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ABSTRACT: Observed and projected climatic changes demand for robust assessments of climate impacts on various
environmental and anthropogenic systems. Empirical-statistical downscaling (ESD) methods coupled to output from climate
model projections are promising tools to assess impacts at regional to local scale. ESD methods correct for common model
deficiencies in accuracy (e.g. model biases) and scale (e.g. grid vs point scale). However, most ESD methods require long
observational time series at the target sites, and this often restricts robust impact assessments to a small number of sites.
This paper presents a method to generate robust climate model based scenarios for target sites with short and (or) sparse
observational data coverage. The approach is based on the well-established quantile mapping method and incorporates two
major steps: (1) climate model bias correction to the most representative station with long-term measurements and (2) spatial
transfer of bias-corrected model data to represent target site characteristics. Both steps are carried out using the quantile
mapping technique. The resulting output can serve as end user–tailored input for climate impact models. The method
allows for multivariate and multi-model ensemble scenarios and additionally enables to approximately reconstruct data for
non-measured periods. The method’s applicability is validated using (1) long-term weather stations across the topographically
and climatologically complex territory of Switzerland and (2) sparse data sets from Swiss permafrost research sites located
in challenging conditions at high altitudes. It is shown that the two-step approach performs well and offers attractive quality,
even for extreme target locations. Uncertainties, however, remain and primarily depend on (1) data availability and (2) the
considered variable. The two-step approach itself involves large uncertainties when applied to short reference data sets or
spatially heterogeneous variables (e.g. precipitation, wind speed). For temperature, results are promising even when using
very short calibration periods.

KEY WORDS climate impact assessment; climate change; regional climate models; projections; bias correction; statistical
downscaling

1. Introduction

Climate change and climate variability foster a growing
demand for sophisticated and robust climate impact assess-
ments that serve various research fields and decision mak-
ers (IPCC: Collins et al., 2013; Hartmann et al., 2013;
Kirtman et al., 2013). Such assessments are usually under-
taken using impact models that are driven by raw or statis-
tically post-processed output of climate model simulations
(e.g. Salzmann et al., 2007; Bosshard et al., 2011, 2013;
Scherler et al., 2013). Projections of future climatic condi-
tions primarily rely on output from global and regional cli-
mate model (GCM, RCM) ensembles (e.g. PRUDENCE:
Christensen and Christensen, 2007, CMIP3: Meehl et al.,
2007, ENSEMBLES: van der Linden and Mitchell, 2009,
NARCCAP: Mearns et al., 2009, CMIP5: Taylor et al.,
2011, EURO-CORDEX: Kotlarski et al., 2014) driven by
greenhouse gas emission scenarios. Even though climate
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models offer an attractive tool for regional to continental
assessments of climate change, the grid resolution of cur-
rent RCMs in the range of 10 to 50 km is still too coarse to
be directly applied in impact studies operating at regional
to local scale. This is particularly true for regions of com-
plex topography, where climatic variations over a climate
model gridbox can be large. In addition, climate model
simulations are subject to considerable biases and uncer-
tainties (e.g. Flato et al., 2013) originating from internal
variability, model and scenario uncertainties (Hawkins and
Sutton, 2009).
In order to bridge the gap between models and both

the desired scales (grid versus local scale) and accu-
racy (model biases), empirical-statistical downscaling
(ESD) methods are a promising tool to translate climate
model output to the local scale and in turn provide end
user–tailored climate scenarios (Fowler et al., 2007;
Maraun et al., 2010). The principle of ESD methods is to
reveal a statistical relationship between a climate model
simulation and observations for historical time periods.
These relations are then summarized into transfer func-
tions that are used to translate RCM (or GCM) projections

1

Published in 
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



to the local scale and to correct for certain aspects of
model biases.
Different ESD methods were systematically compared

in recent studies (Themeßl et al., 2011; Teutschbein and
Seibert, 2012; Räisänen and Räty, 2013; Räty et al.,
2014). Many of these studies identify quantile mapping
(in the following QM) as the best performing method in
cross-validation frameworks.
The basic principle of QM is to correct for errors in

the entire distributional behaviour of a model simula-
tion (Wood et al., 2004; Boé et al., 2007; Déqué, 2007).
In essence, the nth quantile of the model distribution is
translated into the nth quantile of the observed distribu-
tion, based on simulated and observed data in a reference
period. The distributional adjustment carried out during
QM implicitly corrects for both errors related to the dif-
ferent scales and systematic model biases.
Gudmundsson et al. (2012) compared different imple-

mentations of QM for daily precipitation data and found
that a nonparametric empirical approach outperforms dif-
ferent implementations relying on theoretical distribu-
tional assumptions. Gutjahr and Heinemann (2013) even
showed that an empirical formulation can outperform the-
oretical ones in terms of extreme precipitation (far tails of
the frequency distribution).
In the framework of climate scenarios, QM exhibits

numerous advantages. It enables to generate multivariate
and transient scenarios from climate model output. As
QM corrects for distributional errors, it is able to project
changes in mean and variance. It is also able to account
for changes in temporal variability and weather types,
provided that the considered climate model projects such
changes.
However, a number of open questions remain. For

instance, values that exceed (undershoot) the range
of values of the calibration period are not calibrated.
Furthermore, it is not a priori clear whether the spatial
and temporal covariance structure between different
local-scale measurements (e.g. a station network) is con-
served after application of QM (see also Maraun, 2013;
Keller et al., 2014; Wong et al., 2014). These problems,
along with an inflation of variance, occur particularly for
spatially heterogeneous variables such as precipitation
and when applying coarse model output in regions of
complex topography where subgrid-scale variability dif-
fers substantially from grid-scale variability (von Storch,
1999; Maraun, 2013). Maraun (2013) also showed that
trends can be distorted. It is also not fully understood
whether multivariate scenarios are physically consistent
as individual variables are usually treated separately. How-
ever, the work of Wilcke et al. (2013) indicates that the
inter-variable relation of an RCM simulation is conserved
by QM in terms of correlations between pairs of variables.
Moreover, impact-relevant indices such as multi-day pre-
cipitation statistics might not be represented as precisely as
single-day statistics after QM (Addor and Seibert, 2014).
Independent of the applied method, all ESD approaches

rely on a stationary statistical relationship between
observations and climate model output. This prerequisite

