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Abstract

The no-wait job shop problem (NWJS-R) considered here is a version
of the job shop scheduling problem where, for any two operations of a job,
a fixed time lag between their starting times is prescribed. Also, sequence-
dependent set-up times between consecutive operations on a machine can
be present. The problem consists in finding a schedule that minimizes a
general regular objective function.

We study the so-called optimal job insertion problem in the NWJS-R
and prove that this problem is solvable in polynomial time by a very
efficient algorithm, generalizing a result we obtained in the case of a
makespan objective.

We then propose a large neighborhood local search method for the
NWJS-R based on the optimal job insertion algorithm and present exten-
sive numerical results that compare favorably with current benchmarks
when available.

1 Introduction

The landscape of job shop scheduling is characterized by a broad variety of
process features—set-up times, blocking or no-wait constraints, transportation
operations, to name a few—but also by a multitude of objectives pursued in
finding “good” schedules.

An important objective is to minimize makespan and a large part of the
job shop scheduling literature addresses this goal. On the other hand, from an
operations management perspective on scheduling, other objectives are of equal
interest, e.g. in the presence of release and due dates, schedules might be sought
that minimize average flow time or some measure of lateness or tardiness.

The class of so-called regular objectives comprises all functions that are
monotone non-increasing in the completion times. This class includes all the
objectives mentioned previously, as well as many others. It is therefore of high
interest, from both a theoretical and an application point of view, to develop
solution methods for job shop scheduling problems with general regular objec-
tive.

Work along this line is very sparse in the literature, as noted by Mati et al.
in [5]. They propose a general approach for the classical job shop scheduling
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problem with regular objective. For more complex job shop scheduling prob-
lems, e.g. with blocking or no-wait constraints, solution methods for general
regular objective do not seem to be available in the literature.

In the present work, we propose a method for the no-wait job shop scheduling
problem with general regular objective (NWJS-R). The method is of the local
search type with a large neighborhood and is based on the study of the optimal
job insertion problem in the NWJS-R (OJI-NWJS-R). We establish that the
OJI-NWJS-R is solvable in polynomial time by an efficient algorithm and apply
repeatedly this algorithm to determine optimal neighbors in our local search.

It should be noted that we used a similar approach in previous work on
the NWJS with makespan objective [2]. However, there are some subtle differ-
ences between the OJI-NWJS with makespan objective and the OJI-NWJS-R.
Some structural properties holding in the first case and that were critical in the
development of the algorithm in [2] are lost in the second, more general case.
Fortunately and at first unexpectedly for us, the OJI-NWJS-R is still solvable in
polynomial time, and in fact with a similar computational effort. Moreover, the
proposed algorithm works for any regular function and requires only function
evaluation calls.

The paper is organized as follows. The next section describes the NWJS-R
and formulates it in both a classical disjunctive graph and a compact disjunctive
graph. Section 3 is devoted to the OJI-NWJS-R. After its formulation in an
insertion graph, its so-called feasible insertions are characterized as the stable
sets (of prescribed cardinality) of a conflict graph H, and structural properties
of H and the family of feasible insertions of bounded objective value are estab-
lished. An efficient algorithm for the OJI-NWJS-R is then developed. Section
4 proposes a local search method for the NWJS-R based on the OJI-NWJS-R
algorithm and presents extensive numerical results. The Appendix provides a
detailed implementation of the OJI-NWJS-R algorithm and a complexity anal-
ysis.

In the exposition of the paper, we have tried to keep the paper self-contained:
for this reason, several basic results from [2] are recalled and at times detailed
for readability and insight.

We conclude this introduction with some notation and terminology. All
graphs will be directed and the following standard notation will be used. In the
graph G = (V,E), an arc e ∈ E has a tail (node) t(e) and a head h(e). For any
disjoint sets M , N ⊆ V , δ(M,N) = {e ∈ E : t(e) ∈ M and h(e) ∈ N}, and
for any N ⊆ V , δ(N) = δ(N,V − N) ∪ δ(V − N,N). If an arc length vector
c ∈ RE is given, G will be denoted by the triplet G = (V,E, c). Sometimes a
triplet alone is used to identify a graph, usually a subgraph of a given graph.
In G = (V,E, c), a cycle is called positive if its length is positive. Finally, some
concepts such as clique, stable set, and comparability graph, are used here with
directed graphs, with the understanding that they apply to the corresponding
undirected graphs obtained by ignoring arc orientation.
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2 The no-wait job shop

2.1 Problem description

Typically in a job shop scheduling problem, a set I of operations and a set
M of machines are given. Each operation i ∈ I needs a specific machine, say
mi ∈ M , for its execution (without interruption) of duration pi > 0. The set
of operations is structured into jobs: a set J ⊆ 2I of jobs such that J forms a
partition of I is given. For each job J ∈ J , its set of operations {i : i ∈ J} is
usually ordered in a sequence {J1, J2, . . . , J|J|}, Jr denoting the r-th operation
of job J . Two operations i, j of job J are consecutive if i = Jr and j = Jr+1

for some r, 1 ≤ r < |J |. The problem consists in finding starting times for all
operations i ∈ I so that each machine is occupied by at most one operation at
a time and some objective function, e.g. the makespan, is minimized.

The no-wait job shop problem with regular objective (NWJS-R) considered
here is the following version of a job shop scheduling problem. No-wait con-
straints are present in the following form. For each job J ∈ J and any two
operations i and j ∈ J , a fixed time lag γij of arbitrary sign is imposed between
the starting times of i and j. We may assume that the order of operations
J1, J2, . . . , J|J| of job J is such that γJr ,Jr+1

≥ 0, 1 ≤ r < |J | and that time lags
are given only between consecutive operations, since for any i = Js and j = Jt
with s < t, γij =

∑
s≤r<tγJr ,Jr+1

and γji = −γij . Note that fixed time lags
slightly generalize the no-wait constraints present in the “classical” no-wait job
shop where γij = pi for a pair i, j of consecutive operations of a job. They allow
to model some scheduling problems typically occurring in the process industry.

Two additional features, set-up times and objective function, are best de-
scribed by first adding to I two dummy operations σ and τ , both of duration
zero, where σ must precede all operations and τ be preceded by all operations,
extending hereby I to I+ = I ∪ {σ, τ}.

If i and j are two operations on a same machine and j follows i, then a
set-up of duration sij might occur between completion of i and start of j. Also,
for each i ∈ I, an initial set-up of duration sσi between start/completion of σ
and start of i, i.e. a release time, and similarly, a final set-up of duration siτ
between completion of i and start of τ , i.e. a so-called tail, might be prescribed.

Let α = (αi ∈ R : i ∈ I+) denote the vector of the starting times αi, i ∈ I+.
The objective function considered here is a function f that satisfies

α ≤ α′ ⇒ f(α) ≤ f(α′).

Such an objective function is called regular. (Note that in the literature, e.g. in
[7], a regular function is often defined in terms of completion times βi instead
of starting times αi, i ∈ I+. Of course, since βi = αi + pi, both definitions are
valid.)

The NWJS-R consists in finding starting times αi for all operations i ∈ I+

so that each machine is occupied by at most one operation at a time and the
regular function f is minimized.

An example with four jobs J,K,L,N and five machines m1, . . . ,m5 is illus-
trated in a Gantt chart in Figure 1, upper part. For simplicity, no set-ups are
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Figure 1: An example with four jobs and five machines.

present. The numerical data can be read in the chart, e.g. for job J , its first
operation is executed on m5 and has a duration of 2, and the time lag between
its first and second operation is 1. We will use this example in the sequel.

2.2 A disjunctive graph formulation

As in the classical job shop problem, a disjunctive graph G = (I+, A,E, E , d) for
the NWJS-R is readily obtained as follows. Each operation i ∈ I+ = I ∪ {σ, τ}
is represented by a node. Identifying a node with the operation it represents,
we denote the node set by I+ = I ∪ {σ, τ}.

The set A of conjunctive arcs consists of the following arcs: (i) for each
i ∈ I, an initial set-up arc (σ, i) and a final set-up arc (i, τ) of respective length
dσi = sσi and diτ = pi + siτ ; (ii) for each job J and each ordered pair of
consecutive operations i, j ∈ J , a pair of arcs (i, j) and (j, i) with respective
length dij = γij and dji = γji = −dij .

The set E of disjunctive arcs consists of all arcs (i, j) and (j, i) between
operations i and j on a same machine and of different jobs. Formally, define for
all m ∈M , Im = {i ∈ I : mi = m} and Em = {(i, j) : i, j ∈ Im such that i ∈ J ,
j ∈ J ′ ⇒ J 6= J ′}. Then E = ∪m∈MEm. The lengths are dij = pi + sij for all
(i, j) ∈ E.

For any m ∈ M and i, j ∈ Im, arcs (i, j) and (j, i) form a (unordered) pair
of disjunctive arcs. The family E is the collection of all such pairs. A general
element of E , i.e. a pair of disjunctive arcs, will be denoted by {e, e}.

4



Definition 1. Any subset of disjunctive arcs S ⊆ E is called a selection. A
selection S is positive acyclic if the subgraph (I+, A ∪ S, d) contains no positive
cycle, and is positive cyclic otherwise. A selection S is complete if S∩{e, e} 6= ∅
for all {e, e} ∈ E. A selection S is feasible if it is positive acyclic and complete.

