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Abstract

Hyperbolic Coxeter groups form an important class of discrete subgroups
of Isom(H™) : they have a simple presentation, they enjoy nice combina-
torial and algebraic properties, and they provide examples of hyperbolic
n-orbifolds of small volume. However, they are far from being classified,
and a number of their properties remain cryptic. Hence, the study of hy-
perbolic Coxeter groups and of the related Coxeter polyhedra is a rich and
diversified domain, harbouring numerous open problems.

In this work, we solve the three following problems :

(P1) Find an upper dimensional bound for the existence of hyperbolic Cox-
eter hypercubes, and classify the ideal Coxeter hypercubes.

(P2) Find the inradius of a hyperbolic truncated simplex.
(P3) Classify up to commensurability the hyperbolic Coxeter pyramid groups.

Our results are inspired by previous works respectively of Felikson-Tumarkin
[21], Milnor [47], Vinberg [65], Maclachlan [39] and Johnson-Kellerhals-
Ratcliffe-Tschantz [31].

Our solution to Problem (P2) has partially been published in [29]. More-
over, the solution to Problem (P3) results from a joint work with Rafael
Guglielmetti and Ruth Kellerhals [24].



Résumé

Les groupes de Coxeter hyperboliques forment une classe importante de
sous-groupes discrets de Isom(H") : ils ont une présentation simple, satis-
font des propriétés combinatoires et algébriques agréables, et fournissent
des exemples de n-orbifolds hyperboliques de petit volume. Cependant, ils
sont loin d’étre classifiés, et plusieurs de leurs propriétés restent cryptiques.
Ainsi, I’étude des groupes de Coxeter hyperboliques et des polyedres de Cox-
eter correspondants est un domaine riche et diversifié, recelant de nombreux
problemes ouverts.

Dans ce travail, on résout les trois problemes suivants :

(P1) Trouver une borne dimensionnelle supérieure pour 'existence d’hyper-
cubes de Coxeter hyperboliques, et classifier les hypercubes de Coxeter
idéaux.

(P2) Trouver le rayon inscrit d’un simplexe tronqué hyperbolique.

(P3) Classifier & commensurabilité pres les groupes de Coxeter hyperboliques
pyramidaux.

Nos résultats sont inspirés de travaux précédents respectivement dus a Felik-
son-Tumarkin [21], Milnor [47], Vinberg [65], Maclachlan [39] et Johnson-
Kellerhals-Ratcliffe-Tschantz [31].

Notre solution au probleme (P2) a été partiellement publiée dans [29]. De
plus, la solution du probléeme (P3) résulte d’un travail commun avec Rafael
Guglielmetti et Ruth Kellerhals [24].
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Zusammenfassung

Hyperbolische Coxetergruppen bilden eine wichtige Klasse von diskreten
Untergruppen von Isom(H") : sie sind einfach préisentiert, erfiillen schone
kombinatorische und algebraische Eigenschaften, und liefern Beispiele fiir
hyperbolische n-Orbifolds von kleinem Volumen. Sie sind jedoch weit von
einer Klassifikation entfernt, und viele ihrer Eigenschaften liegen noch im
Dunkeln. Deshalb ist das Studium hyperbolischer Coxetergruppen und der
entsprechenden Coxeterpolyeder ein weites und vielfaltiges Gebiet.

In dieser Arbeit werden folgende Fragen beantwortet :

(P1) Finde eine obere Dimensionsschranke fiir die Existenz hyperbolischer
Coxeter-Hyperwiirfel, und klassifiziere die idealen Coxeter-Hyperwiirfel.

(P2) Finde den Inballradius eines hyperbolischen abgestumpften Simplexes.

(P3) Klassifiziere bis auf Kommensurabilidt die hyperbolischen pyramidalen
Coxetergruppen.

Unsere Resultate wurden inspiriert von Arbeiten von Felikson-Tumarkin
[21], Milnor [47], Vinberg [65], Maclachlan [39] und Johnson-Kellerhals-
Ratcliffe-Tschantz [31].

Unsere Losung zum Problem (P2) wurde teilweise in [29] verdffentlicht.
Ausserdem ist die Losung zum Problem (P3) das Resultat einer Zusam-
menarbeit mit Rafael Guglielmetti und Ruth Kellerhals [24].
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Chapter 1

Introduction

Let X™ € {S",E",H"} be either the spherical space S", the Euclidean space
E™ or the hyperbolic space H". A Cozeter polyhedron P C X" is a convex
polyhedron whose dihedral angles are of the form 7, k > 2. The reflections
in the facets of P generate a discrete group W = W(P) < Isom(X"), a

so-called geometric Cozeter group.

While spherical and Euclidean Coxeter groups exist in any dimension and
are completely classified, hyperbolic Coxeter groups do no exist any more if
n > 996 and are far from being classified. Examples are available only for
n < 21 in the cofinite noncocompact case, and for n < 8 in the cocompact
case. Moreover, complete classifications are only available for hyperbolic
Coxeter groups of small rank, for example with rank n + 1 (simplicial case)
and n + 2 (prismatic and pyramidal cases). The simplex case is the only
case so far where all volumes and commensurability classes are available.

In this work, we contribute to the theory of hyperbolic Coxeter polyhedra
and Coxeter groups in the three following ways.

First, we study hyperbolic Coxeter polyhedra having the combinatorial type
of an n-cube. We show that such hyperbolic Cozxeter n-cubes do not exist in
dimensions n > 10, and that ideal Coxeter n-cubes exist only for n = 2 and
3. We show that ideal Coxeter squares form a one-parameter family, and
that there are only 7 ideal hyperbolic Coxeter 3-cubes. The methods used
are of combinatorial nature. They exploit the fact that such polyhedra are
simple, that the figure of a vertex of a hyperbolic polyhedron is a spherical
or a Kuclidean polyhedron, and that the graph of a hyperbolic Coxeter poly-
hedron cannot contain disconnected hyperbolic subgraphs. These ideas have
been successfully used by Felikson-Tumarkin [21] in the context of simple
ideal hyperbolic polyhedra.

As a byproduct, we provide the volume of all ideal hyperbolic Coxeter



squares and 3-cubes, as well as the inradius of the regular ideal Coxeter
3-cube and the local density of the inball packing induced by a tessellation
of H? by isometric copies of it.

Secondly, we study so-called hyperbolic truncated simplices, that is, hyper-
bolic polyhedra arising as finite-volume truncated part of an arrangement of
n+ 1 hyperplanes in H"™. This class of polyhedra includes several important
Coxeter polyhedra related to small volume orbifolds.

We provide a criterion in order to decide whether such an arrangement ad-
mits an inball. As a consequence, we provide a formula for the inradius of
a hyperbolic truncated simplex in terms of the determinant and cofactors
of the associated reduced Gram matriz. We use the vector space approach
initiated by Milnor and Vinberg, Gram matrix theory, and geometric bi-
section properties in order to provide an explicit description of the center
of the inball. Direct consequences include formulas for the circumradius of
compact hyperbolic simplices, the in- and circumradii of spherical simplices,
as well as inradius monotonicity.

As an application, we determine the local densities of inball packings re-
sulting from tessellations of H" by certain small volume hyperbolic Coxeter
polyhedra. This part has already been published in [29]. Moreover, we use
Poincaré’s ideas in the context of planar tessellations in order to provide an
alternative proof of Siegel’s result on the minimal co-area discrete subgroup
of Isom(H?). This proof allows us to determine the fundamental N-gons of
minimal area for 3 < N < 6, and to show that amongst all fundamental
triangles, the Coxeter triangle [3, 7] has the smallest inradius.

Finally, we determine the commensurability classes of hyperbolic Coxeter
pyramid groups, that is, cofinite Coxeter groups whose fundamental Coxeter
polyhedron is a noncompact pyramid based on the product of two sim-
plices of positive dimensions. In the arithmetic case, we use algebraic meth-
ods developed by Maclachlan [39] involving quadratic forms, their related
Hasse-Witt invariants and their ramification sets. We compare this classifi-
cation with the commensurability classes of simplicial Coxeter groups due to
Johnson-Kellerhals-Ratcliffe-Tschantz [31], whenever possible. In the non-
arithmetic case, we use and develop tools coming from the theory of abstract
Coxeter groups, free products with amalgamation, fields generated by traces
of Coxeter elements, the geometry of Euclidean lattices, as well as dissection
properties.

This part is a joint work with R. Guglielmetti and R. Kellerhals [24].

In order to close the loop, we finish this work by determining the commen-
surability classes of the 7 ideal hyperbolic Coxeter 3-cubes.



Chapter 2

Preliminaries

2.1 Polyhedra in the model geometric spaces

In this section, we remind the reader about the notions of a polyhedron in
the spherical, Euclidean and hyperbolic spaces and its Gram matrix, and
we discuss their existence, with a focus on hyperbolic polyhedra. Standard
references in this context are [51, 65].

2.1.1 Model geometric spaces

By a model geometric space, we mean one of the three simply connected
Riemannian manifolds of constant sectional curvature 1, 0 and —1 : the
spherical space S, the Euclidean space E”, and the hyperbolic space H"”,
respectively. They can be modelled as follows.

For e € {—1,0,1}, let the bilinear form (.,.). be given by

n
<337 y>€ = Z TiYi + € Tnt1Yn+1
=1

for two vectors = (21, ..., ¥py1) and y = (y1, ..., ynr1) in R*L. In particu-
lar, (.,.)_1 is of signature (n,1) and (.,.); is positive definite.
Furthermore, for p € R, let

S:(p) = {z € R"™ [ (2, 2)c = p}
be the (pseudo-)sphere of radius p with respect to (.,.).

This general setting allows us a simultaneous definition of the three model
geometric spaces as follows.

Definition 2.1. e The spherical space S™ is the sphere

S" = {x e R"" | (z,z); =1}



together with the spherical metric given by
dS (.fL', y) = arccos(:z:, y>1

for any x,y € S™.

The Fuclidean space E™ can be identified with the hyperplane
E" = {z ¢ R"" | 2,1, = 0},

equipped with the Euclidean metric given by
dp(z,y) = V{z —y,x —y)h,

for any x,y € E™.

The hyperbolic space H" can be modelled by means of the upper shell
of the hyperboloid, i.e.

H" = {z e R"™ | (z,2) 1 = =1, 2,41 > 0},
equipped with the hyperbolic metric given by
d’H(ZL’, y) = arcosh (—<$, y>—1)7

for any z,y € H".
Its boundary OH"™ consisting of points at infinity of H™ can be de-
scribed, up to the choice of a representative, by

OH™ = {2 € S_1(0) N S1 (1) |zni1 > 0}

Then, the closure H" is the union H" U OH".

Notice that S™ coincides with Si(1) and that H™ is the upper connected
component of S_1(—1). In the sequel, we will denote by M"(¢) the simply
connected Riemannian manifold of dimension n and constant sectional cur-
vature equal to e, with ¢ € {—1,0,1}, i.e. M™(1) = S", M"(0) = E", and
M"(—1) = H™. Moreover, we set Sp(1) := S~ 1.

Remark 2.1. There are other models for H". The most important ones
are Klein’s projective model X C RP"™ and Poincaré’s models in the upper
half-space Y C R™*! and in the unit ball B* c R"*!. All models have
their own advantages :

e The vector space model H" is particularly convenient when considering

hyperplanes given by their normal vectors, and the Gram matrix of a
system of vectors. For this reason, it will be our reference model.



e The non-conformal projective model K™ can be used in order to study
the relative position of hyperplanes and the combinatorial structure of
such arrangements.

e Poincaré’s upper half-space model U™ is especially designed for the
study of hyperbolic isometries and their representation by Clifford
matrices, via the identification Isom(U"™) = PSLa(C)p—2), where Cp_o
is the Clifford algebra with n — 2 non-trivial generators (in particular,
Co=Rand C; =C).

e Poincaré’s ball model B™ is conformal and provides a visualization of
the points at infinity.

2.1.2 Hyperplanes and polyhedra

For e = 0, i.e. M"(g) = E" is the Euclidean space, a hyperplane is of the
form
Hy o= {z € R"[(z,u); =0} + a,

for a normal vector w € S"!, and a translational vector a € R™.

Let us consider now the case where ¢ € {—1,1}. For vector u € S-(1), the
orthogonal complement H, of u is given by

—

H,:=u" = {z e R+ ’ (z,u)e =0} .
Then, the intersection H, C M"(g) given by
H, = H, " M"(¢)

is a hyperplane in M"(e) with normal vector u € S.(1). Conversely, for
any hyperplane H C M"(¢), there is a vector u € S.(1) such that H =
ut N M (g).

The relative position of two hyperplanes H,, H, C M"(e) with normal
vectors u, v € S:(1), can be determined by looking at the product (u,v). as
follows [51, Chapters 1.3, 2.2 and 3.2]

o If M"(e) = E*, u,v € S 1, a,b € R", then H,, and H,; properly
intersect in E™ if and only if [(u,v)1] # 1, and their dihedral angle
Z(Hya, Hyp) is given by

cos Z(Hya, Hyp) = —(u,v)1. (2.1)

If |(u,v)1| = 1, then they are parallel, and their intersection angle is 0.



o If M"(e) = S™, u,v € S1(1), then H, and H, always intersect in S,
and their dihedral angle Z(H,, H,) is given by

cos Z(Hy, Hy) = —(u,v);. (2.2)

o If M"(e) =H", u,v € S_1(1), then

— H, and H, intersect in H" if and only if |(u,v)_;| < 1. Then,
their dihedral angle Z(H,, H,) is given by

cos Z(Hy, Hy) = —(u,v)_1. (2.3)

— H, and H, intersect in OH" if and only if [(u,v)_1| = 1. They
are called parallel, and their intersection angle is 0.

— H, and H, do not intersect in H" if and only if |(u,v)_1| > 1.
They are called ultra-parallel, and the distance d(H,, H,) is given
by

coshd(H,, Hy) = |(u,v)_1]. (2.4)

Furthermore, if L is the hyperbolic line orthogonal to H,, and H,,
then (u,v)_; < 0 if and only if v and v are oppositely oriented
tangent vectors to L.

For e € {—1,1}, let H, C M"(g) be a hyperplane with normal vector u €
S:(1). Then, the (closed) half-space bounded by H, with normal vector u
pointing outwards is given by

H, ={x e M,(e) | (z,u). < 0}.
A similar construction holds in the Euclidean case.

Definition 2.2. A polyhedron P C M"(¢) is the intersection, with nonempty
interior, of finitely many half-spaces in M"(¢), that is,

N
P=()H cM(e),
=1

with N > n+1. We require that the hyperplanes Hy, ..., Hy form a minimal
family of hyperplanes bounding P. Moreover, we write H; =: H,,, with
normal vectors u; € Sc(1). By construction, P is convex. Up to isometry,
P is entirely determined by its normal vectors uq,...,un. If N =n—+1, then
P is a (n-)simplex in M"(e).

Remark 2.2. For the rest of this work, we will assume that any polyhedron
P C H™ is of finite volume, unless otherwise specified.



Definition 2.3. The facet (or (n — 1)-face) F; of P is the intersection
Fi=PnH,, 1<i<N.

If two facets F; and Fj intersect, their dihedral angle is given by /(Hy,, Hy;)
according to (2.2)-(2.4). A polyhedron is called acute-angled if any pair of
its facets is either disjoint or intersects under a dihedral angle not greater
than Z.

2

Definition 2.4. For 0 < k < n, a k-face of P is a facet of a (k 4 1)-face of
P. A O-face of P is called a verter, and a 1-face of P is called an edge.

Definition 2.5. For k € {0,...,n}, let fx(P) be the number of k-faces of P.
The vector

f(P) := (fo(P), ... fa_1(P),1) € R
is called the f-vector of P.

Definition 2.6. The figure (or link) of a vertex v of P is the intersection
L(v) =PN6&,(v),

where &,(v) is a sphere with center v and radius p > 0 not containing any
other vertex of P and not intersecting any facet not incident to v.

Definition 2.7. A polyhedron in M"(¢) is said to be simple if any of its
k-dimensional faces is the intersection of exactly n — k facets.

Definition 2.8. The Gram matriz of P is the matrix G = G(P) = (gij)1<i,j<N
given by
9ij = (Ui, ug)e, 4,5 =1,...,N.

In particular, G is real symmetric with ¢g; = 1 for all # = 1,..., N. The
relations (2.2) to (2.4) provide a geometric interpretation of the entries of
G. Furthermore, if P is acute-angled, the rank and the signature of G enjoy
the following properties [65, Chapter 6.1.1].

e If P C S" is a spherical polyhedron, then G has rank n 4+ 1 and is
positive definite.

e If P C E" is a Euclidean polyhedron, then G has rank n and is positive
semidefinite.

e If P C H" is a hyperbolic polyhedron, then G has rank n + 1 and
signature (n, 1).

For a matrix M € Mat(n,R), let cof; (M) be the (i, j)-th cofactor of M.
The following result is due to Milnor and shows that there is one-to-one
correspondence between Gram matrices of a certain type and simplices in

M"(e).



Theorem 2.1 (Milnor [47]). Let n € N and let G = (gij)1<i,j<nt1 €
Mat(n + 1,R) be symmetric and such that g; = 1 fori =1,...,n+1 and
gij € [-1,0] for 1 <i,j <n+1. Then,

o Ifgij # —1 for 1 <i,57 <n+1 and G is positive definite, then G is
the Gram matriz of a spherical simplex in S™ which is unique up to
isometry. Its dihedral angles can be determined by using (2.2).

e If G is positive semidefinite of rank n such that fori,j € {1,...,n+ 1},
the cofactor cof ;;(G) is positive, then G is the Gram matriz of a FEu-
clidean simplex in K" which is unique up to isometry. Its dihedral
angles can be determined by using (2.1).

o If G is of signature (n,1) such that for all i,j € {1,....,n + 1}, the
cofactor cof ;;(G) is positive, then G is the Gram matriz of a hyperbolic
simplex in H™ which is unique up to isometry. Its dihedral angles can
be determined by using (2.3).

The main idea of the proof is the following. Let J. = Diag(1,...,1,¢) be
the matrix associated to the quadratic form (.,.). on R?*!. Then, since G
is symmetric, there exists a matrix U € GL(n + 1,R) such that G = U'J.U.
By writing U = (u1]...|un+1) as a matrix of column vectors, the condition
on the cofactors ensures that the vectors up, ..., un11 can be interpreted as
normal vectors of a simplex P in M"(¢). We shall come back and elaborate
this construction in Section 4.1 for hyperbolic truncated simplices.

2.1.3 Hyperbolic polyhedra

In this section, we shall review some general facts about hyperbolic polyhe-
dra. We first extend the discussion of the hyperbolic space H".

Definition 2.9. For k > 1, a k-dimensional vector subspace V C R**! is
hyperbolic if it has a nonempty intersection with A", and the intersection
V OH" is a hyperbolic (k — 1)-plane. It is elliptic if V NH" is empty. In the
remaining case, V is called parabolic.

In particular, the orthogonal complement

Vi={zeR"™ | (v,2)_1=0,YveV}
is elliptic if and only if V' is hyperbolic [51, Chapter 3.2].

Recall that we shall always assume that P C H" is of finite volume, i.e.
vol,(P) < oco. Moreover, if all vertices of P lie on OH", then P is called
deal.

The following result gives a complete characterization of hyperbolic polygons
of finite area (see [65, Chapter 3.2], for example).



Theorem 2.2. Let N > 3 be an integer and 0 < aq,...,an < m be non-
negative real numbers such that

a4 .. tay < (N-2) (2.5)

Then, there exists a hyperbolic N-gon P C H2 with angles o, ..., an.
Conversely, if 0 < aq,...,an < m are the angles of an N-gon P C H2, then
they satisfy (2.5).

Moreover, the area of P is given by the angle defect (N — 2)m — Zfil Q;.

In H™, n > 2, we can say even more. First, compact acute-angled hyperbolic
polyhedra satisfy the following combinatorial property [65, Section 6.1.2,
Theorem 1.8].