requires a calibration using long-term data records, which
constrains the proper application of ESD approaches to a
limited number of sites for which sufficiently long time
series are available (e.g. a period of 30 years). Especially
in a climate scenario context, where observations are
linked to a free-running GCM or a GCM-driven RCM
experiment, it is inevitable to consider a long period for
calibration. This is because observations and models
are afflicted by inter-annual and decadal variability that
may yield anomalously warm and cold (or wet and dry,
etc.) periods. Considering a GCM-driven climate sim-
ulation, the modelled temporal variability (day-to-day,
year-to-year) is independent from observed variability and
only long-term time-integrating statistics can be expected
to match. In such a setting, a calibration using only few
years of data will result in a non-representative transfer
function. In a GCM-RCM coupled climate scenario frame-
work, a robust applicability of ESD approaches is therefore
limited to stations (data sets) with long-term measure-
ments where non-synchronous phases of inter-annual to
decadal variability cancel each other over time.
Stations that come into consideration when targeting

long data sets are usually maintained and operationally
run by national weather services. In the meantime, obser-
vations from various research sites situated along sensitive
environments become increasingly available. However,
a majority of these research-site observations are not
suitable for a direct application of ESD approaches, due
to short data coverage and proneness to missing values.
Also, these measurements are typically not available at
a quality comparable with those from national weather
services, for instance because of difficult access in the
case of high-altitude sites. Yet, these are often the loca-
tions that are targeted by climate impact assessments.
Providing robust climate scenarios for such sites poses a
special challenge and up to now includes particularly large
uncertainties. It is exactly here where our approach tries
to add important value. We present a methodology for the
generation of climate scenarios specifically designed for
sites with short and sparse data coverage. The proposed
method includes (1) the systematic correction of model
biases and (2) an adequate representation of local-scale
conditions. It is based on the well-established QM method
and is designed for an application in alpine environments
but versatile in its applicability for other environments.
The method also enables an approximate reconstruction
of meteorological conditions during unobserved periods.
The paper is structured as follows. First, we introduce the

data used and explain the employed methods and proposed
two-step procedure. Then, we present a validation of the
method and follow up with an exemplary climate scenario
application in a high-alpine environment. The paper is
finalized with a conclusion.

2. Data

Observed and modelled data at daily resolution are
used. Eight variables with daily resolution are taken
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into account, which are typically of major interest for
impacts research, namely: mean (tas), minimum (tasmin;
Figure S1, Supporting Information) and maximum (tas-
max; Figure S2) 2m temperature, precipitation sum (pr),
mean relative humidity (hurs; Figure S3), mean wind
speed (wss; Figure S4), maximum wind gusts (wsgsmax;
Figure S5) and mean global radiation (rsds; Figure S6).

2.1. Observations

We use observational data from three sources, of which
two are available at the site scale and one on a regular grid.
Long-term (1981–2013), daily multivariate observations
from a network of 44 stations operated by the Swiss
national weather service MeteoSwiss (MCH) are used as
reference for a systematic downscaling and bias correction
of climate model output and for the evaluation of the
presented procedure.
Additionally, multivariate observations from 12 per-

mafrost research sites are used (further on referred to as
TEMPS sites according to the framing research project
The Evolution of Mountain Permafrost in Switzerland).
These sites represent target sites for the generated cli-
mate scenarios in a prototype study. The locations of the
MCH stations and the TEMPS sites are shown in Figure 1.
In general, measurements from the TEMPS sites cover
only short time periods of a few years, usually covering
some fraction of the 1995–2013 period. Moreover, pre-
cipitation measurements are not available for these sites
and meteorological time series typically contain missing
values.
We also employ gridded analyses at daily resolution

with a spatial resolution of 2 km for the variables tempera-
ture (Frei, 2014) and precipitation (RhiresD; MeteoSwiss,
2014), which are typically based on 80 and 450 station
observations, respectively, over Switzerland. The precip-
itation analysis is used as a proxy for the missing precip-
itation measurements at the TEMPS sites for the period
1981–2010 using values from the 2 km gridbox within
which a site is located.
It is important to mention that, particularly for precip-

itation and in complex topography, the use of gridded
analyses implies significant limitations. The statistical pro-
cedures underlying RhiresD and the jump from grid to
station scale imply major uncertainties. In effect, daily
precipitation intensities are smoothed towards smaller
(larger) values at locations and on days with actually large
(small) event intensities. The precipitation analysis has
an effective resolution of 15–20 km. The highly variable
Alpine precipitation patterns cannot fully be represented,
and localized heavy events (e.g. thunderstorms) might be
missed completely, as not captured by the underlying sta-
tion network. Also, temporal trends in the gridded analyses
can be distorted, as the set of stations used to construct the
analysis is not stationary in time.

2.2. Regional climate model data

In a case study (Section 5.), we employ an ensemble of
14 regional climate model (RCM) simulations from the

EU-ENSEMBLES project (van der Linden and Mitchell,
2009). All models provide data at a horizontal resolution
of 0.22∘ (25 km, see Figure 1), are driven by the IPCC
SRES A1B greenhouse gas emission scenario (Nakicen-
ovic and Swart, 2000) and consist of a combination of nine
RCMs nested into seven different GCMs (see Table 1). The
GCM-RCM matrix samples a large range of model uncer-
tainties and thus offers a comprehensive range of possible
future estimates.

3. Methods

3.1. Standard QM

We apply a nonparametric empirical implementation of
the well-established QM technique, with a time-dependent
correction function calibrated for each day of the year
(DOY) using a 91-day moving window centred over the
considered day. Our implementation follows previous
works by Themeßl et al. (2011, 2012) and Wilcke et al.
(2013), where a raw climate model time series X at time (t)
and location (s) is corrected to a time series Y according to

Yt,s = ecdf obs,cal
−1

DOY ,s

[
ecdf mod,cal

DOY ,s

(
Xt,s

)]
(1)