In Figure 1, lower part, the feasible selection (set of dashed arcs) correspond-
ing to the schedule of the example above is depicted.

Given a feasible selection S ⊆ E, the space of feasible starting times is

Ω(S) = {α ∈ RI
+

: ασ = 0; αh(e) − αt(e) ≥ de for all e ∈ A ∪ S}.

Since (I+, A ∪ S, d) contains no positive cycle, Ω(S) 6= ∅ and earliest starting
times α(S) = (αi(S) : i ∈ I+) can be calculated by determining for each i ∈ I+

the length of a longest path from σ to i in (I+, A ∪ S, d). Moreover, since the
objective function f is regular,

f(α(S)) = min{f(α) : α ∈ Ω(S)}.

The NWJS-R with regular objective f can therefore be formulated as the
following problem in the disjunctive graph G: “Among all feasible selections,
find a selection S minimizing f(α(S)).”

A remark on set-up times is in order. They should satisfy the so-called weak
triangle inequality (cf. [1], p. 11) for the disjunctive graph formulation to be
valid. Otherwise, arcs between non-consecutive operations on a machine may
become active when computing longest paths in (V,A ∪ S, d), yielding wrong
starting times since set-ups take place only between consecutive operations on
a machine.

In a no-wait job shop, the starting time of any operation of a job determines
the starting times of all other operations of that job, so that starting times
defined on the jobs are sufficient. Accordingly, a more compact disjunctive
graph formulation is readily obtained, as used by Schuster in [9]. For our purpose
however, a different compact disjunctive graph formulation derived in [2] will
be needed.

2.3 A compact disjunctive graph formulation

Given any two distinct jobs J , K ∈ J and any selection S ⊆ E in the disjunctive
graph G = (I+, A,E, E , d), define

SJK = S ∩ δ(J,K), SKJ = S ∩ δ(K,J)
S[JK] = SJK ∪ SKJ

(1)

and distances

cSJK = max{γJ1,i + dij + γj,K1 : (i, j) ∈ SJK}, (2)

convening cSJK = −∞ if SJK = ∅ and γii = 0 for all i ∈ I.

Observe that
⋃
J,K∈JS[JK] is a partition of S. Also, a distance cSJK (> −∞)

is the length of a longest path in the subgraph (I+, A ∪ SJK , d) from the first
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operation J1 of J to the first operation K1 of K, and similarly cSKJ (> −∞) is
the length of a longest path in (I+, A ∪ SKJ , d) from K1 to J1.

The distances from σ to J and from J to τ for all J ∈ J are defined as:

cσJ = cSσJ = max{dσi + γi,J1 : i ∈ J}, (3)

cJτ = cSJτ = max{γJ1,i + diτ : i ∈ J}. (4)

A compact disjunctive graph formulation of the NWJS-R is now derived
as follows. For each (unordered) pair of distinct jobs J,K ∈ J , let Sp[JK] ⊆
δ(J,K) ∪ δ(K,J), p = 1, . . . , qJK , be all selections that are positive acyclic
and complete on δ(J,K) ∪ δ(K,J), i.e. Sp[JK] ∩ {e, e} 6= ∅ for all {e, e} ⊆
δ(J,K)∪ δ(K,J). In other words, selections Sp[JK], p = 1, . . . , qJK , represent all

feasible ways of positioning J and K with respect to each other.
The number qJK of these selections is not larger than 1 +

∑
m∈MrJm · rKm ,

if rJm denotes the number of operations of J on machine m. In particular,
in the case of a classical NWJS where rJm ≤ 1 for all J ∈ J and m ∈ M ,
qJK ≤ |M |+ 1.

We may assume that the Sp[JK]’s are indexed with p = 1, . . . , qJK in such a

way that

S1
JK = S1

[JK], S
1
KJ = ∅,

SpJK ⊃ S
q
JK and SpKJ ⊂ S

q
KJ for 1 ≤ p < q ≤ qJK , (5)

SqJK

JK = ∅, SqJK

KJ = SqJK

[JK].

i.e. S1
[JK] places job J “fully before” K, and, with increasing p, K moves ahead

of an operation of J on some machine, until with selection SqJK

[JK], K is fully

before J .
Figure 2 illustrates these selections for the two jobs J and K in the example.

The four positionings of J and K are depicted in a Gantt chart (left), and the
corresponding selections Sp[J,K], p = 1, 2, 3, 4, are shown in the center (set of

dashed arcs).

Proposition 2. Let cpJK and cpKJ be the lengths cSJK and cSKJ defined by (2)
for S = Sp[JK], p = 1, . . . , qJK . The following holds.

i) c1JK > c2JK > . . . > cqJK

JK and c1KJ < c2KJ < . . . < cqJK

KJ ,
ii) cpJK + cpKJ ≤ 0 for p = 1, . . . , qJK ,
iii) cpJK + cqKJ ≤ 0 for 1 ≤ q < p ≤ qJK ,
iv) cpJK + cqKJ > 0 for 1 ≤ p < q ≤ qJK .

Proof. See [2].

The compact disjunctive graph F = (J +, B, U,P, c) is now constructed.
The node set J + = J ∪ {σ, τ} consists of all nodes representing a job or a
fictive operation. The conjunctive arc set B comprises the arcs (σ, J) and (J, τ)
with lengths cσJ and cJτ defined by (3) and (4) for all J ∈ J . The set U of
disjunctive arcs comprises the following arcs. Between any distinct nodes J,K
of J , two arcs (J,K)p and (K,J)p with length cpJK and cpKJ are introduced for
each p = 1, . . . , qJK .
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Figure 2: Positionings of jobs J and K (left) and the corresponding selections (set
of dashed arcs) in graph G (center) and graph F (right).
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Considering jobs J and K in the example, two arcs (J,K)p and (K,J)p are
introduced for p = 1, 2, 3, 4. Each pair of arcs is separately displayed in Figure
2, right. The disjunctive graph F is illustrated in Figure 3.

For any distinct J,K ∈ J and p ∈ {1, . . . , qJK}, denote by [J,K]p the
(unordered) pair of arcs {(J,K)p, (K,J)p} ∈ U×U . The pair [J,K]p represents
selection Sp[JK]. Let P be the set of all such pairs, i.e.

P = {[J,K]p : J,K ∈ J , J 6= K and 1 ≤ p ≤ qJK},

and for any distinct J and K ∈ J , let

DJK = {[J,K]p : 1 ≤ p ≤ qJK}.

The family P (of sets of arc pairs) is the family {DJK : J,K ∈ J , J 6= K}.
Definition 3. A selection in F is any set T ⊆ P of arc pairs and UT ⊆ U
denotes the set of all arcs used by T . A selection T is complete if T ∩DJK 6= ∅
for all distinct J,K ∈ J , and is positive acyclic if the graph (J +, B ∪ UT , c)
contains no positive cycle. T is feasible if it is complete and positive acyclic.

Note that, by definition, a complete selection T contains at least one pair
[J,K]p for any distinct jobs J and K. If additionally T is positive acyclic, i.e.
if T is feasible, then by Proposition 2, T contains exactly one pair [J,K]p for
distinct J and K.

Given a feasible selection T ⊆ P , the space of feasible starting times is

Ω(T ) = {α ∈ RJ
+

: ασ = 0; αh(u) − αt(u) ≥ cu for all u ∈ B ∪ UT }.

Since (J +, B ∪UT , c) contains no positive cycle, earliest starting times α(T ) =
(αJ(T ) : J ∈ J +) can be calculated by determining for each J ∈ J + the length
of a longest path from σ to J . Moreover, since f is regular,

f(α(T )) = min{f(α) : α ∈ Ω(T )}.
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The NWJS-R with regular objective f can then be formulated as the follow-
ing problem in the compact disjunctive graph F : “Among all feasible selections,
find a selection T minimizing f(α(T )).”

3 Optimal job insertion

3.1 The disjunctive insertion graph

Inserting optimally a given job can be thought of as the problem: given a feasible
selection for all other jobs, insert the job in such a way that the resulting schedule
is feasible and its objective value is minimal.

As in [2], we formulate the optimal job insertion problem in the NWJS with
regular objective (OJI-NWJS-R) in the framework of our compact formulation.
The job to be inserted will be denoted J , and for brevity, J− and qK will
designate J − J and qJK .

In the disjunctive graph F , a selection R for all other jobs K ∈ J− is
given which is positive acyclic and “complete”, i.e. for any distinct K,L ∈ J−,
[K,L]p ⊆ R for some p ∈ {1, . . . , qKL}. Let UJ = U ∩ δ(J) and PJ be the
family of sets DJK for all K ∈ J−. One can define the insertion graph for J
as the disjunctive graph F J = (J +, B ∪ UR, UJ ,PJ , c), where the restriction
of c to B ∪ UR ∪ UJ is denoted again by c. A selection T in F J is called
an insertion of job J . Note that T is a (positive acyclic, complete, feasible)
insertion if and only if T ∪R is a (positive acyclic, complete, feasible) selection
in F = (J +, B, U,P, c).

The OJI-NWJS-R can then be stated as follows: “Among all feasible inser-
tions, find an insertion T minimizing f(α(T )), where α(T ) = (αK(T ) : K ∈ J +)
and αK(T ) is the length of a longest path from σ to K, K ∈ J +, in the subgraph
(J +, B ∪ UR ∪ UT , c).”

