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ABSTRACT The joint and accurate inference of selection and demography from genetic data is considered a partic-
ularly challenging question in population genetics, since both process may lead to very similar patterns of genetic
diversity. However, additional information for disentangling these effects may be obtained by observing changes in
allele frequencies over multiple time points. Such data is common in experimental evolution studies, as well as in the
comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally
challenging, particularly when considering multi-locus data sets. To overcome these issues, we introduce a novel,
discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term
behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of
inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that
our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We
then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients
with high accuracy, and further extend this model to also infer the rates of sequencing errors and mutations. We finally
apply our approach to recent experimental data on the evolution of drug resistance in Influenza virus, identifying likely
targets of selection and finding evidence for much larger viral population sizes than previously reported.
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Detecting signatures of past selective events gives insights
into the evolutionary history of a species and elucidates

the interaction between genotype and phenotype, providing
important functional information. Unfortunately, a population’s
demographic history is a major confounding factor when in-
ferring past selective events, particularly because demographic
events can mimic many of the molecular signatures of selection
(Andolfatto and Przeworski 2000; Nielsen 2005). Despite efforts
to create statistics robust to demography, all currently available
methods to detect selection are prone to misinference under
non-equilibrium demography.

Some of these issues can potentially be overcome by using
multi-time point data, as the trajectory of even a single allele
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contains valuable information about the underlying selection
coefficient. Owing to advances in sequencing technologies, such
multi-time point data are becoming increasingly common from
experimental evolution (Foll et al. 2014), from longitudinal medi-
cal or ecological studies (Wei et al. 1995; Renzette et al. 2014), and
through ancient samples (Wilde et al. 2014; Sverrisdóttir et al.
2014). However, computationally efficient and accurate methods
to infer demography and selection jointly from such data sets
are still limited.

A natural and common way of modeling such time series data
is in a Hidden Markov-Model (HMM) framework, which allows
efficient integration over the distribution of unobserved states of
the true population frequencies, thus allowing calculation of the
likelihood based on the observed samples. Williamson & Slatkin
(1999) (Williamson and Slatkin 1999), for instance, developed
a maximum-likelihood approach based on such an HMM to
infer the population size N from samples taken at different time
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points. More recently, similar approaches have been developed
to infer population size along with the selection coefficient of a
selected locus for which time series data is available (Bollback
et al. 2008; Malaspinas et al. 2012).

All such approaches, however, are plagued by the problem
that the number of hidden frequency states is equal to the popu-
lation size, which renders HMM applications computationally
unfeasible for large populations. Different routes have been
taken to overcome this. One approach is to model the underlying
Wright-Fisher process as a continuous diffusion process, which
is then discretized for numerical integration using a numerical
difference scheme (Bollback et al. 2008). Since, this approach
remains computationally expensive, it was later suggested to
directly model the diffusion process on a more coarse-grained
grid (Malaspinas et al. 2012). Under this approach, their genera-
tor matrix for the transition between the coarse-grained states
is then approximated by fitting the first and second infinitesi-
mal moments. Unfortunately, the minimum number of states
required is still computationally prohibitive for large values of
γ = 2Ns (Malaspinas et al. 2012). For this reason, the most re-
cent reported method resorted to simulation based Approximate
Bayesian Computation (ABC), which allowed the joint inference
of locus-specific selection coefficients for many loci (Foll et al.
2014, 2015). However, this method requires first estimating the
population size under the assumption that all loci are neutral,
and thus may be biased when many loci are under selection.

Here we introduce a novel framework by approximating the
WF-process with a coarse-grained Markov-Model that exactly
preserves the expected waiting times for transition between
states. This is achieved by exploiting the theory of Green’s func-
tion for diffusion processes. Contrary to previous approaches,
our approximation matches the WF-process closely even when
only very few states are considered, regardless of γ = 2Ns. As
we show with extensive simulations and a data application from
experimental evolution, our method allows for accurate joint
inference of both population size and locus-specific selection
coefficients even in the presence of pervasive selection. Further,
it is readily extended to incorporate population size changes,
sequencing errors or the appearance of novel mutations.

Models

Mean Transition Time Approximation
Let X(t) be a diffusion process on the state space [0, 1]. This is a
continuous-time Markov process with continuous sample paths
and with infinitesimal generator

L f =
1
2

a(x)
d2

dx2 f + b(x)
d

dx
f . (1)

For general information about diffusion processes we refer to
Durrett (2008, ch.7) and Etheridge (2011, ch.3).

The classical example in population genetics is the Fisher-
Wright diffusion which we discuss below. We seek to find a
discrete-state Markov process U(t) which approximates X(t).
For this purpose, we subdivide the unit interval [0, 1] into, not
necessarily equidistant, frequencies

u0 = 0 < u1 < . . . < uK−1 < uK = 1.

These form the states of U(t). For two states ui, uj, consider
the transition time to the first visit of uj when starting at ui:

TU
ui→uj

= inf{t : U(t) = uj for U(0) = ui}.

Figure 1 Mean transition time approximation of Markov pro-
cesses. Shown are the realizations of a continuous diffusion
process X(t) (black) and a discrete-state Markov process U(t)
(red) starting at ui until they reach uj for the first time. If the
expected waiting time for such a transition is the same for
both processes for all pairs of states ui, uj, we say that U(t) is a
mean transition time approximation of X(t).

Similarly we define the transition time for the diffusion process
X(t). We say that U(t) is a mean transition time approximation of
X(t) if

E
[

TU
ui→uj

]
= E

[
TX

ui→uj

]
(2)

for all pairs of states ui, uj (see Fig. 1). This condition guarantees
that the paths of X(t) and U(t) exhibit comparable long-time
behavior. In the following we show how to construct the Markov
process U(t) from the diffusion process X(t) using the theory of
Green’s function.

