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Abstract This paper is about surfaces of infinite topological type. Unlike the case of
surfaces of finite type, there are several deformation spaces associated with a surface
S of infinite topological type. Such spaces depend on the choice of a basepoint (that
is, the choice of a fixed conformal structure or hyperbolic structure on S) and they
also depend on the choice of a distance on the set of equivalence classes of marked
hyperbolic structures. We address the question of the comparison between two defor-
mation spaces, namely, the quasiconformal Teichmüller space and the length-spectrum
Teichmüller space. There is a natural inclusion map of the quasiconformal space
into the length-spectrum space, which is not always surjective. We work under the
hypothesis that the basepoint (a hyperbolic surface) satisfies a conditionwecall “upper-
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boundedness”. This means that this surface admits a pants decomposition defined by
curves whose lengths are bounded above. The theory under this upper-boundedness
hypothesis shows a dichotomy. On the one hand there are surfaces satisfying what we
call Shiga’s condition, i.e. they admit a pants decomposition defined by curves whose
lengths are bounded above and below. If the base point satisfies Shiga’s condition,
then the inclusion of the quasiconformal space into the length-spectrum space is sur-
jective, and it is a homeomorphism. In this paper we concentrate on the other kind of
upper-bounded surfaces, which we call “upper-bounded with short interior curves”.
This means that the corresponding hyperbolic surface admits a pants decomposition
defined by curves whose lengths are bounded above, and such that the lengths of some
interior curves approach zero.We show that in this case the behavior is completely dif-
ferent. Under this hypothesis, the image of the inclusion between the two Teichmüller
spaces is nowhere dense in the length-spectrum space. As a corollary of the meth-
ods used, we obtain an explicit parametrization of the length-spectrum Teichmüller
space in terms of Fenchel–Nielsen coordinates and we prove that the length-spectrum
Teichmüller space is path-connected.

Keywords Length-spectrum metric · Quasiconformal metric · Quasiconformal
map · Teichmüller space · Fenchel–Nielsen coordinates

Mathematics Subject Classification 32G15 · 30F30 · 30F60

1 Introduction

In this paper, by a surface, we mean a connected orientable surface of finite or infinite
topological type. In most cases of interest, this surface will be of infinite type. We
shall specify this whenever needed. We obtain results on the Teichmüller space of the
surface, and themain theme is the interplay between the complex analytic point of view
(quasiconformal mappings) and the hyperbolic geometry one. In this introduction, we
first recallmore precisely the setting and then state the results. Tomotivate these results,
we start by reviewing some basic facts about the Teichmüller spaces of surfaces of
infinite topological type.

1.1 The quasiconformal Teichmüller space

Given a surface S, its Teichmüller space is a parameter space for some homotopy
classes of marked complex structures on S. There are several possible ways for defin-
ing the set of homotopy classes that we want to parametrize, and there are several
possibilities for the topology we put on this set. It is often not necessary to worry
about these details, because in the most common case, i.e. the case when S is a closed
surface, the set is just the set of all possible homotopy classes of complex structures,
and all “reasonable” possible definitions of a topology on that set are equivalent. There-
fore, in the case of closed surfaces, this freedom of choice between several possible
definitions is not a problem, and it is, instead, a very useful tool in the theory: one can
choose the definition that best suits the problem studied.
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As soon as we leave the setting of closed surfaces, it is necessary to be more careful
with the definitions. In this paper, we deal with surfaces of infinite topological type,
and in this case the different possible definitions do not always agree. First of all, it is
necessary to choose a basepoint, i.e. a base complex structure R on the surface S, and
then to consider only the set of homotopy classes of complex structures on S that are
“comparable” to R in a suitable sense. This notion of comparability usually suggests
a good definition of the topology. For example, the most commonly used definition is
the so-called quasiconformal Teichmüller space Tqc(R), a set which parametrizes the
homotopy classes of complex structures X on S that are quasiconformally equivalent
to R, i.e. such that there exists a quasiconformal homeomorphism between R and
X that is homotopic to the identity of S. (Note that the space Tqc(R) we consider
here is the reduced Teichmüller space i.e. homotopies need not fix the ideal boundary
pointwise.)
The topology on Tqc(R) is given by the quasiconformal distance dqc, also called

the Teichmüller distance, defined using quasiconformal dilatations of quasiconfor-
mal homeomorphisms: for any two homotopy classes of complex structures X, Y ∈
Tqc(R), their quasiconformal distance dqc(X, Y ) is defined as

dqc(X, Y ) = 1

2
log inf

f
K ( f )

where K ( f ) is the quasiconformal dilatation of a quasiconformal homeomorphism
f : X → Y which is homotopic to the identity.

1.2 Fenchel–Nielsen coordinates

In [2], we studied the quasiconformal Teichmüller space of a surface of infinite topo-
logical type using pair of pants decompositions and Fenchel–Nielsen coordinates. We
will also use this technique in the present paper, and we first recall some of the main
facts we need here. The definition of these coordinates depends on the representation
of every complex structure as a hyperbolic metric on the surface. To do so, we use the
so-called intrinsic hyperbolic metric on a complex surface, defined by Bers. For com-
plex structures of the first type (i.e. if the ideal boundary is empty), this metric is just
the Poincaré metric, but for complex structures of the second type it is different from
the Poincaré metric. We refer the reader to the paper [2] for the detailed definition and
for explanations about how the intrinsic metric may differ from the Poincaré metric.
The intrinsic metric has the property that every puncture of the surface shows one of
the following behaviors:

1. It has a neighborhood isometric to a cusp, i.e., the quotient of {z = x + iy ∈
H
2 | a < y}, for some a > 0, by the group generated by the translation z �→ z +1.

2. It is possible to glue to the puncture a boundary component that is a simple closed
geodesic for the hyperbolic metric. Punctures of this kind will be called boundary
components, and the boundary geodesic will be considered as part of the surface.

For infinite-type surfaces, we proved in [2] that given a topological pair of pants
decomposition P = {Ci } of S and a complex structure X on S, it is always possible to
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find closed geodesics {γi } for the intrinsicmetric of X such that each γi is homotopic to
Ci and the set {γi } is again a pair of pants decomposition of S. To every curveCi of the
topological decomposition, we can associate two numbers (�X (Ci ), τX (Ci )), where
�X (Ci ) is the length in X of the geodesic γi and τX (Ci ) is the twist parameter between
the two pairs of pants (which can be the same) with geodesic boundary adjacent to
γi . In the present paper, the twist parameter is a length. We note that this is a slight
change in notationwith reference to the paper [2], where this parameter was an “angle”
parameter (length measured along the curve divided by the total length of the curve).
Let R be a complex structure equipped with its intrinsic metric and with a geodesic

pants decomposition P = {Ci }. We say that the pair (R,P) is upper-bounded if
supCi

�R(Ci ) < ∞. We say that the pair (R,P) is lower-bounded if infCi �R(Ci ) > 0.
If (R,P) is both upper-bounded and lower-bounded, then we say that (R,P) satisfies
Shiga’s property. Note that if R is of finite type, then any pants decomposition of R
satisfies Shiga’s property. Shiga’s property was used for the first time in [16], and we
used it in our papers [3,4]. We note however that this property is used in a weaker
form in the papers [3,4], and this is also the form which will be useful in the present
paper. In fact, we shall say from now on that Shiga’s property holds for the pair (R,P)

if the pants decomposition P is upper-bounded and if there exists a positive constant
δ such that �R(Ci ) > δ for any Ci ∈ P which is in the interior of the surface.
In this paper, we will often use the following condition: we say that (R,P) admits

short interior curves if there is a sequence of curves of the pair of pants decomposition
αk = Cik (k = 1, 2, . . .) such that the curves αk are not boundary components of S
and such that �R(αk) tends to zero as k → ∞.
In the paper [2], we proved, using Fenchel–Nielsen coordinates, that if (R,P) is

upper-bounded, then the quasiconformal Teichmüller space (Tqc(R), dqc) is locally
bi-Lipschitz equivalent to the sequence space �∞. We note that an analogous result,
in the case of the non-reduced Teichmüller space, is due to Fletcher; cf. [7] and the
survey [8] by Fletcher and Markovic.