3.2 Insertions and stable sets in the conflict graph

In the graph (J +, B ∪ UR, c), which contains no positive cycle, let lKL be the
length of a longest K-L–path for any nodes K, L ∈ J +, with the convention
lKL = 0 if K = L and lKL = −∞ if K 6= L and there is no K-L–path.
Obviously,

lKL + lLK ≤ 0 and lKL + lLN ≤ lKN for all K,L,N ∈ J +. (6)

Also, lσJ = cσJ and lJτ = cJτ where cσJ and cJτ are defined by (3) and (4).

Definition 4. The conflict graph is the graph H = (W,Y ) with node set W
and arc set Y defined by W = ∪K∈J−WK where WK = {wpK : p = 1, . . . , qK},
K ∈ J−, and for any wpK , wqL ∈W :

(wpK , w
q
L) ∈ Y ⇔ cpJK + cqLJ + lKL > 0 (7)

Observe that if K = L, (7) is equivalent to:

(wpK , w
q
K) ∈ Y ⇔ p < q. (8)

Indeed, by Proposition 2, cpJK + cqKJ > 0 if and only if p < q. Also, lKK = 0 so
that in (7) cpJK + cqLJ + lKL > 0 for K = L is equivalent to p < q. Therefore
each WK , K ∈ J−, is (the node set of) a clique in H.
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Figure 4: In the example, (left) the conflict graph H and (right) the Hasse diagram
of lattice L.

Figure 4, left, illustrates the conflict graph H of the example.
Conflict graphs allow to characterize feasible insertions as the following result

holds.

Theorem 5. There is a one-to-one correspondence between the feasible inser-
tions and the stable sets of size |J−| in H.

Proof. Let T be a feasible insertion. Since T is complete and positive acyclic,
given any K ∈ J−, [J,K]p ⊆ T for exactly one p ∈ {1, . . . , qK}, say pK . Hence
to T corresponds the node set T ′ = {wpKK : K ∈ J−} ⊆W of size |J−| in H. T ′

is stable in H. Indeed, suppose the contrary: for some K 6= L, (wpKK , wpLL ) ∈ Y ,
i.e. cpKJK + cpLLJ + lKL > 0. Then the positive cyclic insertion {[J,K]pK , [L, J ]pL}
is contained in T , contradicting T being positive acyclic.

Conversely, let T ′ be a stable set of size |J−| in H. T ′ picks up exactly one
node, say wpKK , from each clique WK , K ∈ J−, hence T ′ = {wpKK : K ∈ J−}.
The corresponding insertion T = ∪K∈J− [J,K]pK is obviously complete. T is
also positive acyclic, otherwise there is a positive cycle in (J +, B ∪UR ∪UT , c)
which must go through J , entering J , through, say, arc (L, J)pL and leaving
J through (J,K)pK , implying cpKJK + cpLLJ + lKL > 0, hence (wpKK , wpLL ) ∈ Y , a
contradiction to the stability of T ′.

The conflict graph H has nice properties. First, H is a comparability graph.

Theorem 6. H = (W,Y ) is acyclic and transitively oriented.

Proof. a) H is transitively oriented, i.e. for any distinct nodes w, w′, w′′ ∈W ,

(w,w′) ∈ Y and (w′, w′′) ∈ Y ⇒ (w,w′′) ∈ Y.

Indeed, assume (w,w′) = (wpK , w
q
L) ∈ Y and (w′, w′′) = (wqL, w

r
N ) ∈ Y . Then

cpJK + cqLJ + lKL > 0 and cqJL+ crNJ + lLN > 0. Adding both left and right hand
sides of the two inequalities and using cqJL + cqLJ ≤ 0 and lKL + lLN ≤ lKN
yields cpJK + crNJ + lKN > 0, hence (wpK , w

r
N ) ∈ Y .

b) H is acyclic. Since H is transitively oriented, it suffices to show that there
is no w,w′ ∈ W with both (w,w′) and (w′, w) ∈ Y . Assume the contrary and
let w = wpK and w′ = wqL. Then cpJK + cqLJ + lKL > 0 and cqJL + cpKJ + lLK > 0.
Since cpJK + cpKJ ≤ 0 and cqJL + cqLJ ≤ 0, lKL + lLK > 0 follows, a contradiction
to (6).

10



Second, the stable sets of size |J−| in H have the following property.

Proposition 7. The stable sets of size |J−| in H form a lattice L with order
≺, meet ∨ and join ∧ defined as follows. For any two stable sets T = {wpKK :

K ∈ J−} and T ′ = {wp
′
K

K : K ∈ J−},

T � T ′ ⇔ pK ≤ p′K for all K ∈ J−

T ∨ T ′ = {wmax{pK ,p′K}
K : K ∈ J−}

T ∧ T ′ = {wmin{pK ,p′K}
K : K ∈ J−}

Proof. Clearly, ≺ is a partial order. T ∨ T ′ is stable, otherwise there exist w
and w′ ∈ T ∨ T ′ with (w,w′) ∈ Y or (w′, w) ∈ Y . We may assume w ∈ T − T ′

and w′ ∈ T ′ − T , i.e. w = wpKK for some K and pK > p′K and w′ = w
p′L
L for

some L 6= K and p′L > pL. If (w,w′) = (wpKK , w
p′L
L ) ∈ Y , then (w

p′K
K , w

p′L
L ) ∈ Y

by (w
p′K
K , wpKK ) ∈ Y , and transitivity, and if (w′, w) = (w

p′L
L , wpKK ) ∈ Y , then

(wpLL , wpKK ) ∈ Y , contradicting the stability of T ′ or T . Similarly, one can show
that T ∧ T ′ is stable. Finally, |T ∨ T ′| = |T ∧ T ′| = |T | = |T ′|.

We remark that this result also follows from the fact that the family of max-
imum size stable sets in a comparability graph forms a lattice (see for instance
[8], p. 235).

Figure 4, right, shows the Hasse diagram of lattice L in the example.

3.3 Insertions with bounded objective value

Let T = {wpKK : K ∈ J−} be a stable set of size |J−| in the conflict graph
H = (W,Y ), i.e. T corresponds to a feasible insertion. Its objective value
f(T ) = f(α(T )) can be calculated in (J +, B ∪ UR ∪ UT , c) as follows:

1. Determine the length g(T ) of a longest path from σ to J :

g(T ) = max{lσJ ; lσK + cpKKJ : K ∈ J−} (9)

2. For each K ∈ J− ∪ τ , determine the length hK(T ) of a longest path from
J to K:

hK(T ) = max{cpLJL + lLK : L ∈ J− ∪ τ} (10)

3. For each K ∈ J ∪ τ , determine the length αK(T ) of a longest path from
σ to K, and therefore the earliest starting time of K by

αK(T ) = max{lσK ; g(T ) + hK(T )} (11)

with the convention hJ(T ) = 0.

4. Compute f(T ) = f(α(T )).

Next, we examine structural properties of the family of feasible insertions
of bounded objective value, motivated by results we obtained earlier on the job
insertion problem in the NWJS with makespan objective. For any scalar ρ,
denote by

Lρ = {T ∈ L : f(α(T )) < ρ}.

11
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Figure 5: An example showing that Lρ might not be a lattice.

3.3.1 The makespan case

In the special case where f is the makespan, i.e. f(T ) = ατ (T ), the family Lρ
has a nice characterization and played a key role in our optimal job insertion
algorithm. We briefly recall without proofs some results of [2], assuming ρ > lστ .

Definition 8. The conflict graph at ρ is the graph Hρ = (W ρ, Y ρ) with the
node set W ρ and the arc set Y ρ defined by:

for all p = 1, . . . , qK and K ∈ J−:

wpK ∈W
ρ ⇔

{
cσJ + cpJK + lKτ < ρ and
lσK + cpKJ + cJτ < ρ

(12)

for all pairs of distinct nodes wpK , wqL ∈W
ρ:

(wpK , w
q
L) ∈ Y ρ ⇔

{
cpJK + cqLJ + lKL > 0 or
cpJK + cqLJ + lKτ + lσL ≥ ρ

(13)

Theorem 9. There is a 1 to 1-correspondence between the feasible insertions
T ∈ Lρ and the stable sets of size |J−| in Hρ.

Theorem 10. For any ρ, Hρ = (W ρ, Y ρ) is acyclic and transitively oriented.

Proposition 11. Lρ is a lattice.

Note that for sufficiently large ρ, Hρ is the conflict graph H of the previous
section and the three results above yield Theorems 5 and 6 and Proposition 7.

3.3.2 General regular function

For a general regular function f , Lρ = {T ∈ L : f(T )) < ρ} cannot be charac-
terized similarly by stable sets in a conflict graph Hρ. Indeed, Lρ might not be
a lattice as shown in the following example, which is illustrated in Figure 5.
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Consider three jobs J , K, L and two machines m1, m2. J has two operations
i on m1 and j on m2 with γij = 0, i.e. J occupies simultaneously m1 and m2.
K has one operation k on m1 and L has one operation l on m2. All operations
i, j, k, l have duration 1, job J has due date 3 and jobs K and L have due date
1. The objective function f is the number of tardy jobs.