Theorem 2.3 (Vinberg). Let P C H"™ be a compact acute-angled polyhe-
dron. Then P is simple.

Moreover, if P C H" is an acute-angled polyhedron and if v is a vertex of
P, then v € OH™ if and only if its figure L(v) is a Euclidean polyhedron,
and v € H" if and only if L(v) is a spherical polyhedron (see [65, Chapter

6]).

Definition 2.10. A prismatic k-circuit of a polyhedron P C H3 is a se-
quence of k facets Fi, ..., Fy of P such that Fj intersects only Fj and Fb,
Fy, intersects only Fy_q and Fi, and F; intersects only F;_; and Fj;yq for
i =2,....,k — 1, and all corresponding edges are disjoint.

Next, we introduce the notion of an abstract polyhedron in order to discuss
existence properties.

Definition 2.11. Let (P, <) be a partially ordered set. We call faces the
elements of P.

Let Q C P be a subset of P. A face F' € Q is called the greatest face of Q if
G < F for all G € Q\ {F}, and it is called the smallest face of Q if F < G
for all G € Q\ {F'}.

A chain of P is a totally ordered subset of P.

Remark 2.3. In general, a subset Q C P has no greatest or smallest face.
However, if Q is a chain, then it has a greatest and a smallest face.
If Q = {F}, then F is both the greatest and the smallest face of Q.

Definition 2.12. Let (P, <) be a partially ordered set. The rank rk(F) of
a face F € P is given by rk(F') = m — 2, where m is the maximal number of
faces in any chain of P whose greatest face is F.

A face of P of rank k, —1 < k < 00, is called a k-face of P.

If a subset Q C P has a greatest face, say F', then its rank rk(Q) is the rank
of F.



Definition 2.13. Let (P, <) be a partially ordered set, and F, G € P be two
faces of P such that FF < G. The set G/F :={K e P|[F< K <G} CPis
called a section of P.

Definition 2.14. Let n > 0. An abstract n-polyhedron is a partially ordered
set (P, <) satisfying the following axioms :

(1) It has a greatest face (of rank n) and a least face.

(2) All maximal chains (so-called flags) of P contain the same number of
faces.

(3) It is strongly connected (i.e. all sections of P are connected).

(4) Every section of rank 1 of P is a line segment (i.e. is has a greatest face,
exactly two O-faces, and a least face).

For more details about abstract polyhedra, see for example [45, Part 2A].
The following result due to Andreev has been fully proved by Roeder [53].

Theorem 2.4 (Andreev [1]). Let P C H3 be a compact acute-angled polyhe-
dron with N > 5 facets and M > 5 edges with corresponding dihedral angles
A1y .oy QDT < g Then,

(1) Foralli=1,...M, a; > 0.
(2) If three edges e;, ej, e, meet at a vertex, then a; + o + oy, > .

or any prismatic 3-circuit with intersecting edges e;, e, ey, one has
3) F y pri tic 3-circuit with int ting edg y h
o +o;+ o <.

(4) For any prismatic 4-circuit with intersecting edges e;, e;, e, e;, one has
; + o+ ap +ag < 27,

(5) For any quadrilateral facet F' bounded successively by edges e;, e;, ey, e
such that e;j, ejr, epr, e are the remaining edges of P based at the ver-
tices of F' (epq is based at the intersection of e, and eq), then

ai+oak+aij+ajk+ozkl+ali<37r

and
aj + oy + oy + o+ gy + agp < 3.

Furthermore, the converse holds, i.e. any abstract 3-polyhedron satisfying
the conditions above can be realized as a compact acute-angled hyperbolic
3-polyhedron.
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Andreev’s result has been generalized to ideal hyperbolic 3-polyhedra by
Rivin. Let us recall that the dual of a polyhedron P C H3 is the polyhedron
P* such that the set of vertices of P is in bijection with the set of facets
of P*, and vice-versa. Furthermore, for any edge e of P associated to a
dihedral angle «, the corresponding edge e* of P* supports a dihedral angle
a* given by a® = m — a. The result reads as follows.

Theorem 2.5 (Rivin [52]). Let P C H3 be an ideal polyhedron. Then, its
dual P* C H3 satisfies the following conditions.

(1) For any dihedral angle a* of P*, one has 0 < a* < .

(2) If the edges €3, ..., e} with associated dihedral angles o, ...,a5 form the
boundary of a facet of P*, then

(3) If the edges €3, ...,e} with associated dihedral angles of,...,of form a
closed circuit in P* but do not bound a facet, then

k
Z a; > 27
=1

Moreover, any polyhedron P* C H"™ satisfying the above conditions (1) — (3)
is the dual of some ideal polyhedron P C H™, which is unique up to isometry.

2.1.4 Examples

(1) Let C be an abstract 3-cube with angles «, 3,y €10, 7/2] as depicted in
Figure 2.1, and with all other angles being right angles.

Then, one can check that all conditions of Andreev’s Theorem are sat-
isfied, so that C can be realized as a compact hyperbolic cube in #H?3.
Such a polyhedron is called a Lambert cube (see also Section 4.1.1, (2)).

(2) For a parameter o € R>g, consider the matrix G(«) given by

1 -1/2 0
Gla)=| —-1/2 1 —cosw
0 —cosa 1

Its characteristic polynomial x = Xg(q) 18 given by
2 3 2
x(A) =(1-=2) <)\ —2)\+Z—cos 04), A ER.

11
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Figure 2.1

Hence, the eigenvalues A1, A2, A3 of G(«) are given by

1 1
A =1, )\2:1+\/1+c052a, )\3:1—\/&—1—00820«

For all o € R>, the eigenvalues A\; and Ay are positive. The eigenvalue
A3 is negative (respectively zero, positive) if and only if o > g (respec-
tively = &, < §). Hence, by Theorem 2.1, G() is the Gram matrix of
a spherical (respectively Euclidean, hyperbolic) triangle T'(«v) of angles
5,5 and a if and only if a > § (respectively = &, < §).

In particular, for an integer £ > 2, the triangle T'() is spherical if and
only if k£ = 2,3,4,5, Euclidean if and only if £k = 6, and hyperbolic if
and only if & > 7.

2.2 Coxeter groups

The aim of this section is to present Coxeter polyhedra and Coxeter groups,
and to review some of their geometric and combinatorial properties, as well
as existence and classification results. References for this section are [7, 28,
65].

2.2.1 Coxeter polyhedra and Coxeter groups

Definition 2.15. A Cozeter polyhedron in M"(e) is a polyhedron P C
M"(e) whose dihedral angles are of the form 7 for k € {2,3,...,00}.

If P is of finite volume, then it is bounded by finitely many hyperplanes, say
Hy,...,Hy. For a polyhedron, we denote by si,...,sy € Isom(M"(¢g)) the
reflections with respect to the hyperplanes Hi, ..., Hy, respectively. Since

12



the dihedral angles of P are integral submultiples of 7, the relations between
the reflections s, ..., sy can be deduced from the geometry of P in the
following way.

e Since s1, ..., sy are reflections, one has 522 =1lfori=1,...,N.

™

e If the hyperplanes H; and H; intersect in M"(e) under an angle T

k > 2, then (s;s;)% = 1.

e If the hyperplanes H; and H; are parallel (in the Euclidean or hyper-
bolic sense) or ultra-parallel, then the reflections s; and s; have no
relation, i.e. the product s;s; is of infinite order in Isom(M"(¢)).

In particular, the product of two reflections in the facets of a spherical
polyhedron is always of finite order.

Definition 2.16. The group W < Isom(M"(g)) with set of generators S =
{s1, ..., sy} satisfying the relations above is the Cozeter group associated to
P. It is finitely presented, with presentation

W = <81, oy SN ‘ (SiSj)kij> y

with k; = 1 and kijj = kj; € {2,...,00} for 1 < 4,5 < N, i # j. The pair
(W, S) is a Cozxeter system, and the number N = |S| of generators of W is
the rank of W. The group W is a discrete subgroup of Isom(M"(¢)), with
fundamental polyhedron P. It is called cocompact if and only if P C M"(e)
is compact, and cofinite if and only if P C M"(¢) is of finite volume.

Definition 2.17. A Coxeter polyhedron P C M"(e) and its Coxeter group
W < Isom(M"(¢)) are often described by their Cozeter graph T' = T'(P) =
['(W) of rank N as follows. A node i in I represents the bounding hyper-
plane H; of P (or the generator s; of W). Two nodes i and j are joined by
an edge with weight k;; > 2 if H; and H; intersect in M"(¢) with angle ﬁ_j,
and with weight oo if H; and H; are parallel. If the hyperplanes H; and
Hj; have a common perpendicular in H", the nodes ¢ and j are joined by a
dotted edge. In practice, an edge of weight 2 is omitted, an edge of weight
3 is written without label, and an edge of weight oo is denoted by a bold
edge.

Definition 2.18. Coxeter groups with linear graphs of rank r + 1 > 2 with
weights k1 = k12,...,k. = kyry1, called Cozeter orthoschemes, are often
denoted by the Coxeter symbol [k1, ..., k.

The notion of Coxeter group appears in the context of finitely presented
abstract groups (see [28], for example). In fact, a Coxeter group W =
(S, R) with set of generators S and set of relations R is called elliptic (or
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finite), parabolic (or affine) or hyperbolic, respectively, if it is isomorphic
to a subgroup of Isom(S"), Isom(E"™) or Isom(H"), respectively, and the
Coxeter graph I' = I'(W) is the graph of respectively a spherical, Euclidean
or hyperbolic polyhedron P. In particular, elliptic Coxeter groups are finite,
and parabolic and hyperbolic Coxeter groups are infinite.

2.2.2 Classification of geometric Coxeter groups

Definition 2.19. By a geometric Cozeter group, we mean a Coxeter group
which is isomorphic to some subgroup of Isom(M"(¢)), e € {—1,0,1} (see
Section 2.2.1).

Elliptic and parabolic Coxeter groups (and therefore the corresponding spher-
ical and Euclidean Coxeter polyhedra) are well understood and completely
classified. They exist in any dimension n > 1, and if we restrict to irreducible
groups, they are described by a graph with one connected component only.
One has the following finite lists (containing both infinite and finite families).

Theorem 2.6 (Coxeter [11]). Let W be an elliptic (finite) Coxeter group
with connected Coxeter graph T'(W). Then, T'(W) is isomorphic to one of
the graphs on Figure 2.2.

Figure 2.2: Graphs of the irreducible elliptic Coxeter groups

Theorem 2.7 (Coxeter [11]). Let W be a parabolic (affine) Cozeter group
with connected Coxeter graph. T'(W). Then, T'(W) is isomorphic to one of
the graphs on Figure 2.3.

The situation is radically different for cofinite hyperbolic Coxeter groups
and polyhedra : they do not exist any more in high dimensions and their
classification is far from being completed | We give an overview of the
situation. Let us start with the upper dimensional bounds.

Theorem 2.8 (Prokhorov-Khovanskij [50]). There are no cofinite hyperbolic
Cozxeter groups W < Isom(H"™) for n > 996.

Theorem 2.9 (Vinberg [64]). There are no cocompact hyperbolic Cozeter
groups W < Isom(H") for n > 30.

14



Figure 2.3: Graphs of the irreducible parabolic Coxeter groups

Notice that the greatest n for which we have examples of hyperbolic Cox-
eter groups is n = 21 (Borcherds [5], finite-volume case), respectively n = 8
(Bugaenko [8], compact case).

The classification of Coxeter polygons as well as compact, resp. ideal, Cox-
eter polyhedra in H3 can be directly deduced from Theorems 2.2, 2.4 and
2.5 stated above. Hyperbolic Coxeter polyhedra of fixed rank N > n + 1 in
H™ are classified only for small N.

The hyperbolic Coxeter simplices (N = n+1) have been classified by Lannér
and Koszul. The corresponding Coxeter graphs are often called Lannér
(compact case), resp. quasi-Lannér (noncompact case) graphs. Tables are
given in [65, pp. 205-208] for example.

Notice that the class of hyperbolic simplices is the only class where all vol-
umes are known [30] and which has been split further into commensurability
classes [31].

A complete classification for N = n + 2 has been performed by Kaplinskaya
[32] (prisms), Esselmann [18] (compact polyhedra which are not prisms) and
Tumarkin [59] (noncompact polyhedra which are not prisms). Moreover,
Tumarkin showed that, up to one exception, all noncompact hyperbolic
Coxeter polyhedra with n + 2 facets are pyramids.

Definition 2.20. For N > n + 2, a rank N hyperbolic Coxeter pyramid
group is the discrete group generated by the reflections in the facets of
a finite volume Coxeter polyhedron with N facets in H™ which has the
combinatorial type of a pyramid.

Remark 2.4. For the rest of this work, we will simply call hyperbolic Cozx-
eter pyramid group a rank n + 2 hyperbolic Coxeter pyramid group. The
fundamental polyhedron of such a group has the combinatorial type of a
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pyramid over the product of two simplices of positive dimensions.

Esselmann [17] and Tumarkin [60] provided a complete classification of com-
pact hyperbolic Coxeter polyhedra with n+3 facets. Felikson-Tumarkin [20]
showed that there are no compact hyperbolic Coxeter polyhedra in H" for
n > 8 and classified all such polyhedra in #7. Their different approaches
essentially use Gale diagrams in order to perform a case exhaustion.

A classification for N > n + 5 seems to be out of reach for the moment.

By Theorem 2.3, we know that all compact Coxeter polyhedra are simple.
Felikson and Tumarkin gave a similar result in the context of ideal Coxeter
polyhedra :

Theorem 2.10 (Felikson-Tumarkin [21]). There is no finite-volume simple
ideal Coxeter polyhedron in H™ for n > 8.

Their proof uses a technical result due to Nikulin, which gives an upper
bound on the average number of k-dimensional faces in any I-dimensional
face of a polyhedron P C H" with N > n + 1 facets, 1 <k <[ < N.

2.3 Invariants

Coxeter polyhedra and Coxeter groups are fairly simple to describe and en-
joy nice algebraic and metric properties. In this section we shall review
some important invariants of hyperbolic Coxeter polyhedra. In particular,
volume, arithmeticity and commensurability are also invariants of the asso-
ciated hyperbolic quotient spaces, so-called n-orbifolds. The study of these
invariants illustrates the particular role of hyperbolic Coxeter groups in the
context of extremal hyperbolic n-orbifolds.

2.3.1 Inradius

Definition 2.21. The inradius of a finite-volume polyhedron P C M"(¢) is
the radius of the greatest ball contained in P.

In the hyperbolic case (¢ = —1), explicit formulas have been given only for
triangles (see [2]), certain special polygons, and certain particular polyhe-
dra, such as regular simplices (see [35]).

As for orbifolds, Fanoni [19] has proved that the minimal inradius amongst

all orientable hyperbolic 2-orbifolds is related to the group of orientation-
preserving isometries of the Coxeter triangle group [3,7].
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2.3.2 Volume
Volume formulas

Let (W, S) be a hyperbolic Coxeter system. The (orbifold) Euler character-
istic x(W) of W is given by

)T
XWwy=>" S,

TeF fr(1)

where F = {T C S|(T) < W is finite} is in bijection with the finite sub-
groups of W, and fr is the growth series of (T') (see [37] for details).

In even dimensions n = 2m, m > 1, the covolume of W is known to be
proportional to its Euler characteristic, thanks to a result of Heckman [25]
(which is in fact a special case of the Gauss-Bonnet Theorem). The explicit
expression reads as follows.

Theorem 2.11 (Heckman). For m > 1, let P C H?>™ be a Coxeter polyhe-

dron with Cozeter group W < Isom(H?™). Then,
(2m)™

1-3-..-(4m—1)

vol(P) = covol(W) = (W] (2.6)

For m = 1, this expression coincides with the general defect formula given
by (see also Theorem 2.2)

Theorem 2.12 (Poincaré). Let P C H2 be an N-gon (not necessarily of
Cozeter type) with angles oy, ...,an, N > 3. Then,

N
vol(P) = (N = 2)m — ) o
=1

Formulas a la Heckman do not hold for odd dimensions n =2m +1, m > 1,
since one has x(W) = 0 for all W < Isom(H?*™*!). In dimension 3, volumes
of hyperbolic (Coxeter and non-Coxeter) polyhedra are expressed by means
of the Lobachevsky function JI : R — R given by

r ) 1 <= sin 2kx
J(x) := —/0 log|2sint|dt = = Z 2

2
k=1

The function JI is w-periodic, odd, and satisfies the distribution law given by

n—1

k
J(nx) = nZﬂ (:B + :) , for all n € N*, (2.7)
k=0

(see [58, Chapter 7] and [65, Part I, Chapter 7.3] for example).
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Minimal volume hyperbolic orbifolds

It is known that there is a unique compact hyperbolic n-orbifold H"/H of
minimal volume for n = 2 and for n = 3. The two corresponding groups
are given in Table 2.1. There, for H < Isom(H"), we denote by Zs x H
the Zo-extension of H. For n > 4, the compact hyperbolic n-orbifolds of
minimal volume are still unknown.

’ n H Group \ Reference ‘

-l Siegel [55)
3 7o x e—ee o | Gehring-Marshall-Martin [22, 42]

Table 2.1: Fundamental groups of the minimal volume compact hyperbolic
n-orbifolds

The noncompact hyperbolic n-orbifolds of minimal volume are known for
2 < n < 9. These spaces have exactly one cusp and are closely related to
quotients by hyperbolic Coxeter simplex groups. They are summarized in
Table 2.2.

’ n H Group Reference
2 o X Siegel [55]
3 o o ole Meyerhoff [46]
4 .—.—41—‘ Hild-Kellerhals [27]
5 o~ o o ote o Hild [26]
4

6 HHTHH Hild [26]

7 } X Zo Hild [26]

Table 2.2: Fundamental groups of the minimal volume noncompact hyper-
bolic n-orbifolds

Observe that the fundamental groups listed in Tables 2.1 and 2.2 are Coxeter
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groups or Zg-extensions of Coxeter groups.

2.3.3 Commensurability

The notion of commensurability is an important tool for the classification
of hyperbolic n-orbifolds and n-manifolds.

Definition 2.22. Let H be an arbitrary group. Two subgroups Hi, Hy < H
are said to be commensurable if and only if their intersection Hy; N Hy has
finite index in both H; and Hjy (notice that the indices need not coincide).
Moreover, H; and Ho are said to be commensurable in the wide sense if and
only if there is a h € H such that H; is commensurable with h=1Hsh.

The notion of commensurability can be directly transported to hyperbolic
n-orbifolds by considering the respective fundamental groups. Then, com-
mensurable hyperbolic n-orbifolds admit a finite-sheeted common covering
n-orbifold.

We will be interested in the case H = Isom(#H"™) and where H, Hy are dis-
crete subgroups of H (in particular, Coxeter groups). For v € Isom(H"),
let v~ H;7 be the conjugate of H; by y. Then, the orbifolds H"/H; and
H"/y~LHyy are isometric. Hence, it is sufficient for us to study wide com-
mensurability. For the rest of this work, we will only write ”commensurable”
for ”commensurable in the wide sense”, and ” commensurability” for ”wide
commensurability”.

Commensurable groups enjoy the following interesting properties (see [31],
for example).

Proposition 2.1. Let G, Gy < Isom(H") be commensurable.
(a) If Gy is discrete, then Go is discrete (and vice-versa).

(b) The covolumes covol(G1) and covol(Ga2) are commensurable (as real
numbers), i.e. they differ only by a rational factor.

(c) If Gy is cofinite, then Go is cofinite (and vice-versa).
(d) If G1 is cocompact, then G is cocompact (and vice-versa).
(e) If Gy is arithmetic, then Go is arithmetic (and vice-versa,).

Notice that the converse of part (b) does not hold in general (for n even,
this is an immediate consequence of (2.6)). The notion of arithmeticity ap-
pearing in (e) will be discussed in the next section.