1.3 The length-spectrum Teichmüller space

In this paper, we study a different kind of deformation space, which we call the length-
spectrum Teichmüller space. The definition of this space and of its distance depend on
a measure of how the lengths of essential curves change when we modify the complex
structure. We recall that a simple closed curve on a surface is said to be essential if
it is not homotopic to a point or to a puncture (but it can be homotopic to a boundary
component). We denote by S the set of homotopy classes of essential simple closed
curves on the surface S.
Given a complex structure X on S and an essential simple closed curve γ on S,

we denote by �X (γ ) the length, for the intrinsic metric on X , of the unique geodesic
that is homotopic to γ . The value �X (γ ) does not change if we take another complex
structure homotopic to X , hence this function is well defined on homotopy classes of
complex structures on S.
Given two homotopy classes X, Y of complex structures on S, we define the func-

tional
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L(X, Y ) = sup
γ∈S

{
�X (γ )

�Y (γ )
,
�Y (γ )

�X (γ )

}
≤ ∞.

Given a base complex structure R on S, the length-spectrum Teichmüller space
Tls(R) is the space of homotopy classes of complex structures X on S satisfying
L(R, X) < ∞.
For any two distinct elements X, Y ∈ Tls(R), we have 1 < L(X, Y ) < ∞. We

define a metric dls on Tls(R), called the length-spectrum distance, by setting

dls(X, Y ) = 1

2
log L(X, Y ).

Chronologically, the length-spectrum distance was defined before the length-
spectrum Teichmüller space but initially people considered this distance as a distance
on the quasiconformal Teichmüller space: they studied the metric space (Tqc(R), dls).
For finite type surfaces this is a perfectly fine distance on Tqc(R); it makes this space
complete, it induces on it the ordinary topology, and it is suitable for studying prob-
lems related to lengths of geodesics. For an example of a paper studying this space,
see [6], some of whose results we will use in the following. The first paper dealing
with the space (Tqc(R), dls) in the case of surfaces of infinite type is [16].
We proved in [3] that the metric space (Tqc(R), dls) is, in general, not complete.

More precisely, this happens if there exists a pair of pants decomposition P = {Ci }
such that the pair (R,P) admits short interior curves, i.e. if there is a sequence of
curves of the pair of pants decomposition αk = Cik contained in the interior of R with
�R(αk) → 0. The idea was to construct a sequence of hyperbolic metrics by large
twists along short curves. Let us be more precise.
For any X ∈ Tqc(R), we have again �X (αk) = εk → 0. Denote by τ t

α(X) the
surface obtained from X by a twist of magnitude t along α and let Xk = τ

tk
αi (X), where

tk = log | log εk |. Then we proved that dqc(X, Xk) → ∞, while dls(X, Xk) → 0.
For n ≥ 0, if we set Yn = τ

tn
αn ◦ · · · ◦ τ

t2
α2 ◦ τ

t1
α1(X) and if we define Y∞ to be the

surface obtained from X by a twist of magnitude ti along αi for every i , then a similar
argument shows that Y∞ ∈ Tls(R) \ Tqc(R) and limn→∞ dls(Yn, Y∞) = 0; see [3,4]
for more details. We shall give another proof of the last result in Sect. 5 below.
The fact that the metric space (Tqc(R), dls) is, in general, not complete is an indi-

cation of the fact that Tqc(R) is not the right underlying space for this distance. The
length-spectrum Teichmüller space was defined in [12], with the idea that it is the most
natural space for that distance. This space was studied in [3,4]. We proved in [3] that
for every base complex structure R, the metric space (Tls(R), dls) is complete. This
result answered a question raised in [12] (Question 2.22).
Other properties, such as connectedness and contractibility, are unknown in the

general case for surfaces of infinite type. If the basepoint R satisfies Shiga’s condition,
then it follows from the main result of [4] that (Tls(R), dls) is homeomorphic to
the sequence space �∞ with a homeomorphism that is locally bi-Lipschitz, and, in
particular, the space is contractible. One of the results we prove in the present paper
is the following.
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Theorem 6.3 If (R,P) is upper-bounded and admits short interior curves, then
(Tls(R), dls) is path-connected.

To obtain this result, we will use some results on the comparison between the
quasiconformal and the length-spectrum spaces, and we will also need the follow-
ing explicit characterization of the length-spectrum Teichmüller space in terms of
Fenchel–Nielsen coordinates, which is interesting in itself:

Theorem 6.2 Assume X = (�X (Ci ), τX (Ci )). Then X lies in Tls(R) if and only if
there is a constant N > 0 such that for each i ,∣∣∣∣log �X (Ci )

�R(Ci )

∣∣∣∣ < N

and

|τX (Ci ) − τR(Ci )| < N max{| log �R(Ci )|, 1}.

1.4 Comparison between the two spaces

It is interesting to compare the two spaces (Tls(R), dls) with (Tqc(R), dqc).
A classical result of Sorvali [17] and Wolpert [18] states that for any K -quasicon-

formal map f : X → Y and any γ ∈ S, we have

1

K
≤ �Y ( f (γ ))

�X (γ )
≤ K .

It follows from this result that there is a natural inclusion map

I : (Tqc(R), dqc) → (Tls(R), dls)

and that this map is 1-Lipschitz.
In [12] we proved that if R satisfies Shiga’s condition, then this inclusion is surjec-

tive, showing that under this hypothesis we have Tls(R) = Tqc(R) as sets. In the same
paper we also gave an example of a complex structure R whose associated inclusion
map I is not surjective.
The inverse map of I (defined on the image set Tqc(R)) is not always continuous.

Shiga gave in [16] an example of a hyperbolic structure R on a surface of infinite type
and a sequence (Rn) of hyperbolic structures in Tls(R) ∩ Tqc(R) which satisfy

dls(Rn, R) → 0, while dqc(Rn, R) → ∞.