In the insertion problem for J , the conflict graph H = (W,Y ) has nodes
w1
K , w2

K , w1
L, w2

L and arcs (w1
K , w

2
K), (w1

L, w
2
L). As illustrated in Figure 5, there

exists four feasible insertions. Consider T2 = {w1
K , w

2
L}, T3 = {w2

K , w
1
L}, and

T2 ∧ T3 = T4 = {w1
K , w

1
L}, corresponding to inserting J respectively before K

and after L, before L and after K, and before K and L. Then f(T2) = f(T3) = 1
and f(T2 ∧ T3) = 2, hence for ρ = 2, T2 and T3 ∈ Lρ, but T2 ∧ T3 /∈ Lρ.

However, the following result holds.

Theorem 12. Lρ = {T ∈ L : f(T ) < ρ} is a ∨-semi-lattice.

Proof. Let T = {wpKK : K ∈ J−} and T ′ = {wp
′
K

K : K ∈ J−} be any members
of L.

First, we show that the function g defined in (9) satisfies

g(T ∨ T ′) ≤ max{g(T ), g(T ′)}. (14)

g(T ∨ T ′) = max{lσJ ; lσK + c
p∨K
KJ : K ∈ J−} where p∨K = max{pK , p′K}. If

g(T ∨ T ′) = lσJ , clearly both g(T ∨ T ′) ≤ g(T ) and g(T ∨ T ′) ≤ g(T ′). Assume

g(T ∨ T ′) = lσK∗ + c
p∨K∗
K∗J for some K∗ ∈ J−. If p∨K∗ = pK∗ , g(T ∨ T ′) =

lσK∗ + cpK∗K∗J ≤ g(T ), and if p∨K∗ = p′K∗ , g(T ∨ T ′) ≤ g(T ′).
Next, for any K ∈ J ∪ τ , the function hK defined in (10) satisfies

hK(T ) ≤ hK(T ′) if T ′ � T (15)

Indeed, T ′ � T implies p′L ≤ pL for all L ∈ J−. Then, by Proposition 2,

c
p′L
JL ≥ cpLJL for all L ∈ J−. Therefore hK(T ) = max{cpLJL + lLK : L ∈ J−} ≤
hK(T ′) = max{cp

′
L

JL + lLK : L ∈ J−} for any K ∈ J− ∪ τ .
Then,

f(T ∨ T ′) ≤ max{f(T ), f(T ′)}.

Indeed, in view of (14), we may assume without loss of generality g(T ∨ T ′) ≤
g(T ) = max{g(T ), g(T ′)}. Also, by (15) hK(T ∨ T ′) ≤ hK(T ) holds for all
K ∈ J ∪ τ . Hence, using (11), αK(T ∨T ′) = max{lσK ; g(T ∨T ′) +hK(T ∨T ′)}
≤ max{lσK , g(T ) + hK(T )} = αK(T ) for all K ∈ J ∪ τ . Since f is regular,
f(α(T ∨ T ′)) ≤ f(α(T )).

Finally, for any ρ ∈ R and any T, T ′ ∈ Lρ,

f(α(T ∨ T ′)) ≤ max{f(α(T )), f(α(T ′))} < ρ

therefore T ∨ T ′ ∈ Lρ, hence Lρ is a ∨-semi-lattice.

3.4 The OJI-NWJS-R algorithm

We propose an efficient method for the OJI-NWJS-R, the OJI-NWJS-R algo-
rithm. We describe below its principle and then prove its validity.
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Given any stable set T = {wpKK : K ∈ J−}, in step 1 of the calculation of
its objective value f(T ) detailed in the previous section, define

RT = {K ∈ J− : lσK + cpKKJ = g(T )},
QT = {wpKK : K ∈ RT } ⊆ T and (16)

LT = {T ′ ∈ L : T ′ ≺ T and T ′ ∩QT = ∅}.

Note that if QT 6= ∅, LT is a sublattice of L.

In the OJI-NWJS-R algorithm, a sequence T0, T1, . . . , Ts is generated where:

T0 is the maximal element of L,

for r = 0, 1, . . . , s− 1, Tr+1 is the maximal element of LTr

and LTs
= ∅.

Theorem 13. Tp with f(Tp) = min{f(Tr) : 0 ≤ r ≤ s} is an optimal insertion.

Proof. i) We first show that for any T, T ′ ∈ L:

T � T ′ and f(T ) > f(T ′)⇒ T ′ ∈ LT . (17)

Note that QT 6= ∅. Indeed, if QT = ∅, RT = ∅ and therefore g(T ) = lσJ ≤
g(T ′). Also, since T � T ′, hK(T ) ≤ hK(T ′) by (15) for all K ∈ J ∪ τ , hence
f(T ) ≤ f(T ′), a contradiction.

Let T = {wpKK : K ∈ J−}, T ′ = {wp
′
K

K : K ∈ J−} and assume T ′ ∩QT 6= ∅.
Then p′L = pL for some L ∈ RT , therefore g(T ) = lσL+cpLLJ ≤ g(T ′) = max{lσJ ;

lσK +c
p′K
KJ : K ∈ J−}. The same argument as above then leads to contradicting

f(T ′) < f(T ). Hence T ′ ∈ LT .
ii) Let T ∗ be an optimal insertion and suppose

f(T ∗) < f(Tr) for all r = 0, . . . , s.

Clearly T0 � T1 � . . . � Ts and T0 � T ∗. Also, Ts � T ∗. Indeed, if Ts � T ∗,
applying (17) for T = Ts and T ′ = T ∗ leads to the contradiction T ∗ ∈ LTs

= ∅.
Therefore there exists a largest r such that Tr � T ∗, and r < s. Applying (17)
for T = Tr and T ′ = T ∗ implies T ∗ ∈ LTr

. But then, since Tr+1 is the maximal
element of LTr , Tr+1 � T ∗ contradicting the choice of r.

It remains to be shown, given r, 0 ≤ r < s, how to find the maximal element
Tr+1 of LTr .

Assume Tr = {wpKK : K ∈ J−} and denote QTr
by Qr. Let Hr = (W r, Y r)

be the subgraph obtained by deleting in H all nodes wpK , p > pK , K ∈ J−.
For any K ∈ J− and v ∈ W r

K = WK ∩W r, denote by p(v) the immediate
predecessor of v in W r

K , with the convention p(v) = ∅ if v = w1
K . For any

v, w ∈ W r, define the relations v 7→ w if (p(v), w) ∈ Y r, and v  w if there
is a sequence of distinct nodes vl ∈ W r, l = 1, . . . , q, q ≥ 1, such that v1 = v,
vq = w and vl 7→ vl+1 for l = 1, . . . , q − 1. If v  w, the distance λ(v, w) from
v to w is given by the minimum length q of such a sequence. Define

Ψr(Qr) = {w ∈W r : v  w for some v ∈ Qr}.

14



Lemma 14. If W r
K − Ψr(Qr) = ∅ for some K ∈ J−, then LTr

= ∅, else the

maximal element of LTr
is Tr+1 = {wp

′
K

K : K ∈ J−}, where p′K = max{p : wpK ∈
W r
K −Ψr(Qr)}.

Proof. i) First, assuming LTr 6= ∅, we show that for any T ′ ∈ LTr , T ′∩Ψr(Qr) =
∅. Suppose to the contrary some T ′ ∈ LTr

with T ′ ∩Ψr(Qr) 6= ∅. There exists
v  w for some v ∈ Qr and w ∈ T ′∩ (Ψr(Qr)−Qr). Choose such v and w with
minimal distance λ(v, w), and let v1, v2, . . . , vq, with v1 = v, vq = w, vl 7→ vl+1

for l = 1, . . . , q − 1 and q = λ(v, w). Clearly, vl /∈ T ′ for all l < q, in particular
vq−1 /∈ T ′.

Now, assuming vq−1 ∈ W r
K , the unique node u ∈ T ′ ∩W r

K must precede
vq−1 in W r

K . Indeed, this holds if q = 2, as vq−1 = v1 = v ∈ Qr and T ′ ∩Qr =
∅. If q > 2, vq−2 7→ vq−1 implies (p(vq−2), vq−1) ∈ Y r and, by transitivity,
(p(vq−2), u) for any successor u of vq−1 in W r

K . If some successor u were in T ,
then v  u and λ(v, u) < q, contradicting the choice of v and w.

Consequently, since u precedes vq−1 in W r
K and (p(vq−1), w) ∈ Y r, (u,w) ∈

Y r holds by transitivity, a contradiction to the stability of T ′.
ii) If W r

K − Ψr(Qr) = ∅ for some K ∈ J−, there is obviously no complete
T ′ with T ′ ∩Ψr(Qr) = ∅, hence LTr

= ∅.
iii) Tr+1 is stable. Suppose to the contrary some v, w ∈ Tr+1 with (v, w) ∈

Y r. If v ∈ Tr+1 − Tr, v = p(u) for some u ∈ Ψr(Qr). But then u 7→ w and
therefore w ∈ Ψr(Qr), contradicting Tr+1 ∩ Ψr(Qr) = ∅. If v ∈ Tr+1 ∩ Tr, the
stability of Tr in Hr is contradicted. Indeed, if w ∈ Tr+1 ∩ Tr, then (v, w) ∈ Y r
obviously leads to the contradiction. If w ∈ Tr+1−Tr and w ∈W r

K for some K,
there is some u ∈ Tr ∩W r

K , hence (w, u) ∈ Y r and, by transitivity, (v, u) ∈ Y r.
Therefore Tr+1 is the maximal element of LTr .