The commensurability classes of hyperbolic Coxeter simplex groups have
been determined by Johnson, Kellerhals, Ratcliffe and Tschantz [31]. They
made a particular use of the fact that the Gram matrix of a simplex group
is invertible, beside other algebraic tools.
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2.3.4 Arithmeticity
Arithmetic groups of the simplest type and Vinberg’s criterion

There are different approaches to the concept of arithmetic groups. We will
only introduce the notion of arithmetic group of the simplest type, which is
particularly convenient when working with noncocompact Coxeter groups
and their Gram matrices (see [39] and [65], for example).

To this end, equip the space R™*! with the quadratic form ¢_; of signature
(n,1) given by g_1(x) = (z,2)_1 for all z € R"1 such that H" is the upper
sheet of {x € R" | g_1(x) = —1} (see Section 2.1). That is, the group
Isom(H"™) is isomorphic to

PO(n,1) = {T € GL(n + 1,R) |¢_1(Tx) = q_1(z) Yz € R""', T(H") = H"},

the group of isometries of the quadratic space (R"*1, q_1) preserving H™.

Consider a totally real number field £ C R, that is, for each embedding
t: k< C, one has t(k) C R. Let V be a k-vector space with dimV =n+1,
equipped with a quadratic form ¢ of signature (n,1), such that for any
nonidentity embedding o : k — R, the quadratic space (V?,¢?) induced by
o is positive definite. Then, the quadratic forms g_; and q are equivalent
over R, i.e. there exists S € GL(n + 1,R) such that ¢(Sz) = ¢_1(x) for all
r € R"M 2V @R [39, Section 2]. Moreover, for

O(V,q) ={U € GL(n+ 1,R) | q(Uzx) = q(z) Vz € V @ R},

one has S™1PO(n,1)S = PO(V, q).

For Oy the ring of integers of k, let L. C V be an Oy-lattice (i.e. L as
an Op-module is a subgroup of rank n + 1 of V, and V = span,L) and
let O(L) < PO(V,q) N GL(n + 1,k) be the group of transformations with
coefficients in k that preserves L. Then, by a result of Borel and Harish-
Chandra, O(L) is discrete in PO(V, ¢), and has finite covolume.

Definition 2.23. A subgroup G < PO(n,1) is called arithmetic of the
simplest type if there is a transformation S € GL(n + 1,R) and an O-
lattice L C V such that S~'GS is commensurable to O(L) in PO(V,q) N
GL(n + 1, k).

Remark 2.5. (1) It is known that for n even, any discrete arithmetic sub-
group of Isom(#H™) is of the simplest type. If n is odd, then there are
arithmetic groups which are not of the simplest type (see [65, Part II,
Chapter 6] for details).

(2) Moreover, if W < Isom(H"), n > 4, is a noncocompact arithmetic
Coxeter group, then it is of the simplest type, with k = Q [39, Theorem
8.1]. Since we will be interested in hyperbolic Coxeter pyramid groups
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which are noncocompact, we do not discuss the notion of arithmeticity
in the general sense (this can be found in [41], for example).

In [63], Vinberg developed a general criterion in order to decide whether a
Cozxeter group W < Isom(H") is arithmetic or not :

We use the following terminology : for a matrix M € Mat(r,C), M =
(mij)i<ij<r, & cyclic product in M of length | is a product of the form

Miqig * Mg g = oo " Mgy 1y -y 2] € {1, ...,T‘}.

A cyclic product is said to be irreducible if the indices i1, ..., i, are distinct.
Any matrix M gives rise to finitely many irreducible cycles. Moreover, it
is not hard to see that any cyclic product in M is a product of irreducible
cyclic products in M. The following result can be found in [65, Part II,
Chapter 6.3].

Theorem 2.13 (Vinberg). Let W < Isom(H") be a cofinite Cozeter group
of rank N > n + 1 with Gram matric G = G(W) = (gij)1<i,j<n. Let K be
the field generated by the entries of G, and k C K the field generated by its
cyclic products. Then, W is arithmetic if and only if

(1) the field K is a totally real number field,

(2) for any embedding o : K — R which is not the identity on k, the matriz
G := (0(gij))1<i,j<N is positive semidefinite,

(8) the cyclic products of the matriz 2G are integers in K.
If W is arithmetic, then its field of definition is K.

This criterion can be used as follows in order to directly decide about the
arithmeticity of a noncocompact cofinite hyperbolic Coxeter group W given
by a graph without dotted edges (see [23], for example).

Corollary 2.1. Let W < Isom(H") be a moncocompact cofinite Coxeter
group with Gram matriv G = G(W) and graph I' = I'(W) such that " has
no dotted edge. Then W is arithmetic if and only if

(1) the graph T' has only edges of weight 2,3,4,6 or oo,

(2) the irreducible cycle in 2G corresponding to any simple closed path in T’
lies in 7.

For arithmetic Coxeter groups in ‘H", the dimensional bound of Prokhorov-
Khovanskij (see Theorem 2.8) can be drastically decreased :

Theorem 2.14 (Vinberg). There are no arithmetic hyperbolic Cozxeter groups
i dimensions n > 30.
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Minimal volume arithmetic hyperbolic orbifolds

With the help of heavy algebraic tools involving Prasad’s volume formula,
Belolipetsky [3] (n even) and Emery [15] (n odd) determined the explicit
minimal values v, in the set of all vol(O"), where O™ is an orientable
arithmetic hyperbolic n-orbifold (either compact or of finite volume), i.e.
O™ = H"/H, with H < Isom™ (H") a discrete arithmetic group (not neces-
sarily of Coxeter type).

Having these explicit minimal values v, in all dimensions for both com-
pact and noncompact cases, it remains to detect n-orbifolds O™ such that
vol(O™) = v,. This is not an easy task in general, but it has been achieved
for several cases. It turns out that in these cases, the group which is respon-
sible for minimal volume is related to a certain Coxeter group. Further-
more, Emery [16] showed that amongst all orientable arithmetic hyperbolic
n-orbifolds, the orbifold with fundamental group the Coxeter group Wiy
with graph

F17I

has minimal volume amongst all orientable hyperbolic arithmetic n-orbifolds
in any dimension. We refer to the survey [36] for details and references about
extremal arithmetic orbifolds.
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Chapter 3

Hyperbolic Coxeter n-cubes

As mentioned in Section 2.2.2, hyperbolic Coxeter simplices are completely
classified. They exist in H" for n < 9. These polyhedra are simple and
simplicial (i.e. all their facets are simplices themselves). In this chapter,
we shall study and partially classified hyperbolic Coxeter cubes, which are
simple and cubical (i.e. all their facets are cubes themselves) polyhedra.
They are defined as follows.

Definition 3.1. A hyperbolic n-cube, n > 2, is a polyhedron C C H™ which
is combinatorially equivalent to the standard cube [0, 1] C R".

In particular, the k-th component of the f-vector f(C) is given by

n

fr(C) =27k <k) , 0<k<n.

Moreover, an n-cube has 2™ vertices, it is bounded by n pairs of mutually
disjoint hyperplanes, and all its k-faces are k-cubes, 2 < k < n.

The set of n-cubes form an important class of polyhedra which, in contrast
to simplices, are characterized by the absence of simplex faces. We will
show that there is no hyperbolic Coxeter n-cube for n > 9, and no ideal
hyperbolic Coxeter n-cube for 4 < n < 8. The absence of ideal hyperbolic
Coxeter n-cubes for n > 9 follows directly from Felikson-Tumarkin’s result
stated in Theorem 2.10.

3.1 Hyperbolic n-cubes

For n > 2, let C C H"™ be an n-cube bounded by hyperplanes Hy, ..., Ho,
such that the hyperplane H; intersects all hyperplanes except Ho,_;y1 for
i=1,...,2n. The set $ = {Hy, ..., Hop} can be partitioned in 2 families of
n concurrent hyperplanes in 2" different ways. Let $ = 1 LI §), be such a
partition. Then, for i = 1, 2, the hyperplanes in §); form a simplicial cone in
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H™ based at a vertex of C, say v;. The vertices b1 and vs lie on a (spatial)
diagonal of C. We say that they are opposite in C. In this way, we can
label the vertices pq, ..., pon of C such that p; and paon_; 11 are opposite in C,
i1 =1,...,2". For example, one can write

n 2n
pP1 = ﬂ Hi and Pon = ﬂ Hi.
=1 i=n-+1

Theorem 3.1. There are no Coxeter n-cubes in H™ for n > 10.

Proof. Let C C H™ be a Coxeter n-cube with graph ' = T'(C). Let V = V(I
be the set of vertices and £ = E(I") the set of edges of I'. Then, |V| = 2n
and |E| < n(2n—1). Let e be the number of edges of I" which are not dotted
edges. Then e < 2n(n — 1), since I' contains exactly n dotted edges.
Because the associated Gram matrix G = G(C) = G(I') has signature (n, 1),
it follows that any pair of dotted edges in I' is connected in I' (see also [21,
p. 116]). Hence, one must have

n{n=1) <e. (3.1)

2
Moreover, the graph of the figure of any of the 2" vertices of C is a subgraph
of I' of rank n which is either elliptic or parabolic. Observe that any non-
dotted edge of T belongs to the graph of precisely 2" /4 vertex figures. Since
any elliptic or parabolic Coxeter graph of rank n has at most n edges, one

deduces that
2" n

2n72

e < =4n. (3.2)

From (3.1) and (3.2), one deduces that one must have
n(n—1)

2
This inequality holds only for n < 9. O

< 4n.

Notice that there are no ideal Coxeter n-cubes in H" for n > 9 because of
Theorem 2.10.

Corollary 3.1. There are no compact Cozeter n-cubes in H™ forn > 9.

Proof. The vertex figure of an ordinary vertex is a spherical Coxeter (n—1)-
simplex. Since the graph of such a polyhedron has at most n — 1 vertices,
the equation (3.2) in the proof of Proposition 3.1 has to be replaced by
e<4(n—1). O

Remark 3.1. If C is an ideal n-cube in H™, then all its vertex figures
are Euclidean simplices. The graph of any such polyhedron is a connected
parabolic Coxeter graph of rank n, with n edges, if it is isomorphic to A,_1,
or with n — 1 edges, in all other cases (see Tables 2.2 and 2.3). Hence, the
number e of edges of I which are not dotted edges satisfies 4(n—1) < e < 4n.
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For the rest of the chapter, we focus on the class of all ideal Coxeter n-cubes

in H™.

Let I' = (V,E) be a graph with set of vertices V' = {vy,...,v2,} and set
of edges E = {(v;,v;)|1 < i < j < 2n} such that the edges of the form
(vi,vop—it1), @ = 1,...,n are represented by dotted edges of I'. To each
dotted edge (v;, van—i+1) we assign a weight l; := l; 2,—i+1 € R>g, and each
non-dotted edge (vj,v;) is decorated with an integer weight m;; > 3. The
Schlifli matriz S = S(I') of T is the symmetric matrix S = (s45)1<i j<on €
Mat(2n x 2n,R) given by

1 ,j=1
—coshl; ,7=2n—1+1
Sij = —cosmiij ,(vi,vj) € B, j#4,2n—i+1
0 , otherwise.

Notice that alternatively, any entry of S of the form s;; = 0 can be associ-
ated to an edge (v;,v;) of I' with weight m;; = 2.

If S is of signature (n,1), then S can be interpreted as the Gram matrix
G(C) of an ideal Coxeter n-cube C C H™ (see [64, Section I, Chapter 6.2],
for example). More precisely, in such a case, any vertex v; € V' corresponds
to a facet F; of C, the facets F; and F5,—;t1, have a common perpendic-
ular of length /;, i« = 1,...,n, and the angle between the facets F; and Fj,
J #2n—i+1,is equal to -~ if (v;,v;) € E and to § otherwise.

myg

Let T" be a graph as above, with Schléafli matrix S = S(I") such that S = G(C)
for an ideal Coxeter n-cube C C H™. Then, I' must satisfy the following
conditions (see [21], for example).

(1) The signature of S equals (n,1).

(2) Any subgraph of I' corresponding to the figure of a vertex of C is a
connected parabolic Coxeter graph.

(3) Let T'; and T's be two indefinite subgraphs of I' (i.e. T'; contains at
least one connected component which is neither elliptic nor parabolic,
i =1,2). Then, I'; and I'y are connected in T'.

In the sequel, we call Condition (2) parabolicity and Condition (3) signature
obstruction. Notice that for n-cubes, Condition (3) is equivalent to

(3") Every two dotted edges are connected in I'.

Our approach is the following. We first focus on Condition (2). Start with
a graph I'® with 2n vertices, say vi, ..., Uan, such that the vertices v; and
Von—i+1, ¢ = 1,...,m, are connected by a dotted edge, and such that ' has
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no other edge (which is equivalent to supposing that the remaining edges
of T have weight 2). Let 0(® := (vy,...,v,) C T be the subgraph of I'®)
spanned by the vertices vy, ...,v,. Add n — 1 or n edges to I'© so that o(©
turns into a connected parabolic Coxeter graph, say »©). Denote by ' the
graph obtained from T'©) by replacing 0(® by 29, Next, take a subgraph
o) c1® s =+ »O), containing no dotted edge, and add edges to r®
so that o(®) turns into a connected parabolic Coxeter graph, say £(2. This
leads a graph '@, After at most 2" steps, this procedure either yields a
graph I' satisfying Condition (2), or allows us to claim that such a graph
does not exist. At this stage, Condition (3) may help in order to restrain
the list of graphs.

Let I' be a graph obtained by the procedure described in the previous para-
graph, and satisfying Conditions (2) and (3). The weights of all edges of T’
are fixed, except those of its dotted edges. Finally, we look at Condition (1).
Let xg be the characteristic polynomial of S. Then, one has

2n
Xs(t) = ait’ € R[t], (3.3)
=0

where the coefficients ag, ..., a2, depend on [, ...,1,. Furthermore, the con-
dition sign(S) = (n, 1) implies that

apg = ... = Ap—92 = 0. (34)

The equations (3.3) and (3.4) provide a system of n — 1 equations with
respect to the unknowns [q,...,1,, which can be solved in order to decide
about the realizability of I' as the graph of an ideal Coxeter n-cube in H".
This will be worked out in the next sections.

3.2 Ideal Coxeter squares and 3-cubes

As a warm-up, we classify all ideal Coxeter squares and 3-cubes. Let us
recall that such polyhedra can be entirely described by using Theorem 2.2
and Rivin’s Theorem 2.5.

In this section, the signature of a graph I' will denote the signature of the
associated Gram matrix G(I").

3.2.1 Ideal Coxeter squares

Recall that there is only one parabolic Coxeter graph of rank 2 : 211 . By
Section 3.1, if C C H2 is an ideal Coxeter square, then its graph I' can only
be of the following type :




where the weights x and y correspond to the respective lengths between the
two pairs of ultra-parallel sides of C. The Schléfli matrix S of T' is given by

1 -1 -1 —cosh
g —1 1 —cosh y -1
- -1 —coshy 1 -1
—cosh z -1 -1 1
Since S must be of signature (2,1), it admits the eigenvalue \; = 0 of

multiplicity 1. Since x,y > 0, the condition det(S) = 0 is equivalent to
—3 — coshx — cosh ¢y + cosh x coshy = 0,

which leads to the identity coshy =1+ m. From this, it follows that
the eigenvalues of S are given by

2

. 2z
sinh 5

A =0, )\2:2coth2§, A3 =14coshz, My =1-—coshz—

Hence, ideal hyperbolic Coxeter squares form a one-parameter family C(z),
x > 0, of polygons in H2 whose lengths between the two pairs of non-
intersecting sides are given by

4

[ = d his=14+ ————.
1= an cosh [ +—1+coshx

3.2.2 Ideal Coxeter 3-cubes

Let T' be the graph of an ideal Coxeter 3-cube C C H3. Then, I' has 6
vertices, say v1, ..., vg, corresponding to the hyperplanes bounding C, as well
as 3 dotted edges (between the vertices v1 and vg, vy and vs, and vs and vy)
corresponding to the 3 pairs of ultra-parallel faces of C. The vertex figures
of C correspond to those subgraphs of I' of rank 3 which do not contain any
dotted edge. There are 3 different parabolic Coxeter graphs of rank 3 : As,
B2 and GQ.

By applying the procedure described in Section 3.1, one finds the 11 poten-
tial graphs enlisted on Figure 3.1.
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Flt

Fg:

FlO .

Figure 3.1: Potential graphs of ideal hyperbolic Coxeter cubes

The graphs I's, I'g, I'1g and I'11 contain each a subgraph which is the product
of two Lannér graphs of order 2. Hence, they have to be removed from the
list due to the signature obstruction.
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Let us consider the graph I';. Its Schlafli matrix S = S(I'1) is given by

1 1 1 1

PRI S R
RIS N

g | 2 2 1 ¢ =3 —3

1 o1 . 4 I 1|
T U TR
DA S S
a -3 —3 —3 —3 1

where a = —coshly, b = —coshly and ¢ = —coshl3 depend on the weights

l1, I and I3 of the dotted edges of I';.

In order to be the Gram matrix of a hyperbolic polyhedron in %3, S; has
to have signature (3,1). In particular, it has to have the eigenvalue A\; = 0
with multiplicity 2. The characteristic polynomial x; = xg, is given by

xi(t)=—(t+a—-1)t+b—1)(t+c—1)(—4+ ab+ ac+ bc+ abe
—t(2a+2b+2c+ab+ac+be) +t2(3+a+b+c)—t3),

for t € R. Since a,b,c < —1, the eigenvalue A\; = 0 must be a root of the
factor

—4+ab+ac+be+abe—t (2a+2b+2c+ab+ac+be) +t2 (3+a+b+c) —t3,
which yields the system

—4 + ab + ac + be + abe =0
2a +2b+2c+ab+ac+bc = 0 °

Since a,b,c < —1, this system admits the unique solution a = b =c = —2.
One can check that the matrix obtained by replacing the coefficients a, b, ¢
by —2 in S; has signature (3,1). As an outcome, one deduces that the graph
I'y is the graph of an ideal hyperbolic Coxeter cube C1 with Iy =1y = I3 =
arcosh 2.

Similar computations with the remaining graphs show that the graphs I'y

to I'7 are the graphs of the ideal Coxeter 3-cubes in H3. The corresponding
values of coshly, coshly and coshls are provided in Table 3.1.
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Graph cosh [ cosh [y cosh l3
T 2 2 2
r, v3 :
Iy V3 V3 V3
I's 2 3 3
7 V2 2 2

Table 3.1: Weights of the dotted edges in the graphs I'y,...,I'7

3.3 Absence of ideal Coxeter n-cubes in H", n > 4

This section is devoted to the proof of the following result.
Theorem 3.2. There are no ideal Cozeter n-cubes in H™, n > 4.

Proof. By Theorem 2.10, it suffices to prove the assertion for 4 < n < 8
only. We will proceed dimension by dimension, by using the notation and
the procedure described in Section 3.1. Recall that all connected parabolic
Coxeter graphs are collected in Table 2.3.

Dimension 4

Let T' be the graph of an ideal 4-cube C C H4, with vertices vy, ..., vs and
dotted edges (v1,vs), (va,v7), (v3,v6) and (v4, vs). Then, I' must satisfy the
conditions (1) — (3) described in Section 3.1. As for Condition (2), notice
that there are 3 connected parabolic Coxeter graphs of rank 4 which may
appear as subgraphs (v;, vj,vg,v;) CT': Az, Bz and Cj.

First, suppose that I' has a subgraph isomorphic to E;,, say (v1,v2, V3, v4).
Without loss of generality, we can suppose that mis = mos = 3, moy = 4,
and my3 = mi4 = mgq = 2. Then, by considering the subgraph (v, v, vs, vs),
one deduces that one must have either mgs = 4 and mi5 = mss = 2 (so that
(v1,v2,v3,v5) is isomorphic to /Bz,), or mis = mas = 3 and maos = 2 (so that
(v1,v2,v3,v5) is isomorphic to ;1;)

1) Suppose that mos = 4 and my5 = mgs = 2. Then, by parabolicity, one
deduces by considering the subgraph (va,vs,vy4,vs) that one must have
myg = 2. In the same way, the subgraph (ve,vs,vs,vs) cannot be
parabolic unless msg = 2.