In particular, the metrics dls and dqc do not induce the same topology on Tqc(R). A
more general class of surfaces with the same behavior was described in the paper [13]
by Liu, Sun and Wei.
In the [16], Shiga also showed that if the hyperbolic metric R carries a geodesic

pants decomposition that satisfies Shiga’s condition, then dls and dqc induce the same
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topology on Tqc(R). In the paper [4] we strengthened this result by showing that under
Shiga’s condition the inclusion map is locally bi-Lipschitz.
Several natural problems arise after this, for instance:

1. Give necessary and sufficient conditions under which the inclusion map I is sur-
jective.

2. Under what conditions is the inverse map (defined on the image set) continuous?
Under what conditions is it Lipschitz? bi-Lipschitz?

3. Are the two spaces (Tqc(R), dqc) and (Tls(R), dls) in the general case locally
isometric to the infinite sequence space �∞? What are the “local model spaces” to
which these spaces are locally isometric in the general case?

4. How does the image I
(
(Tqc(R), dqc)

)
sit in the space (Tls(R), dls)? Is it dense?

Is it nowhere dense?

Some of these problems are solved in the present paper, and others are solved in the
paper [15] by Šarić which was motivated by a first version of it. We now state some
of the results.
Consider Tqc(R) as a subset in Tls(R). A natural question which is asked in [3] is

whether the subset Tqc(R) is dense in (Tls(R), dls). A positive answer would tell us
that Tls(R) is the metric completion of Tqc(R) with reference to the distance dls , and
it would also imply that (Tls(R), dls) is connected (since the closure of a connected
subset is also connected). In this paper, we give a negative answer to this question.
More precisely, we prove the following:

Theorem 5.8 If R admits a geodesic pants decomposition which is upper-bounded
and if it admits short interior geodesics, then the space (Tqc(R), dls) is nowhere dense
in (Tls(R), dls).

The proof of Theorem 5.8 involves some estimates between quasiconformal dilata-
tion and hyperbolic length under the twist deformation. Some of the techniques used
in this paper are developed in our papers [2,4]. The upper-boundedness assumption on
the pair of pants decomposition is used here so that we can get a lower bound estimate
of the length-spectrum distance under a twist. Without this assumption, the density of
Tqc(R) in Tls(R) is an open question.
It is interesting to study the closure ofTqc(R) inTls(R). This space is the completion

of Tqc(R)with reference to the length-spectrummetric. Under the upper-boundedness
condition, Šarić gave in [15] a characterization of the closure of Tqc(R) in Tls(R).
We prove (Proposition 5.4) that if the surface R admits a pants decomposition P

such that (R,P) is upper-bounded and admits short interior curves, then there exists a
point in Tls(R)\Tqc(R)which can be approximated by a sequence in Tqc(R)with the
length-spectrummetric. This gives in particular a newproof of the fact (obtained in [3])
that the space Tqc(R) equipped with the restriction of the metric dls is not complete.
Regarding Problem (2), under the geometric conditions of Theorem 5.8, we showed

in [3] (Example 5.1) that the inverse of the inclusion map I restricted to Tqc(R):
(Tqc(R), dls) → (Tqc(R), dqc) is nowhere continuous. We provide another proof of
this fact in the present paper (Proposition 5.2).
Regarding Problem (3), Šarić proved in [15], using the Fenchel-Nielsen-coordinates

and again under the upper-boundedness condition, that Tls(R) is bi-Lipschitz home-
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omorphic to the sequence space �∞. This shows that the space Tls(R) is contractible.
The paper [15] settles some questions whichwere raised in a first version of the present
paper.

2 Preliminaries

Let R be a base topological surface equipped with a hyperbolic structure X and with
a geodesic pants decomposition P = {Ci }. The pieces of the decomposition (com-
pletions of connected components of the complements of the curves Ci ) are spheres
with three holes equipped with hyperbolic metrics, where a hole is either a cusp or
a geodesic boundary component. We call such a piece a generalized pair of pants to
stress on the fact that it is not necessarily a hyperbolic pair of pants with three geodesic
boundary components. To each Ci ∈ P , we consider its length parameter �X (Ci ) and
its twist parameter τX (Ci ). Recall that the latter is only defined if Ci is not a boundary
component of R, and it is a measure of the relative twist amount along the geodesic
Ci between the two generalized pairs of pants (which may be the same) that have this
geodesic in common. The twist amount per unit time along Ci is chosen so that a
complete positive Dehn twist alongCi changes the twist parameters on Ci by addition
of �X (Ci ). For any hyperbolic metric X , its Fenchel–Nielsen parameters relative to P
is the collection of pairs

{(�X (Ci ), τX (Ci ))}i=1,2,...

where it is understood that if Ci is a boundary component of R, then there is no twist
parameter associated to it, and instead of a pair (�X (Ci ), τX (Ci )) we have a single
parameter �X (Ci ).
There is an injective mapping from Tqc(R) or Tls(R) to an infinite-dimensional real

parameter space:

X �→
((

log
�X (Ci )

�R(Ci )
, τX (Ci ) − τR(Ci )

))
i=1,2,...

.

If the image of X belongs to �∞, then we say that X is Fenchel–Nielsen bounded
(with respect to (R,P)).
For each Ci in the interior of X , there is a simple closed curve βi satisfying the

following (see Fig. 1):

1. βi and Ci intersect minimally, that is, i(Ci , βi ) = 1 or 2;
2. βi does not intersect any C j , j 
= i .

The following result is proved in [2].

Lemma 2.1 Suppose that the pants decomposition {Ci } is upper-bounded by M, that
is, supi {�X (Ci )} ≤ M. Then there exists a positive constant ρ depending only on M
such that for each i , βi can be chosen so that the intersection angle(s) θi of Ci and βi

(there are one or two such angles for each curve Ci ) satisfy sin θi ≥ ρ.
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Ci

Ci

βi

βi

Fig. 1 In each case, we have represented the curve Ci and its dual curve βi

We shall need some backgroundmaterial on the conformalmoduli of quadrilaterals.
Recall that a quadrilateral Q(z1, z2, z3, z4) consists of a Jordan domain Q in the
complex plane and a sequence of ordered vertices z1, z2, z3, z4 on the boundary of Q.
The vertices of a quadrilateral Q(z1, z2, z3, z4) divide its boundary into four Jordan
arcs, called the sides of the quadrilateral. When we use this notation, we shall call
the arcs z1z2 and z3z4 the a-sides, and the other two arcs the b-sides of Q. Two
quadrilaterals Q(z1, z2, z3, z4) and Q′(w1, w2, w3, w4) are said to be conformally
equivalent if there is a conformal map from Q to Q′ which carries each zi to wi .
Every quadrilateral Q(z1, z2, z3, z4) is conformally equivalent to a rectangle

R(0, a, a + ib, ib) = {x + iy : 0 < x < a, 0 < y < b}.

It is easy to see that two rectangles R(0, a, a+ib, ib) and R′(0, a′, a′+ib′, ib′) are
conformally equivalent if and only if there is a similarity transformation between them.
Therefore, we can define the (conformal) modulus of a quadrilateral Q(z1, z2, z3, z4)
by

mod(Q(z1, z2, z3, z4)) = a

b
.