We begin by recalling some notions for diffusion processes.
The natural scale of the process X(t) is given by

φ(x) =
∫ x

ψ(y)dy, (3)

where ψ(y) = exp(−2
∫ y b(z)

a(z) dz), see Durrett (2008, p.264). The
so-called speed measure is defined by

m(y) =
1

a(y)ψ(y)
. (4)

According to Theorem 7.16 in Durrett (2008), the Green’s func-
tion for an interval (u, v) ⊆ [0, 1] is given by

G(x, y) =

⎧⎨
⎩

2m(y) (φ(v)−φ(x))(φ(y)−φ(u))
φ(v)−φ(u) , u ≤ y ≤ x

2m(y) (φ(x)−φ(u))(φ(v)−φ(y))
φ(v)−φ(u) , x < y ≤ v.

(5)

Denote by Tx→u or Tx→v the time to first visit of u or v, respec-
tively, starting at x. Then Tv

u = min(Tx→u, Tx→v) is the exit time
from the interval (u1, u2), given the process is at x at time t = 0.
One can show (see Durrett (2008, p.279))

E(Tv
u ) =

v∫
u

G(x, y)dy. (6)

Moreover, the probability of exiting at the lower limit u is

P(Tx→v > Tx→u) =
φ(v)− φ(x)
φ(v)− φ(u)

. (7)
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We now want to determine the instantaneous transition rates qi,j
of the discrete-state Markov process U(t). Recall the definitions

P [U(t + dt) = uk|U(t) = uk] = 1 − qk,kdt + o(dt),
P [U(t + dt) = uk+1|U(t) = uk] = qk,k+1dt + o(dt)

and

P [U(t + dt) = uk−1|U(t) = uk] = qk,k−1dt + o(dt).

The sojourn time of state uk, i.e. the time interval of U(t) spent
in state uk, is an exponential random variable with parameter
qk,k. Since the expectation of this exponential variable is 1/qk,k
our condition (2) enforces

qk,k =
1

E(Tk+1
k−1 )

,

where we write k − 1 instead of uk etc. in order to unburden the
notation. From this we get

qk,k+1 =
P(Tk→k+1 < Tk→k−1)

E(Tk+1
k−1 )

and

qk,k−1 =
P(Tk→k+1 > Tk→k−1)

E(Tk+1
k−1 )

.

We can now form the tridiagonal generator matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·
q1,0 −q1,0 − q1,2 q1,2 0 · · ·
0 q2,1 −q2,1 − q2,3 q2,3 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The transition matrix of the Markov process U(t) is given by

P(t) = exp tQ. (8)

Application to Wright-Fisher Models
We will consider a classic Wright-Fisher Model of two alleles
that segregate in a population of size 2N. Time t is measured in
generations of the Wright-Fisher process. In the presence of a
non-vanishing dominance coefficient h the fitnesses of the three
genotypes are given by wAA = 1+ s, wAa = 1+ hs, and waa = 1.
Under such a model, the infinitesimal mean, which corresponds
to the change in allele frequency, is then given by (Ewens 2004,
p.13)

b(x) =
wAAx2 + wAax(1 − x)

wAAx2 + 2wAax(1 − x) + waa(1 − x)2 − x

=
x(1 − x)s(x + h − 2hx)
1 + sx(x + 2h − 2hx)

. (9)

Let X(t) be a diffusion process corresponding to the fre-
quency of allele A. As shown by Lacerda and Seoighe (2014), an
excellent approximation of the Wright-Fisher process is obtained
by setting

a(x) =
x(1 − x)

2N
(10)

and

b(x) =
σ̄kx(1 − x)

1 + σkx
(11)

in the infinitesimal generator (1), where

σk = s(2h + uk(1 − 2h)) (12)

and
σ̄k = s(h + uk(1 − 2h)) (13)

when uk−1 ≤ x ≤ uk+1
Note that in the standard diffusion approximation the de-

nominator term in b(x) is often omitted. But the above choice
yields a much more accurate approximation to the WF process
(Lacerda and Seoighe 2014).

From (3) and (4) we get

ψ(y) = exp
(
−2

∫ y 2Nσ̄k
1 + σkx

dx
)
= (1 + sy)−4Nσ̄k/σk (14)

and
φ(x) =

∫ x
ψ(y)dy = − 1

Mkσk
(1 + σky)−Mk , (15)

where we have set
Mk = 4N

σ̄k
σk

− 1. (16)

For the speed measure we obtain

m(y) =
1

a(y)ψ(y)
=

2N
y(1 − y)

(1 + σky)Mk+1. (17)

Consider three consecutive states uk−1, uk and uk+1. For the
probability to exit at the lower state we get

P↓ := P(Tk→k+1 > Tk→k−1) =
φ(uk+1)− φ(uk)

φ(uk+1)− φ(uk−1)

=
(1 + σkuk)

−Mk − (1 + σkuk+1)
−Mk

(1 + σkuk−1)−Mk − (1 + σkuk+1)−Mk

=

(
1+σkuk+1
1+σkuk

)Mk − 1(
1+σkuk+1
1+σkuk−1

)Mk − 1
.

(18)

The probability for exit at the upper state is

P↑ := P(Tk→k+1 < Tk→k−1) = 1 − P↓.

Observe that the Green’s function is calculated by

G(uk, y) =

{
G↓(uk, y) := 2P↓m(y)(φ(y)− φ(uk−1)), uk−1 ≤ y ≤ uk

G↑(uk, y) := 2P↑m(y)(φ(uk+1)− φ(y)), uk < y ≤ uk+1.

Using the quantities calculated above we get for the two parts
of the Green’s function:

G↓(uk, y) =
4NP↓

σk Mky(1 − y)
(1 + σky)Mk+1 · . . .

·
(
(1 + σkuk−1)

−Mk − (1 + σky)−Mk
)

=
4NP↓
σk Mk

1 + σky
y(1 − y)

((
1 + σky

1 + σkuk−1

)Mk

− 1

) (19)

and

G↑(uk, y) =
4NP↑

σk Mky(1 − y)
(1 + σky)Mk+1 · . . .

·
(
(1 + σky)−Mk − (1 + σkuk+1)

−Mk
)

=
4NP↑
σk Mk

1 + σky
y(1 − y)

(
1 −

(
1 + σky

1 + σkuk+1

)Mk
)

.

(20)
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With numerical integration we can determine

E(Tk+1
k−1 ) = E↓ + E↑ =

∫ uk

uk−1

G↓(uk, y)dy +
∫ uk+1

uk

G↑(uk, y)dy.