Where ecdf is the empirical cumulative distribution func-
tion, obs denotes observations and mod raw model output
both in a calibration period (cal, e.g. 1981–2010).
X, mod, respectively, can also be a time series from

another station, as is the case in the second step of the
proposed approach (S2, Figure 4, Section 3.2.1. – spatial
transfer).
One important drawback of QM is that it calibrates only

for the range of observed and simulated values within
the calibration period. In the current study, values that lie
outside the calibrated range (new extremes) are corrected
according to the largest (99th), respectively lowest (1st),
quantile that has been calibrated for (Themeßl et al., 2012).
Under warming conditions, this raises particular con-

cerns regarding temperature, as future values increasingly
exceed the range of observed values in historical time
periods. To project such changes as robust as possible,
we choose a moving window width of 91 days to sam-
ple data for a correction function, arguing that, in con-
trast to smaller windowwidths (e.g. 31-day), new extremes
occur less often and sampling uncertainty is reduced.
However, the loss of information regarding the annual
cycle that increasingly dominates the specification of an
ecdf for larger window widths should not be disregarded.
For instance, using a time-independent implementation
(365-day window) for temperature will yield a correction
function in which lower (upper) quantiles are defined by
days in winter (summer) and would not be representa-
tive for the different systematic biases seen throughout the
cycle of the year.
Here, we promote the implementation of a 91-day win-

dow, motivated by results shown in Figure 2. The results
are based on all 44 MCH stations (Figure 1) and the simu-
lation of maximum daily temperature of the HadRM3Q16
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Figure 1. Location of the used MCH weather stations (44, circles in the left panel) and location of exemplary mountain permafrost research sites

(12, triangles in the left panel). The left panel depicts high-resolution topography and the right panel the respective topography as presented in the

ETH-HadCM3Q0 RCM run by ETH Zurich (Table 1) at a horizontal resolution of 25 km. The right panel shows only the observational sites that are

of particular relevance for the paper.

Table 1. Regional climate models used.

Abbreviation Institute RCM GCM Emission scenario

SMHI-BCM SMHI RCA BCM IPCC SRES A1B
ETHZ-HadCM3Q0 ETH Zurich CLM HadCM3Q0
HC-HadCM3Q0 Met Office (Hadley Centre) HadRM3Q0
C4I-HadCM3Q16 C4I RCA3 HadCM3Q16
HC-HadCM3Q16 Met Office (Hadley Centre) HadRM3Q16
SMHI-HadCM3Q3 SMHI RCA HadCM3Q3
HC-HadCM3Q3 Met Office (Hadley Centre) HadRM3Q3
MPI-ECHAM5 MPI REMO ECHAM5
DMI-ECHAM5 DMI HIRHAM
KNMI-ECHAM5 KNMI RACMO
SMHI-ECHAM5 SMHI RCA
ICTP-ECHAM5 ICTP REGCM3
CNRM-ARPEGE CNRM ALADIN ARPEGE
DMI-ARPEGE DMI HIRHAM

RCM. It depicts at annual and seasonal (winter, DJF; sum-

mer, JJA) scale the projected values of the median correc-

tion factor (quantile) used (upper row, a, b and c; in the fol-

lowing QMED), and the fraction of correction terms used

from the far tail of the present day frequency distribution

(>95th percentile; bottom row, d, e and f; in the following

F95). For both indices, distinct changes take place dur-

ing the 21st century, indicated by an increase of QMED

towards larger quantiles and a proportionally larger frac-

tion of correction factors drawn from upper percentiles

for all implementations (31-day, 91-day and 365-day mov-

ing window widths) and all seasons (year, summer, win-

ter). It is obvious that a 91-day window shows smaller

changes than the 31-day window, particularly for F95.

We argue that the 91-day implementation shows less sen-

sitivity to yield correction factors drawn from high per-

centiles of the calibration period. Moreover, Figure 2 indi-

cates the necessity of using a time-dependent implementa-

tion, as correction factors in summer (winter) are sampled

from higher (lower) quantiles exclusively when using a
time-independent implementation (365-day). The 91-day
window seems to be an optimal compromise, especially
for variables that feature an annual cycle.
The results are supported by a validation shown by Räty

et al. (2014) who also recommend a calibration focusing
on seasonal (91-day), instead of monthly (∼31-day), trans-
fer functions.

3.2. The necessity of climatological-scale calibration

Short and sparse observations reduce the robustness
and limit the applicability of ESD techniques coupled
to climate model projections (Section 1.). We illustrate
this by a simple example presented along Figure 3. It
depicts time series of the differences in annual mean
temperature between the summit station Pilatus and
(1) another proximate mountain station (Säntis, black,
located about 88.4 km to the East of Pilatus) and (2) the
GCM-RCM chain output (grey) from the corresponding
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Figure 2. Temporal stability/stationarity of correction functions for 31-day (red), 91-day (green) and 365-day (blue) moving windows used for

calibration at day of year basis in period 1981–2012. Correction is undertaken for the variable daily temperature maximum as simulated by the

HadRM3Q16 RCM (Table 1). The upper panel presents the median quantile used for correction in a moving window of 30 years. The lower panel

presents the fraction of days that are corrected using correction factors drawn from quantiles larger than the 95th percentile with respect to the

calibration period (1981–2012). Shading denotes the entire range of outcomes from the 44 stations and lines the mean across all stations.

Figure 3. Illustration of annual mean differences between MCH sta-

tion Pilatus and MCH station Saentis (black) and the ETH-HadCM3Q0

Regional Climate Model simulation for the gridbox located over the sta-

tion Pilatus (grey). Temperature differences are expressed as the yearly

differences subtracted by the mean difference in period 1981–2012.

model gridbox in which Pilatus is located. The small
variability of the temperature difference between Säntis
and Pilatus indicates a stationary interrelation and, most of
all, a matching year-to-year correspondence. Obviously,
there is no such stationary relationship and no year-to-year
correspondence between the (free-running) GCM-RCM
output and the observations at Pilatus. Therefore, one
would ideally use as many years as possible to adequately
describe and interpret systematic biases between the two
series. That is, ESD calibration would have to be carried
out on climatological time scales (>20 years). In contrast,
there is a clear relation between the neighbouring stations
Säntis and Pilatus and only a few years would apparently
be enough to characterize systematic differences between
both series.

3.2.1. Two-step bias correction approach

To overcome the elaborated limitations, we propose a tech-
nique to generate robust climate scenarios at target sites

with only short or sparse observational data coverage. The
technique essentially consists of a two-step QM procedure
(i.e. QM is applied twice) summarized in Figure 4 and
described in the following.

First step (S1): climate model bias correction and down-
scaling: Climate model projections are bias corrected to
match observations at operational weather stations with
long-term observational records (e.g. MCH stations using
the calibration period 1981–2010). Bias correction is done
viaQM (Section 3.1., Equation (1)) and implicitly incorpo-
rates the downscaling from the grid to the local scale. The
calibration of a QM transfer function is undertaken using
long-term observational measurements aiming to remove
systematic biases.