It follows from the definition that themodulus of a quadrilateral is a conformal invariant
and that mod(Q(z1, z2, z3, z4)) = 1/mod(Q(z2, z3, z4, z1)).
The modulus of a quadrilateral Q(z1, z2, z3, z4) can be described in terms of

extremal length in the followingway. LetF = {γ } be the family of curves in Q joining
the a-sides. The extremal length of the family F , denoted by Ext(F), is defined by
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Ext(F) = sup
ρ

infγ∈F �ρ(γ )2

Areaρ

where the supremum is taken over all conformal metrics ρ on Q of finite positive area.
Then it can be shown [1] that

mod(Q(z1, z2, z3, z4)) = 1

Ext(F)
.

3 A lower bound for the quasiconformal dilatation under a twist

The main result of this section is Theorem 3.2 which gives a lower bound for the
quasiconformal distance between a surface X and its image Xt under a Fenchel–
Nielsen multi-twist along curves in the pants decomposition in terms of the amount of
twisting and some other quantity which is a sequence of lower bounds for the angles
between the curves of the pants decomposition and a collection of dual curves. We
also prove Corollary 3.3, which is important for Sect. 5. For a hyperbolic metric X and
a simple closed geodesic α on X , we denote by τ t

α(X), t ∈ R the hyperbolic metric
obtained from X by a Fenchel–Nielsen twist of magnitude t along α. We fix the simple
closed curve α and, to simplify the notation, we set Xt = τ t

α(X).
For a small ε > 0, let Nε be an ε-neighborhood of α. We denote by gt

ε : X → Xt

a homeomorphism that is the natural isometry outside of Nε and that is homotopic to
the identity.
It is convenient to work in the universal cover of the surface. In the case where X

has no boundary, its universal cover is the hyperbolic planeH
2. We let f t

ε : H
2 → H

2

be a lift of gt
ε . In the case where X has non-empty boundary, we take the double of X

and Xt , extend the map gt
ε to Xd → Xd

t and we then let f t
ε be the lift of the extended

map to H
2. Thus, in any case, the map f t

ε is defined on the plane H
2.

Let α̃ be the lift of the closed geodesic α to the universal cover. Then α̃ can be seen
as a lamination with discrete leaves.
When ε tends to zero, the maps f t

ε converges pointwise on H
2\α̃ to a map f t that

is an isometry on every connected component of H
2 \ α̃. We choose an orientation on

α. Now every connected component of α̃ divides the plane into two parts, a left part
and a right part. We extend f t to α̃ by requiring that this extension is continuous on
the left part. We denote the extended map again by f t ; it is a piecewise isometry from
H
2 to H

2.
To make some explicit computations, we work in the upper-half model of the

hyperbolic planeH
2. Up to conjugation in the domain and in the range, we can assume

that the geodesic iR+ is a leaf of α̃ that is fixed pointwise by f t . In particular, f t fixes
0, i and ∞.

Lemma 3.1 For any bi-infinite geodesic in the upper-half plane model of H
2 with

endpoints x1 < 0 < x2 on R and intersecting iR+ at i (see Fig. 2), we have

f t (x1) < −
√

e2t +
(

x1 + x2
2

)2

+
(

x1 + x2
2

)
< 0 and 0 < f t (x2) < x2, ∀ t > 0.
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Fig. 2 A bi-infinite geodesic in
the upper half-space model of
the hyperbolic plane intersecting
the imaginary axis at the point i

yx

i

Proof This follows from the construction of the Fenchel–Nielsen twist deformation.
See, for example, the proof of Lemma 3.6 in Kerckhoff [9]. We give here the proof
for the sake of completeness.
Let γ be the bi-infinite geodesic connecting x1 and x2. By assumption, iR+ and γ

intersect at the point i . Under the twist deformation, γ is deformed into a sequence
of disjoint geodesic arcs {Ai }, each coming from γ under the twist deformation. Let
γ̄ be the infinite piecewise geodesic arc which is the union of {Ai } and of pieces of
leaves of α̃. See Fig. 3 in the case where x1 = −1 and x2 = 1.
Note that one such arc A0 passes through the point i . If A0 is continued to a bi-

infinite geodesic, its endpoints will be precisely those of γ . Move along γ̄ in the
left direction, running along the leaf iR+ (by a hyperbolic distance t) until coming
to the next arc A1. If the arc is continued in the forward direction, one of its end-

points is −
√

e2t + ( x1+x2
2 )2 + ( x1+x2

2 ) (this can be shown by the cosine formula for
triangles). Similarly, the forward endpoint of the next arc, A2, is strictly to the left of

−
√

e2t + ( x1+x2
2 )2+ ( x1+x2

2 ). In fact, the forward endpoint of each arc Ai+1 is strictly

0 1−1

A0

A2

−et

Fig. 3 The image of γ under a twist
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to the left of Ai . Since the forward endpoints of the A,
i s converge to f t (x1), we see

that f t (x1) is strictly less than −
√

e2t + ( x1+x2
2 )2 + ( x1+x2

2 ).

An analogous (and simpler) argument shows that 0 < f t (x2) < x2. 
�
As before, assume that P = {Ci } is a geodesic pants decomposition of the hyper-

bolic surface R.
Let t = (t1, t2, . . .) be a sequence of real numbers. Fix X ∈ Tqc(R). We say that Xt

is amulti-twist deformation of X alongP if Xt is obtained from X by the composition
of ti -twists along Ci . Let us set ‖t‖ = supi |ti |. In the following theorem, the simple
closed curves (βi ) are chosen as in Sect. 2. We assume that the intersection angle(s)
θi of Ci and βi satisfy sin θi ≥ ρi .
Since each βi intersects Ci and no C j , j 
= i , then under the multi-twist deforma-

tion, the image of βi depends only on the twist along Ci .
We now denote by H(∞,−1, 0, t), t > 0 the quadrilateral where the underlying

Jordan domain H is the upper half-plane. Let h(t) = mod(H(∞,−1, 0, t)). Then,
h(t) is related to themodulus of theGrötzch ring (the ring domain obtained by deleting
the interval [0, r ] from the unit disk) μ(r) by the following equality (see Page 60–61
in [11]):

h(t) = 2

π
μ

(√
1

1+ λ

)
, where λ = t.

From the known properties of μ(r), it follows that h(t) is a strictly increasing
function and lim

t→+∞ h(t) = ∞.

Theorem 3.2 For the hyperbolic surface Xt defined above, we have

dqc(X, Xt ) ≥ 1

2
log sup

i

h(Ki e|ti |)

h

(
1+

√
1−ρ2i

1−
√
1−ρ2i

) ,

where

Ki =
1−

√
1− ρ2i(

1+
√
1− ρ2i

) ⎛
⎝

√√√√1+ (

√
1−ρ2i

1−
√
1−ρ2i

)2 +
√
1−ρ2i

1−
√
1−ρ2i

⎞
⎠

.

Proof For each Ci , consider the twist ti . Without loss of generality, we assume that
ti > 0.
Assume that iR+ is a lift of Ci to the universal cover and that βi has a lift γ which

intersects iR+ at the point i . Denote by x1 < 0 < x2 the two endpoints of γ . The
intersection θ of iR+ and γ satisfies:
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sin θ = 2

|x1| + |x2| . (1)

This is because θ is the intersection angle determined by two lines, one is the line
through i and |x1|+|x2|

2 , and the other is the real line (in negative direction). The sine
of the angle is equal to

2

|x1| + |x2| .