Specifically, we use the extended Simpson’s rule for the nu-
merical integration (Press 2007), which we found to give accurate
results with typically only 8 or 10 intervals.

If γ = 2Ns is large, we get approximations for the Green’s
function which allow for analytic expressions of the integrals
(see Appendix). Similarly, analytic expressions can be found in
the special case s = 0 (see Appendix).

Bayesian Inference

Consider that at the times Tt, t = 0, . . . , T, samples of sizes Mt
were taken from the population and mt alleles A were observed
in these samples. In this section, we describe how the mean tran-
sition time approximation introduced above can be embedded
into a Bayesian inference scheme to estimate the population size
2N and the locus-specific selection coefficient jointly from time
series data.

As has been noted previously (Williamson and Slatkin 1999;
Bollback et al. 2008; Malaspinas et al. 2012; Mathieson and
McVean 2013; Steinrücken et al. 2014; Lacerda and Seoighe 2014),
a natural way of modeling both the underlying evolutionary
process as well as the process of sampling is a Hidden Markov
Model (HMM). Under the assumption that the population size
between two time points Tt and Tt+1 is constant at Nt, the tran-
sition matrix of such an HMM from state U(Tt) to state U(Tt+1)
is calculated by

Pt = exp(ΔtQt),

where Δt = Tt+1 − Tt and the generator matrix Qt is deter-
mined as explained above using N = Nt. We note here that this
framework allows for instantaneous population size changes
to occur at every time t during the HMM. However, we will
henceforth only deal with situations in which the population
size is assumed to be constant across the whole sampling period.

Following previous implementations (e.g. (Williamson and
Slatkin 1999; Bollback et al. 2008; Malaspinas et al. 2012; Math-
ieson and McVean 2013; Steinrücken et al. 2014; Lacerda and
Seoighe 2014)), we will assume that the sampling of alleles from
the underlying population frequency is binomial, i.e.

P(mt = m|U(Tt) = uk) =

(
Mt
m

)
um

k (1 − uk)
Mt−m.

However, for large sample sizes, the few states uk may be
too coarse grained to capture the region of high emission proba-
bility. We thus propose to integrate the emission probabilities
against a smoothing kernel. We chose to implement a beta dis-
tribution kernel, which is the conjugate prior to the binomial
emission probabilities. As a result, this choice leads to a beta-
binomial emission probability that can be evaluated analytically.
Specifically, we chose to use a beta-kernel with mean uk and
standard deviation σk = (uk+1 − uk−1)/4, such that the interval
[uk−1, uk+1] corresponds to uk ± 2σk in the case of equidistant
states. Under this choice, the emission probabilities are then
calculated by

P(mt = m|U(Tt) = uk) =

(
Mt
m

)
B(m + αk, Mt − m + βk)

B(αk, βk)
,

where B(·, ·) is the Beta function and the parameters αk and βk
are determined via the moment estimators for a beta distribution

αk = uk

(
uk(1 − uk)

σ2
k

− 1

)
, βk =

αk(1 − uk)

uk
.

With both transition and emission probability matrices at
hand, we calculate the likelihood of the full data using the stan-
dard forward recursion. To be specific, let us first define for
t = 0, . . . , T the (K + 1)× (Mt + 1) emission probability matri-
ces

Bt
k,m = P(mt = m|U(Tt) = uk), k = 0, . . . , K, m = 0, . . . , Mt.

Denoting m1:t = (m1, . . . , mt), we define the total probability

αk(t) = P(m1:t, U(Tt) = uk).

This total probability can be determined efficiently with the
forward recursion (Murphy 2012, p.609)

αk(t) =
K

∑
i=0

αi(t − 1)Pt−1
k,i Bt

i,mt
(21)

and αk(0) = B0
k,m0

. Then one has

P(m1:T |θ) =
K

∑
k=0

αk(T), (22)

where we made explicit the dependence of this probability on
the parameters

θ = (s, h, N0, . . . , NT−1) .

If we impose priors π(θ) on the parameters then we can sim-
ulate the posterior probability π(θ|m1:T) with the usual MCMC
scheme using (22) and the Hastings ratio

h(θ, θ′) = min
(

P(m1:T |θ′)π(θ′)
P(m1:T |θ)π(θ)

q(θ′ → θ)

q(θ → θ′)
, 1
)

.

Extension of basic model

Sequencing errors Generally, sequencing errors are overcome
with sufficient coverage. However, in many applications of next
generation sequencing to experimental evolution, the goal of
the sequencing is not to infer individual genotypes, but rather
allele frequencies directly. Under such a setting, each sequencing
read is assumed to be from a different individual. In such cases,
sequencing errors may lead to false inference, especially when
allele frequencies are very small.

Incorporating sequencing errors into our framework is
straight forward. Under the assumption that there are only two
alleles present at the locus (achieved by, for instance, pooling all
non-selected alleles into one class) and symmetric error rates ε
between those classes, we can approximate the probability that

m(i)
t , the i-th allele surveyed at time t, is A in the presence of

sequencing errors as

P(m(i)
t = A|U(Tt) = uk) = (1 − ε)uk + ε(1 − uk).
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Mutational Input We allow for the production of mutant alleles
only when the process is in state u0 = 0 or uK = 1. The pro-
duction of new alleles proceeds at a rate of 2Nμdt. Once a new
allele is produced, say when the system is in state u0, it must
get from state 1/2N into state u1. This happens with probability
P↑ = P(T1/2N→u1

< T1/2N→0) which is calculated according to
(7). This yields the transition rate

q0,1 = 2Nμ P(T1/2N→u1
< T1/2N→0).

Since u1 is close to 0, we can assume that σ ≈ 2sh and M ≈ 2N,
see (16). Using (7) and (15) we obtain

q0,1 = 2Nμ
φ(0)− φ(1/2N)

φ(0)− φ(u1)

= 2Nμ
1 − (1 + σ/2N)−M

1 − (1 + σu1)−M

≈ 2Nμ
1 − (1 + sh/N)−2N

1 − (1 + 2shu1)−2N ≈ 2Nμ
1 − exp(−2sh)

1 − exp(−4Nshu1)
.