Since mi4 = my5 = myg = msg = 2, the dotted edges (v1, vg) and (vy4, vs5)
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will be disconnected. Hence, by the signature obstruction, the graph I
cannot describe an ideal hyperbolic 4-cube.

2) Suppose that mi5 = mss = 3 and mgs = 2. Then, by parabolicity, we
have the following dichotomy for the subgraph (v, ve,vs, vs) :

2.1) If mig = 4 and mog = maos = 2, then we have two possibilities
coming from the subgraph (vy, vs, v4, v7) :

2.1.1) If myy; = 3 = mgy and my7 = 4, then by considering the sub-
graphs (v1, v4, ve, v7) and (v1, vs, vg, v7), we deduce by parabol-
icity that one must have m7¢ = 2 = my5. Moreover, by
parabolicity again, the subgraph (vq, v3, vs, vg) leads to mog =
mss = 3 and mgs = 2, and the subgraph (vs, vy, v7,vs) to
m7s = 3 and msg = myg = 2. Finally, for the subgraph
(vs, vg, v7, v3), parabolicity forces mgg = 4, so that we obtain
the following graph I'; :

2.2.2) If my7 = 4 or msy = 4, then the subgraph (v1,vs,vs,v7) is
not parabolic, which contradicts Condition (2).

2.2) If mig = 2 and maog = 3 = myg, then we have two possibilities in
order to have a parabolic subgraph (vg, v3, v4, vs) :

2.2.1) If mog = 3 and msg = myg = 2, then, the parabolicity of
the subgraph (ve, vy, vg, vs) forces mgs = 2. Then, the dotted
edges (v1,vg) and (vs, vg) are disconnected, which contradicts
the signature obstruction.

2.2.2) If mog = myg = 2 and mag = 4, then one can easily determine
the remaining edge weights and get the following graph I's :
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Next, suppose that I' has a subgraph which is isomorphic to ;l;), say (v1, Ve,
v3,v4), but no subgraph isomorphic to §3 We can suppose that mis =
me3 = m3g = mig = 3 and my3 = moy = 2. Then, the parabolicity of
the subgraph (vq,ve,vs,vs) implies that mos = 2 and my5 = mg; = 3,
and the parabolicity of the subgraph (v1,vs,v4,v7) forces miz = ms7 = 3
and my; = 2. The subgraph (vq,vs,vs,v7) also has to be parabolic, so
that ms; = 2, which implies that the dotted edges (v2,v7) and (v4,vs)
are disconnected. By the signature obstruction, this implies that I" has no
subgraph isomorphic to As.

Finally, suppose that all parabolic rank 4 subgraphs of I' are isomorphic
to C3. We start by supposing that me3 = 3, mis = m3q4 = 4 and mi3 =
miq = mog = 2. Then, by parabolicity, the subgraphs (vi,ve,vs,v5) and
<U2,U3,U4,U8> lead to mss = Moy = 4 and mis = Moy = 2= ms3g = 148, SO
that by considering the subgraph (v, vs,vs,vg), we deduce msg = 2. Hence,
the dotted edges (v1,vs) and (v4,vs) are disconnected, which violates the
signature obstruction.

It remains to consider more closely the graphs I'; and I'; obtained above and
satisfying Conditions (2) and (3) from Section 3.1. In view of Condition (1),
we have to determine the weights of the various dotted edges in these graphs.
To this end, one first computes the respective characteristic polynomials and
then the coefficients of their constant, linear and quadratic terms (see (3.3)
and (3.4)). In contrast with the case of dimension 3 (see Section 3.2.2),
the resulting systems of equations with respect to the weights of the dotted
edges turn out to have no solution. Hence, there is no ideal 4-cube in H?.

Dimension 5

Consider the graph I" of an ideal Coxeter 5-cube, with vertices vy, ..., v19 and
with dotted edges (v1,v10), (v2,v9), (v3,vg8), (v4,v7) and (vs,ve). Any rank
5 subgraph of I" not containing any dotted edge has to be parabolic, i.e. it
has to be isomorphic to Ay, By, Cy, D4 or Fy. The strategy here is similar
to the one we have used for dimension 4, but quite longer, since we have
to deal with 5 possible parabolic graphs. Therefore, we only give the main
steps of the non-existence proof.

First, suppose that I' contains a subgraph which is isomorphic to 24\;, say
(v1,v2,v3,v4,v5). Without loss of generality, we can suppose that mis =
mg3 = m34 = Mys = mi5 = 3 and that miz = myy = mog = mas =
mass = 2. Then, by successively considering the subgraphs obtained from
(v1,v2,v3,v4,v5) by replacing the vertex v; by the vertex vig—;, i = 1, ..., 5,
one deduces that mig = myg = Mm37 = Ms7 = Maog = Myg = Mig = M3g =
ma10 = Ms,10 = 3. By performing a similar substitution with the 5 pairs
of vertices connected by an edge in (vy,ve, v3, v4,v5), one can determine 10
further edges of I'. At this stage, we have found 30 non-dotted edges of the
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graph I'. By (3.2), we deduce that I" contains no further edge, so that the
dotted edges (v1,v19) and (vs,vg) are disconnected. Hence, by the signature
obstruction, no ideal Coxeter 5-cube has a graph with a subgraph isomorphic
to A4.

Secondly, suppose that I" has a subgraph isomorphic to 6'v4, say (v1, V2, U3, V4,
v5), and no subgraph isomorphic to ;(4. Without loss of generality, we can
suppose that mio = mys = 4, me3 = mg4 = 3, and that all remaining
weights of edges of (v1,va,v3,v4,v5) equal 2. Then, up to re-labelling the
vertices, we can also suppose that the subgraph (v, ve,vs,v4,v5) is such
that mog — NMyg — 3 (and mig =— Mzg — 2).

Consider now the subgraph (v1g, ve, v3, v4, v5). It is isomorphic to a parabolic
graph only in the following 3 cases :

1) By : set m3 10 = 3, ma,10 = M4, 10 = M5,10 = 2.
2) 04 . set m2710 = 4, m3,10 = m4710 = m5’10 = 2.
3) F4 . set m2710 = TI‘L3710 = m4710 = 2.

Cases 2) and 3) turn out to be impossible, since it would imply that mg 190 =
2, so that the dotted edges (v1,v10) and (v3,vg) are disconnected.

Case 1) splits further into 3 cases which also lead to disconnected dotted
edges. Hence, we see that I' cannot contain a rank 5 parabolic subgraph
isomorphic to Cy.

Third of all, suppose that I' has no subgraph isomorphic to L or CN’4, but a
subgraph isomorphic to Dy, say (v1,v2, vs, v4, v5). Without loss of generality,
we can suppose that mi3 = mg3 = mgs = mss = 3. Then, by considering the
subgraph (vy, ve, vs, v4,v5), we see that one must have mig = maog = mug =
msg = 3. Next, consider the graph (vig, v2, v3,v4,v5). It is isomorphic to a
parabolic graph only in the following 2 cases :

1) B4 . set m2710 =4 and mg’lo = m4,10 = m5710 = 2.
2) D4 : set m3i10 = 3 and ma 10 = MM4,10 = M5,10 = 2.

Consider case 2). Then, by looking at the subgraph (vig, ve, vs, v4,v5), One
deduces that mgi19 = 3. Moreover, the subgraph (v, ve,v3,vs,v6) yields
mie = 4 and mog = Mm3e = Mmye = 2, so that me 19 = 4. Furthermore, the
subgraph (v, va,vs, v7, vs) yields mi7 = 4 and me7 = mg; = ms7 = 2, which
forces my7 190 = 4. At this stage, we know 14 non-dotted edges of I and their
weights. By Remark 3.1 and since no subgraph can be isomorphic to 2{\;, Tr
can only have 2 additional edges. This implies that the dotted edges (v, vg),
(vg,v7) and (vs,vs) cannot be mutually connected in I', which contradicts
the signature obstruction.

Case 1) splits further into 2 subcases, both resulting in graphs containing
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disconnected dotted edges. As a consequence, I' does not contain any rank
5 subgraph isomorphic to Dy either.

In a very similar way, the two remaining steps (I" contains a subgraph iso-
morphic to F4, respectively all subgraphs of I' are isomorphic to B4) also
lead to graphs containing at least one pair of disconnected dotted edges.
Hence, there is no ideal Coxeter 5-cube.

Dimensions 6, 7 and 8

Let C C H" be an ideal Coxeter n-cube, n > 2. Then, for 2 < k < n, any
k-face of C is an ideal k-cube. The following property is a consequence of an
observation due to Borcherds [6, Example 5.6] and will be useful in order to
determine when a k-face of C is a Coxeter polyhedron : if the graph I" of C has
an elliptic subgraph I'” of rank n — k with no component of type A;, 1 > 1, or
Ds, then the k-face F' C C corresponding to I' is a Coxeter polyhedron itself.

The parabolic graphs En_l and 6’n_1, n = 6,7,8, contain an elliptic sub-
graph of type I5(4), B3 and By, respectively. Since, as we have seen, there
is no ideal hyperbolic Coxeter 4-cube, the above observation allows us to de-
duce that the graphs B,,_1 and CN'n,l, n = 6,7,8 cannot occur as parabolic
subgraphs of the graph of an ideal Coxeter n-cube in H", n = - 6,7,8. Hence,
for n = 6, the only possible rank 6 parabolic subgraphs are A5 and Ds, for
n =7, the only possible rank 7 parabolic subgraphs are Ag, Dg and Eg, and
for n = 8, the only possible rank 8 parabolic subgraphs are A7, D7 and Ex.

The different subgraph chasings in these cases are much shorter than for
dimensions 4 and 5. Because of the high proportion of edges of weight 2 in
parabolic graphs of higher rank, the parabolicity condition (2) of Section 3.1
already suffices in order to proceed, as in the case of dimension 5.

As an illustration, we give the proof in the case where n = 6. Let T be
the graph of an ideal hyperbolic Coxeter 6-cube, with vertices vy, ..., v12 and
dotted edges (vi, v13—i), @ = 1,...,6. Then, any rank 6 parabolic subgraph of
I" is isomorphic either to :4:, or to ]_/75

We start by supposing that I" has a subgraph isomorphic to ;1;, say (v1, ve, V3,
v4,V5,V6). Then, we can suppose that mia = maoz = mss = mys; =
mse = mig = 3 and M3 = Mg = M1z = Mag = Mas = M2 = M35 =
msg = myg = 2. By successively considering the subgraphs obtained from
(v1,v2,v3,v4,V5,06) by replacing the vertex v; by the vertex viz_;, i =

.,6, we can determine 12 further edges of I', by the parabolicity con-
dition. A similar substitution for each the 6 pairs of vertices connected by
an edge in (v1,v2,vs3,v4, V5, v6) lead to 6 more edges of I'. Hence, by (3.2),
I" contains no further non-dotted edge. We observe that the dotted edges
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(v1,v12) and (vs,vg) are disconnected in I', contradicting the signature ob-
struction. Hence, I' contains no subgraph isomorphic to As.

Hence, we can suppose that all rank 6 parabolic subgraphs of I' are iso-
morphic to Ds. Without loss of generality, we can set mijs = mg3 =
Mmos = Mys = Mz = 3 and M1z = Mg = Mg = Ma4 = Mo = M34 =
mss = Mmsg = My = 2. Then, by considering the subgraphs obtained
from (vy,vq,v3,v4,v5,06) by replacing the vertex v; by the vertex wvi3_;,
i=1,...,6, we can determine 10 further edges of I', due to the parabolicity
condition. By successively considering the parabolicity condition for the sub-
graphs (v4,vs, Vs, V10, V11, V12), (V1,V2,V3,V7,8,v9) and (v7,vs, vy, V10, V11,
v12), we deduce 5 further edges of I', so that we have determined 20 edges
of I" so far. By the proof of Corollary 3.1, I' must have exactly 20 edges,
so that I" has no further edge. By observing that the dotted edges (v1,v12)
and (vs,v19) are disconnected in T', the signature obstruction allows us to
deduce that there is no ideal hyperbolic 6-cube.

As mentioned before, the cases where n = 7 and n = 8 are very similar to
the cases n =5 and n = 6 and straightforward. O

3.4 Volume and inradius of ideal Coxeter n-cubes,
n=23

We end this chapter by computing the volume and inradius of the hyperbolic
Coxeter n-cubes, n = 2, 3, classified in Section 3.2.

Ideal Coxeter squares

Let C(z), > 0, be an ideal Coxeter square in 2 (see Section 3.2.1). Then,
by Theorem 2.12,
area(C(x)) = 2.

Moreover, by Section 3.2.1, the inradius r(C(x)) is given by

r(C(z)) = min {‘; % arcosh <1 + 4) } .

>0 —1+ coshzx

Direct computations show that

z/2 , 0 < x <arcosh3
r(C(z)) = Larcosh (1 + m> , arcosh3 <z ’
and that h3
arcos

max{r(C(z))} = ——,

x>0 2
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i.e. the ideal Coxeter square of maximal inradius is C(arcosh 3), the regular
ideal square.

Recall that the area of a hyperbolic disk Ba(r) of radius r is given by
area(Ba(r)) = 2m(coshr — 1). Hence, the maximal local density 4\, of

periodic (in)disk packings resulting of tessellations of the hyperbolic plane
by ideal Coxeter squares is

) Cosharcosh3 -1
5o = 2 2 ) _ V2 — 1~ 0.41421.

max 27T

This is greater than the local density 52A of the periodic (in)disk packing
induced by the tessellation of H? by regular ideal triangles, which is known

to be 52A =2 (% - 1) ~ 0.30940 (see [35], for example). However, 4.,

max
is smaller than the local density o of the periodic (in)disk packing induced
by the tessellation of H2 by copies of the (compact) Coxeter triangle [3,7]
(see Section 4.3.1).

Ideal Coxeter 3-cubes

The volume of an ideal 3-cube can be computed as follows.

Lemma 3.1. Let C C H3 be an ideal hyperbolic 3-cube with faces Fy, i =
1,...,6, such that F; is opposite to Fg_;11 inC,i=1,....,3. Let o, 1 <i <
j <6, i+ j #6, denote the dihedral angles of C. Then, the volume of C is
given by

VOI(C) = Z H(Oéij) — Z JI (Oéij + 067_1"7_]') . (3.5)
1<i<j<6 i€{1,2}
i+j#T7 j€{2,3,4,5}
1#£7,i+5#7

Proof. The cube C can be dissected into 5 ideal tetrahedra as in Figure 3.2.
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Figure 3.2

Recall that in an ideal tetrahedron, the dihedral angles corresponding to
opposite edges are equal. The 4 tetrahedra having bounding hyperplanes in
common with C have dihedral angles ar12, ai13, aog ; 14, 15, Q45 5 Qo4, Qog, Q46
and ass, asg, asg, respectively. The remaining tetrahedron, sharing no edge
with C, has dihedral angles m — 12 — 56, ™ — 13 — Qug, and ™ — a4 — Q3.
The volume of an ideal tetrahedron 7 of dihedral angles «, 3,7 is given by
(see [65, Part I, Chapter 7.3.4|)

vol(T) = JI(«) + JI(B) + JI(7).

Since the Lobachevsky function JI is odd and m-periodic, the formula (3.5)
follows. O

Let Cy,...,C7 be the ideal Coxeter 3-cubes described in Section 3.2.2 (see
Table 3.1). By using (3.5) and the distribution law (2.7), one finds the
volumes listed in Table 3.2.

i v 1 2 [ 38 [ 4 [ 5 | 6 [ 7 |

vol C; || 1271(5) | 1L1(5) | B71(5)| $71(5)| 1071(5)| 1071(5)| 871(F)

Table 3.2: Volumes of the ideal hyperbolic Coxeter 3-cubes Cy,...,C7

Observe that the regular ideal 3-cube C; has maximal volume amongst the
ideal hyperbolic Coxeter 3-cubes. Moreover, its inradius 71 = r(Cy) is given

37



by half the distance between two of its nonintersecting facets. It can be
directly read off from Table 3.1, and we have ry = %arcosh 2.

Remark 3.2. Amongst all ideal simplices in H", n > 2, the regular one is of
maximal covolume as well (see [48], for example). Moreover, it is of maximal
inradius (by inradius monotonicity, see Section 4.2.3).

Recall that the volume of a hyperbolic ball B3(r) C H? of radius r > 0 is
given by vol(B3(r)) = m(sinh2r — 2r). Hence, the local density 07 of the
periodic (in)ball packing induced by a tessellation of H3 by isometric copies
of Cy is given by

Vcosh?2ry —1 —2
50 = TV cosh 2y ")« 0.32121.
vol Cy

As for dimension 2, this density is greater than the local density (53A of the
periodic (in)ball packing induced by a tessellation of the hyperbolic 3-space
by isometric copies of the regular ideal simplex with angle %, which is given

by 85 = G082 & 0.17598 (see [10], for example).
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Chapter 4

The inradius of hyperbolic
truncated simplices

The content of this chapter has already been published in large parts in [29].
From now on, we shall denote (.,.)_; simply by (.,.) only.

4.1 Hyperbolic truncated simplices

Let us recall that a simplex P C H" is the convex hull of n + 1 points
V1, .., Unp1 € H™ which form a basis of R"*! and are called vertices. Every

vertex v; is given by
n+1

vi = () Hj, (4.1)
j=1
J#i
where Hy, ..., Hy 1 are hyperplanes such that H; lies opposite to the vertex
Vi in P.

In the sequel, we extend the concept of a hyperbolic simplex to a wider
class of polyhedra. Let u1,...,un11 € S_1(1) be a basis of R"*! such that
(uj,uj) < 1 for i # j, and let H; be the vector subspace of R™! such that

—

H; = H; NH". Then, the intersection

n+1 o
0= H (4.2)
i=1
is a simplicial n-cone in R™*! of apex o = (0,...,0) (see also [13]). In

particular, for every i, the intersection
n+1
Gi= () H;
j=1
J#
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is a line passing through o.
It is easy to see that every line ©; contains a point v; such that

{ v =00 (H"US_1(1)) (4.3)

<UZ’, Ui> <0
Definition 4.1. The set
T:=0n(H"US_(1)) c R"

with vertices v1, ..., vp4+1 satisfying (4.3) is called the total simplex associated
to uy, ..., Up41.

Remark 4.1. By passing to the Klein-Beltrami model K" of H" (see [51,
Chapter 6.1] for example), T is a simplex in the real projective space RP"
intersecting K™ non-trivially.

Let p,q > 0 be integers such that p+q¢ < n + 1.

Definition 4.2. A total simplex T is said to be of type (p,q) if p of its
vertices lie in S_1(1), ¢ vertices are in OH", and the remaining ones belong
to H™.

The vertices lying in H™ are called ordinary vertices, the ones lying in OH™
ideal, and the ones lying in S_1(1) ultra-ideal vertices of T.

The set of the ordinary vertices of 7T is denoted by V_, the set of the ideal
vertices Vp, and the set of the ultra-ideal vertices V. .

With these definitions, a total simplex T of type (0,9),0<g<n+1,isa
hyperbolic simplex. If ¢ = 0, it is compact, and if ¢ =n + 1, T is a totally
ideal hyperbolic simplex.

Let us now consider a total simplex 7 C R"1 of type (p,q), p > 0, with
n+1

associated cone © = ﬂ ff\i_.

i=1
Then each ultra-ideal vertex wv; gives rise to the hyperbolic hyperplane
H, = ’UZ-J‘ which intersects 7 non-trivially. More specifically, by (4.1), H,,
intersects each Hj, j # ¢ orthogonally.

Let k € {1,...,p} be an integer, and let vy, ..., v € V4 be ultra-ideal vertices
of T such that the set

n+1 k
T:=()H n()H, CH" (4.4)
i=1 j=1

is nonempty and has positive finite volume.
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Definition 4.3. The setj is called the hyperbolic k-truncated simplex (of
type (p,q)) associated to T with respect to the vertices vy, ..., v of T.