Second step (S2): spatial transfer: The bias-corrected
climate scenarios are spatially transferred from amost rep-
resentative station (anMRS, i.e. anMCH station for which
bias-corrected scenarios are available after S1) to the spe-
cific target site (i.e. a TEMPS site). The spatial transfer
is also undertaken using the QM technique (Section 3.1.,
Equation (1) with the target station representing obs and
the MRS mod). The QM correction function used to spa-
tially transfer the bias-corrected time series of an MRS
to the target site is based on pairwise daily observations
at both locations during the overlapping measurement
period. The observations do not have to be contiguous.
S2 assures that the generated series for the target site has
characteristics representative for local-scale conditions at
this site.

The proposed two-step procedure is implemented in
a multivariate framework, in which each variable is
treated separately. The MRS from which data are spatially
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Figure 4. Schematic of the two-step bias correction approach.

transferred to the target site is objectively selected from a
network of surrounding stations.
Concerning S2, it should be sufficient to use only few

years for calibration between the MRS and a target site,
as the interrelation and character of the difference between
two similar and proximate locations should be stationary in
time (see also Figures 3 and 7 and Section 4.1.). To assure
this stationarity assumption also under changing climatic
conditions and potential changes in flow regimes (e.g.
altered frequencies of weather types), the MRS should be
in appropriate proximity to the target site or at least within
the same climatic region.

3.2.2. Objective selection of a most representative
station (MRS)

In our approach, the selection of an MRS for a specific
TEMPS target site is based on a combined correlation
analysis using observed values at daily resolution for the
two key variables mean temperature and precipitation.
The time series of both variables at a target site are sys-
tematically compared to synchronous measurements from
stations within a surrounding long-term observational net-
work (here: the MCH stations). The similarities with the
available set of MCH stations are quantified for each vari-
able separately and are finally combined for the selection
of an MRS. The station network should ideally surround
the target site in close proximity (horizontal distance) and
topographic height (vertical distance), and ideally sample
characteristic climatic conditions. As a result, the network
should possess stations with reasonably large correlations
to avoid a misleading selection.
Correlation coefficients form the backbone of our pro-

posed objective selection procedure for various reasons.
Correlation is a measure of similarity that is independent
of biases in mean or variance but explicitly addresses
similarities in the temporal structure, namely the daily
correspondence of the respective time series. Further, QM
as envisaged bias correction approach implicitly corrects
for errors in mean and variance, but not for errors in
the daily correspondence. Therefore, errors in the daily
correspondence between an MRS and a target site should
be as small as possible.
We consider the Pearson correlation coefficient for tem-

perature. The Spearman rank correlation coefficient is

applied for precipitation, as this variable is not normally
distributed and dry days occur. For a given TEMPS site,
the analysis reveals for each MCH station (s) and for each
variable (v) a correlation coefficient rv,s. For each variable,
a set of correlation coefficients from all considered MCH
stations is summarized in a vector rv. In the next step, each
element rv,s is normalized according to

nv,s =
(
rv,s– min

(
rv
))

∕max
(
rv −min

(
rv
))

(2)

Thus, the station (s) showing the largest (smallest) corre-
lation of variable (v) is assigned the value 1 (0). The station
with the largest correlation (nv,s = 1) is equivalent to being
the most representative station for variable v. If a set of
considered stations possesses numerous large values, nor-
malization will inflate the spread within a set of rv. It also
accentuates effects that, to some extent, can be attributed
to the correspondence at the daily timescale rather than the
annual cycle, which may contribute to larger absolute val-
ues for variables with an annual cycle.
The MRS is then finally selected based on the highest

rank within a combined measure, where normalized cor-
relation coefficients for the two considered variables tem-
perature and precipitation are added up to a final score (F)
for each station (s), according to

Fs =
[(

wpr × npr,s

)
+

(
wtas × ntas,s

)]
∕

(
wpr + wtas

)
(3)

where wpr (wtas) is a weighting term for the respective
variable. Here, we apply the same weights for both vari-
ables. Depending on the importance of a variable for a
specific end user application, one could alternatively apply
different weights, or include merely a single variable, or
even include additional variables. The station that yields
the highest value F is referred to as the MRS for a given
(TEMPS) target site. In this context, it is compulsive to
define one single MRS station for all considered variables.
Even though some stations may indicate better agreement
for individual variables, it is not recommended to choose
different stations for different variables, because this may
lead to physical inconsistencies.
The objective selection can also be undertaken using

another reasonable selection method. Actually, data inter-
polation (e.g. Alexander et al., 2006; Donat et al., 2013)
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and assimilation approaches in numerical weather predic-
tion operate with similar procedures that account for the
spatial correlation structure.
We here stick to the presented selection procedure, as

it is easy to implement and produces meaningful results.
Moreover, if correlation is large, this indicates a reasonable
temporal correspondence of quantiles and hence offers an
attractive foundation to spatially transfer data from one
location to another using the QM approach.

3.2.3. Approximate reconstruction of meteorological
conditions

The proposed method additionally offers the possibil-
ity to approximately reconstruct observational data for
non-measured periods. This enables, for instance, a more
robust calibration of impact models.
Instead of transferring bias-corrected climate model

data, observations from the MRS for a specific target
site can be used within the spatial transfer approach (S2,
Figure 4) using QM. The reconstruction period is thus con-
strained by the availability of data at the MRS. Further, the
accuracy of the reconstructed data depends on the consid-
ered variable and temporal resolution. In this respect, it is
to be noted that the evaluation presented in Section 4.2.
implicitly validates the reconstruction performance.

3.3. Validation framework

For evaluating the second step (S2) of the two-step QM
approach, i.e. the spatial transfer from anMRS to the target
site, three different validation strategies are considered
and applied to daily data of exemplary station pairs in
the period 1981–2012. We do not validate the first step
(S1, Figure 4) of the approach, on account of the existing
literature that demonstrates the ability and skill of QM in
correcting climate model biases at the local scale (Section
1.). A brief description of the used validation techniques,
followed by a short explanation of the employed skill
measures, is given in the following.
Leave-one-out approach (LOOA): Individual predic-

tions for every single year out of the set of 32 years are
validated separately with calibration based on the remain-
ing 31 years. This results in 32 independent evaluations
from which the average skill is derived.
Split sample approach (SSA): The period 1981–2012 is

split into quarters, with the first three quarters (24 years,
1981–2004) used for calibration and the last quarter
(8 years, 2005–2012) used for validation. As Figure 8
shows, this approach also evaluates whether the method is
able to account for long-term trends; the observed trend in
temperature induces a warmer validation than calibration
period.
Limited data approach (LDA): Similar to the SSA, the

series is split into the periods 1981–2004 and 2005–2012,
with the first period used for calibration and the second
for validation. Within the period 1981–2004, different
calibration period lengths are tested, starting with 1 and
steadily increasing to 23 years with an increment of 1.
By random combination of years, 24 different predictions

(calibrations) for each length are validated against observa-
tions for the period 2005–2012. For instance, if the length
is 3, one realization could consist of the years 1982, 1999,
and 2003. The purpose is to simulate both a lack of data
availability by using different sample sizes and to quantify
uncertainties by using different combinations of calibra-
tion years.