For the production of a new allele in state uK = 1 an analogous
argument yields the approximations σ ≈ s, M ≈ 4N(1 − h) and
by (18)

qK,K−1 = 2Nμ P(T(2N−1)/2N→1 > T(2N−1)/2N→uK−1
)

=
(1 + σ(2N − 1)/2N)−M − (1 + σ)−M

(1 + σuK−1)−M − (1 + σ)−M

≈ 2Nμ
exp (2s(1 − h))− 1

exp (4Ns(1 − h)(1 − uK−1))− 1
.

In the selection-free case, i.e. in the limit s → 0, the transition
probabilities simplify to

q0,1 =
μ

u1
, qK,K−1 =

μ

1 − uK−1
.

Implementation
We have implemented the proposed model and
the Bayesian inference scheme in an easy-to-
use ��� program available on our lab website
(http://www.unifr.ch/biology/research/wegmann). While
we use standard implementations for most aspects, we note
the matrix exponentiation in Eq. 8, which is a numerically
very demanding problem. A classic algorithm for matrix
exponentiation is by diagonalization of the matrix (Moler
and Van Loan 1978). While computationally efficient, this
algorithm may be numerically unstable for matrices with
large condition numbers, which are typically observed when
γ = 2Ns becomes large. This was previously observed by
(Malaspinas et al. 2012), who addressed this issue using multiple
precision arithmetics. Unfortunately, such arithmetics are
computationally very demanding, leading to slow performance
of their implementation.

Here, we propose to alleviate this problem using the approxi-
mation

exp Q ≈
(

I +
1

2n Q
)2n

,

which can be calculated by successive quadration. Such ma-
trix multiplications are generally demanding, but can be im-
plemented in a computationally efficient manner for generator
matrices that are tridiagonal, as each quadration step only adds

two additional diagonals and such band matrices can be multi-
plied efficiently (see chapter 7.4 in (Dahlquist and Björk 2008)).

We further mention the choice of frequency bins. Malaspinas
et al. (2012) report that for their approach, a tighter spacing of
frequencies towards the boundaries led to more accurate results,
in particular with what they call a "quadratic grid". We thus
chose to implement, apart from a uniformly spaced grid, also a
"quadratic grid" with u0 = 0 and

uk = uk−1 + x ∗ (1 − x), x = k − 1
2

,

scaled such that uK = 1. The major difference of this choice to
the quadratic grid proposed by Malaspinas et al. (2012) is that
we do not force u1 = 1/2N and uK−1 = 1− 1/2N, as this would
force us to change the frequency bins as a function of N during
the MCMC, and hence to recalculate emission probabilities.

Application to Influenza data
We analyzed allele frequency data from whole genome data
sets of Influenza H1N1 obtained in a recent evolutionary ex-
periment (Renzette et al. 2014). While we refer the reader to
the original study for a detailed description of the experimen-
tal set-up, we summarize the key point briefly here: Influenza
A/Brisbane/59/2007 (H1N1) was serially amplified on Madin-
Darby canine kidney (MDCK) cells for 12 passages of 72 hours
each to prevent any freeze-thaw cycles. After the three initial
cycles, samples were passed either in the absence of drug, or
in the presence of increasing concentrations of oseltamivir, a
neuraminidase inhibitor for another 9 passages. At the end of
each passage, samples were collected for whole-genome high-
throughput population sequencing up to a median coverage of
more than 50,000x.

For our analysis here we only considered the time-points
taken during drug treatment (passages 4 to 12), but considered
all 13,395 sites for which data was available (Foll et al. 2014). For
each site, we first identified the two alleles having the highest fre-
quencies over all passages and considered the minor allele to be
the one with the lower frequency at the beginning of the experi-
ment (passage 0). To avoid any bias, all other alleles were treated
collectively as the major allele. We estimated N along with locus
specific selection coefficients s, the sequencing error rate ε and
the per site mutation rate μ. We assumed log-uniform priors on
N, ε and μ such that log10(N) U[1, 5], log10(ε) = U[−4,−0.3]
and log10(μ) = U[−7,−1], and a normal prior on the selection
coefficients such that s N (0, 0.05). Since viruses are haploid,
we fixed the dominance coefficient at h = 0.5. We then run an
MCMC using 51 states for 25000 iterations during which each
parameter was updated in turn. The first 2000 such iterations
were discarded as burn-in phase.

Simulations To assess the accuracy of our approximation, we
simulated trajectories under the discrete Wright-Fisher process,
the diffusion process, as well as under the mean transition time
approximation and the approximation proposed by Malaspinas
et al. (2012). All simulations under the discrete Wright-Fisher
model and the diffusion process were performed using binomial
sampling and the Euler–Maruyama method, respectively. Those
under approximations using frequency states were generated
by simulating transitions according to the transition matrices
calculated under the specific approximations.

In order to evaluate the power of our method to infer pop-
ulation sizes and selection coefficients, we also simulated data
for 20 or 100 unlinked loci with N of 100, 1000 or 10000. For
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Figure 2 Mean transition time approximation of Markov processes. For both small (N=100, left panel) and large (N=10,000, right
panel) population sizes as well as weak (s=0.01) and strong (s=0.3) selection, we show the allele frequency distributions after 10
generations of selection and random drift starting from a frequency of 0.2, as well as the waiting times for a transition from a fre-
quency 0.2 to 0.9. Results obtained under the discrete Wright-Fisher process are given in gray, those obtained under the diffusion
approximation as black solid lines or empty boxes, and those under our approximation in shades of blue, with darkness increasing
with higher number of frequency states considered.

each of these settings, we set either 20% or 80% of the loci to be
under selection, with an equal representation of four selection
coefficients: -0.1, -0.01, 0.01 and 0.1. All loci, both selected and
neutral, had the starting allele frequency set at random. The
change in allele frequency from one time point to the next was
calculated under the Wright-Fisher model matching the exper-
imental set-up of our application. Specifically, we simulated a
total of 117 generations and took a sample of 1000 sequences
every 13 generations, unless otherwise stated.