Remark 4.2. By analogy with projective geometry of quadratic forms, for
an ultra-ideal vertex v; € S_1(1), we call H,, polar hyperplane, and write
Hf. By (4.1), we have Z(H;, H;) = T for i # j. Let F;' = T N H} be the
corresponding facet of T .

4.1.1 Examples

Before going any further, we give several examples showing that the class of
truncated simplices contains different types of polyhedra, and more specifi-
cally, many known examples of Coxeter polyhedra can be interpreted in this
way.

(1) Truncated triangles are characterized as follows.

Lemma 4.1. Let T C M2 be a truncated triangle. Then, T is either
a triangle, or a quadrilateral with at least 2 adjacent right angles, or a
pentagon with at least 4 right angles, or a totally rectangular heragon,
and conversely.

Proof. Let T C R>! be a total triangle of type (p,q), p,q € {0,1,2,3},

p+q < 3, with associated truncated triangle 7 C H2. Then, one has
the following cases.

e If p = 0, then T="Tisa triangle. It is compact if and only if
q=0.

o Ifp =1, then T is a quadrilateral with two consecutive right angles
arising from the truncation. It is compact if and only if ¢ = 0.

o If p = 2, then T is a pentagon with two pairs of two consecutive
right angles arising from the truncations. It is compact if and only
if g =0.

e If p=3, then T is a totally rectangular hexagon.

Conversely, consider a quadrilateral Q with two consecutive right angles
which is bounded by lines Hi, Hs, H3 and Hy, such that H, intersects
H, and Hs orthogonally. Since Hy and Hs do not intersect in H2, they
have a common perpendicular, which is nothing but H4. Hence Hy, is
the polar line coming from the ultra-ideal intersection of Ho and Hj.
Therefore, the lines Hy, Ho and H3 bound the hyperbolic part of a total
simplex 7 with associated truncated simplex Q.

Because of the uniqueness of the common perpendicular between two
disjoint lines in 2, this argument can be extended to pentagons with
at least four right angles and totally rectangular hexagons. O
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In particular, any totally right-angled pentagon is the truncated part
of 5 different total triangles of type (2,0) (each of them being uniquely
determined by the choice of a vertex of the pentagon as ordinary ver-
tex of the total simplex), and any totally right-angled hexagon is the
truncated part of 2 different total simplices of type (3,0).

Figure 4.1: Any pentagon with 4 right angles is a 2-truncated triangle

(2) Lambert cubes are hyperbolic 2-truncated 3-simplices (cf. [34]).
(3) Straight simplicial prisms are hyperbolic 1-truncated simplices.

(4) Consider the following Coxeter graph with 5 nodes.
5

5

By Vinberg’s existence criterion (see [64]), this graph describes a Coxeter
polyhedron P C H? of infinite volume. Moreover, it can be interpreted
as hyperbolic part of a total simplex of type (5,0) whose associated 5-
truncated simplex is a compact Coxeter polyhedron. For more details,
see [61].

(5) The following linear graphs encode compact hyperbolic Coxeter k-ortho-
schemes in H*, k = 2, 3,4, respectively.

Iy 0—0—07 [s: o—oio—o [y: oio—o—o—o
Moreover, the graph I's given by
F5 I e 5 e—9o o o o O
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(7)

yields a compact 1-truncated orthoscheme in H®. The truncating polar
hyperplane corresponds to the white node of I's.

Bugaenko [8], [9] showed that the following graphs give rise to compact
arithmetic Coxeter polyhedra in H*, k, = 6,7, 8, respectively.

By using the approach described above, one sees that I's and I'g can be
interpreted as 2-truncated orthoschemes, and I'; describes a 3-truncated
simplex. As in Example (5), the truncating polar hyperplanes are rep-
resented by white nodes.

The following graph represents a non-compact Coxeter polyhedron in
H17, which is combinatorially a pyramid over the product of two sim-
plices (see Section 5.2).

F172

One can interpret I'17 as the graph of a 1-truncated simplex. For ex-
ample, identify the truncating polar hyperplane by the white node as
indicated. The volume of this polyhedron is equal to the minimal value
amongst all volumes of orientable hyperbolic arithmetic n-orbifolds (see
Section 2.3.4).

4.1.2 The reduced Gram matrix of a hyperbolic truncated

simplex

For a k x k matrix M and ¢,j € {1,--- ,k}, we denote by M;; the (k—1) x
(k — 1) matrix obtained by removing the i-th row and j-th column from M.
The matrix M; := M;; is the i-th principal submatrix, and the (i, j)-th co-
factor cof ;;(M) of M is given by (—1)"™7 det(M;;), as usual.

Recall that, for M invertible, the coefficients of M1 can be expressed ac-
cording to

1

M = Geran)

CijZ‘(M), 1 S Zy] S k.
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After these preliminaries, consider a hyperbolic polyhedron P C H" with
normal vectors u1, ...,un € S_1(1).
The Gram matriz G(P) =: G = (gi)1<i,j<n of P is given by

It is clear that G is real symmetric with g; = 1 for alli =1,..., N. By (2.3)
and (2.4), we get the geometric interpretation

g~—{ —cos Z(H;, Hj) & |[(uj,uj)| <1
Zj_ |

Uy
—coshd(H;, Hj) & [(us,uj)| > 1 (4.6)

A crucial fact is that if P is a hyperbolic simplex, then the matrix G(P) =
((ui, uj))i<ij<n is invertible and of signature (n,1) (cf. [64]).

In the sequel, we consider a total simplex T of type (p,q), p > 0, with
n+1

associated cone © = ﬂ ]/'{; L u € S_1(1), and associated hyperbolic k-
i=1

truncated simplex 7. Since k > 1, the Gram matrix G = G(T) is singular

of size (n+ k+ 1) x (n+ k + 1). This motivates the following

Definition. The reduced Gram matriz of T is defined by G := G(T).

In other words, we consider in the singular matrix G(7) the invertible prin-
cipal submatrix G of identical signature (n,1).

Vice-versa, consider a symmetric matrix A = (a;;)1<i j<n+1 € GL(n+ 1,R)
of signature (n,1) with a; = 1 and a;; < 1 for 1 < 4,5 <n+ 1. In fact,

A can be interpreted as the Gram matrix of a total simplex T with cone
n+1

0= ﬂ I/:T-; ~ bounded by hyperbolic hyperplanes in R"*! as follows.
i=1

Since A is invertible of signature (n, 1), there exists a matrix U € GL(n+1)
such that A = U'JU, where J = Diag(1,...,1,—1) is the matrix associated
to the standard quadratic form (-,-) on R™!. Write U = (u1]...|un11), with
well-defined vectors u; € S(1). It follows that A = G(T) = G, for a total

n+1
simplex T with cone © := ﬂ H,, CR"! asrequired.
i=1

The next goal is to construct explicitly vertex vectors for 7 which are vec-
tors vy, ..., Un41 satisfying (4.3).

Inspired by [47], we put, for i =1,...,n + 1,

n+1 (A ”
gy cof ik (G) i if COfii( )75

1L G)#0
v = \/|cofn‘(G) det(G)] N . (47)
Pt cof g (G)ug  if cof 4(G) =0
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A straightforward computation using the identity

n+1 n+1
> giwcof 15(G) = det(G) > gir[G'xj = det(G) 6
k=1 k=1

for 1 <14,5 < n-+1 shows that

_5. det(@ (O
<”U,L-’ u]> = v COfi(G) ‘ COf “(ﬁ) # 0 (48)
57;]' det(G) cof 7,7,(G) =0
This can be used to deduce the useful identities
—cof 45(C) cof (@), cof j;(G) # 0
Vlcot 44(@) cot (@) 7
<Ui’ Uj> - —cof U(é) 7det.('Gf)\ cof u(é) = 0, Cijj(é) 75 0 (49)
/\ cof]/Z(G) R "
cof j;(G) det(G) cof ;;(G), cof j;(G) =0

For j =i, one gets then

-1 =4 Cofz‘i(é) >0
(vi,v)) =< 0 & cof 45(G) =0 (4.10)
<0

1 & cof “(G)

Then, if p (resp. ¢) denotes the number of ultra-ideal (ideal) vertices of

n+1 k
T and if for k& < p the intersection 7 = ﬂ H, N ﬂ H, is nonempty
i=1 i=1

and of finite volume, then modulo a change of indices 7 is the hyperbolic
k-truncated simplex of type (p, q) associated to 7 with respect to the ultra-
ideal vertices vy, ..., v € V4, with reduced Gram matrix G.

4.2 The inradius of a hyperbolic truncated sim-
plex

Let 7 C R™ be a total simplex of type (p,q) with simplicial cone © =
n+1

m Ei, and let 7 C H" be an associated hyperbolic k-truncated simplex
\l)vi%h respect to ultra-ideal vertices vy, ...,vp € V4, 1 <k < p.

Furthermore, let u; € S_1(1) be the oriented normal vector related to the
hyperbolic hyperplane l/LI\Z of ©.

Denote by Fi, ..., Fy41 the facets of T associated to ui,...,upt1, and by
FY, ..., Fj those associated to vy, ..., vg, all together forming the facet com-
plex of 7. This will be our setting for the rest of the chapter.
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Let us denote by B = B(T) the ball of maximal radius embedded in 7 which
is the inball of T. The goal of this chapter is to determine the inradius
r:=r(B)of T.

4.2.1 The inball of a total simplex
Fori,j € {1,..,n+1}, i # j, let H;; be the hyperbolic hyperplane given by
Hij = (Uz — u]‘)J'.

Geometrically, we will see that H;; is the hyperbolic hyperplane intersecting
the interior of 7 which is midway to the hyperplanes H; and H;. More
precisely, if H; and H; intersect, then H;; is the hyperplane bisecting the
dihedral angle «;;. If H; and H; are ultra-parallel, then H;; is the hyper-
plane equidistant to H; and H;. If H; and H; are parallel, then H;; is the
hyperplane determined by horospherical bisector associated to H; and H;.

Let us define the vectors
bi = u; — w1, 1 <i<n. (4.11)
Then, by (4.7) and (4.10), we get that for all i € {1,--- ,n}
1061 = (w5 — wir1, i — wig1) = 2 — 2(ui, uir1) = 2 — 2giir1 > 0.

Now, we normalize and suppose that b; € S_1(1),i=1,...,n+ 1.
In view of (4.6), we deduce

Hbi = Hi,i+1> 1= 1, ceey T (412)

One notices that by, ..., b, are linearly independent. Hence, the intersection
n

L:=()H, (4.13)
i=1

is nonempty. In view of (4.12) and since O is a simplicial cone, £ is a line
in R+, In particular, each z € £ satisfies

0= <x1b1> = <$7ul> - <xaui+1>7 1<:< n,

and
0= <x7bn+1> = <l‘7un+1> = <ZE,'LL]_>.

Hence, for each x € L, one has

<$7ui> = <£L‘,Uj>, 1< Za] <n-+ 17 { 7& j7 (414)
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so that
L= () Hy (4.15)
1<i<j<n+1
In particular, any hyperplane of the form H;; is midway to the hyperplanes
H; and H;. Notice that this construction can be generalized as follows.

Lemma 4.2. Let H, and H, be two hyperplanes intersecting in H™, with
normal vectors u,v € S_1(1) and let « be the angle Z(H,, H,). For 8 €
[0, a], we set
_ _sm(fl =) wt S?HB ..

sin a sin «v
Then, the hyperplane H,, is the hyperplane such that Z(H,, H,) = ( and
Z(Hy,Hy) = a— .

Proof. Direct computations using trigonometric identities show that w &
S_1(1) and that (u, —w) = —cos(a — ) and (v, w) = — cos 5. O

In a similar way, one can prove the following corresponding result for ultra-
parallel hyperplanes.

Lemma 4.3. Let H, and H, be two hyperplanes not intersecting in H",
with normal vectors u,v € S_1(1) and let | be the distance d(H,, Hy,). For
' €0,1], we set

sinh(l — ') sinh I’
T sinhl T sinng
Then, the hyperplane H,, is the hyperplane such that d(Hy, Hy) = ' and
d(Hy,Hy) =1-1.

w =

Let us come back to the line L.

Lemma 4.4. The line L is hyperbolic (respectively parabolic, elliptic) if and
only if Z?;r:ll cof 4j(G) is strictly positive (respectively zero, strictly nega-
tive).

Proof. In order to facilitate notation, suppose that v1,...,v, are the ideal
vertices of T, such that, by (4.10),

cof 11(GQ) = ... = coqu(@) =0
cof 4(G)#0 foralli=qg+1,...,n+1

Let by, ...,b, € S(1) be the vectors given in (4.11). Then, any nonzero point
x € L satisfies the conditions

(,b;) =0, i=1,...,n. (4.16)
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Since the vectors vy, ..., vp41 form a basis of R**!, any nonzero z € £ can

be represented as
n+1

T = Z Aivi, A € R (4.17)
i=1
By (4.8) and (4.11), the n equations (z, b;) = 0 have the obvious solution
AIZ...:A(]:H%

| det(@)] , keR\ {0}
Ai =K |COfii(G)|, t=q+1,...n+1

For
L i=1,..,q

V] det(@)|

1 , (418
|C0f“(G)| i:q+1,...,n+1

i ==

one has for each x € £ nonzero

n+1

r=K Z i V. (4.19)
i=1

Then, one has for any x € £\ {0}

n+1

(x,r) = K> Z i g (vi, vj). (4.20)
ij=1

By (4.9) and (4.18) we obtain

i pj (i, vj) = —cofij(é) forallé,j=1,...,n+1,

that is
n+1
= —rK? Z cof ;(G), for all z € £\ {0}. (4.21)
t,j=1
Hence, £ is a hyperbolic (respectively parabolic, elliptic) line if and only if
Z?;r:ll cof ;(G) > 0 (respectively = 0, < 0). O

Definition 4.4. Let T be a total simplex. A tangent inball of T i is a ball
B (’T) C T NH"™ which is tangent to all the hyperplanes bounding 7.

Corollary 4.1. A total hyperbolic simplex T with Gram matriz G has a

tangent inball if and only if Z?;;ll cof ”(é) > 0.

Proof. Suppose that 7 has a tangent inball B(T). Since B(T) is tangent
to all hyperplanes Hy, ..., H,+1 bounding 7, the proof of Lemma 4.4 shows

that the line £ defined 1 1n (4 15) is hyperbolic, since it contains the center of
B(T). Therefore Z” , cof ZJ(G) > 0.
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Suppose that Z"H cof j; (G) > 0. Then, the line £ is hyperbolic. Hence, by

(4.14), the point b= LNH"is the center of B(T), and the radius r(B(T))
is given by d(b, H;) for any 1 < ¢ < n + 1. In particular, this radius is
finite. O
Remark 4.3. The Corollary can be completed as follows.
1. If Z:L;;ll cof ZJ(@) = 0, by a continuity argument, the ball B(T) is a
horoball tangent to the hyperplanes bounding T.

2. If Z?j:ll cof U(é) < 0, then any hyperbolic ball embedded in T is
tangent to at most n hyperplanes bounding ?, as the proof above

shows.

Remark 4.4. If 7 has ultra-ideal vertices, then the tangent inball B (7\‘) is
locally maximal in the following sense. Suppose that v; € Vy is an ultra-
ideal vertex of 7. Let s; € Isom(H™) be the reflection in the hyperplane
H,,. Then, for1<]<n+1 Jj # 1, onehassz(H) H;. Let b be the
center of B(T), and 7 its radius. Then, s;(B(T)) is contained in T NH,
and satisfies 77 = T(SZ(B('?'))) Let L be the geodesic line containing b and
sl(/l;) By moving sz(g) on L away from H,,, one can construct hyperbolic
balls contained in 7 and with arbitrarily large radii. On the other hand,
the radius of any ball centred at points belonging to the geodesic segment
[b, 5:(b)] is smaller than 7.

However, since we are interested in (polarly) truncated simplices, it is suffi-
cient to consider tangent inballs of total simplices (see Section 4.2.2 below).

In the sequel, if 7 has a tangent inball in H", we denote it by B=B (T)
and we call it the inball of T. Moreover, we call the radius 7 := r(B) the
inradius of T.

Example 4.1. For a < —1, the matrix
R 0

Ga)=[-3 1 a

1

is the Gram matrix of a total triangle 7 (a) of type (1,0) in R%!. Since
’ - 15

D cofij(Gla)) = — ( a® + 3a - =

ij=1

one deduces that 7 (a) has an inball B = B(a) in H2 if and only if —2 —/6 <
a < —1. In the limiting case ag = —3 — v/6, B(ao) is a horoball tangent to
the 3 sides of T (ag) (cf. Remark 4.3, 1.).
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Theorem 4.1. Let G = G(T) be the Gram matriz of a total simplex T with
inball B C H™. Then, the inradius 7 = r(B) is given by

— det(G)

i cof ;5(G)

~

7 = arsinh

(4.22)

Proof. As in the proof of the Corollary, let b= L£NH" be the center of B.
Then, by writing

as in (4.17), the condition

together with (4.21), leads to

@?fl cof i5(G)

Observe that T can always be moved such that the vectors v; satisfy [v;]n4+1 >
0, ensuring that [b],4+1 > 0 by (4.18). Then, (4.21) becomes

n+1
Zz 1 HiVi

\/Z?jll cof j5( )

(4.23)

Then, we have
7= d(b, H;) = arsinh |(b,u;)|, i =1,...,n + 1.

A direct and easy computation using (4.8), (4.14), (4.18) and (4.23) finishes
the proof. O

Remark. If p =0, then 7 = T is a compact simplex or a simplex of finite
volume with ¢ ideal vertices, 1 < ¢ < n -+ 1, whose inradius r = r(7) equals
7. In particular, for n = 2, we get the inradius formula for triangles given
by Beardon [2, Theorem 7.14.2].

Furthermore, by adapting the setting to the Euclidean case, we can get the
following analogous result for spherical simplices.

Remark. Let 7 C S™ be a spherical n-simplex with Gram matrix G.
Then, its inradius r = r(7) is given by

det(G
r = arcsin n+1e . (4.24)
Z’L J=1 COf Z] )
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If p=¢q =0, let C denote the circumball of T = 7A‘, with radius R := r(C).

Proposition 4.1. Let T C H™ be a compact hyperbolic simplex with Gram
matriz G. Then the circumradius R of T is given by

R = arcosh S det(G) . (4.25)
Yot i=19i /cof ii(G) cof j(G)

Proof. We follow a similar strategy as in the proof of the Theorem. Let
¢ € ‘H™ denote the center of C. Then, c satisfies the conditions

<vai>: (vaj>7 1<i<j<n+l1
le]? =—1 . (4.26)
[clpi1 >0

Since g, ..., upt1 is a basis of R"T1 we represent ¢ as
g eeey Un4 ’

n+1

Cc = E o;U;.
i=1

Then, a direct computation using (4.8) shows that the system of equations
(4.26) admits the unique solution

n+1 of ”(G)
o U 4.27
; ¢_ S Ly Gim \/cof u(G) \/cof ym (G) (4.27)

Since
R =d(c,v;) = arcosh |{c,v;)|, i=1,...,n+ 1,

the use of (4.8) and (4.27) allows us to finish the proof. O

As for the inradius, a proof similar to the one of Proposition 4.1 allows us
to deduce the following properties.

Remark. Let G be the Gram matrix of a compact hyperbolic n-simplex
T C H™. The entries and the cofactors of GG satisfy the condition

n+1

Z Gij \/COf u Cijj(G) < 0.

3,j=1

Remark. Let 7 C 8™ be a spherical n-simplex with Gram matrix G. Then
the circumradius R of T is given by

det
= arccos — ) (@) . (4.28)
2oii=1 91/ ol i (@) cof 35(G)
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4.2.2 The inball of a hyperbolic truncated simplex

Consider a total simplex T of type (p,q) with p > 1, with (tangent) inball
B in H". Then every ultra-ideal vertex v; comes with its polar hyperplane
H? which may intersect the inball B of T or not. The following result gives
a precise criterion.