Note that Formula (1) for the angle may also been deduced from Eq. (4) below.
Applying Lemma 3.1, we have

f t (x1) < −
√

e2ti +
(

x1 + x2
2

)2

+
(

x1 + x2
2

)
< 0, 0 < f t (x2) < x2. (2)

Let us set −
√

e2ti + ( x1+x2
2 )2 + ( x1+x2

2 ) = −Aeti , where

A = 1√
1+ e−2ti

( x1+x2
2

)2 + e−ti
( x1+x2

2

) .

By the geometric definition of quasiconformal maps,

K ( f t ) ≥ mod
(
H( f t (x1), f t (0), f t (x2), f t (∞))

)
mod(H(x1, 0, x2,∞))

.

By (2) and the monotonicity of conformal modulus, we have

mod(H( f t (x1), 0, f t (x2),∞)) ≥ mod(H(−Aeti , 0, x2,∞)).

Note that

mod(H(−Aeti , 0, x2,∞)) = mod(H(∞,−x2, 0, Aeti ))

= mod

(
H

(
∞,−1, 0, Aeti

|x2|
))

.

Therefore

K ( f t ) ≥
mod

(
H

(
∞,−1, 0, Aeti

|x2|
))

mod
(

H
(
∞,−1, 0, | x1

x2
|
)) . (3)

We can use the cross ratio to estimate | x1
x2

| in terms of the lower bound ρi (X) of

sin θi . Letχ(a, b, c, d) = (a−c)(b−d)
(a−d)(b−c) be the cross ratio of a, b, c, d ∈ R∪{∞}.We can
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map H
2 conformally to the unit disc, and iR+ and γ to the geodesics with endpoints

±1 and ±eiθ respectively. It is easy to show that

cos2(θ/2) = χ(1, eiθ ,−eiθ ,−1).

By the conformal invariance of the cross ratio, we have

cos2(θ/2) = χ(0, x2, x1,∞) = |x1|
|x1| + |x2| . (4)

Since sin θ ≥ ρi , we have

1−
√
1− ρ2i

1+
√
1− ρ2i

≤ |x1|
|x2| ≤

1+
√
1− ρ2i

1−
√
1− ρ2i

. (5)

There are other restrictions on the values x1, x2. Since the geodesic γ passes through
the point i , we can show that |x2||x1| = 1.
If |x1| ≥ 1 ≥ |x2|, then

A

|x2| ≥ A ≥ 1√
1+

( |x1|/|x2|−1
2

)2 + |x1|/|x2|−1
2

.

Combined with the inequality (5), this gives

A

|x2| ≥ 1√√√√1+
( √

1−ρ2i

1−
√
1−ρ2i

)2

+
√
1−ρ2i

1−
√
1−ρ2i

.

If |x2| ≥ 1 ≥ |x1|, then (using again Inequality (5)) we obtain

A

|x2| ≥ A
|x1|
|x2| ≥

1−
√
1− ρ2i(

1+
√
1− ρ2i

) ⎛
⎝

√√√√1+ (

√
1−ρ2i

1−
√
1−ρ2i

)2 +
√
1−ρ2i

1−
√
1−ρ2i

⎞
⎠

.

Denote

Ki =
1−

√
1− ρ2i(

1+
√
1− ρ2i

) ⎛
⎝

√√√√1+ (

√
1−ρ2i

1−
√
1−ρ2i

)2 +
√
1−ρ2i

1−
√
1−ρ2i

⎞
⎠

.
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We conclude that

A

|x2| ≥ Ki .

It follows from Inequality (3) that

K ( f t ) ≥ mod(H(∞,−1, 0, Ki eti ))

mod

(
H

(
∞,−1, 0, 1+

√
1−ρ2i

1−
√
1−ρ2i

)) .

Using the function h(t) already introduced for moduli of quadrilaterals, we get

K ( f t ) ≥ h(Ki eti )

h

(
1+

√
1−ρ2i

1−
√
1−ρ2i

) .

By Teichmüller’s Theorem, there is an extremal quasiconformal map from X to
Xt that realizes the Teichmüller distance dqc(Xt , X). Lifting this map to the universal
cover, since it is homotopic to f t , it has the same boundary value as f t . It follows
that

2dT (X, Xt ) ≥ log sup
i

h(Ki eti )

h

(
1+

√
1−ρ2i

1−
√
1−ρ2i

) .


�
Corollary 3.3 If supi lX (Ci ) < ∞ and if Xt is a multi-twist deformation of X along
P , then dqc(X, Xt ) → ∞ as ‖t‖ → ∞.

Proof By assumption, there is a positive constant M such that supi �X (Ci ) < M . By
Lemma 2.1, there is a positive constant ρ (depending on M) such that inf i ρi ≥ ρ. It

is easy to see that (1−
√
1−ρ2)2

1+
√
1−ρ2

is an increasing function of ρ. For each i , we have

(
1+

√
1− ρ2i

)2

1−
√
1− ρ2i

≥
(
1− √

1− ρ2
)2

1+ √
1− ρ2

.

As a result, if follows from Theorem 3.2 that

dqc(X, Xt ) ≥ 1

2
log sup

i

h

(
(1−

√
1−ρ2)2

1+
√
1−ρ2

eti

)

h

(
1+

√
1−ρ2

1−
√
1−ρ2

) . (6)
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As ‖t‖ → ∞, the properties of the function h(t) tell us that dqc(X, Xt ) → ∞. 
�

4 Estimation of hyperbolic length under a twist deformation

The twist deformation is an important tool to understand the difference between the
quasiconformal metric and the length-spectrum metric. As in the previous section, we
fix a simple closed geodesic α and we set Xt = τ t

α(X). In this section, we give a upper
bound and a lower bound for dls(X, Xt ).

Proposition 4.1 For every t in R, we have

dls(X, Xt ) ≤ 1

2
max

{
sup

γ,i(α,γ ) 
=0
i(α, γ )|t |
�X (γ )

, sup
γ,i(α,γ ) 
=0

i(α, γ )|t |
�Xt (γ )

}
.

Proof Without loss of generality, we can assume that t > 0. For any simple closed
curve γ intersecting α, let �t (γ ) denote the hyperbolic length of γ in Xt . We have

�X (γ ) − i(α, γ )t ≤ �t (γ ) ≤ �X (γ ) + i(α, γ )t.

Recall that the length-spectrum distance is given by

dls(X, Xt ) = max

{
1

2
log sup

γ

�t (γ )

�X (γ )
,
1

2
log sup

γ

�X (γ )

�t (γ )

}
,

where the supremum is taken over all essential simple closed curves.
For a simple closed curve γ satisfying i(α, γ ) = 0, the hyperbolic length of γ is

invariant under the twist along α. As a result, we have

dls(X, Xt ) = max

{
1

2
log sup

γ,i(α,γ ) 
=0
�t (γ )

�X (γ )
,
1

2
log sup

γ,i(α,γ ) 
=0
�X (γ )

�t (γ )

}
.

For any simple closed curve γ with i(α, γ ) 
= 0, we have

log
�t (γ )

�X (γ )
≤ log

�X (γ ) + i(α, γ )t

�X (γ )
≤ i(α, γ )t

�X (γ )

(using, for the right-hand side, the inequality log(1+ x) ≤ x for x > 0), and likewise

log
�X (γ )

�t (γ )
≤

∣∣∣∣log �t (γ ) + i(α, γ )t

�t (γ )

∣∣∣∣ ≤ i(α, γ )t

�X (γ )
.