The algorithm can be summarized as follows.

The OJI-NWJS-R algorithm
Initialization: f∗ :=∞; T := {wqKK : K ∈ J−}; optimal := false;
while optimal = false do

Determine αK(T ) for all K ∈ J ∪ τ and QT ;
Determine f(T ); if f(T ) < f∗ then f∗ := f(T ) and T ∗ := T ; end (if)
if QT = ∅ then optimal := true; return;
else compute Ψ(QT ) in H = (W,Y ); end (if)
if WK −Ψ(QT ) = ∅ for some K ∈ J− then optimal := true; return;
else pK := max{p : wpK ∈WK −Ψ(QT )} for all K ∈ J−;

T := {wpKK : K ∈ J−};
Delete in H for all K ∈ J− nodes wpK with p > pK ;

end (if)
end (while)
T ∗ is an optimal insertion.

The number of iterations of the while loop is bounded by
∑
K∈J−qK . Indeed,

if T0, T1, . . . , Ts is the sequence of sets T generated by the algorithm, T0 � T1 �
. . . � Ts so that s ≤

∑
K∈J−qK . The complexity of the algorithm also depends

on the effort for i) determining αK(T ) for all K ∈ J ∪ σ, QT and f(T ), and
ii) computing Ψ(QT ). We give in the Appendix a detailed implementation that
achieves the following computational complexity, where n denotes the number
of jobs and η is the effort for evaluating the objective value f(T ).
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objective function T0 T1 T2 T3 T4

a) makespan 10 9 10 11 10
b) total flow time 29 29 28 31 30
c) total squared flow time 229 227 214 273 242
d) maximum tardiness 5 4 2 3 2
e) total tardiness 5 5 4 6 4
f) total squared tardiness 25 17 8 14 6
g) number of tardy jobs 1 2 2 3 3

Table 1: Objective values of the insertions generated in the example run (bold:
optimal values).

Theorem 15. The OJI-NWJS-R algorithm runs in time

O(max{n3,max{n, η} ·
∑
KqK}).

To illustrate this result, we remark that most often (for total flow time,
total tardiness, number of tardy jobs, etc.) η is of the order O(n). Also, a
job has usually at most one operation on a given machine and consequently∑
K∈J− qK ≤ (n − 1)(m + 1), m being the number of machines. The OJI-

NWJS-R algorithm then runs in time O(n2 ·max{m,n}).

Considering the job insertion problem of J in the example, a run of the
OJI-NWJS-R algorithm is depicted in Figure 6. The topmost part illustrates
the situation after the initialization. Set T = T0 is depicted in conflict graph H
(left) by the grey nodes. T is the maximal member (grey node) of lattice L (mid-
dle). Note that for each member of the lattice, its elements {wpKK , wpLL , wpNN }
are simply described by (pK , pL, pN ). The schedule obtained with the earliest
starting times α(T ) is shown in a Gantt chart (right). Set QT consists of the
nodes that are surrounded by a dashed box in H. For each iteration r = 1, . . . , 4
of the while-loop the obtained set T = Tr is illustrated in graph Hr−1 (left),
lattice LTr−1

(middle), and the corresponding schedule is on the right. Nodes
that are not anymore part of the current conflict graph or lattice are depicted
in light grey. The algorithm stops after four iterations as QT = ∅.

In Table 1, the objective value f(Tr) of each set Tr, r = 0, . . . , 4, is presented
for different regular objectives f . For the objectives involving tardiness, we set
the due dates of jobs (J,K,L,N) to (5, 8, 8, 5). Optimal insertions are T0 for
objective g), T1 for a), T2 for b), c), d), e), and T4 for f).

4 An optimal job insertion-based method for
the NWJS-R

4.1 A simple local search

As in [2], we develop a heuristic for the NWJS-R that is based on the OJI-
NWJS-R algorithm. It can be described as follows.

A feasible initial selection is constructed by successively inserting optimally
a job. The initial selection is then improved by local search. We consider two
neighborhoods. In neighborhood N1, a neighbor is generated for each job by
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Figure 6: A run of the OJI-NWJS-R algorithm in the example.
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extracting and reinserting optimally this job. Neighborhood N1 has size |J |,
which is quite small. Therefore, we examine a larger neighborhood N2, where
for any pair of ordered jobs, a neighbor is generated by extracting these two
jobs and reinserting them successively. N2 has size |J |2.

Based on N1 and N2, two repeated simple descent local search methods are
considered. In the first version, named OJIRLS1, we use neighborhood N1 and
select the first improvement, i.e. if a neighbor yields a lower objective value,
the current selection is reset to this neighbor. In the second version, named
OJIRLS2, we use neighborhood N1 until a local optimal selection is found.
Then, we continue with neighborhood N2. If a neighbor in N2 yields a lower
objective value, the current selection is reset to this neighbor and OJIRLS2 con-
tinues again with neighborhood N1. The algorithm stops if no better neighbor
is found in N2.

OJIRLS1 and OJIRLS2 are repeated from various initial selections generated
by random job insertion orders until a given run time limit is reached.

4.2 Computational experiments

We implemented OJIRLS1 and OJIRLS2 in Java and run them on a PC with 3.4
GHz processor and 12 GB memory. Extensive tests were performed to evaluate
the two methods. We used the well-known benchmark instances la11-15/26-35
proposed by Lawrence [4], swv06-20 by Storer et al. [10], and yn1-4 by Yamada
and Nakano [11]. These instances were interpreted as “classical” no-wait job
shop instances, i.e. γij = pi for each pair i, j of consecutive operations of a
job, and all set-up times and release times are 0. The following seven objective
functions were considered: a) makespan, b) total flow time, c) total squared
flow time, d) maximum tardiness, e) total tardiness, f) total squared tardiness,
and g) number of tardy jobs. For the objectives d) to g), the due date dJ of
each job J ∈ J is set according to the simple and popular rule introduced by
Eilon and Hodgson [3] for the classical job shop: dJ = bf ∗

∑
i∈J pic, where f is

referred to as the due date tightness factor. f is set to 3.0 for instances of size
(20 × 15) and (20 × 20), 3.5 for (20 × 5) and (20 × 10), 5.0 for (30 × 10), and
7.0 for (50× 10), where (n×m) refers to the number n of jobs and the number
m of machines.

4.3 Quality of local optimal solutions

We first evaluated the quality of the local optimal solutions for both versions
OJIRLS1 and OJIRLS2. For this purpose, we run OJIRLS1 and OJIRLS2 for
each instance and objective function with a computation time limit of 7200 sec-
onds. The objective value of each attained local optimal solution was recorded.

As an illustration, Figure 7 shows for the instance la31 and total flow time
objective the sampling distribution of the local optimal values (in units of 1000)
with OJIRLS1 (left) and OJIRLS2 (right). A box plot highlights the minimum
value, lower quartile, median, upper quartile and maximum value.

We note that both the mean and the variance of the distribution are smaller
for OJIRLS2 than for OJIRLS1. However, the average time needed to generate
a local optimal solution with OJIRLS2 is much higher. Indeed, 1 088 070 local
optimal solutions were found within 7200 seconds with OJIRLS1 versus 29 893
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Figure 7: Distributions of the local optimal values (in units of 1000) for instance la31
and total flow time objective for OJIRLS1 (left) and OJIRLS2 (right).

solutions with OJIRLS2. These observations illustrate well the trade-off between
solution quality and required computation time.

We examined the magnitude of this trade-off for each instance with the
makespan and total flow time objective. Denote by f1 and f2 the average
local optimal value obtained with OJIRLS1 and OJIRLS2, respectively, and
similarly, let t1 and t2 be the average time needed per local search repetition,
i.e. the number of obtained local optimal solutions divided by the total run
time. Figure 8 illustrates the quality-time trade-off as follows. The horizontal
and vertical axes depict the relative difference of the time, i.e. (t2 − t1)/t1,
and the relative difference of the solution quality, i.e. (f2 − f1)/f1. Each
combination of instance and objective is represented by a symbol. For example,
the instance la31 with total flow time objective is represented by a grey square
at (35.4,−8.5%). The same symbols are used for instances of the same size and
objective.

We observe that the value of the local optimal solutions is between 5% to 9%
lower with OJIRLS2, but its computation time is by a factor of 5 to 90 larger.

4.4 Performance of OJIRLS1 and OJIRLS2

It is of interest to evaluate the performance of OJIRLS1 and OJIRLS2 with
a given run time limit. For this purpose, we considered the solution quality
of OJIRLS1 and OJIRLS2 obtained after a short (60 seconds), medium (300
seconds), and high (1800 seconds) run time. For the evaluation of the average
behavior (over multiple runs), we could in principle use the results of the pre-
vious experiment by dividing the single run of 7200 seconds into time slots of
60, 300, and 1800 seconds, respectively, determining the best solution obtained
within each time slot, and presenting the average results.

As the number of local search repetitions executed within a given time is
quite constant in a run, a better estimation of the average behavior is obtained
with the following variance reduction technique, sometimes called simulation
shortcut (see e.g. McGeoch [6]). For a given time limit, we determine the
average number of local search repetitions r executable within that time limit,
and then simulate a run by sampling randomly and independently r values from
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Figure 8: Quality-time trade-off in all instances with the makespan (a) and total
flow time (b) objective.

the distribution obtained by the single run of 7200 seconds. The objective value
of a run is then the minimum value of the r samples.