Proposition 4.2. Let T be a total simplex of type (p, q), p > 1, with Gmm
matrix G such that T has an inball B C H". Let 7 be the radius of B.
Denote by T C H" its associated hyperbolic k-truncated simplex with respect
to the wultra-ideal vertices vi,...,vx € Vi of '?, 1 <k < p. Letr be the
inradius of T .
Then, r =7 if and only if
n+1 A
2j=1 fii(G) >1 foralli=1,..,k (4.29)
\/det ) cof 4i( )

Proof. Let b € H" be the center of B as in the proof of Theorem (see
Section 4.1). For i =1,..., k, we set

d; == d(b, H}).

Since v; € §(1) for ¢ € {1,...,k} as usual (see (4.3)), we can use (4.18) and
(4.23) to deduce that

n+1 ~
cof ;: (G
d; = arsinh 2= i(G) . (4.30)

\/Z?j;l , cof lm(G) —cof ZZ(@)

Then, by (4.22) and (4.30), we get that 7 < d; if and only if

n+1 ~
T cof ;i (G
2y=1 <ofi5(C) > 1. (4.31)

\/ det(G cof i )

If (4.31) holds for all i = 1, ..., k, then B is contained in ﬂ?zl (H})™ in such
a way that B is embedded in 7. This completes the proof. O

Suppose that, in the proof above, one has B ¢ (H})™ for at least one
i € {1,...,k}. Then, the inradius r = r(B) can - roughly - be determined as
follows.

First, observe that B must be tangent to at least n 4+ 1 of the hyperplanes
bounding 7. Next, fix a configuration w of n + 1 hyperplanes bounding 7.
The set w gives rise to a total simplex T, of type (pw, ¢w), with Gram matrix
é:,, say.

Suppose that ’7/'; has an inball [/3; in H", with center b; and radius 7,,. Let
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H be a hyperplane bounding 7 but not 7T, (in general, H does not coincide
with a polar hyperplane associated to 7). Then, B, is embedded in T if
and only if for each such H, one has

~

(b, H) = 7.
This condition can be checked by using the corresponding expressions (4.23)
and (4.18) for G, (or by using (4.31) if H coincides with a polar hyperplane
for ’7';)
Let © be the set of all configurations w of n + 1 hyperplanes bounding T,
and, motivated by the Corollary, define

n+1
Qp={weQ| ) cofij(Gy) >0, CQ

ij=1

n+k+1

By the above, one sees that 1 < card 24 < <
n+1

). In this way, the

inradius r of T is given by

r = max {ﬁ; ‘ é; is embedded in T} )

wEQ+

4.2.3 Inradius monotonicity

In the sequel, we investigate the behavior of the inradius » = r(7T) of a
spherical or hyperbolic simplex 7 with respect to a dihedral angle variation.
To this end, we adapt the idea of Vinberg in the proof of Schléfli’s differen-
tial formula for the volume of a non-Euclidean convex polyhedron (see [65,
pp.119-120]). More concretely, let X™ = S™ or H", and let

n+1
T=()H car

=1

be a simplex as usual. Consider the simplicial cone

K= ﬁ H~
i=1

in X”. For X" = S" (respectively H"), the volume of 7 = K N H. , is
a strictly increasing (respectively decreasing) function with respect to the

dihedral angle
a:=/L(Hp, Hpt1).

More precisely, there is an infinitesimal displacement of H, 1 into a hyper-
plane H}, _; such that the intersection

T’:lCﬂ( 7/1+1)_
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is a simplex having the same dihedral angles as 7 except for
o =a+da > a,

and such that

(4.32)

TCcT ifXxX*"=8§"
T cT ifXx"=Hn -

By convexity, we deduce from (4.32) that the inradius r = r(«) of a spher-
ical (respectively finite volume hyperbolic) simplex 7T is strictly increasing
(respectively decreasing). Therefore we have proven the following result.

Proposition 4.3. Let T C S™ (respectively H™) be a spherical (respectively
compact or ideal hyperbolic) simplex. Then, the inradius r of T is a strictly
increasing (respectively decreasing) function with respect to each dihedral

angle of T .

Notice that, by continuity, Proposition 4.3 remains valid for hyperbolic k-
truncated simplices.

4.3 Applications

4.3.1 Some explicit values

Hyperbolic (truncated) simplices are not only distinguished by their particu-
larly nice combinatorial structure, but appear also as fundamental polyhedra
of hyperbolic orbifolds and manifolds of small characteristic invariants such
as volume. More specifically, such orbifolds are often quotient spaces of
hyperbolic space by arithmetic discrete reflection groups related to (trun-
cated) Coxeter simplices. A famous example is Siegel’s orbifold of minimal
area /42 which is related to the [3, 7]-triangle group defined over the field
Q(2 cos(m/7)) (cf. [55]). For details concerning volumes of arithmetic hy-
perbolic orbifolds, see for example [4, Section 2]. A good survey about
hyperbolic orbifolds of small volume is [36].

It is an interesting fact that the total simplices given in Section 4.1.1 have
(tangent) inballs, which, by criterion (4.29), coincide with the inballs of the
corresponding hyperbolic truncated simplices.

Each Coxeter polyhedron P C H" yields a tessellation by the action of
the associated Coxeter group. Therefore, the inball B of P gives rise to an
infinite ball packing whose local density (see [10]) is defined by

voly, (B)

5(P) = vl (P) < 1, (4.33)
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where the volume of B is given by

uozn(rs):s?j) /0 sinh™1(¢) dt.

2

By (4.33), we notice that small volume hyperbolic Coxeter polyhedra are
closely related to ball packings of large local density (see [56], for example).
Observe that the Coxeter polyhedra given in Section 4.1.1, (5)—(6)—(7), are
known to give rise to hyperbolic orbifolds of very small volume (see [36]). In
the sequel, we shall apply Theorem 4.1 (see Section 4.2.2) to these polyhedra
in order to provide a list of geometric quantities including volume, inradius,
and local density.

Consider the graphs I';, which describe Coxeter (truncated) simplices 7, C
H", n = 2,...,8,17, as explained in Section 4.1.1, (5) — (6) — (7). Write
vp, = 0ol (Ty), T = 7(Tpn) and 6, = §(Tp).

Table 4.1 lists the graphs I';, and their volumes v,, n = 2,...,8,17. In this
table, kq is the field Q(v/5), while lg is the number field Q[z]/(z* —23+32—1).
Furthermore, ( is the Dedekind zeta function associated to the field k, and
Ly, = G/ is the L-function corresponding to a quadratic extension [/k.
Notice that the volume of the Coxeter truncated simplex with graph I'7 is
still unknown !

’ n H L'y ‘ Un, ‘
7 I~ 7.480 - 1072
3 o oo 2592 (,0(2) =~ 3.905 - 102
4 T s~ 9.139 - 1074
O G (2)Cro (4) Liy 1 (3)
5 5 (2m)15 Sko ko lo/ko
*—0—0—0—0—0--0O
~7.673 - 1074

6773 3
’ Tosoooo = 1.924 - 10
! ?
5 5
2418774 s
ST | arisonom < 4122010
6913617
° 238.310.511.72.11.13-17 ¢(9)
" I ! ~ 2.072 - 10718

Table 4.1: Graphs and volumes of the Coxeter (truncated) n-simplices T,
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Table 4.2 collects the ezact values of sinh? r,, as well as approximative values
for r, and for d,. By the (non-)truncation criterion (4.29), the inradii r,
could be obtained directly from formula (4.22).

’ n H sinh? 7, ‘ Tn ‘ Op =~

9 —461+324c§sé§1+240cos2; 1.044 - 101 4585 - 101
3 =17419V5 1.158-107" | 1,670 - 107!
4 =245 5.268-107% | 4161 . 102
5 =57743455 6.382-1072 | 7978 . 103
6 —4T437/5 8.768-107% | 1927 . 1073
7 %ﬁf 1.087-107! 2

8 =B8465/5 7.007-107% | 5747 . 1077
17 o0 2.839-107% | 3455 . 10-10

Table 4.2: Inradii and local densities of the Coxeter (truncated) simplices 7y,

4.3.2 Extremal fundamental polygons

For the end of this chapter, we focus on the 2-dimensional case and polygons
tessellating the plane H2. In particular, we give an alternative proof of the
following celebrated result of Siegel.

Theorem 4.2 (Siegel [55]). Let H C Isom(H?) be a discrete group, and let
[3,7] be the Coxeter group generated by the reflections in the sides of the
triangle with angles 5, § and %. Then, covol(H) > 5 = covol([3,7]), with
equality if and only if H is conjugated to [3,7] in Isom(H?).

Our approach is based on Poincaré’s description of periodic tessellations of
H?2 resulting from a discrete group action. In particular, we will study an-
gular conditions for fundamental polygons tessellating the hyperbolic plane.
This approach will allow us to determine the minimal area hyperbolic fun-
damental N-gons, 3 < N < 6, and to show that the Coxeter triangle [3,7]
has the minimal inradius amongst all hyperbolic fundamental triangles.

Alternative proof of Siegel’s Theorem

We follow ideas developed by Poincaré [49] (see also [43]) in order to deter-
mine conditions for a polygon to be the fundamental domain of a discrete
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group H < Isom(#?). For N > 3, let P C H2 be a finite area N-gon tessel-
lating H2, with vertices vy, ...,vx and corresponding angles oy, ..., an. Let
ai,...,an be the sides of P such that a; connects the vertices v; and v;41,
i=1,...,N —1, and ay connects vy and vy.

The plane H2 is tessellated by copies of P through (isometric) identifica-
tions of the sides of P (any side is identified either with itself, or with a
unique other side). This induces a partition of the set of vertices of P into
cycles of identified vertices, and therefore a partition of the set {1,..., N} of
indices into subsets Ji,...,J,, r > 1. We also get a partition of the set of
angles into cycles of angles around any vertex in the tessellation. Since the
angles around each vertex sum up to 2, this leads us to the so-called angle
conditions

2
Z aj; = l, k=1,..,r, for integers m; € N*. (4.34)
‘ mg
J€Jk
For any angle cycle C, = C(Jg), let

1 2
= —
S FARTA
be the mean angle associated to the cycle Cx. Since «; € [0,7] for i =
1,...,N, (4.34) implies the following :

If |Jg| = 1, then my > 3, and g

IN

If |Jg| = 2, then my > 2, and ug

IN

[ ]
IA
\;D W Ny

If | Jg| = 3, then my > 1, and

27
3

°
IN

If | Jg| > 4, then my > 1, and <

<~

Hence, since the Ji’s form a partition of {1,..., N}, one can write

kl

. " or 2m
ZM'UHSZ;'UJJZKJ\R (4.35)
k=1 k=1

Moreover, the area of P is given by (see Theorem 2.12)
N
area(P) = (N — 2)m — Z Q.
i=1

By (4.34) and (4.35), one has the following bound :

r

N T
doai=> Y ;= |l S%WN,
=1

k=1jeJ; k=1
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which implies

area(P) > (N —2)m — %N = E(N —6).

In particular, for N > 7, one has area(P) > § > 5 = area([3,7]). Hence, it
remains to consider the cases N = 3,4,5,6, for which we will need to look
more closely at the nature of the identifications of the sides of P. Observe
that a side of a polygon can be identified with itself only by a reflection in
the line containing it, or by a rotation of angle m around its midpoint (see
Figure 4.2).

Figure 4.2

We start with N = 3, i.e. P is a triangle tessellating 72. Then, one has
only 2 possible configurations :

(1) Each side a; of P is identified with itself by an isometry h; € Isom(H?),
1 =1,2,3. Each h; is either a reflection in the line containing a;, or a ro-
tation of angle 7 around the midpoint of a;. Then, one has 4 possibilities
for the nature of hy, ho and hg :

(i)

(if)

(iii)

The isometries hi,ho and hs are rotations. Then, the vertices
v1, v2 and vz are mutually identified, so that the angles a1, s
and a3 belong to the same cycle. Hence, the corresponding angle
condition (4.34) is of the form oy + as + az = 2%, m > 1.

m?
There is 1 reflection, say h;. As in (i), the angles of P belong
to the same cycle, and the corresponding angle condition is of the
27

form 2a1+2a2+2agzm,m2 1, i.e. a1+a2+a3:%,m2 1.

There are 2 reflections, say ho and hs. Then, the vertices v; and v
are mutually identified, while the vertex vs is identified only with
itself. The angles of P split into two cycles, say C; = {a1,as} and
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Co = {as}. The corresponding angle conditions are of the form

o F+ag =, a3=-,mp > 1, mg > 2.

(iv) The isometries hi, hy and hs are reflections. Then, the vertices of
P are identified only with themselves, so that we have the 3 angle
cycles C; = {a;}, i = 1,2,3. The corresponding angle conditions

are of the form oy = mil, g = mlz, a3 = mis, mi, Mo, m3 > 2.

(2) The triangle P has at least two isometric sides, say a; and a3, which are
identified with each other by the isometries hi and hg = hfl (such that
hi(vi) = vy or hi(v1) = v3). The remaining side ay is identified with
itself by hs € Isom(H?), where hy is either a reflection or a rotation as
in (1). Then, one has ay = ag. There are again 4 cases :

(i) One has hi(v1) = v1 and hg is a rotation. Then, the corresponding

angle conditions are of the form oy = 727’;, a9 = g = mLQ, my > 3,
mo > 2.

(ii) One has hj(vi) = v; and hg is a reflection. Then, the corresponding
angle conditions are of the form a; = %, g = (g = ﬁ, my > 3,
mo > 2.

(iii) One has hi(v1) = v3 and hg is a rotation. Then, the corresponding
angle condition is of the form a; + ag + az = %’T, m > 1.

(iv) One has hq(v1) = vz and hsg is a reflection. Then, the corresponding
angle condition is of the form a; +as +az3 =7, m > 1.

The above conditions combined with a; 4+ as+ a3 < 7 lead to a lower bound
on area(P) in each case.

As an example, consider the case (1)(iv). There, we have to minimize the
expression T — (mi1 + mlz + mig) with respect to mq, mg, mg > 2. Suppose
without loss of generality that we have 2 < my < mg < mg. If m; > 4, then
() > 5 lfmy =3, then m— (-4, 4+ ,0) > - (5+7) =
75 Finally, if mq = 2, then 7 — (- + ;- +7-) > 5 — (5 +7) = 13- Hence,
™ — (mi1 + 05t mlg) is minimal if and only if m, = 2, ms = 3 and m3 =7,
which is the unique possibility for this case.

Table 4.3 summarizes the minimal area which can be obtained for any of

the configurations described above.

(4)

(i)

(i)

(iv)

(1)

/3

/2

/6

/42

(2)

w/21

/6

/2

/2

Table 4.3: Minimal values of area(P) if P is a fundamental triangle

Hence, the minimal possible triangle area is 75. It is realized by a triangle A
with sides identifications described in case (1)(iv). This corresponds to the
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Coxeter triangle of angles 7, %, 7. Since, in this case, the side identifications
h1, ho and hg are reflections in the sides of /A, we deduce that the associated
discrete group H is conjugate to the Coxeter group [3,7] in Isom(H?2).

The same procedure can be performed for N = 4,5,6. For N = 4, it turns
out that the area minimizer is the quadrilateral Q obtained by doubling the
Coxeter triangle A along its long side. The corresponding discrete group
H < Isom(H?) is the index 2 rotational subgroup of the Coxeter group [3, 7).
Hence, if P is a fundamental quadrilateral, then area(?) > 47, with equality
if and only if P is isometric to Q.

Let us consider the case N =5, i.e. P is a pentagon with vertices v, ..., vs,
sides a1, ..., a5 and angles aq, ..., as. The case distinction can be summarized
as follows.

(1) Each side of P is identified with itself.

(2) One pair of sides of P consists in mutually identified sides, and each
remaining side is identified with itself. This case splits in the 2 following
cases.

(i) The mutually identified sides are adjacent.

(ii) The mutually identified sides are not adjacent.

(3) Two pairs of sides of P consist in mutually identified sides, and the
remaining side is identified with itself. This case splits in the 3 following
cases.

(i) The pairs of mutually identified sides are mutually adjacent.

(ii) One pair of mutually identified sides consists in adjacent sides, the
other one consists in non-adjacent sides.

(iii) Both pairs of mutually identified sides consist in non-adjacent
sides.

Each of the above cases splits further in sub-cases corresponding to the
different possible natures of the side identifications hq, ..., hs. As an illus-
tration, we explicit the procedure for the case (3)(7). Suppose that amongst
the sides of the pentagon P, the sides a; and as are mutually identified by
an isometry hy € Isom(#?), the sides a3 and a4 are mutually identified by
an isometry hz € Isom(H?2), and the side aj is identified with itself by an
isometry hs € Isom(H?). Then, we have 6 possibilities depending on the
nature of hy, hg and hs (the case where hi(ve) # vy and hs(vy) = vy is
similar to the case where hq(ve) = vy and hg(vg) # v4) :

(a) If hi(v2) = va, ha(vs) = vg and hs is a reflection, then the angular

conditions are given by a; + a3 + as = mil, my > 1, ag = %7 mo > 3,

and 044:7%, mg > 3.
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(b) If hi(va) = va, h3(vs) = v4 and hs is not a reflection, then the angular
conditions are given by a3 + a3z + as = 7277;7 mi1 > 1, ay = 7277;7 mo > 3,
and ay = %, mg > 3.

(c) If hi(va) = wva, h3(va) # v4 and hs is a reflection, then the angular

conditions are given by a1 + a3 + a4 + a5 = mil, mi > 1, ap = %,
mo Z 3.

(d) If hy(va) = va, h3(vs) # vq and hs is not a reflection, then the angular
conditions are given by a1 + a3 + a4 + a5 = 377;, mi > 1, ap = %7
mo Z 3.

(e) If hi(va) # wva, hs(vs) # vs and hs is a reflection, then the angular
condition is given by a1 + as + ag + aq4 + a5 = mil, my > 1.

(f) If hi(vg) # va, h3(vg) # v4 and hs is not a reflection, then the angular

condition is given by a1 + ao + a3 + aq4 + a5 = 31—7;, m1 > 1.

Since P is a pentagon, we have area(P) = 37— (a1 +a2+as+as+as). As for
the triangular case, the angular conditions and o + o + as + ag + a5 < 3w
allow us to determine the minimal possible area for each of the cases (a)—(f).
For example, in case (b), the minimal area is reached for m; = 1, mg = 3
and m3 =7 (or mg = 7 and m3 = 3). The corresponding minimal values of
area(P) are given in Table 4.4.

(a) (b) (©) (d) (¢) (f)
27/3 /21 4 /3 /3 27 ™

Table 4.4: Minimal values of area(P) for the configurations (a) — (f)

Hence, the minimal possible area in case (3)(7) is 57 and is realizable only
in the configuration (b) above. By following the same strategy, one can
determine the minimal values of area(P) in all cases (1) — (2) — (3) above.
They are listed in Table 4.5.

(1) 2)(@) | (2)Gi) | 3)(E) | (3)Gd) | (3)(dit)
/2 /3 /3 /21 /3 /3

Table 4.5: Minimal values of area(P) for P a fundamental pentagon

Hence, the fundamental pentagon with minimal area is a pentagon II with
angles a1, 27/3, as, 27/7 and a5 satisfying oy + a3 + a5 = 2w. Moreover,
the sides of II are identified as follows : a; is identified with ao by a rotation
p1 of angle 27 /3 around vy, as is identified with a4 by a rotation py of angle
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27 /7 around vy, and ajz is identified with itself by a rotation ps of angle 7
around its midpoint. By Poincaré’s Fundamental Polyhedron Theorem (see
[43] for example), the corresponding discrete group H < Isom(H?) is given
by

Hy = (r1,72,m3| pi = p = p3 = p1p2ps) -

From the relations p3 = pi1p2ps = 1 one deduces pips = p3. Hence,
Hp = <p1,p2 | pl = p3 = (p1p2)? = 1>, i.e. Hy is isomorphic to the index
2 rotational subgroup of the Coxeter groups [3,7]. In particular, the fun-
damental quadrilateral and the fundamental pentagon of minimal area are
fundamental polygons of the same group.