Results and Discussion

Mean Transition Time Approximation

Comparisons of the long term behavior of the here introduced
mean transition time approximation of the Wright-Fisher process
with its discrete realization demonstrate the power of our ap-
proximation. In Fig. 2 we show the frequency distribution of
alleles with an initial frequency of 0.2 after 10 generations of
selection and random drift under the discrete Wright-Fisher
process for different population sizes and different selection
strength. As expected from our assumptions, the distributions
obtained under our approximation have identical means and
show only a slightly increased variance for large selection co-
efficients and a small number of states. This finding is further
strengthened when comparing this distribution over larger time
scales up to 1000 generations (Fig. 3), which also illustrates that
our approximation leads to accurate loss / fixation ratios. In
the situations studied here, all loci correctly fix in the case of
strong selection or when N is large. In the case of N = 100 and
s = 0.01, however, we estimate that 62.00% or 61.99% of all loci
will be lost when using 1001 or 21 states, respectively. This is
very similar to the proportion of 62.02% obtained among 3 · 105

simulations with the diffusion approximated here.
A more direct illustration of our assumption is the compari-

son of the distribution of waiting times for a specific transition.
As shown in Fig. 2, our approximation indeed captures the mean
transition time perfectly, while again exhibiting an increased
variance for large selection coefficients and small number of
states. Based on these results, and in order to keep the computa-
tional effort minimal, we will use 51 states for all our inference
shown below.

Choice of grid
All results shown above were obtained with a uniform grid of
frequency states. Following Malaspinas et al. (2012), we also im-
plemented a quadratic grid, but we found the choice of grids not
to affect our approximation noticeably. In general, we found the
quadratic grid to describe probabilities close to boundaries more
accurately, but to be less accurate for intermediate frequencies
than a uniform grid. These differences, however, are small, do
not inflate with increasing number of generations, and are only
visible for very low number of states (Supplementary Fig. S1).
This suggests that our approximation is very robust to the choice
of the grid, and that the differences observed are due to the reso-
lution in characterizing the probability distribution at different
frequencies rather than an effect of the approximation itself. We
will thus continue using a uniform grid in the following.

Comparison with related methods
Recently, Lacerda and Seoighe (2014) proposed to approximate
the probability distribution of allele frequencies after t gener-
ations by a Gaussian distribution, the mean and variance of
which can be obtained iteratively using the delta method. Their
approach can easily be applied to the diffusion process studied
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Figure 3 Comparison of different approximations. Shown are the cumulative probability density distributions (CDF) of allele
frequencies after 10, 100 and 1000 generations (shown in top left corner) of selection and random drift starting from a frequency
of 0.2 and obtained under the Wright-Fisher diffusion (black) and three approximations of it: the approximations introduced by
Lacerda and Seoighe (2014, orange) and Malaspinas et al. (2012, red), and the mean transition time approximation introduced here
(shades of blue for different number of frequency states). Results are shown for small (N = 100, A and B) and large (N = 10, 000, C
and D) population sizes and weak (s = 0.01, A and C) and strong (s = 0.3, B and D) section. For the approximation by Malaspinas
et al. (2012), we used a quadratic grid as originally proposed with the minimum number of states mathematically possible, but at
least 101 states (101, 101, 326 and 5813 states for A, B, C and D, respectively). The distributions for the diffusion approximation
were obtained from 3 · 105 simulations using kernel density estimation.

here (see Appendix). As shown in Fig. 3, the approximation
obtained via the delta method and our approximation are very
similar over a large range of the parameter space and also agree
well with the diffusion process they both approximate. However,
due to the assumption of a Gaussian distribution, the approxi-
mation obtained with the delta method is less accurate than our
approach in describing allele frequencies close to boundaries.
This is particularly true when selection is weak enough such that
the probability of fixation is < 1.0, which results in a bi-modal
distribution (Fig. 3A).

A major advantage of the the delta approach, however, is its
computational speed, which does not depend on the population
size nor the selection strength. Our method is generally much
more demanding due to its reliance on matrix calculations rather
than simple recursions. But the benefit of our approach lies in the
discretization of allele frequencies, without which any inference
from time-series data is computationally impossible whenever
N is large.

In this regard, our method is closer to that introduced by
Malaspinas et al. (2012) that also uses a grid of discretized allele
frequencies. In contrast to our method, however, their approach
approximates the mean and variance of the infinitesimal transi-
tion probabilities, rather than that of the resulting waiting times.
While Malaspinas et al. (2012) derive their approximation for
the classic diffusion, it is straight forward to generalize their ap-
proach and apply it to the diffusion studied here (see Appendix).
As shown in Fig. 3, their approximation holds generally well of
most of the range tested, but allele frequencies appear to raise

slightly too fast. More importantly, the approximation intro-
duced by Malaspinas et al. (2012) requires substantially more
states than our approximation due to the mathematical nature
of the approximation. For the case of N = 10, 000 and s = 0.3
shown in Fig. 3D, for instance, a minimum of 5,813 thousand
states are required. In contrast, our approximation is computa-
tionally stable even with just a handful of states and thus allows
to balance accuracy and computation effort regardless of N or s.
This difference between the two approaches easily translates into
a reduction in computation time of several orders of magnitude
when attempting to infer parameters using a Hidden Markov
Model (HMM), and essentially rendering such an analysis un-
feasible for large γ = 2Ns with the approximation introduced
by Malaspinas et al. (2012), as has been reported recently Foll
et al. (2015).