3.3.1. Skill scores

The validation focuses on a set of different skill scores.
For all scores, Xpred (or Xobs) is defined as a daily time
series of predicted (observed) values in a validation period.
Bias describes the simple offset between a predicted and
observed time series defined as

Bias = Xpred − Xobs (4a)

where X is the mean value over the validation period. For
precipitation, we apply a fractional bias

Bias =
Xpred

Xobs

(4b)

Correlation coefficients (r) are employed to assess the
temporal correspondence between predicted and observed
values at daily resolution. r is defined as

r =
cov

(
Xpred,Xobs

)
𝜎
(
Xpred

)
𝜎
(
Xobs

) (5)

where 𝜎 is the standard deviation and cov the covariance.
Depending on the considered variable, we apply either
the Pearson correlation or the Spearman rank correlation
coefficients.
The Perkins score (PS, Perkins et al., 2007) quantifies

the distributional agreement between two data sets based
on their distributional overlap in terms of common bins
between predicted and observed probability density func-
tions (histograms). It is defined as

PS =
n∑

i=1

min
(
hpred (n) , hobs (n)

)
(6)

where hpred or hobs is the normalized frequency of predicted
(observed) values within a bin (n). Perfect distributional
agreement will yield a value of 1; no overlap of the
distributions will result in a value of 0. PS is sensitive to
the choice of the bin size. We apply a bin size of 1K for
temperature and 1mm/d for precipitation (1% for hurs,
1W/m2 for rsds, 0.1m/s for wind speed).
The mean absolute error (MAE) addresses the mean

absolute daily offset between prediction and observation
in a validation period.

MAE = 1

n

n∑
i=1

|||Xpred − Xobs
||| (7)

While bias (Equations (4a) and (4b)) and PS
(Equation (6)) focus on time-integrating characteris-
tics and r (Equation (5)) and MAE (Equation (7)) address
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Figure 5. Visualization of the objective selection of the most representative station (MRS) for the example station PIL (Pilatus) using 43 stations

and the 2 km observational grid by MCH in period 1981–2012. Left panel shows normalized Pearson correlation for daily mean 2-m temperature,

middle panel normalized Spearman rank correlation for the daily precipitation sum and the right panel the combination of normalized temperature

and precipitation correlations (see also Equation (3)). Dark green colouring denotes values larger than 0.9 and hence usability for generating data at

the site PIL.

similarities in the daily correspondence and may show
markedly weaker skill than time-integrating measures.
Furthermore, impact-relevant validation scores are

included for mean temperature and precipitation. For
precipitation, we define the fractional bias (Equation (4b))
in the wet day frequency (frepred/freobs) and the 95th

percentile of all-day precipitation (q95pred/q95obs). For
temperature, we use the fractional bias (Equation (4b))
of the freezing degree-day sum (FDDpred/FDDobs), where
FDD is the sum of negative daily mean temperatures.

4. Evaluation of approach

We evaluate the two-step approach in a multivariate frame-
work and focus on the second step exclusively (Section 3.2.
and Fig. 4, S2).
For the evaluation of S2, we chose the station Pila-

tus (PIL, 2106m) of the MCH network as an exemplary
target site and use observations at the MRS instead of
bias-corrected model data in order to validate the spatial
transfer. That is, our validation strategy evaluates the abil-
ity of reconstructing data at target sites (Section 3.2.3.).
Choosing PIL as a target site is motivated by its centred

position within the measurement network of MCH and its
challenging location at high altitude in the alpine foothills.
Indeed, many sites that aim for robust scenarios also
possess similarly challenging locations.
We first illustrate the selection of an MRS for PIL and

continue by validating the spatial transfer (S2) from the
foundMRS Säntis (SAE) to the target site PIL. In addition,
results for the transfer from the closest station Lucerne
(LUZ) to PIL are shown.

4.1. Selection of a most representative station

The objective selection (Section 3.2.2.) is carried out for
PIL based on daily temperature and precipitation obser-
vations from 43 surrounding MCH stations in the period
1981–2012. Additionally, we use daily-gridded observa-
tions of temperature and precipitation provided at a 2 km

grid for the entire domain of Switzerland for the period
1981–2010 (Frei, 2014). The gridded data are used to
illustrate the spatial specification of representative areas
and to highlight all facets of the Swiss climate.
Figure 5 depicts the spatial distribution of normalized

correlation values for daily mean temperature (left panel),
daily precipitation sum (middle panel) and a combination
of both according to Equation (3) (right panel). The lat-
ter illustrates the criterion on which the objective selec-
tion is based to find representative conditions. In addition,
Figure 6 offers a more detailed analysis with normalized
and absolute correlation values as a function of the hori-
zontal (left column) and vertical distance (right column)
to the target site.
For daily mean temperature (Fig. 5 (left) and Fig. 6a

and b), the results show a distinct representativeness for
the target site at stations and in areas (grid cells) that
are at similar elevation or located at similar topographical
settings (mountain ridges situated in the northern Alpine
region). The closest station LUZ, which is located in the
lower foothills of PIL, shows weaker skill than a majority
of stations from the analysed network, which are more
distant but show a smaller elevation difference. This is
primarily attributable to weather types that regularly invert
or lower elevation-dependent temperature gradients (e.g.
inversions). The annual cycle clearly dominates a large
fraction of the daily temperature correlation (large absolute
correlation values at right x-axis labelling in Fig. 6a and b).
The results for daily precipitation (Fig. 5 (middle) and

Fig. 6c and d) indicate a much stronger relation between
representativeness and proximity to the target site. More-
over, the location in a similar climatic region has a major
influence on the degree of similarity. In Switzerland, the
specification of similar climatic regions is largely governed
by topography, the distribution of mountain ridges and the
orientation towards atmospheric flow. In the example pre-
sented for PIL, the closest station (LUZ) is most corre-
lated in terms of precipitation. In contrast to temperature,
precipitation similarities are not governed by elevation.
Areas in close proximity and in similar orientation towards
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Figure 6. Detailed analysis of objective selection procedure. The left column depicts results in dependence of the distance to the exemplary target

site PIL and the right panel results in dependence of elevation difference with respect to PIL. The top row depicts results for temperature, the middle

row for precipitation and the bottom row the combined results. The closest (LUZ) and the most similar (SAE) stations are marked in red. The analysis

is based on daily values in period 1981–2012.