For N = 6, the same procedure leads to the bound area(P) > &, with equal-
ity if and only if P is the hexagon © with angles oy, 27/3, as, 27/3, as,
/2 (in the given order), satisfying a1 + ag + a5 = 27. Moreover, the sides
of © are identified as follows : a; is identified with as by a rotation of angle
27 /3 around vg, ag is identified with a4 by a rotation of angle 27/3 around
vg, and as is identified with ag by a rotation of angle /2 around wvg.

Finally, one deduces that if P is a fundamental polygon for a discrete sub-
group of Isom(#?), then area(P) > %, with equality if and only if P is the
Coxeter triangle [3,7].

Remark 4.5. This proof, based on Poincaré’s ideas, reveals the minimal
area of a fundamental N-gon for fixed N, 3 < N < 6 and the corresponding
discrete subgroups of Isom(#H?). The method can be extended for N > 7,
but the case-by-case analysis becomes heavier as N grows.

Let us summarize some byproducts of the above proof.

Corollary 4.2. For N > 3, let P C H2 be a fundamental N-gon for a
discrete subgroup of Isom(H?2). Then

area(P) > —(N — 6).

Corollary 4.3. The fundamental quadrilateral and the fundamental pen-
tagon in H? with minimal area are fundamental polygons for the same group :
[3,7]T, the index 2 rotational subgroup of [3,7], of coarea w/21.

Corollary 4.4. The fundamental hezagon in H2 with minimal area is a

fundamental polygon for the group H = {p1, pa, p3| p} = p = p3 = p1paps)
of coarea /6.
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Fundamental triangles of minimal inradius

We end this chapter by proving the following result.

Proposition 4.4. Let T C H2 be a fundamental triangle of some cofinite
discrete group H < Isom(H?) and let v(T) be the inradius of T. Then,

o —3/4 + cos?(m/T)
r(T) > ro := arsinh \/15/4 T 3cos(n/7) — cos2(r/7)

~ 0.10443,

with equality if and only if T is isometric to the Cozeter triangle [3,7].

Proof. Let T be a fundamental triangle with angles «, 3,7 > 0, a+5+7v < 7.
By the above proof of Siegel’s Theorem, «, 8 and v must satisfy one of the
following conditions :

a+B4+y=2 k>3

(1)
(2)
B) a+p=7%,k>2andy=7,1>2.
(4) a:f k>3, and f=v=3,1>2.
(

5) a=1,k>2,8=7,1>2,andy= ", m > 2.

Let r(7T) = r(a, B,7) be the inradius of 7 (see (4.22)). We consider succes-
sively each of the cases (1) — (5).

Ad (1) : We assume without loss of generality that o > 8 > ~.

Suppose first that k£ > 5, ie. ifa+ 5+ < %’T Then, one has v < T (since
otherwise one would have o + B +v > 37” > %’r), B < § (since otherwise one
would have a+B+v > 2% > 2) ‘and o <  (since otherwise we would have
at+fB+y> 5> %”) Hence by inradius monotonicity (see Proposition 4.3),
one has r(«, 5,7) > 7.

Next, suppose that k = 4,i.e. a++v=7F. Then, § <a<5,0<8< 7
and 0 < v < Z. If v < I, then a similar argument as above leads to

6 7
r(a, B,7) > ro. Moreover, we observe that r(§, &, §) > 70, so that we can

suppose 7 <7y < g. Hence, one must have § < gg and a < 3“ . By inradius

monotonicity, one deduces that r(c, 3,7) > r(3%, 5T T) > ro

14> 2877
Finally, suppose that k = 3, i.e. a+ 8+ = 2% Ifao>7Z then 3 <X
and v < 5. Inradius monotonicity and a direct computatlon show that

r(a, B,7) > T( 35 61 13) > To- It remains to consider the case a < 5. We
have S , so that if v < T, then r(a, 3,) > ro by inradius monotonicity.
Hence, we Suppose V> 7 Then, we have the following bounds for «, 5,7 :
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8 __ 2 11w __ 1,2 2T __ 2 :
o< F =22 < U = J(F—F), andy < ¥ = L2 Turadius mono-

1
-3
tonicity and a direct computation show that r(« ﬂ v) > (3T, Ux, %”) > ryg.

Hence, if a+ 5+~ = 2,?, k > 3, then r(«, 8,7) > ro.
Ad (2) : This is case (1) for k =2[, k > 4.

Ad (3) : First, suppose that a + 8 = 7, ie. 8= § —a. Then, v < 3,
r(a, B,7v) = r(a,7), and (4.22) shows that sinhr?(a, v) = f(a,7), with

— cosy(cosy + sin 2«)
—3 4 cos? a — 2cosy + (cosy —sina)? — 2sina — 2cosa(l + cos B + sina)

f(Oé,’Y) =

The partial derivative 8 f (v, 7y) equals

_ siny(1 + sin o + cos )?(1 + 2sin 2a¢ + 4 cos ¥ + cos 27)
2(—=3 4 cos? o — 2cosy + (cosy —sina)? — 2sina — 2cos a(l + cos B + sina))?’

and its sign is the same as the sign of the function
v(a,v) := —siny(1 4 sina + cos a)?(1 + 2sin 2a + 4 cosy + cos 27).

Since 0 < 2a < wand 0 < vy < %, one sees that v(«a,v) < 0, so that f(a,~) is
strictly decreasing as a function of v, i.e. f(a, §) < f(a, ) for all v € [0, Z[.
One has

1+ 2sin 2«

)= flo) = 11+ 12sina + 4cosa(3 + 2sina)’

flag

Observe that f(§ — a) = f(a) for all a € [0, §], so that it is sufficient to
study f(«) for o € [0, 7]. Furthermore,

12(2 cos o + 3 cos 2ax + cos 3o — 2 sin av + sin 3av)
(11 + 12sina + 4 cos a(3 + 2 sin a) )?

flla) =

For all a € [0, §], one has 2cosa — 2sina > 0, cos3a + sin3a > 0, and

3cos2a > 0, so that f/'(a) > 0 for all a € [0, ], with equality if and only if
o = 7. Hence, the function f is strictly increasing in « for o € [0, %], has a

maximum in a = 7, and is strictly decreasing for a € [%, %]
As a consequence, one has f(a,v) > f(0, %) = f(5, 5). Hence, (o, 8,7) >
r(0,%, %), so that r(a, 8,7) >roifa+8=Fandy= 7,1 > 3.

™

Now, suppose that o + 8 < §. By inradius monotonicity, (a,3,75) <
r(ca, B3,7) for all v €]0, §]. Moreover, a procedure similar to the procedure
used in the case a + = § shows that 7(a, 8, §) is minimal for o = § and
B =0 (or vice-versa), so that r(a, 8,5) > (5,0, 5). Hence, r(a, 8,7) > 70

ifat+pB=7,k>3,andy=7,1>2.
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Ad (4) : Ifoz—Q—7r k>3 and g =v= 3,1 >2, then r(a,8,7) = r(a, B),

is given by
\/ cos « + cos 23
r(a, B) = arsinh

3—cosa+4cosf

Let f(a, B) = sinhr?(a, B). Then,

0 — cos® g sin «v
%f(a,ﬁ) - (3 —cosa +4cosB)?

In particular, for any § €]0, 7], the function f(a, ) is strictly decreasing
with respect to a. Hence, f(%’r,ﬁ) < f(a, B) for all a €]0, %’r], B €]0, .
Since a4 25 < 7, we have the following cases :

e Suppose that @« = <F and § = 2%, k > 4. Then inradius monotonicity
and a direct computatlon yield 7'( ,B) > r(zgr 1 5) > To-

e Suppose that « = § and 8 = %. Then, a direct computation shows

that r(5,§) > 7o

e Suppose that @ < 2% and 8 = T. Then, the above discussion, inradius
monotonicity and a dlrect computation show r(a, 8) > 7"(25r ,4) > To.

Hence,ifa:%”,k:z‘?)andﬁzv—;rl,l>2 then r(a, 8,7) > ro.

Ad (5) : Suppose that a = 7, 8 =T, v= 7, k,l,m >2, a+ B+vy <.
Write r(k,l,m) = (% ©> 7, ), and suppose without loss of generality that
a>p>vie kE<Il<m.

First, if K > 2, 1 > 3 and m > 7, then inradius monotonicity implies that
r(k,l,m) > rg, with equality if and only if k =2, 1 =3, m =T7.

Next, let D C N3 be the set of triples (k,I,m) such that 2 < k<1 <m <7
and % + % + % < 1. Then, one has

D = {(2,4,5),(2,4,6),(2,5,5), (2,5,6), (2,6,6), (3,3,4), (3,3,5), (3,3,6),
(3,4, 4),(3 N ,5),(3,4,6),(3,5,5), (3,5,6), (3,6,6), (4,4,4), (4,4,5),
(4,4,6), (4,5,5), (4,5,6), (4,6,6), (5,5,5), (5,5,6), (5,6, 6), (6,6,6)}.

)

Direct computations using (4.22) show that for any triple (k,l, m) € D, one
has r(k,l,m) > rg.

As a consequence of the above case distinction, one sees that r(a, 8,7) > ro
for all angles «, /3, satisfying one of the conditions (1) — (5), with equality
s

only if « = §, 8 = § and v = 7 in the setting of case (5), i.e. the triangle
T is the fundamental triangle of the Coxeter group [3,7]. O
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Chapter 5

Commensurability of
hyperbolic Coxeter pyramids

This chapter is based on a joint work with Rafael Guglielmetti and Ruth
Kellerhals [24].

As mentioned in Section 2.3.3, the commensurability classes (in the wide
sense) of hyperbolic Coxeter simplex groups (of rank n+1) have already been
determined [31]. In this section, we determine commensurability classes (in
the wide sense) of hyperbolic Coxeter pyramid groups (of rank n+2). Recall
that their associated Coxeter polyhedron is bounded by n + 2 hyperplanes
in H", it is noncompact, and it has the combinatorial type of a pyramid
over the product of two simplices of positive dimensions (see Definition 2.20
and Remark 2.4). In the sequel, commensurability will always be meant in
the wide sense.

5.1 Methods

In this section, we present the different methods which we are going to use.
For brevity, we do not give all details of the proofs, but we always indicate
at least one corresponding reference. We illustrate each method with one
or several examples. Notice that these methods are general, in the sense
that they can be applied to many other cofinite noncocompact hyperbolic
Coxeter groups of arbitrary rank N > n + 1.

5.1.1 General tools
Subgroup relations

Any two groups G, Go such that G; < G5 with finite index are commensu-
rable. Hence, looking for subgroups relations is a natural first step towards
classification. Finite index Coxeter subgroups of Coxeter groups are not easy

66



to detect in general. There are, however, some results about Coxeter sub-
groups of abstract Coxeter groups (see [12, 28], for example). The following
specific property will be useful in the sequel.

Theorem 5.1 (Maxwell [44]). Let W be a Coxeter group with set of gener-
ators S and whose graph I' is a union I't Uy such that

(1) Ty ={s1,...,s1-1}, L <|S], is of type Aj—1, 1 > 2.

(2) There is exactly one edge between the vertices s;—1 of I'1 and s; of T'a,
and there is no other edge connecting I'1 and I's.

(8) The weight m(s;_1,s;) is an even number, say 2M > 4.

Let S’ be the set obtained from S by replacing si by

/
Sk = SkSk+1---81-18181—1---Sk+15k,

for some k such that 1 <k <1[-—1.

Let T} be the graph obtained from T'y by replacing sy with s}, and joining
sp, to sp—1 (if k > 1) with an edge of weight 2M, and to s; with an edge of
weight M (if M > 2), and let I' =T, UTy be such that any vertex s of T'y
joined to s; with an edge of weight m(s, s;) is also joined to s) with an edge
of the same weight.

Then, the group W' generated by S’ is a Cozeter subgroup of W of index <Il€> .

Example 5.1. We show that the parabolic Coxeter group E; is a subgroup
of index 3 in the parabolic Coxeter group Fy. Let {si,...,s5} be a set of
generators of I according to the following graph :

4

r—————— 00— 0
S1 52 53 S4 S5

We are in the setting of Theorem 5.1 for [ = 3 and p = 2. By choosing
k = 1, we can replace s; by 3’1 = $159535251. Then, by Theorem 5.1, we
have m(s], s2) = 2, m(s),s3) = 2, m(s],s4) = 3 and m(s), s5) = 2 so that
the Coxeter group generated by {s, sa, s3, sS4, S5} is represented by the graph

4

s

It is isomorphic to /BZ, and, by Theorem 5.1, it is a subgroup of index 3 in
F,. Notice that choosing k = 2 yields the same outcome.
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Remark 5.1. Maxwell [44, Theorem 3.2] proved a similar result for the
case where the unique edge between the two components of the graph of W
is of the form 3M, M > 2.

The following geometric approach is very direct. Let P, P, C H" be two
hyperbolic Coxeter polyhedra with corresponding Coxeter groups Wi, Wa <
Isom(#H"™). If Py can be dissected into a finite number of isometric copies of
Ps, then W7 is isomorphic to a finite index subgroup of Ws.

Example 5.2. Let P C H" be a hyperbolic Coxeter polyhedron whose
graph I' =Ty U A is given by

Here, the vertex 5 of the subgraph I'y is connected to the subgraph A with
a unique edge of weight m > 3. For ¢ = 1,...,5, let H; be the hyperplane
corresponding to the vertex i of I'x, and let w; € Si(1) be the normal
vector to H; pointing outside of P. Let Hj > be the hyperplane bisecting the
dihedral angle between H; and Hp, with normal vector u; 2 € Si(1) given
by ui o = %(ug — u1) (see also Section 4.2.1). The products (u12,u;)—1,
i=1,...,5, can be directly computed by using the weights in I'y. It follows
that the polyhedron P can be dissected into two copies of the polyhedron
P’ whose graph I = T' U A is given by

Here, the subgraph I' . is connected to the subgraph A by a unique edge of
the same weight m as for P. In particular, if W and W’ are the Coxeter
groups with graphs I and I" respectively, then W is an index 2 subgroup of
w’.

Translational length

In certain cases, non-commensurability can be detected with the help of
geometric arguments. We start with the following general fact, which is
proved in [24].

Proposition 5.1. Let W = [p1, ..., pn, 0] < Isom(H"), p1 = 0o if n = 3,
be a Cozeter group with fundamental polyhedron P C H™ (P is a truncated
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orthoscheme which is combinatorially a pyramid over the product of two
Euclidean orthoschemes). Denote by q € OH™ the apex of P. Then, the
stabilizer Wy < Isom(E"~1) of ¢ contains a translation of translational length

_ o
lq —QCospn.

Definition 5.1. Let 7 C R"! be a hyperbolic total simplex (see Sec-
tion 4.1). The Coxeter group W < Isom(#H") generated by the reflections
in the facets of T is called a Cozeter total simplex group.

Remark 5.2. (1) If T=Tisa hyperbolic Coxeter simplex, then the group
W =W is a Coxeter simplex group as usual (see [30]).

(2) If T gives rise to a hyperbolic 1-truncated simplex 7 which is a hyper-
bolic Coxeter pyramid, then the Coxeter group W associated to T is a
Coxeter pyramid group.

with the help of Proposition 5.1, we can deduce the following result, which
is proved in [24, Proposition 1].

Propositio/n\5.2. /Iiet W C Isgr\n(?-[") be a Cozxeter pyfgmid group. Suppose
that W = Wl *Q) Wz, where Wl = [pl,...,pn_l,Q1], W2 = [pl,...,pn_1,QQ]
and Q = [p1, ..., pn—1], with p1 = oo if n = 3. Let Wi = [p1, ..., Pn—1,q1,
and Wo = [p1, ..., Pn—1, q2, 00| be the Coxeter pyramid groups associated to
the Coxeter total simplex groups I/I//\l and I/I//\g Suppose furthermore that the
associated orbifold H™ /W has only one cusp. Then, the following dichotomy
holds.

(1) If 1 = qa2, then W is a subgroup of index 2 in Wy = Wh.
(2) If ¢1 # q2, then W is not commensurable to both Wy and Wi.

Example 5.3. Consider the graphs I'1 and I's given by

5)
F1:06—0—0—05—0—o F2206—0—0—<I

and let W7 and Wy be the corresponding Coxeter pyramid groups. Both
associated polyhedra are noncompact pyramids in H4 with 6 facets and a
single ideal vertex. We are in the setting of Proposition 5.2, since Wy =
Wy *xq W3, with W3 = [6, 3,3, 3, 00] and Q = [6, 3, 3]. Hence, W7 and Wy are

incommensurable in Isom(H?).

A more general setting is when the gluing of two (not necessarily isometric)
Coxeter polyhedra along a common Coxeter facet yields again a Coxeter
polyhedron (see [66]).
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Definition 5.2. Let P, P, C H" be two Coxeter polyhedra having a com-
mon isometric Coxeter facet F, and let Wi, Wy < Isom(H") and Q <
Isom(H"~!) be the corresponding Coxeter groups. Furthermore, suppose
that the gluing P of P; and P along F' is again a Coxeter polyhedron. For
1 =1, 2, denote by I7V\ the Coxeter group obtained from W; by removing the
generator corresponding to the hyperplane containing F'. Then, the Coxeter
group W associated to P is the free product W1 *0) Wg < Isom(H") of W1
and W2 amalgamated over their subgroup Q. It is called the (Gromov -
Piatetski-Shapiro) mizture of W1 and Wa.

The following result will be applied to this situation.

Theorem 5.2 (Karrass-Solitar [33]). Let G1 and G be two groups contain-
ing a subgroup @ < G1,G2. Let G = Gy xq G2 be the free product of G
and Go amalgamated over Q. Let H < G be a finitely generated subgroup
containing a normal subgroup N <1 G such that N £ Q. Then H 1is of finite
index in G if and only if the intersection of Q) with each conjugate of H is
of finite index in €.

Example 5.4. Consider the graphs I'; and I'y given by

4 4
F1:0—0—0—0<4 4 | F2:0—0—0—0<6 |

and let W7 and Ws be the corresponding Coxeter groups. One has Wy, Wy <
Isom(H*), and by Section 2.3.4, W; and W, are non-arithmetic. Alge-
braically, W7 is the free product of the Coxeter total simplex groups I/I//fl =
[4,4,3,4] and W;z = [4,4,3,3] amalgamated over the common Coxeter
subgroup Q; := [4,4,3]. Slmllarly, the group Ws is the free product of the
Coxeter total simplex groups WQ 1:=1[6,3,3,4] and WQ 2 := 16,3, 3, 3] amal-
gamated over the common Coxeter subgroup €2 := [6, 3, 3].

Suppose that W7 and Wy are commensurable, i.e. there exists an isometry
v € Isom(#H*) such that the intersection K := Wj N yWay~! is of finite
index in both W; and yWay~t. Write W} = yWay~!, and denote by €2
the image of Q9 in WJ. Then, K is finitely generated, since W1 is finitely
generated. Consider the normal core Kw, = (V,cp, wKw™ of K in W.
It is a normal subgroup of W of finite index, and we have Ky, < K. Since
the index of € in W is infinite, one has Ky, £ 1. A similar argument
shows that K also contains the normal subgroup Ky <Ws with Ky, & Q.
Hence, by Karrass-Solitar’s Theorem 5.2, the intersection K := K Ny is
of finite index in €2, and the intersection Ky := K N Q) is of finite index in
The second part of the argument is of geometric nature. By observing that
the groups [4,4] and [6, 3] are inequivalent as crystallographic groups and
by using Bieberbach’s result about the existence of full rank translational
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lattices in crystallographic groups of Isom(IE?), one can use Proposition 5.1
in order to deduce a contradiction (see [24, Lemma 3] for details). Hence,
the Coxeter pyramid groups W; and Wy are incommensurable.

