z) = (h ◦ φ)(z), z ∈ B8,

where φ : B8 → φ(B8) is a K-quasiconformal mapping with K depending only on μ0 and h : φ(B8)→ R
2 is

holomorphic; see e.g. [3, Theorem 5.5.1].

Case 2. 1 < p < 2:

In this case,

μ := 1− 2p−2A |(Re(F ))z|p−2

1 + 2p−2A |(Re(F ))z|p−2 .

Since A ∈ C0,α(B8), 0 < α < 1, the weak solution v ∈ C1,β(B8) (cf. [21]), i.e., there exists β = β(p, α, l)
with 0 < β < 1 so that ‖v‖C1,β(B8) ≤ C for some positive constant C = C(p, α, l, ‖v‖L∞(B8)), where
l = ‖A‖L∞(B8)

c0
. In particular, ‖∇v‖C0(B8) ≤ C and thus

|∇v| ≤ ‖(Re(F ))z‖C0(B8) ≤ C. (5.11)

Since we also have A ≥ c0 in B8,

‖μ‖L∞(B8) ≤ 1− C0
1 + C0

< 1

where C0 = C0(p, α, l, ‖v‖L∞(B8), c0) is a positive constant.

In either cases, we infer that for some k < 1,∣∣∣∂F
∂z̄

∣∣∣ ≤ k∣∣∣∂F
∂z

∣∣∣.
This implies that F is a K-quasiregular mapping with K depending only on k (and hence only on p, α,
l, ‖v‖L∞(B8) and c0) (cf. [3, Section 5]). The final claim follows immediately from the well-known Stoilow
factorization; see e.g. [3, Corollary 5.5.3]. �
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Proof of Theorem 5.4. We first assume that z0 = 0 and B8 ⊂ Ω . Consider Eq. (5.2). Let v ∈ W 1,2(B8) be
a weak solution of (5.2). Set F = v + iw, where w is the conjugate weighted q-harmonic function given as
in Lemma 5.5. Then F satisfies the nonlinear Beltrami equation

∂F

∂z
= μ∂F
∂z
, (5.12)

where μ is defined as

μ := 1− 2p−2A |(Re(F ))z|p−2

1 + 2p−2A |(Re(F ))z|p−2 .

Theorem 5.7 implies that each W 1,2(B8)-solution of (5.12) can be written as

F (z) = (h ◦ φ)(z) in B8,

where φ : B8 → φ(B8) is a K-quasiconformal mapping with K depending only on p, α, l, ‖v‖L∞(B8) and c0
as in the previous theorem, and h : φ(B8)→ R

2 is holomorphic.

Now we apply the Hadamard’s three circle theorem to F = h◦φ (cf. (3.8) in the proof of Proposition 3.3)
to deduce that

‖F‖L∞(B1) ≤ ‖F‖θL∞(Br/4)‖F‖1−θL∞(B2), (5.13)

where 0 < θ = θ(r) =
log 4

4−( 3
C0

)1/α

log 4
( r
C0

)1/α
< 1 with C0 depending only on K.

Applying Lemma 4.1 for the K-quasiregular mapping F and using the Hölder’s inequality, we have the
following estimates

‖F‖L∞(Br/4) ≤ C∣∣Br/2∣∣
∫
Br/2

|F |

≤ C∣∣Br/2∣∣
(∫
Br/2

1
)1/p(∫

Br/2

|F |p′
)1/p′

≤ C ∣∣Br/2∣∣ 1
p−1 ‖F‖Lp′ (Br/2)

≤ Cπ(r/2)−2/p′‖F‖Lp′ (Br/2)

≤ Cr−2/p′ [‖v‖Lp′ (Br/2) + ‖w‖Lp′ (Br/2)], (5.14)

where 1/p+1/p′ = 1 and C depends only on K. In order to estimate ‖w‖Lp′ (Br/2), we follow similar approach
from [19, Section 4] and proceed as follows:∫

Br/2

|w(x)|p′ dx =
∫
Br/2

|w(x)− w(0)|p′ dx

=
∫
Br/2

∣∣∣∣
∫ 1

0
∇w(tx) · xdt

∣∣∣∣
p′

dx

≤
(r

2

)p′ ∫
Br/2

∣∣∣∣
∫ 1

0
∇w(tx)