westerly (moist) atmospheric flow show the largest corre-
lations. This kind of analysis comprises large uncertain-
ties in summer in which daily precipitation occurrence can
be highly localized due to the mostly convective type of
precipitation.
Figure 5 (right) shows the spatial patterns of represen-

tativeness based on the combination of temperature and

precipitation (Equation (3)). The station (grid cells) with
the largest value(s) is (are) selected as the most represen-
tative station (grid cells) for the target site. Ultimately, the
selection based on a mixture of similarity in temperature
and precipitation finds a station within a similar altitudinal
setting (vertical difference), which is not too distant (hor-
izontal distance). In this particular example, the station
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Figure 7. Temporal stability and multivariate analysis of correlations between target site PIL and the most similar (SAE, blue) and the closest station

(LUZ, red). x-axis tick marks denote the analysed period, whereas ‘complete’ represents the 32-year period 1981–2012 and all the other bars 5-year

periods, respectively.

SAE is found to be the MRS for the exemplary target site
PIL. The horizontal distance of SAE to PIL is 88.4 km and
the vertical difference is +396m. The proposed selection
procedure is well supported by results of an analysis that
groups similar stations from the MCH network (Begert,
2008).
In Figure 7, we provide additional information on the

correlation between PIL and both the most similar sta-
tion SAE and the closest station LUZ. Information on
the temporal stability of the found inter-station relations
is provided for eight variables. Statements are based on
results from consecutive blocks of 5 years in the period
1981–2012. The results indicate that multivariate station
interrelations found in a short period of 5 years are sta-
tionary and virtually equal to the results based on an
inter-comparison using 32 years of data (‘complete’). This
indicates that only few years of pairwise data are sufficient
to characterize long-term inter-station relations in an ade-
quate manner.
Figure 7 also indicates that the MRS (SAE) exhibits

more similar conditions for all parameters except pre-
cipitation when compared with the closest station LUZ.
In terms of mean wind speed, no relationship between
PIL and both sites of comparison can be found. This
can be attributed to the spatially highly complex spec-
ification of wind speed, predominantly governed by
topography and local effects that in turn drive the asso-
ciated thermodynamic processes and channelling effects.
As maximum wind speed is governed by the weather

situation, inter-station similarities can be found for daily
maximum wind gusts, with better agreement between the
two high-altitude sites SAE and PIL. Relative humidity
shows very large correlation between SAE and PIL and,
in contrast, no relation between LUZ and PIL.

4.2. Spatial transfer

We validate the performance of the spatial transfer to the
selected target site PIL (2106m) for eight variables in a
comparative manner from the closest station LUZ (454m,
6.7 km distance, 1652m elevation difference) and theMRS
SAE. We focus on the period 1981–2012 (Figure 8) and
discuss the results for mean temperature and precipitation
in detail, but provide figures for the remaining six variables
in the supplementary material.

4.2.1. Temperature

For daily mean temperature, presented in Figure 9, the
transfer from SAE to PIL distinctly outperforms the
transfer from LUZ. This is true for virtually all cases and
validation strategies. The spread between different realiza-
tions (number of years) of the limited data approach (LDA)
and hence the uncertainties are also distinctly smaller when
transferring data from SAE, instead of LUZ, to PIL. While
the outcomes for time-integrating measures (bias and PS)
are reasonably good for both stations, even for small
sample sizes, clear differences can be seen in the other
three measures that depend on the daily correspondence.
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Figure 8. Evolution of annual mean temperature (left column) and annual mean daily precipitation and wet day intensity (right column) in the

calibration period 1981–2012 at the exemplary target site PIL (top row), the most similar station SAE (middle row) and the closest station LUZ

(bottom row). Horizontal continuous lines depict time slice average values for the first three quarters and the last quarter of the period. Vertical

horizontal lines separate the last from the three preceding quarters as they are used for validation and calibration in methods (b) and (c). Stippled red

lines indicate linear trends.

The MAE is systematically larger for LUZ (>2.5 ∘C) and
the differences can be more than five to six times larger
than those for SAE (∼0.5 ∘C). Results are remarkable for
SAE as the MAE amounts to only approximately 0.5 ∘C
even when using only very few years. The spatial transfer
from SAE to PIL shows very good skill for the index FDD,
which is very well reproduced with only few years of data
used for calibration. In contrast, the transfer from LUZ
to PIL shows an extraordinary weak skill for FDD and
an overestimation of up to 20% even for long calibration
periods (>20 years). Throughout all validation strategies
and skill scores, it is obvious that a better skill is achieved
when transferring data from SAE to PIL. In general, a
spatial transfer from SAE to PIL based on only few years
outperformsmost long-term calibrations fromLUZ to PIL.

4.2.2. Precipitation

Figure 10 depicts the validation for precipitation. In con-
trast to mean temperature, better skill can be found for
the transfer from the closest station LUZ. However, dif-
ferences between SAE and LUZ are not as distinct as for
temperature and uncertainties are considerably larger for
both stations. For SAE and LUZ, the length of a calibration

period should preferably be long, as uncertainties and
biases from actually observed values remain large, even
for increasing calibration period lengths.
The evaluation shows similar skill for time-integrating

measures (bias, PS, fre) for both stations, but larger uncer-
tainty for SAE. For instance, only one year of calibration
using SAE can potentially result in an overestimation
(underestimation) of precipitation by 65% (−25%). For
LUZ, the respective number is 30% (−25%). For wet day
frequency, both stations show very good skill. Even when
considering a small sample size, the number of rainy
days is captured very well. Skill measures that focus on
the daily agreement between prediction and observation
consistently show better skill for LUZ, which is an impli-
cation of its proximity to the target site. An improvement
for long calibration periods, however, is not clearly visible
and uncertainties remain large.
Obviously, precipitation is the variable associated with

the largest uncertainties and the weakest skill in the frame-
work of matching observations at a potential target site.
Owing to the large spatial and temporal variability of
daily precipitation, it surely is the most critical variable
within the presented approach (Fig. 4, S2). However, in
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Figure 9. Validation of spatial transfer of daily 2-m temperature based on quantile mapping from stations SAE (most similar, blue) and LUZ (closest,

red) to the target site PIL. The x-axis denotes different validation techniques (Section 3.3.). LDA (limited data approach) with the number of

considered years for calibration (#years) increasing from left (one) to right (23). The boxplots indicate the range of 24 re-sampling estimates.