Power to infer population sizes

While allele trajectories are affected by both selection and drift,
we aim here to disentangle these effects by integrating infor-
mation from multiple loci. We first assessed the power to infer
population sizes N accurately under ideal conditions, that is, for
100 unlinked loci in the absence of selection. In Fig. 4 we show
the likelihood surfaces for N obtained with different number
of states, for data simulated under different population sizes.
While this analysis suggest high power to infer small population
sizes accurately, it highlights the general issue of inferring large
population sizes from changes in allele frequencies, accentuated
when fewer states are used. The issue arises from the fact that
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Figure 4 Power to infer population sizes. Shown are the relative likelihood surfaces obtained via our mean transition time approxi-
mation for a particular simulation of 100 neutral loci for different population sizes (vertical dashed lines) and different number of
frequency states considered (see legend). The top row is for the case of 13 generations between time points, the bottom row for the
case of 130 generations between time points.

in large populations and over the short time course of evolu-
tionary experiments in general, the changes in allele frequen-
cies between time points are so small, that they are compatible
with almost arbitrarily large populations. While using fewer
frequency states further decreases the resolution of detectable
allele frequency changes, we note that this issue is more general
and expected to affect all methods for inferring population sizes
from such data, particularly when a small number of samples is
used. The best way to overcome it is to observe changes in allele
frequencies over larger intervals. Indeed, when taking samples
every 130 generations instead of every 13, population sizes up
to N=100,000 can be estimated accurately (Fig. 4, bottom row).

Power to infer selection
To assess the power of our framework to infer locus-specific
selection coefficients, we simulated 100 unlinked loci, of which
20% experienced selection at various strengths. As shown in
Fig. 5, both the population size as well as the strength of selection
affects the power of this inference. For medium to large popu-
lation sizes, our method infers even small selection coefficients
with high accuracy. When the population size is small, however,
inference of selection proves more difficult (Fig. 5). While this
is generally expected due to the much larger effect of drift in
small populations (Ns = 10 for the strongly selected alleles),
it is accentuated here by our choice to simulate initial frequen-
cies at random. Indeed, when given ideal starting frequencies
(0.1 for positively and 0.9 for negatively selected alleles), our
method identifies strongly selected alleles accurately even in
small populations (Supplementary Fig. S2).

Remarkably, we found the power to infer population sizes as
well as locus-specific selection coefficients not to be negatively
affected under pervasive selection. This is illustrated by com-
paring the posterior distributions obtained from simulations
where 80% of all loci were targeted by selection (Supplemen-
tary Fig. S3) to those shown here where only 20% were affected
by selection (Fig. 5). More direct evidence is given in Table 1,
where we report the posterior probability for s > 0.0 for differ-
ent combinations of population sizes and selection coefficients
and actually find higher power to identify selected loci in the
case of pervasive selection than when only 20% of all loci were

simulated under selection.
For computational efficiency, all results shown here were ob-

tained using 51 states. However, we note a trade-off between
power of inference and computational costs. As shown in Sup-
plementary Fig. S4, using very few states (21) may lead to
slightly broader posteriors and a small bias towards weaker
values of s. Both effects are already largely overcome when
using 51 states for most loci, but small improvements are still
detectable with more states (Supplementary Fig. S4).

Application to Influenza data
We next applied our approach to publicly available sequencing
data of Influenza H1N1 segment 6, obtained at multiple time
points throughout an evolutionary experiment in which the
virus was exposed to an antiviral drug (oseltamivir) (Renzette
et al. 2014). While allele frequencies are generally estimated with
high accuracy due to the very high coverage in this experiment
(about 50,000x), sequencing error may contribute substantially
to the observed low frequency variants. In addition, many of the
observed mutations likely entered the population only during
the experiment, but their exact time of origin is blurred by both
the sequencing error as well as sampling. We thus extended our
framework to estimate the mutation rate as well as the overall
sequencing error rate jointly with the demographic and selection
parameters.

We applied our extended method to each of the 8 segments
of the Influenza genome individually, but obtained highly con-
cordant results among all segments. As shown in Fig. 6, we infer
the effective population size during the experiment to be around
7,000, a mutation rate of about 10−5 and a sequencing error rate
of about 10−3.8. While our estimates of the mutation and error
rates are consistent with published mutation rates for Influenza
(Nobusawa and Sato 2006) and RNA viruses in general (Drake
et al. 1998) and also with the employed quality filters on sequenc-
ing reads (Foll et al. 2014), our estimate of the population size is
substantially larger than previous estimates of about 225 (Foll
et al. 2014). While we found our approach to slightly overesti-
mate larger population sizes under the spacing of time points
relevant here, there are several arguments supporting a larger
population size. First, the original estimates were obtained un-
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Figure 5 Power to infer selection and population size jointly. Here we show the posterior distributions on the population size
(first panel) and locus-specific selection coefficients obtained for five replicate simulations for each of three different population
sizes. For each replicate we plot the posteriors of all loci simulated under positive selection (blue shades, top row) and under nega-
tive selection (red shades, middle row), as well as five neutral loci picked at random (black, bottom row). In all simulations, starting
frequencies were chosen randomly for each locus.

Table 1 Power to identify loci under selection We report the average and standard deviation (in parenthesis) of the posterior proba-
bility P(s > 0.0) obtained under various population sizes and for the cases of 20% and 80% of all loci simulated under selection.

fraction selected log10(N) s=-0.1 s=-0.01 s=0.0 s=0.01 s=0.1

0.2 2 0.27 (0.15) 0.42 (0.24) 0.50 (0.26) 0.56 (0.26) 0.78 (0.18)

0.2 3 0.00 (0.05) 0.24 (0.24) 0.50 (0.30) 0.74 (0.26) 1.00 (0.00)

0.2 4 0.00 (0.00) 0.06 (0.16) 0.50 (0.32) 0.92 (0.17) 1.00 (0.00)

0.8 2 0.12 (0.11) 0.09 (0.14) 0.50 (0.28) 0.72 (0.15) 0.89 (0.15)

0.8 3 0.00 (0.00) 0.02 (0.04) 0.50 (0.38) 1.00 (0.00) 0.99 (0.02)

0.8 4 0.00 (0.00) 0.00 (0.00) 0.50 (0.45) 1.00 (0.00) 1.00 (0.00)

der the assumption of neutrality at all loci, while our approach
infers N jointly with selection. Second, the previous estimates
were obtained from a small subset of the data, namely the 147
loci with an observed allele frequency ≤ 1% after down sam-
pling to 1,000 reads per locus at no less than three time points.
In contrast, our inference is based on the raw data at the com-
plete set of 13,395 loci, including those with small frequencies
particularly informative about drift. Third, the original inference
accounted for neither sequencing errors nor mutations. In sum-
mary, our results argue for a much larger effective population
size than previously reported.