∣∣∣∣
p′

dtdx

≤
(r

2

)p′+1 ∫ r/2
0

{
1
|Bs|
∫
Bs

|∇w(y)|p′ dy
}
ds.
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Using the fact that |∇w| = |A| |∇v|p−1, we obtain∫
Br/2

|w(x)|p′ dx ≤ Crp′+1
∫ r/2

0

[
1
|Bs|
∫
Bs

|A|p′ |∇v|p′(p−1)
dy

]
ds

≤ Crp′+1
∫ r/2

0

[
1
|Bs| ‖A‖

p′

L∞(Bs)

∫
Bs

|∇v|p dy
]
ds.

Since ‖A‖L∞(B8) ≤ C1, applying Caccioppoli’s inequality, Lemma 5.1, we obtain that
∫
Br/2

|w(x)|p′ dx ≤ Crp′+1
∫ r/2

0

‖v‖pL∞(B2s)

sp |Bs| ds, (5.15)

where C > 0 depends only on p, K and C1. From our assumption that v vanishes at 0 in an infinite order,
i.e., ∃C̃ > 0 and r̃ < 8 such that

|v(z)| ≤ C̃ |z|N , ∀ |z| < r̃, (5.16)

we infer that ∫
B4

|w(x)|p′ ≤ C

and hence

‖F‖L∞(B2) ≤ C, (5.17)

where C > 0 depends on p, K and C1. Now, if ‖v‖L∞(B1) ≥ e−l0 for some l0 > 0, then (5.13) and (5.17)
would give us

e−l0 ≤ ‖v‖L∞(B1) ≤ C1C
1−θ‖F‖θL∞(Br/4),

i.e.,

C̃rC̃l0 ≤ ‖F‖L∞(Br/4).

On the other hand, using (5.14)–(5.16), we may conclude that, there exist N0 > C̃l0 and rN0 < r̃ so that

‖F‖L∞(Br/4) ≤ CN0r
N0 , for all r < rN0 .

The contradiction implies that for all l0 > 0, ‖v‖L∞(B1) ≤ e−l0 , and hence v ≡ 0 in B1.

Finally, we will finish the proof using the scaling argument as in [7,19]. Let us take any point z0 ∈ Ω so
that

|v(z)| = O(|z − z0|N ) as |z − z0| → 0,

for all N > 0. Choose r0 > 0 such that B8r0(z0) ⊂ Ω . Set u(z) = v(z0 + r0z) and σ(z) = r0A(z0 + r0z).
Then u satisfies

div(σ |∇u|p−2∇u) = 0 in B8

and

‖σ‖L∞(B8) ≤ C‖A‖L∞(B8r0 (z0)) ≤ C1.

Hence, using the previous argument, we know that u = 0 in B1, which implies v = 0 in Br0(z0). Now, by
the chain of balls argument as in [19, Corollary 3.5], we easily conclude that v ≡ 0 in Ω . �
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6. Concluding remarks

In this section, we give a short remark on the local regularity assumption on W in Theorem 1.1. We have
assumed that W is locally Lipschitz and this assumption was only used in Lemma 2.1 to ensure that we are
legal to take the complex gradient of solutions of (1.1) to derive certain quasilinear Beltrami equation. The
constant C appeared in the asymptotic estimate in Theorem 1.1 does not depend on the data associated
to the local Lipschitz regularity. Hence, we expect that this assumption is only a technical assumption and
can be possibly get rid of by a standard regularizing procedure as follows. Given a general W , say belongs
to L∞loc(R2). Let Wε = ηε ∗W be the standard smooth approximation of W in L∞loc(R2). For each ε > 0,
consider the equations

div(|∇u|p−2∇u) +Wε · (|∇u|p−2∇u) = 0 in R
2. (6.1)

Applying Theorem 1.1 for (weak or C1,α) solutions uε of (6.1), we may conclude that the quantitative
estimates as in Theorem 1.1 hold for each uε with a constant C independent of ε. It is plausible that the
approximation argument from [10] will imply that uε → u in L∞loc(R2). Since C is independent of ε, the same
estimate would hold for u as well.
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