The result is thus proved. 
�
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Note that if �X (α) ≤ L , then it follows from the Collar Lemma that there is a
constant C depending on L such that for any simple closed geodesic γ with i(α, γ ) 
=
0, we have �X (γ ) ≥ Ci(α, γ )| log �X (α)| and �Xt (γ ) ≥ Ci(α, γ )| log �X (α)|. We
deduce from Proposition 4.1 the following

Corollary 4.2 If �X (α) ≤ L, then there is a constant C depending on L such that

dls(X, Xt ) ≤ |t |
2C | log �X (α)| .

Now we need a lower bound. We use the idea of an (ε0, ε1)-decomposition of a
hyperbolic surface (cf. Minsky [14, sec.2.4] and Choi-Rafi [6, sec.3.1]).
Consider a hyperbolic metric X on a surface of finite type (we will need only the

case where X is homeomorphic to a one-holed torus or to a four-holed sphere).
Choose two numbers ε1 < ε0 less than a Margulis constant of the hyperbolic

surface. Assume that α is a closed geodesic in the interior of X with �X (α) ≤ ε1. Let
A be an annular (collar) neighborhood of α such that the two boundary components of
A have length ε0. We can choose ε1 and ε0 small enough such that any simple closed
geodesic on X that intersects α is either the core curve of A or crosses A (this upper
bound for ε1, ε0 can be chosen in a way that is independent on the surface X ).
Let Q = X \ A. For any simple closed geodesic γ on X , its restriction to Q is

homotopic (relative to ∂ Q ) to a shortest geodesic, which we denote by γQ .

Lemma 4.3 (Choi-Rafi [6, prop. 3.1]) There is a constant C depending on ε0, ε1 and
on the topology of X, such that

|�X (γ ∩ Q) − �X (γQ)| ≤ Ci(γ, ∂ Q),

|�X (γ ∩ A) − [2 log ε0

�X (α)
+ �X (α)|twX (γ, α)|]i(γ, α)| ≤ Ci(γ, α).

In the second formula, the quantity twX (γ, α) is called the twist of γ around α.
This quantity is defined in [14, sec. 3]. Its difference with the Fenchel-Nielsen twist
coordinate is given by the following estimate (For the proof, see Minsky [14, Lemma
3.5]).

Lemma 4.4 (Minsky [14, lemma 3.5]) Suppose that Xt is the twist deformation of X
by a twist of magnitude t = τXt (α)−τX (α) along α. We normalize the twist coordinate

by setting s(Xt ) = τXt (α)

�X (α)
and s(X) = τX (α)

�X (α)
. Then

|twXt (γ, α) − twX (γ, α) − (s(Xt ) − s(X))| ≤ 4.

Now assume that X is homeomorphic to a one-holed torus or to a four-holed sphere,
with a pair of pants decomposition α. Consider the simple closed curve β we con-
structed in Lemma 2.1. Note that |twX (β, α)| is less than 4, and i(β, α) is 1 or 2. The
following is a direct corollary of Lemmas 4.3 and 4.4.
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Lemma 4.5 If Xn is the hyperbolic metric obtained from X by a twist deformation
along α with normalized twist coordinates n = τXn (α)−τX (α)

�X (α)
, then

�Xn (β)

�X (β)
≥ 2 log ε0

�X (α)
+ �X (α)(n − 8) + 1

2�Xn (βQ) − 2C

2 log ε0
�X (α)

+ 2�X (α) + �X (βQ) + 2C
,

where C is the same constant as in Lemma 4.3; hence it only depends on ε0, ε1 and
on the topology of X.

Proof We know that i(β, α) and i(β, ∂ Q) are 1 or 2, and that |twX (β, α)| ≤ 4. By
Lemma 4.4 we see that n − 8 ≤ |twX (β, α)| ≤ n + 8. We also know that �Xn (α) =
�X (α). We can express �X (β) as �X (β ∩ Q) + �X (β ∩ A), and we do the same for
�Xn (β).We then use Lemma 4.3 to estimate separately �X (β∩Q), �X (β∩ A), �Xn (β∩
Q)and�Xn (β ∩ A). Finally, we estimate the ratio, and we get the desired formula.

Consider now a hyperbolicmetric X with a geodesic pants decompositionP = {Ci }
satisfying supCi

�X (Ci ) ≤ M . Suppose there exists a geodesic α ∈ P which is in
the interior of X and which has length less than ε1. Let Xt = τ t

α(X). Here we set
t = �X (Ci )n, for a sufficiently large number n. With these assumptions, we now
apply Lemma 4.5 to give a lower bound for the length-spectrum distance dls(X, Xt ).
As we have done before, we choose a simple closed curve β which intersects α once

or twice but does not intersect any other curves in P . Under the upper-boundedness
assumption on the pants decomposition, there is a constant K depending on ε0, ε1, M
such that the length �X (βQ) is bounded as

1/K ≤ �X (βQ) ≤ K .

Moreover, we may choose the constant ε0 with upper and lower bounds which only
depend on M . Then an analysis of the formula in Lemma 4.5 leads to the following

Theorem 4.6 If supCi
�X (Ci ) ≤ M and �X (α) ≤ ε1, then there is a constant D

depending on ε1, M such that

dls(X, Xt ) ≥ 1

2
log

�Xt (β)

�X (β)

≥ 1

2
log

2| log �X (α)| + |t | − D

2| log �X (α)| + D
.

Proof We can choose ε0 and ε1 such that they satisfy ε0 = 2ε1. Then log(ε0) can
be included in the constant. We remark that the constant ε0 is less than the Margulis
constant that is less than 1. In particular �X (α) is less than 1 and it can be included
in the constant. The terms �X (βQ) and �Xn (βQ) can be estimated with K as above.
Moreover, n�X (α) = t . Transforming the formula of Lemma 4.5 in this way, we get
the conclusion. 
�
In fact, Theorem 4.6 is a particular case of Choi-Rafi’s product region formula

for the length-spectrum metric. Their proof requires a more detailed and complicated
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analysis, see Lemma 3.4 and Theorem 3.5 of [6]. Since we only need to consider a
particular curve β to give a lower bound, we don’t need the general formula.

5 Structure of the length-spectrum Teichmüller space

The goal of this section is to showhowbad can be the inclusion (Tqc, dqc) → (Tls, dls).
In Sect. 6, we will use some of the results of this section to prove connectedness of
(Tls, dls)

Given a surface S, we define a proper subsurface S′ of S to be an open subset of S
such that the frontier ∂S′ is a union of simple closed essential curves of S. If X is a
complex structure on S and if S′ is a proper subsurface of S, the restriction of X to S′
is the complex structure that we have on the proper subsurface X ′ that is homotopic
to S and such that the boundary curves of X ′ are geodesics for the intrinsic hyperbolic
metric of X . The intrinsic metric of X ′ is the restriction of the intrinsic metric of X .