Our results on selection, on the other hand, are highly concor-
dant with previous estimates. In Fig. 6 we report the posterior
distributions on the locus-specific selection coefficients for all
polymorphic sites for each of the 8 segments of the Influenza
genome. As expected, most mutations were found to be se-
lectively neutral or under slight purifying selection (observe
the slight asymmetry towards negative selection coefficients for
many loci). For a few mutations, however, we found compelling
evidence for them to be the target of positive selection (99% cred-
ible interval does not include 0). On segment NA, there were
three such mutations, of which two stand out with an estimated

selection coefficient around 0.2. One of these mutations (Y274H)
occurred at a locus at which resistance to oseltamivir has been
previously described (Collins et al. 2008). Many additional mu-
tations were found to be the target of selection through out the
genome, with many of those likely under negative selection.
These are mutations that were found at elevated frequencies at
the beginning of the experiment, yet at much lower frequencies
after a few passages. The complete list of all mutations found to
be under selection is given in Supplementary Table S1.

Conclusion

Here we present a novel, discrete approximation for diffusion
processes. This approximation, which we term mean transition
time approximation, is designed to preserve the long term behav-
ior of the continuous process it approximates, which renders it
particularly suitable to study time series data. Here we derived
this approximation for the particular case of inferring selection
and demography from such time series data under the classic
Wright-Fisher model. As shown through extensive simulations,
our approximation is well suited to describe allele trajectories
through time, even when only a few states are used. This al-
lowed us to develop a Bayesian inference approach to jointly
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Figure 6 Evolution of drug-resistance in Influenza. Here we show the posterior distributions on the population size (log10(N)),
sequencing error rate (ε), mutation rate (μ) and locus specific selection coefficients sl estimated independently for each of the six
segments of the Influenza genome. For the selection coefficients, black dots represent posterior medians and gray lines indicate the
99% credible intervals. Loci for which the 99% credible interval does not include s = 0.0 are shown in red and their actual position
within the segment is printed.

infer the population size and locus-specific selection coefficients
with high accuracy. We further extended this model to estimate
the average sequencing error rate, as well as the per generation
mutation rate. The approach is further readily applicable to
models of instantaneous population size changes. We finally
applied our approach to data from a recent experiment on the
evolution of drug resistance in Influenza virus, identifying likely
targets of selection and finding evidence for much larger viral
population sizes than previously reported.
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Appendix

Approximation for large γ = 2Ns
If γ = 2Ns is large, we get approximations for the Green’s function which allow for analytic expressions of the integrals. More
precisely, assume that Mkσk = 4Nσ̄k is large. We can then neglect the minus one terms in the numerator and denominator of (18) and
we get the approximation

P↓ ≈
(

1 + σkuk−1
1 + σkuk

)Mk

=

(
1 − Mkσk(uk − uk−1)/(1 + σkuk)

Mk

)Mk

≈ exp
(
− Mkσk

1 + σkuk
(uk − uk−1)

)
,

(23)

which will be very small for large γ. The probability for exit at the upper state is P↑ ≈ 1. Inserting the first approximating expression
or P↓ into (19) and using 4N/Mk ≈ σk/σ̄k, we get

G↓(uk, y) ≈ 1 + σky
σ̄ky(1 − y)

((
1 + σky
1 + σkuk

)Mk

− P↓

)

≈ 1 + σky
σ̄ky(1 − y)

exp
(
− Mkσk

1 + σkuk
(uk − y)

)
.

(24)

The exponential term is dominant for y close to uk. In the integral we can thus keep the factor of the exponential constant at y = uk
since it does not vary much when y is close to uk:

E↓ =
∫ uk

uk−1

G↓(uk, y)dy

≈ 1 + σkuk
σ̄kuk(1 − uk)

∫ uk

uk−1

exp
(
− Mkσk

1 + σkuk
(uk − y)

)
dy

≈ (1 + σkuk)
2

Mkσkσ̄kuk(1 − uk)

(
1 − exp

(
− Mkσk

1 + σkuk
(uk − uk−1)

))

≈ (1 + σkuk)
2

Mkσkσ̄kuk(1 − uk)
. (25)

From (20) we get the approximation

G↑(uk, y) ≈ 1 + σky
σ̄ky(1 − y)

(
1 − exp

(
− Mkσk

1 + σkuk+1
(uk+1 − y)

))
.

To get E↑ we integrate this approximate expression. Observe that the exponential term becomes important only when y gets close
to uk+1. For this reason we can safely keep the factor in front of the exponential term constant when integrating the second term:

E↑ =
∫ uk+1

uk

G↑(uk, y)dy

≈
∫ uk+1

uk

1 + σky
σ̄ky(1 − y)

dy − 1 + σkuk+1
σ̄kuk+1(1 − uk+1)

∫ uk+1

uk

e
− Mk σk (uk+1−y)

1+σk uk+1 dy

=
1
σ̄k

(
log

uk+1
uk

− (1 + σk) log
1 − uk+1

1 − uk

)
− (1 + σkuk+1)

2

Mkσkσ̄kuk+1(1 − uk+1)

(
1 − exp

(
− Mkσk

1 + σkuk+1
(uk+1 − uk)

))

≈ 1
σ̄k

(
log

uk+1
uk

− (1 + σk) log
1 − uk+1

1 − uk
− (1 + σkuk+1)

2

Mkσkuk+1(1 − uk+1)

)
. (26)

Numerical experiments indicate that the approximate formulae (25) and (26) are adequate when the conditions

4Nsh(uk+1 − uk−1) > 10 and 4Ns(1 − h)(uk+1 − uk−1) > 10 (27)

are met. In that case we set qk,k−1 = 0 and

qk,k+1 =
1

E↓ + E↑
.

Note that Formula (26) gets singular for k = K − 1 since in that case 1 − uk+1 = 0. Using the substitution z = 1 − y, we get for that
case from (20) the approximation

E↑ ≈ 1
σ̄K−1

∫ 1−uK−1

0

1 + σK−1(1 − z)
z(1 − z)

(
1 − exp

(
− MK−1σK−1

1 + σK−1
z
))

dz

≈ 1 + s
s(1 − h)

∫ 1−uK−1

0

(
1 − exp

(
−4Ns(1 − h)

1 + s
z
))

dz
z

.
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The last integral can be written as an exponential integral

Ei(x) =
∫ x

0

1 − e−t

t
dt

in the form

E↑ ≈ 1 + s
s(1 − h)

Ei
[

4Ns(1 − h)
1 + s

(1 − uK−1)

]
.