SSA (split sample approach) and LOOA (leave-one-out approach). The individual panels present different validation scores (Section 3.3.1.): (a) bias,

(b) correlation, (c) Perkins score, (d) mean absolute error and (e) ratio of predicted and observed freezing degree-day sum. For all approaches and

scores, the calibration period is 1981–2004 and the validation period is 2005–2012.

a climate scenario context, the exact match of the daily
correspondence (represented by r, MAE) between two
sites is not important compared to the ability to match
time-integrated characteristics (represented by bias, fre,
q95, PS). Nonetheless, the results indicate clear draw-
backs with respect to data reconstruction. The associated
uncertainties are large at the daily timescale, but decrease
when considering monthly, seasonal or annual values (not
shown).

5. Application of the approach to a high-altitude
permafrost research site

We exemplify some results from an end user–tailored
application based on the presented two-step approach.
Results are shown for the site Schilthorn, which is one
of the 12 TEMPS sites (Fig. 1). Within the framework of
the present study, scenarios have been generated for all of
the 12 sites and will contribute to a follow-up study that
investigates the future evolution of mountain permafrost
in Switzerland.
The site Schilthorn is situated at 2913m and measure-

ments consist of almost 14 years of data in the period
1999–2013. Depending on the variable, missing values
occur frequently. For temperature, humidity and radiation
∼12% missing values are found, for mean wind speed

∼28% and for daily maximum wind gusts ∼89%. Precip-
itation observations for the period 1981–2010 are taken
from the 2 km grid cell of the observational RhiresD (see
section 2) grid located over Schilthorn. Related uncertain-
ties, discussed in Section 2, should be carefully taken into
account.
Previous studies focusing on the Schilthorn site have

addressed the sensitivity of permafrost to climate (Marmy
et al., 2013), and the 21st century evolution of permafrost
using statistically downscaled climate model projec-
tions (Scherler et al., 2013). Scherler et al. (2013) used
elevation-corrected, delta-change-based (Bosshard et al.,
2011; CH2011, 2011) scenarios from the MCH station
Interlaken (577m, 12 km distance).

5.1. Most representative MCH station

The objective selection of the most representative opera-
tional long-termMCH station for the target site Schilthorn
is presented in Figure 11. Results are shown in a sim-
ilar manner as in Figure 5. For temperature, stations
at a similar topographical situation appear most repre-
sentative for Schilthorn. It is noticeable that the station
Weissfluhjoch (WFJ, 152.9 km distance, 223m elevation
difference) shows the largest association, followed by
other high-elevation stations. In terms of precipitation, sta-
tions within proximity and the same climatological region
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Figure 10. Validation of spatial transfer of daily precipitation sum based on quantile mapping from stations SAE (most similar, blue) and LUZ

(closest, red) to the target site PIL. The x-axis denotes different validation techniques (Section 3.3.). LDA (limited data approach) with the number

of considered years for calibration (#years) increasing from left (one) to right (23). The boxplots indicate the range of 24 re-sampling estimates. SSA

(split sample approach) and LOOA (leave-one-out approach). The individual panels panel present different validation scores (Section 3.3.1.): (a)

bias, (b) correlation, (c) Perkins score, (d) mean absolute error, (e) ratio of predicted and observed wet day frequency and (f) ratio of predicted and

observed 95th percentile of precipitation (wet and dry days). For all approaches and scores, the calibration period is 1981–2004 and the validation

period is 2005–2012.

appear most representative and the nearby station Inter-
laken (12 km) reveals most similar observations. The com-
bination of both (Equation (3)) yields Pilatus (PIL) as the
MRS for Schilthorn. The station PIL is at a distance of
56.8 km from Schilthorn, at 2106m elevation and is ranked
5th (out of 43) in terms of temperature and 4th (out of 43)
in terms of daily precipitation similarities. Both, PIL and
Schilthorn represent mountain peak locations along the
northwestern Alpine slopes.

5.2. Climate scenarios

5.2.1. Temperature

Multi-model ensemble projections of impact-relevant tem-
perature indices for the period 1960–2099 are presented
in Figure 12, which depicts the ensemble spread and
also highlights one individual bias-corrected RCM sim-
ulation (ETH-HadCM3Q0). In addition, observed values
at the target site are shown. The ensemble spread is an
approximate estimate of model uncertainty, highlighting
the importance of using several instead of only one single
ensemble member in impact studies. For instance, mean
temperature (Fig. 12a) is projected to lie within a range
between −1.3 ∘C and +2.4 ∘C in the period 2080–2099.
As a consequence of warming, all indices experience
distinct trends in the course of the 21st century, except
for frost transition days (tasmin< 0 ∘C & tasmax> 0 ∘C).

Referring to 20-year-average best estimates and compar-
ing the period 2080–2099 (2040–2059) with 1990–2009,
the annual mean temperatures are projected to rise by
3.0∘ (1.5∘) from −2.8 ∘C to 0.2 ∘C (−1.3 ∘C). The freez-
ing degree-day sum reduces by −40% (−22%). While the
number of days with frost transitions is not projected to
change, the number of ice days (tasmax< 0 ∘C) reduces
from 174 to 130 (151) at the expense of ice-free days (tas-
min> 0 ∘C), which increase from 80 to 131 (107) days
per year. Regarding extremes, subjectively defined for
Schilthorn as a day with tasmax> 15 ∘C, which, at present
conditions (1990–2009) appears once every three years, a
massive increase to a number of 14 (4) days per year is
projected.
It is noticeable, that all the present-day observations lie

within the range of model simulations for present-day con-
ditions. This proves that the approach produces reason-
able estimates at the local scale, even for impact-relevant
indices.