According to this procedure, we simulated 100 runs for the two methods
OJIRLS1 and OJIRLS2, each instance, each objective function and the three
run time limits (60, 300, and 1800 seconds). Detailed results can be found in
Tables 7 to 9 in the Appendix. We now discuss these results.

It is of interest to examine the evolution of attained solution quality during
computation. For this purpose, we determined the relative gap of the average
results (over the 100 runs) after 60 and 300 seconds from the average results
after 1800 seconds. Table 2 provides these numbers in an aggregated form
(averaged over all instances of the same size) for objectives a) to c). In addition,
columns 2 and 9 give the average number of local search repetitions obtained in
1800 seconds (in units of 1000, averaged over all instances of the same size and
objectives a) to c)).

The following observations can be made. The values obtained after a short
and medium run time are quite close to those obtained with a high run time.
Indeed, after 60 and 300 seconds, the results are improved only by about 2.4%
and 1.0%, respectively, in instances with the makespan and total flow time
objective. These numbers are slightly higher for the total squared flow time
objective. Both versions OJIRLS1 and OJIRLS2 behave similarly.

We then compared the results of OJIRLS1 and OJIRLS2 with each other.
For each instance, objective function and run time limit, we determined the
relative difference of the solution quality, i.e. (s2 − s1)/s1, where s1 and s2 is
the average value (over the 100 runs) obtained with OJIRLS1 and OJIRLS2,
respectively. Table 3 reports these differences in an aggregated way (averaged
over all instances of the same size) for objectives a) to c). The last line gives
the average value over all instances.
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method OJIRLS1 OJIRLS2
objective makesp. tot. f. t. sq. f. t. makesp. tot. f. t. sq. f. t.
run time rep. 60 300 60 300 60 300 rep. 60 300 60 300 60 300

20× 5 697 2.4 1.2 2.0 0.9 4.0 1.9 63.4 2.1 0.9 1.0 0.2 3.3 1.2
20× 10 737 3.6 1.8 2.3 1.1 5.1 2.3 60.7 3.2 1.4 1.5 0.5 3.4 1.3
30× 10 291 2.6 1.3 2.8 1.2 6.0 2.9 9.7 2.7 1.3 2.8 1.3 6.0 2.9
50× 10 38 2.0 1.0 2.5 1.3 4.6 2.2 0.8 2.3 1.0 2.7 1.3 5.0 2.2
20× 15 639 1.6 0.5 1.7 0.7 3.5 1.6 56.8 0.7 0.1 0.7 0.1 1.3 0.1
20× 20 714 3.8 1.9 3.4 1.6 7.3 3.2 53.5 3.5 1.6 3.0 1.2 6.5 2.9

all 2.5 1.2 2.4 1.1 5.0 2.3 2.4 1.0 2.0 0.8 4.3 1.8

Table 2: Relative gaps (in %) of the results after 60 and 300 seconds from the results
after 1800 seconds, and average number of local search repetitions (in units of 1 000)
for all instance sizes and objectives a) to c).

objective makespan total flow time tot. squared flow t.
run time 60 300 1800 60 300 1800 60 300 1800

20× 5 -0.9% -0.9% -0.6% -1.2% -0.8% -0.2% -2.4% -2.4% -1.7%
20× 10 -2.1% -2.0% -1.7% -1.4% -1.2% -0.7% -3.6% -3.0% -2.0%
30× 10 -2.2% -2.3% -2.3% -2.1% -2.1% -2.1% -3.8% -3.9% -3.9%
50× 10 -2.4% -2.6% -2.6% -2.7% -2.8% -2.9% -5.0% -5.4% -5.4%
20× 15 -1.2% -0.7% -0.4% -1.1% -0.8% -0.2% -2.8% -2.0% -0.6%
20× 20 -2.3% -2.3% -2.0% -1.9% -1.9% -1.5% -4.3% -3.9% -3.6%

all -1.9% -1.9% -1.7% -1.9% -1.8% -1.5% -3.8% -3.7% -3.2%

Table 3: Relative differences of the results obtained with OJIRLS2 to those computed
with OJIRLS1 for all instance sizes and objectives a) to c).
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version OJIRLS2 OJILS2 rel. diff.

20× 5 308768 460680 -33.0%
20× 10 321460 485886 -33.8%
30× 10 55340 76859 -28.0%
50× 10 4288 5924 -27.6%
20× 15 276642 415739 -33.4%
20× 20 293808 432429 -32.1%

run time 60 300 1800

20× 5 0.3% 0.3% 0.1%
20× 10 0.5% 0.4% 0.2%
30× 10 0.4% 0.3% 0.2%
50× 10 0.2% 0.2% 0.2%
20× 15 0.2% 0.1% 0.0%
20× 20 0.4% 0.3% 0.2%

all 0.3% 0.3% 0.2%

Table 4: (left) Number of local search repetitions executed in 7200 seconds with
OJIRLS2 and OJILS2 and the makespan objective averaged over all instances of the
same size and relative differences of these values. (right) Relative difference of the
solution quality of OJIRLS2 compared to OJILS2 after 60, 300, and 1800 second
averaged over all instances of the same size.

We observe that OJIRLS2 provides systematically substantially lower values
than OJIRLS1. Indeed, the average values are up to 5.5% lower with OJIRLS2,
and OJIRLS1 never provides a better value. Similar results were obtained for
objectives d) to g). Altogether, the obtained results suggest that OJIRLS2
should be given preference over OJIRLS1.

4.5 Comparison with benchmarks

As is often the case in scheduling problems, an assessment of the obtained
solution quality by comparing it with the proven optimum is not possible in the
current state of the art. Also, benchmarks from the literature are only available
for the NWJS with makespan objective. Therefore, we resorted to compare the
performance of our approach to benchmark results in the makespan case and
for the other objectives with results obtained via a mixed integer programming
(MIP) model that we derived in a straightforward manner from the compact
disjunctive graph formulation.

4.5.1 The makespan objective

As already mentioned, we developed a similar solution approach for the NWJS
with makespan objective in our previous article [2]. In fact, OJIRLS1 and
OJIRLS2 have a counterpart in [2], named OJILS1 and OJILS2. The only
difference is the optimal job insertion algorithm that has been generalized in this
work. With the makespan objective, the OJI-NWJS-R algorithm determines the
same optimal job insertion as the algorithm developed in [2]. Hence, the same
solutions are computed in OJIRLS1 and OJIRLS2 as in OJILS1 and OJILS2,
respectively.

A difference is, however, the needed time to compute an optimal job inser-
tion. To evaluate this difference, we run the (specialized) version OJILS2 from
[2] under the same computational settings as OJIRLS2 with the same time limit
of 7200 seconds, and compared the number of local search repetitions executed
with the two methods. Columns 2 and 3 of Table 4 (left) provide these numbers
in an aggregated form (averaged over all instances of the same size). Column 4
presents the relative difference of these values.
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We observe that the number of local search repetitions is, on average, about
31% lower in the more general version OJIRLS2. Interestingly, the difference
appears to be independent of the problem size.

To evaluate the effect of the increase in computation time on the solution
quality, we determined the solution quality for OJILS2 in the same way as for
OJIRLS2, namely by a simulation of 100 runs based on the single run of 7200
seconds. For each instance, we then determined the relative difference of the
solution quality obtained by OJIRLS2 and OJILS2, i.e. (sr − sn)/sn, where sr

and sn is the average value (over the 100 runs) obtained with OJIRLS2 and
OJILS2, respectively. Table 4 (right) presents these values for the three run
time limits (60, 300, and 1800 seconds) averaged over all instances of the same
size. The last line gives the average value over all instances.

We observe that the solution quality of OJIRLS2 is only marginally lower
than OJILS2. As OJILS2 is currently among the best methods for the NWJS
with makespan objective, we conclude that OJIRLS2 has a good performance
with this objective.

In addition, it is well-known that any problem with maximum tardiness ob-
jective can be easily transformed into a makespan minimization problem. Hence,
we conclude that OJIRLS2 performs also well with the maximum tardiness ob-
jective.

4.5.2 Other objective functions

Since no benchmark results are available for the other objectives, we tried to
assess the quality of OJIRLS2 with results obtained via a MIP model (with
linear or quadratic objective) using the solver Gurobi 6.0.

Preliminary tests revealed that solutions could only be found in small in-
stances with the MIP approach. Therefore, we decided to use the instances
la01-15/26-30 for these experiments. For the objectives e) to g), we set the
tightness factor f to 2.0 for la01-10 and 3.5 for la11-15/26-30. For each instance
and objective, the MIP model was run with a time limit of five hours. The ob-
jective values of the best solutions (i.e. the upper bound) and the lower bounds
were recorded and compared to the average results (over the 100 runs) obtained
with OJIRLS2 after 300 seconds. The detailed results can be found in Table 10
in the Appendix. Table 5 summarizes these results by presenting the relative
difference of the average results (over the 100 runs) obtained with OJIRLS2
after 300 seconds (avg-300) and the MIP upper bound (UB), i.e. (avg-300 −
UB) / UB (averaged over all instances of the same size).