Using the approximation
Ei(x) ≈ log(x) + 0.577 . . .

where 0.577 . . . is the Euler-Mascheroni constant, we finally arrive at

E↑ ≈ 1 + s
s(1 − h)

(
log

(
4Ns(1 − h)

1 + s
(1 − uK−1)

)
+ 0.577 . . .

)
. (28)

Similarly, the case k = 1 deserves special attention because the denominator of (24) gets singular at y = 0. Since u1 is small and y
even smaller, we can set σ1 = 2sh and M1 = 2N. From (19) we then get the approximations

G↓(u1, y) =
4NP↓
σ1 M1

1 + σ1y
y(1 − y)

(
(1 + σ1y)M1 − 1

)

≈ P↓
shy(1 − y)

(
(1 + 2shy)2N − 1

)

≈ P↓
shy

(
e4Nshy − 1

)
.

From this we obtain for the downward mean transition time

E↓ =
∫ u1

0
G↓(u1, y)dy ≈ P↓

sh

∫ u1

0

e4Nshy − 1
y

dy

=
P↓
sh

4Nshu1∫
0

et − 1
t

≈ P↓
sh

· e4Nshu1

4Nshu1

because the integrand is very dominant at the upper integration limit. From (23) we get the approximation P↓ ≈ e−4Nshu1 and thus

E↓ ≈ 1
4Ns2h2u1

. (29)

The Wright-Fisher process in the absence of selection
In the absence of selection (s = 0), the expressions for the generator matrix can be explicitly evaluated since b(x) = 0 (see Eq. 11). We
have φ(x) = x and m(y) = 2N/x(1 − x). From this we get

P↓ =
uk+1 − uk

uk+1 − uk−1
, P↑ =

uk − uk−1
uk+1 − uk−1

. (30)

The two parts of the Green’s function are given by

G↓(uk, y) = 4NP↓
(

1 − uk−1
1 − y

− uk−1
y

)

and

G↑(uk, y) = 4NP↑
(

uk+1
y

− 1 − uk+1
1 − y

)
.

These integrate to

E↓ = 4NP↓
(

uk−1 log
uk−1

uk
+ (1 − uk−1) log

1 − uk−1
1 − uk

)
(31)

and

E↑ = 4NP↑
(

uk+1 log
uk+1

uk
+ (1 − uk+1) log

1 − uk+1
1 − uk

)
. (32)

As above we determine the transition rates by

qk,k−1 =
P↓

E↓ + E↑
, qk,k+1 =

P↑
E↓ + E↑

.
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Approximations via the delta method
Following the argument of (Lacerda and Seoighe 2014), an approximate solution to the diffusion equation can be obtained by the delta
method. While their original formulation applies to the discrete Wright-Fisher process, the argument works as well for the diffusion
process studied here.

As above (e.q. 1), X(t) is a diffusion process on the state space [0, 1] with infinitesimal generator

L f =
1
2

a(x)
d2

dx2 f + b(x)
d

dx
f . (33)

Recall that the infinitesimal moments of the diffusion process are given by

E(dX(t)|X(t) = x) = b(x)dt + o(dt),
var(dX(t)|X(t) = x) = a(x)dt + o(dt).

The mean μ(t) of the process can be approximated iteratively as follows:

μ(t + dt) = E [X(t + dt)] = E [E(X(t + dt)|X(t))]
= E [E(X(t) + dX(t)|X(t))] = E(X(t)) + E[b(X(t)dt)]
≈ μ(t) + b(μ(t))dt.

In the last step, we used the delta approximation E( f (X)) ≈ f (EX). Similarly, we apply the delta approximation var( f (X)) ≈
| f ′(EX)|2var(X) to get an iterative approximation for the variation:

σ2(t + dt) = var(X(t + dt))
= E [var (X(t) + dX(t)|X(t))] + var [E (X(t) + dX(t)|X(t))]
= E [var (dX(t)|X(t))] + var [X(t) + b(X(t))dt]

≈ E [a(X(t))dt] +
(
1 + b′(EX(t))dt

)2 var(X(t))

≈ a(μ(t))dt +
(
1 + b′(μ(t))dt

)2
σ2(t).

For the case of h = 1
2 and by inserting (9), one gets in particular

μ(t + dt) = μ(t) +
sμ(t) (1 − μ(t))

2 (1 + sμ(t))
dt,

σ2(t + dt) ≈ μ(t) (1 − μ(t))
2N

dt +
(

1 +
s − 2sμ(t)− s2μ2(t)

2(1 + sμ(t))2 dt
)2

σ2(t).

Approximations as proposed by Malaspinas et al.
As in (Malaspinas et al. 2012), we construct the Markov chain U(t) with states u0 = 0 < u1 < . . . uK = 1 by matching the infinitesimal
mean and infinitesimal variance of U and X. This allows to determine the generator matrix Q. Here we generalize their notation for
any diffusion process

L f =
1
2

a(x)
d2

dx2 f + b(x)
d

dx
f .

Formulas (8) and (9) from (Malaspinas et al. 2012) we then get

qi,i+1(ui+1 − ui)− qi−1,i(ui − ui−1) = b(ui),

qi,i+1(ui+1 − ui)
2 + qi−1,i(ui − ui−1)

2 = a(ui).

These can be solved for the infinitesimal generators:

qi,i+1 =
a(ui) + b(ui)Δi−1

Δ2
i + ΔiΔi−1

,

qi−1,i =
a(ui)− b(ui)Δi

Δ2
i−1 + ΔiΔi−1

,

where we used the abbreviation Δi = uk+i − ui. To apply these general formulas to the particular diffusion studied here we simply use
a(x) and b(x) as given in eq. 10 and 11, respectively.

14

ht
tp

://
do

c.
re

ro
.c

h