5.2.2. Precipitation

Projections of seasonal precipitation characteristics are
visualized in Figure 13. At seasonal scale, the figure
presents changes in different precipitation indices: mean
precipitation, the frequency of wet days and the 99th per-
centile of (all day) precipitation. Changes are expressed
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Figure 11. Objective selection of a most similar MCH station for the permafrost research site Schilthorn (black triangle with red star). The right

panel shows the combined result, the left panel shows the results for temperature and the middle panel, results for precipitation. The most similar

stations appear in green colour and are numbered according to the degree or representativeness.
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Figure 12. Multi-model climate scenario for temperature-based indices for site Schilthorn. Fourteen RCM simulations are taken into account and

MCH station Pilatus (PIL) is used for the intermediate step. Black points denote observed values at Schilthorn.

in percentage, extracted from the bias-corrected local sce-

nario, considering 30-year moving averages with respect

to the reference period 1980–2009. As for temperature

(Fig. 12), characteristics in terms of not only projected

change but also projection uncertainty in a multi-model

framework can be deduced. For precipitation, uncertain-

ties, expressed as inter-model spread, are obviously larger

than for temperature.

Models agree on mean precipitation (left column) to

decrease in summer (JJA) and to slightly increase in spring

(MAM). There are no apparent signals in winter (DJF)

and fall (SON). Long-term signals in fall tend towards a

reduction of precipitation totals. However, uncertainties

in fall are larger than in other seasons. For instance, the

median change signal for the period centred around 2040

(2080) relative to the one centred around 1994 is −11%
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Figure 13. Multi-model climate scenario for precipitation-based indices (columns, left to right) at seasonal scale (rows, top to bottom) for site

Schilthorn. Fourteen RCM simulations are taken into account and MCH station Pilatus (PIL) is used for the intermediate step. Changes are expressed

as percentage change of a 30-year moving window with respect to reference period 1980–2009. Coloured points at the top of each panel indicate

model agreement on a projected sign of change.

(+10%), with individual ensemble members ranging from
−50% to +33% (−34% to +42%). Changes in precipita-
tion totals can be attributed to a complex interplay between
projected changes in precipitation frequency and intensity
(here, presented by the 99th percentile). Overall, the results
are consistent with the domain-mean analysis presented by
Rajczak et al. (2013). In summer (and to a certain degree
also in fall), models agree on a prominent decrease in the
number of wet days. While in winter and spring, the num-
ber of wet days is projected to remain stable and precipi-
tation tends to intensify.

6. Discussion and conclusion

We presented a method that allows for the generation of
robust climate scenarios at sites with sparse and short
observational data coverage. The approach relies on two
consecutive applications of the quantile mapping (QM)
procedure, with climate model simulations first being bias
corrected to long-term measurement stations and then spa-
tially transferred to the target site (see Fig. 4). Both steps

aim for the most appropriate translation of climate model
simulations to match the desired accuracy and scales. In
addition, the presented method also incorporates the pos-
sibility for approximately reconstructing observations in
unobserved periods.
The basic concept of improving the robustness of cli-

mate projections at a sparsely observed site by taking
an intermediate station with long-term measurements into
account is transferable to other empirical-statistical down-
scaling (ESD) methods and can serve future developments
in impact research.
The approach facilitates (1) the construction of robust

GCM-RCM-chain based local-scale climate scenarios,
(2) amore accurate calibration of impactmodels and (3) an
assessment of the sensitivity of systems towards climate
variability and change at locations that usually suffer from
a lack of data (e.g. mountain areas).
The proposed method is validated using a set of multi-

variate long-term measurements from operational weather
stations in Switzerland. Exemplary results from an end
user application targeting the evolution of mountain
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permafrost in Switzerland are also shown, which under-
line the applicability of the approach in climate impact
research. Validation results reveal a satisfying perfor-
mance in a multivariate and challenging framework in a
region of complex topography and large spatial climate
variability. Further, the results show that the method can
also be applied at extreme locations.
Uncertainties with regard to the application of the pre-

sented method depend on a number of factors. Beyond
the well-known uncertainties relevant for climate projec-
tions (Hawkins and Sutton, 2009), the employed bias cor-
rection and spatial transfer approaches entail additional
sources of uncertainty. First, they can be related to pos-
sible non-stationarities of transfer functions under future
or changing climatic conditions (Christensen et al., 2008;
Boberg and Christensen, 2012; Maraun, 2012; Bellprat
et al., 2013). Second, climate change signals are imposed
by the location of the MRS considered for RCM bias cor-
rection. Finally, the spatial transfer from one point-scale
observation to another (S2, Fig. 4) also bears uncertain-
ties, which are of particular relevance for the use of
reconstructed data. While methodological uncertainties
are small for homogenous variables such as temperature,
considerably larger uncertainties arise for spatially and
temporally heterogeneous variables such as precipitation
and wind speed. The spatial transfer involves uncertain-
ties that approximately scale with the considered timescale
and are large for daily data and smaller for temporally
aggregated data (e.g. monthly, seasonal, annual). More-
over, uncertainties can be expected to increase when trans-
ferring between stations with a distinctly different char-
acter, for instance, from a dry to a very wet location.
Nonetheless, as time-integrating measures are matching
well even for potentially critical variables such as pre-
cipitation, the mentioned uncertainties do not degrade
the quality of GCM-RCM-based products, but rather that
of reconstructed products that aim for an adequate daily
correspondence.
In this respect, the objective selection of an MRS also

nicely demonstrates that for some cases, in particular for
multivariate and temperature-based applications, the clos-
est station might not always be the most appropriate choice
of reference.
In summary, the specified two-step QM approach offers

the potential to improve climate projections at sparsely
observed sites, and it appears useful for impact studies
across various research fields. Its application is versatile
and not restricted to alpine environments. Further, it offers
the potential to reconstruct data in non-measured periods.
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Figure S1. Validation of spatial transfer of daily 2-m min-
imum temperature (tasmin) based on quantile mapping
from stations SAE (most similar, blue) and LUZ (clos-
est, red) to the target site PIL. The x-axis denotes differ-
ent validation techniques (Section 3.3.). LDA (limited data
approach) with the number of considered years for calibra-
tion (# years) increasing from left (one) to right (23). The
boxplots indicate the range of 24 re-sampling estimates.
SSA (split sample approach) and LOOA (leave-one-out
approach). The individual panels present different valida-
tion scores (Section 3.3.1.): (a) bias, (b) correlation, (c)
Perkins score, (d) mean absolute error. For all approaches
and scores, the calibration period is 1981–2004 and the
validation period is 2005–2012.
Figure S2. Same as Figure S1 but for daily 2-m maximum
temperature (tasmax).
Figure S3. Same as Figure S1 but for daily mean relative
humidity (hurs).
Figure S4. Same as Figure S1 but for daily mean wind-
speed (wss).
Figure S5. Same as Figure S1 but for daily maximum
windgust (wsgsmax).
Figure S6. Same as Figure S1 but for daily mean radiation
(rsds).
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