The following observations can be made. Both OJIRLS2 and the MIP ap-
proach perform well in very small instances. Indeed, optimality was proven with
the MIP approach for all instances of size (10× 5) and all objectives after a few
seconds, and OJIRLS2 always found an optimal solution. This was also the case
for instances of size (15× 5) with the number of tardy jobs objective.

In all other cases, OJIRLS2 gave substantially better results than the MIP
approach. Also, the larger the instances are, the larger the performance differ-
ence is. Indeed, OJIRLS2 gives on average 5.3%, 25.4%, and 48.4% lower values
than the MIP approach in instances of size (15 × 5), (20 × 5), and (20 × 10),
respectively.

Altogether, the obtained results suggest that OJIRLS2 performs well with
all considered objectives.
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objective total flow
time

total
squared
flow time

total
tardiness

total
squared
tardiness

number of
tardy jobs

avg

10× 5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
15× 5 -2.5% -7.4% -4.3% -12.5% 0.0% -5.3%
20× 5 -8.0% -22.0% -25.3% -64.7% -6.8% -25.4%
20× 10 -18.3% -36.5% -66.6% -90.4% -30.3% -48.4%

Table 5: Relative difference of the results obtained with OJIRLS2 after 300 seconds
and the MIP results for objectives b), c), and e) to g) averaged over all instances of
the same size. The last column depicts the difference averaged over all instances of
the same size and all objectives.

4.6 Solutions obtained with different objectives

We conclude this section with a comparison of the best solutions of instance
la12 obtained with the objectives d) maximum tardiness, e) total tardiness, f)
total squared tardiness, and g) number of tardy jobs. Figure 9 illustrates these
solutions in Gantt charts. Table 6 gives a list of all tardy jobs and presents the
objective value for objectives d) to g) in each solution.

The following observations can be made. First, the solution found with the
maximum tardiness objective (sol. d)) has quite high values for all other objec-
tives. This is not surprising as in contrast to the others the maximum tardiness
objective is not a min-sum objective. Second, a quite particular solution was
obtained with the number of tardy jobs objective (sol. g)). Just five jobs are
late, but these were scheduled one after the other at the end of the schedule.
This might be inadequate in practice as the resulting tardiness of the tardy jobs
is high. Third, in the solution found with the total squared tardiness objective
(sol. f)), quite a lot of jobs are tardy but no job has a high tardiness. There-
fore, the solution has also good values for the maximum and total tardiness
objectives, but performs poorly when looking at the number of tardy jobs.

In practice, multiple objectives might be combined with different weights.
As long as the objective function is regular, our approach can be applied.

5 Concluding remarks

We addressed the optimal job insertion problem in the no-wait job shop problem
with general regular objective (NWJS-R) and developed a very efficient algo-
rithm for this problem generalizing our results in case of a makespan objective.

Based on this algorithm, we proposed a simple local search for the NWJS-R
and conducted computational experiments on a large set of instances and objec-
tives. The obtained results compare favorably with current benchmarks, when
available, and may serve as benchmarks for the community.

As future direction of research, it would be interesting to develop approaches
for other complex job shop scheduling problems with a general regular objective.
The obtained results suggest that local search methods based on optimal or
“near-optimal” job insertion might be rewarding.
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Figure 9: Four solutions of instance la12 obtained with the objectives (from top to
bottom): d) maximum tardiness, e) total tardiness, f) total squared tardiness, and g)
number of tardy jobs.
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sol. d) sol. e) sol. f) sol. g)

job tard. job tard. job tard. job tard.

7 330 13 360 13 333 5 1057
13 327 6 358 6 331 4 964
6 325 17 347 17 300 8 874
17 294 1 175 11 180 16 862
2 243 19 148 19 121 1 429
11 174 5 143 5 116
9 149 4 50 8 112
19 115 15 112

16 101
2 5

objective sol. d) sol. e) sol. f) sol. g) min.

max. tardiness 330 (0%) 360 (9%) 333 (1%) 1057 (220%) 330
tot. tardiness 1957 (24%) 1581 (0%) 1711 (8%) 4186 (165%) 1581
tot. squared tard.
(in units of 1000)

533 (31%) 454 (12%) 406 (0%) 3738 (820%) 406

no. of tardy jobs 8 (60%) 7 (40%) 10 (100%) 5 (0%) 5

Table 6: (upper part) For each solution, a list of all tardy jobs indicating the job’s
number and the tardiness. (lower part) The objective value with objectives d) to
g) in all solutions. The last column indicates the minimum objective value among
all solutions. The values in brackets give the relative difference to the corresponding
minimum value.

6 Appendix

A detailed implementation of the OJI-NWJS-R algorithm is given in Listing
1. The lines of the pseudo-code are numbered for reference in the following
discussion.

1 // I n i t i a l i z a t i o n
2 Compute lKL f o r a l l K,L ∈ J+ ; opt := fa l se ;
3 f o r a l l K ∈ J− ∪ τ do hK := −∞ ; end for
4 hJ := 0 ; f∗ :=∞ ; ∆ := J− ;
5 f o r a l l K ∈ J− do pK := qK ; end for
6

7 while opt = fa l se do
8 // Ca l cu la t e e a r l i e s t s t a r t i n g t imes o f T := {wpKK : K ∈ J−} .
9 g := max{lσJ ; lσK + c

pK
KJ : K ∈ J−} ;

10 i f g > lσJ then R := {K ∈ J− : lσK + c
pK
KJ = g} ; end if

11 f o r a l l K ∈ J− do
12 hK := max{hK ; c

pL
JL + lLK : L ∈ ∆} ;

13 end for
14 hτ := max{hτ ; lJτ ; c

pL
JL + lLτ : L ∈ ∆} ;

15 f o r a l l K ∈ J ∪ τ do αK := max{lσK ; g + hK} ; end for
16 Evaluate f(α) ;
17 i f f(α) < f∗ then
18 T ∗ := {wpKK : K ∈ J−} ; f∗ := f(α) ;
19 end if
20

21 i f g = lσJ then opt :=true ; return ; end if
22 f o r a l l K ∈ J− −R do p′K := pK ; end for
23 f o r a l l K ∈ R do
24 i f pK = 1 then opt :=true ; return ; else
25 p′K := pK − 1 ; end if
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26 end for
27 S := R ;
28 while S 6= ∅ do
29 get some K ∈ S ;
30 f o r a l l L ∈ J− −K do
31 p := p′L ;

32 while (w
p′K
K , wpL) ∈ Y do

33 i f p = 1 then opt :=true ; return ; else
34 p := p− 1 ; end if
35 end while
36 i f p < p′L then p′L := p ; S := S ∪ L ; end if
37 end for
38 S := S −K ;
39 end while
40

41 ∆ := ∅ ;
42 f o r a l l K ∈ J− do
43 i f p′K < pK then ∆ := ∆ ∪K ; pK := p′K ; end if
44 end for
45 end while
46 // T ∗ i s an opt imal job i n s e r t i on .

Listing 1: OJI-NWJS-R algorithm

Each iteration of the while loop (line 7) starts with the current insertion
T = {wpKK : K ∈ J−}, of which in a first part (lines 8 to 19), the earliest
starting times αK , K ∈ J ∪ τ and the objective value f(α) are computed, and
the best insertion T ∗ is possibly updated. Then, in a second part (lines 21 to
39), the insertion T ′, maximal element of the lattice LT as defined in (16) is
computed or LT = ∅ is asserted (case opt=true). At completion of the iteration,

T ′ = {wp
′
K

K : K ∈ J−}.
In order to detemine the computational complexity of the implementation,

we first remark on the calculation of the earliest starting times αK , K ∈ J ∪ τ .
For each K ∈ J ∪ τ , hK is updated (and not recalculated according to (10) in
each iteration), based on the observation that hK is monotone non-decreasing in
the sequence of the iterations (see property (15)). Specifically, hK in lines 12 and
14 is updated by considering its previous value and only those terms cpLJL + lLK
that have (potentially) changed since the previous iteration, i.e. terms cpLJL+lLK
for K ∈ ∆, where ∆ is computed in lines 41 to 45. It is then easy to show that
the computational effort over all iterations is O(n ·

∑
qK) for calculating all αK ,

K ∈ J ∪ τ , and O(η ·
∑
qK) for evaluating f . The overall complexity of the

first part is then O(max{n, η} ·
∑
qK).