Proposition 5.1 Consider an exhaustion of S by a sequence of subsurfaces with
boundary:

S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · · and S = ∪∞
n=1Sn .

Given two complex structures X, Y on S, let Xn and Yn be the complex structures
obtained by restriction of X and Y to Sn respectively. Then

dls(X, Y ) = lim
n→∞ dls(Xn, Yn). (7)

Proof From the definition, for any ε > 0, there exists a simple closed curve γ on �

such that

dls(X, Y ) <
1

2

∣∣∣∣log �X (γ )

�Y (γ )

∣∣∣∣ + ε.

Such a curve γ must lie in some subsurface �n0 . As a result,

dls(X, Y ) < dls(Xn0 , Yn0) + ε.

Since dls(Xn, Yn) is increasing and ε is arbitrary, we conclude that

dls(X, Y ) ≤ lim
n→∞ dls(Xn, Yn).

The other side of (7) is obvious. 
�
Let R be a hyperbolic surface of infinite type with a geodesic pants decomposition

P = {Ci }. In the rest of this section, we always assume that the pair (R,P) is upper-
bounded and that it admits short interior curves, i.e. that there is a sequence of curves
of the decomposition αk = Cik contained in the interior of R with �R(αi ) → 0. Note
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that for any point X ∈ Tls(R), the geodesic representative of P satisfies the same
upper-boundedness property and admits short interior curves.
The following result was proved in [13] (see also [3, Example 5.1]). The proof here

is simpler.

Proposition 5.2 Under the above assumptions, the inverse of the inclusion map I
restricted to Tqc(R): (Tqc(R), dls) → (Tqc(R), dqc) is nowhere continuous. More
precisely, for any X ∈ Tqc(R), there is a sequence Xn ∈ Tqc(R) with dqc(X, Xn) →
∞ while dls(X, Xn) → 0.

Proof Let X ∈ Tqc(R). Assume that �X (αn) = Cin = εn → 0. Let Xn = τ
tn
αn (X),

with tn = log | log εn| → ∞.
By Corollary 4.2,

dls(X, Xn) ≤ log | log εn|
2C | log εn| ,

which tends to 0 asn → ∞.On the other hand,Corollary 3.3 shows thatdqc(X, Xn) →
∞. 
�

Remark 5.3 There exist hyperbolic surfaces R with no pants decomposition satisfying
Shiga’s property, but where the space (Tqc(R), dqc) is topologically equivalent to the
space (Tqc(R), dls), see Kinjo [10]. It would be interesting to know whether the two
metrics in Kinjo’s examples are locally bi-Lipschitz.

Proposition 5.4 (Boundary point) Under the above assumptions, there exists a point
in Tls(R)\Tqc(R) that can be approximated by a sequence in Tqc(R) with the length-
spectrum metric.

Proof Let X ∈ Tqc(R). By assumption, there exists a sequence of simple closed curves
αn such that �X (αn) = εn → 0. Let Xn = τ

tn
αn (Xn−1) = τ

tn
αn ◦ · · · ◦ τ

t2
α2 ◦ τ

t1
α1(X),

with tn = log | log εn| → ∞. Define X∞ as the surface obtained from X by a twist of
magnitude ti along αi for every i .
By Inequality (6), dqc(X, Xn) → ∞ and dqc(X, X∞) = ∞.
For any simple closed curve γ on X , by an argument similar to that of the proof of

Proposition 4.1 and Corollary 4.2, we have

dls(X, X∞) ≤ sup
γ∈S

∑∞
n=1 i(γ, αn) log | log εn|

2C
∑∞

n=1 i(γ, αn)| log εn| .

To see that the right hand side is uniformly bounded (independently of γ ), we can
use the inequality

∑∞
n=1 xn∑∞
n=1 yn

≤ sup
n≥1

{
xn

yn

}
,
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that holds for positive values of xi and yi . With this inequality we can see that∑∞
n=1 i(γ, αn) log | log εn|∑∞

n=1 i(γ, αn)| log εn| ≤ max
n≥1

{
log | log εn|

| log εn|
}

.

Note that

dls(Xn, X∞) ≤ sup
γ∈S

∑∞
k=n+1 i(γ, αk) log | log εk |

2C
∑∞

k=n+1 i(γ, αk)| log εk | ≤ max
k≥n+1

{
log | log εk |

| log εk |
}

.

Since tn = log | log εn| → ∞, tn
etn → 0 as n → ∞. We have dls(Xn, X∞) → 0. 
�

Proposition 5.5 (Nowhere open) With the above assumptions, in the metric space
(Tls(R), dls), any open neighborhood of a point X ∈ Tqc(R) contains a point in
Tls(R)\Tqc(R).

Proof As above, assume that �X (αn) = εn → 0. Let tn = log | log εn|, which tends to
∞ as n → ∞. We let Yn be the surface obtained from X by a multi-twist of magnitude
ti along αi for every i ≥ n. As in the proof of Proposition 5.4, we have

dls(X, Yn) ≤ max
i≥n

{ log | log εi |
| log εi | } → 0.

It is obvious that Yn ∈ Tls(R)\Tqc(R). 
�
Proposition 5.5 is also a consequence of Theorem 5.8 below.

Theorem 5.6 With the above assumptions, the space (Tqc(R), dls) is not dense in the
space (Tls(R), dls).

Proof We will show that there exists a point in Tls(R) which is not a limit point of
Tqc(R) equipped with the length-spectrum metric.
Start with a point X ∈ Tqc(R). Assume that �X (αn) = εn → 0. Let Yn =

τ
Tn
αn (Xn−1) = τ

Tn
αn ◦ · · · ◦ τ

T2
α2 ◦ τ

T1
α1 (X), with Tn = N | log εn| → ∞ where N is

a fixed positive constant. (In this proof, we can take N = 1, but taking a general N is
important for the proof of Proposition 5.7 below.) Define Y∞ as the surface obtained
from X by a twist of magnitude Ti along αi for every i . It is not hard to see that
Y∞ ∈ Tls(R) and, in fact,

dls(X, Y∞) ≤ N

2C
. (8)

Suppose that there is a sequence of Xk ∈ Tqc(R) such that dls(Y∞, Xk) → 0 as
k → ∞. Denote the difference of the twist coordinates of each Xk from X (with
respect to the pants decomposition P) by the sequence (τk(Ci )). Since the pants
decomposition is upper-bounded and since Xk ∈ Tqc(R), we have supi |τk(Ci )| < ∞,
since otherwise, Corollary 3.3 would imply dqc(X, Xk) = ∞.
Note that for each Xk , its difference of twist coordinates with Y∞ is equal to

1. Tn − τk(αn) for each αn ;
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2. −τk(Ci ) for each Ci ∈ P\{αn}.
For each αn , choose a simple closed curve βn as in the construction before Theo-

rem 4.6; then, by Theorem 4.6 we have

dls(Xk, Y∞) ≥ sup
n

1

2
log

(N + 2)| log εn| − C − τk(αn)

2| log εn| + C
.

The right hand side of the above inequality has a positive lower bound that is
independent of k (because τk(αn) is bounded). As a result, the sequence Xk cannot
approximate Y∞ in the length-spectrum metric. 
�
Denote the closure of Tqc(R) in Tls(R) (both spaces equipped with the length-

spectrum metric) by Tqc(R). By Theorem 5.6, Tls(R)\Tqc(R) is not empty.