The overall complexity O(n·
∑
qK) of the second part is achieved by growing

Ψ(QT ) with a scanning phase and maintaining T ′ = {wp
′
K

K : K ∈ J−} such that

T ′ ∩Ψ(QT ) = ∅ and for each K ∈ J−, w
p′K
K ∈ T or w

p′K+1
K ∈ Ψ(QT ). This part

is very similar to the scanning phase implemented in [2] and we do not expand
on its details for this reason. Also, its overall complexity of O(n ·

∑
qK) can be

shown by replicating arguments used in [2].
Altogether, taking into account the all-pairs longest paths computations to

determine the lKL (line 2), K,L ∈ J+, the OJI-NWJS-R algorithm runs in time
O(n3,max{n, η} ·

∑
qK).
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objective makespan total flow time tot. squared flow time
(in units of 10 000)

run time 60 300 1800 60 300 1800 60 300 1800

20× 5
la11 1652 1636 1623 17256 17098 16980 1984 1942 1905
la12 1473 1458 1436 15135 14836 14644 1581 1554 1528
la13 1621 1603 1589 17068 16935 16771 1905 1864 1838
la14 1666 1637 1601 17918 17706 17520 2103 2049 1989
la15 1700 1681 1674 18229 18100 18036 2159 2121 2092

20× 10
la26 2604 2553 2510 29316 28938 28532 5384 5241 5123
la27 2759 2712 2673 30903 30530 30191 5986 5841 5723
la28 2663 2616 2580 29768 29472 29258 5558 5408 5291
la29 2456 2419 2374 27543 27249 27002 4739 4602 4514
la30 2628 2579 2515 28686 28321 27987 5313 5175 5021

30× 10
la31 3739 3691 3649 59636 58644 57815 15162 14657 14262
la32 4086 4033 3959 64777 63741 62944 17948 17473 17040
la33 3710 3663 3620 58998 58180 57391 14757 14353 13933
la34 3793 3750 3707 60826 59859 59227 15603 15146 14710
la35 3818 3765 3717 61207 60352 59699 15836 15415 14903

50× 10
swv11 5745 5703 5668 147388 145919 144425 56666 55503 54411
swv12 5773 5713 5653 148990 146810 144656 57551 56467 55565
swv13 5899 5840 5801 151643 150378 148988 60136 59088 58060
swv14 5649 5589 5519 145309 143885 142686 54894 53844 53090
swv15 5608 5563 5523 145088 143752 142519 54764 53731 52686
swv16 6195 6125 6057 158205 155871 153904 65708 63688 61924
swv17 6000 5924 5845 152096 150199 146951 61143 59354 57464
swv18 6037 5972 5916 154688 152871 151199 62832 61159 59473
swv19 6298 6234 6162 160329 158492 156229 67413 65885 64543
swv20 6003 5945 5889 153797 151444 149284 61899 60466 59021

20× 15
swv06 3326 3294 3286 38785 38557 38291 9135 9006 8930
swv07 3260 3226 3205 37612 37241 36939 8639 8486 8300
swv08 3478 3431 3423 40837 40046 39541 9925 9634 9359
swv09 3311 3279 3251 39084 38877 38716 9160 9031 8937
swv10 3530 3505 3482 40518 40261 40139 9870 9713 9617

20× 20
yn1 2503 2456 2409 28558 28139 27788 5022 4866 4759
yn2 2492 2445 2399 28811 28251 27790 5068 4887 4733
yn3 2450 2398 2349 28273 27686 27145 4871 4592 4420
yn4 2577 2535 2499 29681 29221 28791 5364 5216 5042

Table 7: Average results (over the 100 runs) of OJIRLS1 with objectives a) to c) and
run time limits 60, 300, and 1800 seconds.
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objective makespan total flow time tot. squared flow time
(in units of 10 000)

run time 60 300 1800 60 300 1800 60 300 1800

20× 5
la11 1638 1624 1619 17090 16985 16980 1949 1925 1898
la12 1457 1439 1421 14890 14685 14631 1539 1484 1452
la13 1609 1595 1585 16888 16766 16741 1863 1837 1830
la14 1638 1607 1580 17650 17533 17473 2024 1973 1953
la15 1694 1679 1672 18075 17993 17933 2126 2096 2078

20× 10
la26 2547 2501 2480 28992 28675 28429 5212 5092 4999
la27 2717 2673 2630 30394 30141 29845 5732 5627 5533
la28 2615 2577 2554 29434 29224 29161 5379 5289 5246
la29 2397 2363 2323 26999 26682 26626 4531 4439 4389
la30 2566 2508 2455 28294 28016 27944 5151 5041 4983

30× 10
la31 3655 3602 3560 58470 57773 57317 14458 13995 13627
la32 3990 3931 3886 63387 62380 61584 17305 16745 16180
la33 3620 3575 3543 57606 56645 55809 14177 13831 13487
la34 3707 3660 3616 59602 58578 57699 15012 14571 14044
la35 3752 3696 3629 59912 59169 58353 15326 14884 14589

50× 10
swv11 5622 5566 5505 143652 141879 140683 54213 52636 51596
swv12 5649 5582 5535 145481 143343 141845 55118 53583 52194
swv13 5766 5688 5637 147785 146305 144614 56979 55792 54966
swv14 5528 5461 5388 141453 139977 137939 52306 50879 50014
swv15 5493 5431 5380 141837 140054 138815 52339 51390 50343
swv16 6035 5965 5897 153745 151530 149701 62247 60489 58976
swv17 5823 5759 5696 147834 145564 143528 57735 56325 55009
swv18 5893 5801 5740 150083 147529 145483 59090 57524 56348
swv19 6125 6038 5965 155448 153586 151551 63841 62083 60715
swv20 5867 5791 5749 149764 147248 143831 58650 56741 55121

20× 15
swv06 3296 3282 3278 38503 38278 38269 8991 8920 8915
swv07 3219 3196 3188 37218 36894 36880 8380 8278 8248
swv08 3437 3423 3423 40173 39631 39485 9440 9225 9221
swv09 3276 3251 3246 38727 38678 38669 8970 8894 8871
swv10 3482 3461 3453 40054 39991 39991 9649 9608 9607

20× 20
yn1 2450 2399 2369 28111 27786 27542 4839 4685 4589
yn2 2425 2376 2342 28227 27641 27367 4858 4669 4513
yn3 2387 2354 2317 27674 27087 26722 4605 4440 4298
yn4 2528 2482 2435 29123 28682 28255 5151 4999 4864

Table 8: Average results (over the 100 runs) of OJIRLS2 with objectives a) to c) and
run time limits 60, 300, and 1800 seconds.
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objective max. tardiness tot. tardiness tot. squared tard. no. of tardy j.
(in units of 1 000)

run time 60 300 1800 60 300 1800 60 300 1800 60 300 1800

20× 5
la11 385 381 381 1847 1843 1843 616 616 616 4.9 4.3 4.0
la12 335 332 330 1588 1581 1581 437 417 406 5.0 5.0 5.0
la13 395 392 392 1890 1820 1808 584 566 566 6.0 6.0 6.0
la14 442 432 428 2040 2009 2009 826 796 781 5.9 5.6 5.0
la15 483 475 474 2396 2364 2363 931 895 892 6.0 6.0 6.0

20× 10
la26 372 350 341 1473 1363 1324 485 416 394 3.7 3.1 3.0
la27 612 582 562 2328 2191 2094 1165 1005 884 5.0 4.9 4.6
la28 413 379 356 1575 1403 1356 547 418 368 3.8 3.4 3.0
la29 324 298 295 1307 1191 1114 366 330 325 3.6 3.1 3.0
la30 358 344 339 936 815 781 301 258 242 3.2 3.0 3.0

30× 10
la31 575 538 486 2871 2397 1853 1408 1125 998 5.7 5.2 4.9
la32 721 666 603 4084 3630 3267 2425 1874 1534 6.4 5.9 5.4
la33 562 506 443 3214 2875 2524 1629 1325 1140 5.7 5.1 4.8
la34 751 710 666 4192 3799 3389 2625 2178 1813 7.0 6.7 6.1
la35 749 703 634 3879 3532 3128 2373 1983 1605 6.9 6.4 6.0

50× 10
swv11 1032 974 930 10136 9167 8322 8234 7275 6704 12.3 11.5 11.0
swv12 1139 1064 1016 12186 11030 9604 11356 9878 9070 13.2 12.5 12.1
swv13 1099 1041 997 11175 10216 9427 9438 8175 7161 12.4 11.7 11.1
swv14 1086 1016 967 10475 9418 8280 8446 7262 6411 12.7 11.8 11.2
swv15 1155 1089 1030 11701 10716 10059 10824 9520 8634 13.3 12.6 12.1
swv16 1751 1681 1600 18709 17149 15906 25606 22542 18833 15.8 15.1 14.4
swv17 1546 1469 1421 17779 16203 14922 21823 19085 17234 14.5 13.8 13.2
swv18 1675 1585 1502 18545 16564 14736 23899 20582 18511 15.4 14.5 13.7
swv19 1774 1690 1601 20032 18532 17474 27367 23959 21310 15.9 15.3 14.7
swv20 1649 1562 1508 18607 17124 16038 24513 21206 18877 15.4 14.7 14.2

20× 15
swv06 645 644 644 2813 2810 2810 1321 1294 1294 4.9 4.6 4.1
swv07 696 689 689 2753 2735 2735 1408 1398 1398 5.1 5.0 5.0
swv08 748 746 746 3560 3528 3525 2055 2042 2036 5.0 4.9 4.4
swv09 771 750 748 3037 3005 3004 1933 1893 1893 5.4 5.0 5.0
swv10 862 854 854 3992 3964 3958 2545 2456 2445 6.0 5.9 5.7

20× 20
yn1 583 541 510 2186 1953 1767 1062 862 742 5.2 5.0 4.8
yn2 573 532 496 2254 1972 1759 1059 855 672 5.1 4.9 4.5
yn3 547 504 467 2101 1871 1634 921 752 631 5.3 5.0 5.0
yn4 520 489 456 2116 1889 1597 983 831 731 4.9 4.6 4.1

Table 9: Average results (over the 100 runs) of OJIRLS2 with objectives d) to g)
and run time limits 60, 300, and 1800 seconds.
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