Proposition 5.7 Under the above assumptions, for any X ∈ Tqc(R), there is a
sequence of points Zk ∈ Tls(R)\Tqc(R) such that dls(X, Zk) → 0.

Proof For any X ∈ Tqc(R), we let Zk be the same as Y∞, which we constructed in
the proof of Theorem 5.6, by setting N = 1

k for each k.
As we have shown before, Zk ∈ Tls(R)\Tqc(R). Moreover, by Inequality (8), we

have

dls(X, Zk) ≤ 1

2Ck
,

which tends to 0 as k tends to ∞. 
�
Using the previous proposition, we can prove now the following result:

Theorem 5.8 Under the above assumptions, the space (Tqc(R), dls) is nowhere dense
in (Tls(R), dls).

Proof It is equivalent to prove that Tqc(R) has no interior point. Consider an arbitrary
Y ∈ Tqc(R) and an arbitrary ε > 0. If Y ∈ ∂Tqc(R), then we let X be a point in Tqc(R)

such that dls(X, Y ) < ε
2 . If Y ∈ Tqc(R), we just set X = Y . By Proposition 5.7, there

is a point Z ∈ Tls(R)\Tqc(R) such that dls(X, Z) < ε
2 . By the triangle inequality,

dls(Y, Z) < ε. 
�

6 Connectedness of the length-spectrum Teichmüller space

In this section, we will prove that if (R,P) is upper-bounded but does not satisfy
Shiga’s property, then (Tls(R), dls) is path-connected.
Assume that supi �R(Ci ) ≤ M .We associate to R the Fenchel–Nielsen coordinates

((�R(Ci ), τR(Ci )))i=1,2,... ,

and we choose the twist coordinates in such a way that |τR(Ci )| < �R(Ci ).
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Consider now an arbitrary X ∈ Tls(R), with Fenchel–Nielsen coordinates

((�X (Ci ), τX (Ci )))i=1,2,... .

We write X = (�X (Ci ), τX (Ci )) for simplicity.

Lemma 6.1 Suppose that dls(R, X) < 2K . We can find a hyperbolic metric Y ∈
Tqc(R), with Fenchel–Nielsen coordinates Y = (�Y (Ci ), τY (Ci )) such that �Y (Ci ) =
�X (Ci ) and |τY (Ci ) − τR(Ci )| < 2eK �R(Ci ) ≤ 2eK M.

Proof Using a theorem of Bishop [5], for any pair of geodesic pair of pants P and Q
there is a quasiconformal map from P to Q which satisfies the following:

1. the quasiconformal dilatation of the map is less than 1+Cdls(P, Q), whereC > 0
depends on an upper bound of dls(P, Q) and the boundary length of P;

2. the map is affine on each of the boundary components.

Cut R into pairs of pants along P . We use Bishop’s construction [5] to deform
each hyperbolic pair of pants with boundary lengths �R(·) into a pair of pants with
boundary lengths �X (·). Then we patch together the new hyperbolic pairs of pants to
get a new hyperbolic metric Y homeomorphic to R, in the following way. Suppose
two pairs of pants P1, P2 are joined at α ∈ P and deformed into Q1, Q2. Then we
patch together Q1 and Q2 by identifying the common image α by an affine map. In
this way, the quasiconformal map between pairs of pants provided by Bishop can be
extended to a global quasiconformal map between R and Y , with dilatation bounded
by

1+ C sup
i

∣∣∣∣log �X (Ci )

�R(Ci )

∣∣∣∣ ,
where C is a positive constant depending on K , M .
As a result,

2dqc(R, Y ) ≤ log

(
1+ C sup

i

∣∣∣∣log �X (Ci )

�R(Ci )

∣∣∣∣
)

≤ C sup
i

∣∣∣∣log �X (Ci )

�R(Ci )

∣∣∣∣ .
Let Y = (�Y (Ci ), τY (Ci )). Then, it follows from our construction that |τY (Ci )| ≤

eK�R(Ci ) and |τY (Ci ) − τR(Ci )| ≤ 2eK�R(Ci ). 
�
Now we construct a continuous path in Tls(R) from Y to X by varying the twist

coordinates. First we need the following result.

Theorem 6.2 The hyperbolic structure X = (�X (Ci ), τX (Ci )) lies in Tls(R) if and
only if there exists a constant N > 0 such that for each i ,

∣∣∣∣log �X (Ci )

�Y (Ci )

∣∣∣∣ < N
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and

|τX (Ci ) − τR(Ci )| < N max{| log �R(Ci )|, 1}.

Proof By Lemma 6.1, we only need to consider the case where �X (Ci ) = �R(Ci ) for
each i . In this case, X is a multi-twist deformation of R along P . If for each i ,

|τX (Ci ) − τR(Ci )| < N max{| log �R(Ci )|, 1},

then we can use the proof of Theorem 5.6 to show that dls(R, X) < ∞.
Conversely, suppose that dls(R, X) < ∞ and that there is a subsequence {αn} of

P such that

|τX (αn) − τR(αn)| > nmax{| log �R(αn)|, 1}.

If there is a subsequence of {αn}, still denoted by {αn}, with length �R(αn) tend-
ing to zero, then, by Theorem 4.6, we have dls(R, X) = ∞, which contradicts our
assumption. If {�R(αn)} is bounded below (and bounded above by assumption), then
it also follows from Proposition 3.3 of [4] that dls(R, X) = ∞. As a result, there is a
sufficiently large constant N such that for each i ,

|τX (Ci ) − τR(Ci )| < N max{| log �R(Ci )|, 1}.


�
Now we can prove the following:

Theorem 6.3 If (R,P) is upper-bounded but does not satisfy Shiga’s property, then
(Tls(R), dls) is path-connected.

Proof Given any X = (�X (Ci ), τX (Ci )) in Tls(R) with dls(R, X) < 2K , we first
construct the point Y = (�Y (Ci ), τY (Ci )) as we did in Lemma 6.1. Then we have
�Y (Ci ) = �X (Ci ) and |τY (Ci ) − τR(Ci )| < 2K M for each Ci . By Theorem 6.2, we
also have

|τX (Ci ) − τY (Ci )| < N max{| log �R(Ci )|, 1},

if we choose N sufficiently large (depending on K , M).
Now we use the multi-twist deformation to construct a path in Tls(R) connecting

Y and X , by letting Yt = (�X (Ci ), (1 − t)τY (Ci ) + tτX (Ci )), 0 ≤ t ≤ 1. Theorem
6.2 shows that Yt lies in Tls(R).
Moreover, we can use the proof of Proposition 5.4 to prove that

dls(Ys, Yt ) ≤ (N + 2eK M)|s − t |
2C

.
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If we take the Teichmüller geodesic path from R to Y and then take the path
obtained by the multi-twist deformations from Y to X , then we get a continuous (in
fact, Lipschitz) path in Tls(R) connecting R and X . 
�
Šarić proved in [15] that if (R,P) is upper-bounded but does not satisfy Shiga’s

condition, then (Tls(R), dls) is contractible. This answers a question that was asked
in the first version of the present paper.
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