Trace field and Coxeter elements

The trace of an element in PO(n,1) C GL(n + 1,R) is invariant by conju-
gation. For H < PO(n, 1), the (ordinary) trace field Tr(H) C R is the field
generated by the traces of the elements of H. It has been exploited in [31]
as follows. First, let (W, S) be a Coxeter system of rank r with generating
set S = {s1,...,8,}. Then, a Cozeter element ¢ = ¢(S) of W is given by
c=81+...- 8. If H<W is a finite-index subgroup, then H must contain
some power of ¢. Now, one has the following criterion (see [31, p. 132]) :
let W1, Wy < Isom(H™) be Coxeter simplex groups with Coxeter elements
c1 and ¢z, and let TF = Q(tr(cF)) € Tr(W;), i = 1,2, k € N*, be the fields
generated by the traces of the k-th powers of ¢; and ¢, k € N*, If

TF ¢ Tr(Wa) for all k € N* or T4 ¢ Tr(W}) for all I € N*, (5.1)

then W7 and W5 are not commensurable. This property can be extended to
Coxeter pyramid groups as follows.
Let Wy, Wy < Isom(H"™) be Coxeter pyramid groups. Recall that each of
them can be identified, up to finite index, with a polarly truncated Cox-
eter simplex group (see Definitions 4.2 and 4.3 in Section 4.1.1, and Re-
mark 5.2,(2)). Let Py = /¢ H;” C H" be a fundamental Coxeter pyramid
for W7, and let S; = {81,...,8n+2} be the set of generators of Wy such
that each s; is a reflection in the hyperplane H; C H"™ with normal vector
u; € S—1(1) pomtmg outward from Py, say. Associated to Wy is a Coxeter
total simplex group W1 Without loss of generality, we can suppose that Wl
is generated by the reflections sy, ..., sp41, so that the vectors uy, ..., Upt1
are linearly independent (see Section 4.1.2). Let C/J\l and (1 be the respec-
tive Gram matrices of I/I//\l and Wi. The matrix é\l is the top left principal
submatrix of size n + 1 in G1. Now, for ¢ = 1,...,n + 1, the matrix of s;
with respect to the canonical basis of R*1 is Ry; :=1—2A;, where Ay ;
Is obtained by replacing the i-th line of the zero matrix of size n+ 1 by the
i-th line of G;. Moreover, the vector uyy2 normal to the polar hyperplane
is given by .
YA cof jns1 (Gh) g

\/det(é\l) cof n+1,n+1(é\1)

(see (4.7) ; notice u,12 can be interpreted as a ultra-ideal vertex, say vy 41,

Unp+2 = y (52)

of the total simplex associated to Wi as described in Section 4.1.2). It
follows that the matrix of s,4o with respect to the canonical basis of Rt
is Ripyo = I — 2By, where By is given by [Bi];; = 0if j # n+ 1 and
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fint1(G1) .
Bl = intlT) 1 <ji<n+1.
[ 1]Z,n+1 COfn+1,n+l(G1)’ = =

Let U := (u1]...Jun+1) € GL(n + 1,R) be the matrix whose i-th column is
ui, i =1,..,n+ 1. Then, UR; ;U € O(n,1) for 1 <i < n+ 2. The group
generated by R 1, ..., Rin+2 is a matrix representation of Wy in GL(n + 1,
Q(VI/Z)), with Coxeter element Cp := H?jlzRU.

Similarly, one obtains a matrix representation of W5 in GL(n + 1, Q(V[//\g))
with Coxeter element Cy = H?:_12R27i. Then, if the corresponding condition
(5.1) is satisfied, the groups Wy and W are incommensurable (as subgroups
of GL(n + 1,R)).

Example 5.5. Consider the graphs I'1, I'y and I's given by

4 4 4 4
F1:0—0—0<I F2:0—0—0<I F3:o—o—c<I
6

and let W1, Wy and W3 be the corresponding Coxeter pyramid groups. By
removing the first node on the left of I';, one obtains the Coxeter graph
of the Coxeter total simplex group W; associated to W;. Let G; be the
Gram matrix of W;, and G; be the Gram matrix of W;, ¢ = 1,2,3. For
t=1,2,3 and j = 1,...,5, we compute the matrix representations R; ; as
above. In particular, the product C; := H?lei,j € GL(4, @(a)) is a matrix
representation for a Coxeter element of W;. The characteristic polynomial
Xi = x(C;) is of the form

Xi(t) = (8= 1)(t + 1)(#* = 205t + 1),
where the coefficients «;, i = 1,2, 3, are given by the following table
1| 2 | 3
[3+V2[7/2+v2[4+V6

Then, the eigenvalues A; ., k = 1,...,4, of C; are given by

i |

Qg

Nip=1, Nao=-1, Ng=a;+y/a?—-1, Na=a;,—/a?—1.

7

Hence, the trace tr(CF) is given for k > 0 by

7

4 k m
DA = 1+ (-DF+ ) (Z) (1+( 1)m)a§—m< a3—1>
=1 m=0
k L m
= 1+(—1)k+22 <m>afm< a21>
m=0
ok
= 1+(-D*F+2 Z <m> af—m (af 1)m/2
m=0



Since ozi? —1>0fori=1,2,3, each term of the sum consists of a product
of (powers of) algebraic numbers of positive rational part and positive co-
efficients on v/2 and v/6, respectively, so that we obtain the following fields
for the groups Wy, Wy and Wy :

TF =Q(V2), TF=Q(2), T¥=0Q(6), forallkeN*

For i = 1,2,3, let Q(G;) be the field generated by the coefficients of the
Gram matrix G;. Observe that Tr(W;), Tr(Ws) € Q(G1) = Q(Ga) = Q(v/2)
and that Tr(W3) C Q(é;) = Q(v/2,v/3). Then, by (5.1), the group Wj is
incommensurable to W; and to W5. Moreover, commensurability between
W1 and Wy cannot be decided by this mean.

Kleinian groups

Let us consider the hyperbolic 3-space H3. A Kleinian group is a discrete
group of Isom™ (H?) = PSL(2, C). Commensurability properties of Kleinian
groups have been studied by Maclachlan-Reid [40] and Neumann-Reid [14],
for example. In this context, we have the following commensurability in-
variants. Let H be a Kleinian group (not necessarily arithmetic), and let
H® := ({h?|h € H}). Then, the set kH := Q (Tr(H(Q))) C R is called the
invariant trace field of H. If H < PSL(2,C) is the rotational subgroup of a
Coxeter group acting on H?, we have the relation

kH = K(G)(Vd), (5.3)

where K(G) is the field generated by the cycles in 2G, for G the Gram
matrix associated to H (see Section 2.3.4), and d is the discriminant of the
underlying quadratic space (more details about these notions are given in
next section). Further properties and proofs can be found in [40, 41].

Example 5.6. Consider the graphs 'y, I's and I'3 given by

4 4 4 4 4
F1:0—0—0<I F2:0—0—0<I Fg:I>-<I

and let Wy, Wy and W3 be the corresponding Coxeter groups.

A direct computation using the Gram matrices G of the rotational sub-
groups W;© < W;, i = 1,2,3, shows that K(G}) = K(G3) = K(G}) =
Q(v2), and that the associated discriminants d;, i = 1,2,3, are given by
di = dy = —1 and d3 = —% — /2. Hence, the invariant trace fields kVV;r,
1 =1,2,3, are the following :

kW = Q(V2,i) = kW, kW5 =Q (ﬁ —-3/2 — x/i) :

Since the invariant trace field is a commensurability invariant, one deduces
that the group W3 is incommensurable to both groups W; and W,. The
commensurability between W; and W5 cannot be decided by using this tool.
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5.1.2 Maclachlan’s criteria for arithmetic Coxeter groups

In the particular case of arithmetic subgroups of Isom(H™), more sophisti-
cated algebraic tools can be used, in particular quaternion algebras. Recall
that discrete cofinite noncocompact arithmetic subgroups of Isom(H") are
all of the simplest type and defined over Q (see Section 2.3.4). Hence, we
formulate the results for this field only. Moreover, we will summarize the
necessary tools for a computational use, and not provide the whole theory
of central simple algebras and the Brauer group. For details and for the
general results, we refer to [38, 41, 54, 62].

Algebraic background

Fora,bcQ*let Q=Q-1®Q-i®Q-j®Q- (ij) be the Q-vector space of
base 1,4, j,ij. If we require that i*> = a, j2 = b and ij = —ji, we can equip
) with an associative Q-bilinear multiplication. Then, one can check that
@ is a central simple algebra (over Q) of dimension 4, a so-called quaternion
algebra (over Q). It is convenient to denote it by (a, b)g, or simply by (a,b)
since the context is clear.

It is a consequence of Wedderburn’s theorem (see [38] for example) that for
any central simple algebra A, there is a unique (up to isomorphism) division
algebra D and a unique natural number m such that A = M,,(D), the
matrix algebra of dimension m over D. Then, two central simple algebras
Ay = My, (D) and As = My, (D2) are said to be equivalent if and only
if D1 2 Dy. In particular, one can see that two central simple algebras
of the same dimension are equivalent if and only if they are isomorphic.
This allows us to provide the set of all isomorphism classes of central simple
algebras (over Q) with a group structure. The resulting group is called the
Brauer group Br(Q). The group law is given by [A1] - [A2] := [A1 ®q Aa2],
and the neutral element is [Q] = [(1,1)] = [M;(Q)]. For a central simple
algebra A, let A°? be the central simple algebra built from the same vector
space as A, and such that the multiplication in A° is the multiplication in
A in the reverse order. Then, one can check that [A]~! = [A°P].

In the sequel, we will be interested only in the subgroup of Br(Q) generated
by isomorphism classes of quaternion algebras (a proof that isomorphism
classes of quaternion algebras generate a subgroup of Br(Q) can be found
in [62, Théoreme 2.9]). We have the following computational properties [38,
Chapter IIL.1].

Proposition 5.3. Let a,b,c € Q*. Then, one has

(1) [(a, )] = [(a,=a)] = [(L,1)].  (4) [(a,b)] = [(b,a)].

(2) [(a,1 =a)] =[(1, D] ifa# 1. (5) [(a,b)] = [(Pa,D)].

(3) [(a,a)] = [(a, -1)]. (6) [(a,b)] - [(a,0)] = [(a, bc)].
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Proposition 5.3 may not be sufficient to decide about the (non-)isomorphism
of quaternion algebras. However, it is known (see [39], for example), that
any two quaternion algebras (over Q) are isomorphic if and only if their so-
called ramification sets are equal. Let P be the set of prime numbers, and
write Qo = R. The ramification set Ram(Q) C P U {oo} of a quaternion
algebra @) is defined as follows : p € P U {co} belongs to Ram(Q) if and
only if Q ®g Q, is a division algebra. As before, we will only summarize
computational properties of ramification sets. For more details, we refer to
[54], for example.

One can check that Ram(1,1) = @ for all a € Q*, and that Ram(—1,—1) =
{2, 00}. Moreover, the ramification set of the tensor product of two quater-
nion algebras @)1, Q2 can be computed according to

Ram(Q1 ®q Q2) = (Ram(Q1) URam(Q1)) \ (Ram(Q1) N Ram(Q2)), (5.4)

see [39]. Hence, ramification sets can be determined by using Proposition 5.3
and (5.4) together with the following result, whose proof is presented in [24].

Proposition 5.4. We have Ram(—1,2) = () and Ram(—1, —2) = {2, 00}.
If g € P\ {2}, then we have the following ramification sets :

H g=1(mod 8) ‘ q =3 (mod 8) ‘ g =5 (mod 8) ‘ g =7 (mod 8)

(-1,9) 0 {2,q} 0 {2,q}
(—1,—q) {2, 00} {q, 00} {2, 00} {q, 00}
(2,—q) 0 {2,q} {2,4} 0

(=2,9) 0 0 2,4} 2,4}

If q1,q2 € P\ {2} are distinct, then the ramification set of the quaternion
algebra (—q1, q2) is given as follows.

g2 =1 (mod 4) g2 = 3 (mod 4)
(@) _ (o) = _
@1 =1 (mod 4) ta e} <q2) ! 2oak (‘12> 1
0 otherwise {2,q2} otherwise
41 = 3 (mod 4) {a1, a2} if <q2) 1 {ar, a2} if (q2>
0 otherwise 0 otherwise

where (%) denotes the Legendre symbol of a and b.

Finally, we will need the following two invariants of quadratic spaces. Let
(V,q) be a quadratic space of signature (n,1) (see Section 2.3.4). Suppose
that, with respect to a suitable basis of V, ¢ is given in a diagonal form,
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denoted by (aq, ..., an41), a; € Q*, i =1,...,n+1. Then, the Hasse invariant
of q, denoted by s(q), is given by the class

s(@) = | @)(ai.a5) | € Br(Q). (5:5)

1<j

The Witt invariant of q, denoted by ¢(q), is given by

s(q) ,if n+1=1,2 (mod 8)

_ } s(@)-[(=1,—det(q))] ,if n+1=34 (mod8)
c(q) = S(Z) [(=1,-1)] ! , if m+1=5,6 (mod 8) ° (5.6)

(9) ( )

-[(—1,det(q))] ,if n+1=7,8 (mod 8

The proof that s(¢) and c(q) are invariants of the quadratic form ¢, as well
as the related theoretical background, can be found in [38, Chapter V.3], for
example.

Maclachlan’s results for arithmetic groups

In [39], Maclachlan gives a complete solution to the problem of classifying
up to commensurability discrete arithmetic subgroups of Isom(H"™) of the
simplest type for n > 4. The corresponding problem for n = 2 and n = 3
was solved by Takeushi [57] and Maclachlan-Reid [40], respectively.

In Sections 8 and 9 of [39] the particular cases of cofinite noncocompact
discrete groups, in particular Coxeter groups, are investigated. Since we are
going to be interested in noncocompact Coxeter groups only, we formulate
Maclachlan’s results for this much simpler setting only.

Theorem 5.3 (Maclachlan). When n is even, the commensurability classes
of cofinite noncocompact arithmetic discrete subgroups of Isom(H™) are in
one-to-one correspondence with the isomorphism classes of quaternion alge-
bras over Q.

In order to formulate the corresponding result for n odd, let us recall that
for p € PU {o0}, a prime ideal p = (p) in Q splits in Q(v/9) if and only if
one has in Q(\/S) a factorization of the type p = p; - pg, where p; and py are
distinct ideals in Q(V/9).

Theorem 5.4 (Maclachlan). When n is odd, the commensurability classes
of cofinite noncocompact arithmetic discrete subgroups H < Isom(H™) of the
simplest type are parametrized by the pairs (0,{pi,...,ps}), where

o the number § is the signed determinant of the quadratic form q asso-
ciated to H, and

e the prime numbers pi,...,ps are the elements of Ramy(c(q)) such that
the ideals (p1), ..., (ps) are prime ideals in Q which split in Q(\/9),
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together with, if n =1 (mod 4), the sets {p1,...,pr}, such that p1,...,p, are
rational primes and r satisfies

r=0mod2 ifn=1modS8
r=1mod2 ifn=>5 modS8

In order to determine Maclachlan’s invariants in the context of Coxeter
groups, there is a direct procedure due to Vinberg which is based on Theorem
2.13 (see [39] and [65, Part II, Chapter 6]). Let W < Isom(H") be a cofinite
noncocompact arithmetic Coxeter group of rank » > n + 1, with Coxeter
polyhedron P C H" and Gram matrix G, and recall that Q is the field
generated by the cyclic products of 2G. For {ey,...,e,} the set of normal
vectors of P, and any subset {i1,...,4;} of {1,....,7}, 1 <1 <7, let

Vi yooiy = Ay Qi iy - @iy iy Ciy - (5.7)

Then, the Q-span of all vectors of type (5.7) is a Q-vector space V' of dimen-
sion n + 1, with basis B, say, such that the quadratic form gg associated to
G is equivalent to the diagonal form ¢ = (ay, ..., an+1), a; € Q.

Thanks to this simple correspondence, Maclachlan deduces the following
procedure in order to compute the invariants of W :

1. Compute the Gram matrix G € GL(r,R) of W.

2. Determine the field k generated the cyclic products of G. In our setting,
we will always have k = Q.

3. Determine all vectors of the type described in (5.7).

4. Let V be the Q-span of all such vectors. Determine a Q-basis B of V.
5. Compute the diagonal form ¢ = (ay, ..., an+1) of G in the basis B.

6. with the help of ¢, compute the Hasse and Witt invariants, s(q) and ¢(q).

7. Compute the ramification sets of the Hasse and Witt invariants, as well
as, if needed and if n is odd, the relevant complete invariants.

Example 5.7. We shall illustrate the above procedure and Theorems 5.3
and 5.4 in dimensions 6 and 7 respectively. For an element [(a,b)] of the
Brauer group, we shall simply write (a, b).

(1) We consider the arithmetic Coxeter groups Wy, ..., W5 < Isom(H%) given
by the corresponding Coxeter graphs I'1, ..., I'5 as follows.
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q
Fg : ::>.—o—o—v
L
4 4
Ty : )—0—0—0—0—04 4 I's: )—0—0—0—0—06

Then, one can compute the respective Gram matrix G;, and vertify
that the field k; generated by the cyclic products of G; is indeed Q for
i=1,..,5. A direct computation using (5.7) yields the diagonal forms
qf, i =1,...,5 collected in Table 5.1.

~.

| gy
(1,1,2,2,3,6,—1)
(1,1,1,2,3,6,—1)

(1,1,3,6,10, 15, —15)
(1,1,2,2,2,2, 1)
(1,1,2,2,2,6, 1)

Gl | W |IN|

Table 5.1

Moreover, let Wy = [4,32,3%!] and W7 = [3, 3[9] be representatives for
the two commensurability classes of cofinite noncocompact arithmetic
Coxeter 6-simplex groups (see [31, p. 139]). Then, the corresponding
diagonal forms are ¢§ = (1, 3,6,6,10, 10, —6) and ¢% = (1,3, 6,10, 15, 21,
—21). with the help of (5.5), (5.6), and Proposition 5.3, and then Propo-
sition 5.4, we deduce Table 5.2 for the Witt invariants ¢(¢?), and their
ramification sets Ram(c(¢%)), i =1,...,7.

i | c(¢9) | Ram(c(q?))
1 (—=1,-1) {2,000}
2 (—1, —1) {2, oo}
3 (5, —2) Y (—1, —1) {5, oo}
4 (—1, —1) {2, oo}
5 (—1,-3) {3,000}
6 (=5,—1) {2, 00}
7 (—15, —1) {3,oo}
Table 5.2
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Hence, by Theorem 5.3, the groups Wi, ..., Wy fall into 3 commensura-
bility classes : {Wy, Wa, Wy, W}, {Ws, Wr} and {Ws}.

Consider the arithmetic Coxeter groups Wi, ..., W < Isom(H") given
by the following graphs I'y, ..., :

T ool 4 Ty : of 4

—o—0 00 0 0 0o

3 4 4
Fg:o—o—o—o—(G I'y: Se—e—eo e«

3
F5:0—0—0—0<:::>0 F6:oio—o—I—o—o—o—o

Then, for each group W;, ¢ = 1,...,6, one can determine the associated
Gram matrix G;, and deduce that the field k; generated by the cyclic
products of G; is Q for i = 1,...,6. The use of (5.7) allows us to deter-
mine the associated quadratic forms ¢, i = 1,...,6. Let W7 = [3%%2],
Ws = [4,3%,3%1] and Wy = [3,3"]] be representatives of the commen-
surability classes of the cofinite noncocompact arithmetic Coxeter 7-
simplex groups (see [31, p. 140]) and let ¢, i = 7,8,9. Furthermore,
let 6;, ¢ = 1,...,9, be the corresponding signed determinants. They are
collected in Table 5.3.

‘ qf ‘ 0;
(1,1,1,2,2,3,6,-2) | -1
(1,1,2,3,3,6,6,—6) | -3
(1,1,2,3,3,6,30,—6) | -15
(1,1,2,2,2,3,6,—1) | -1
(1,1,3,6,6,10,15,—6) | -3
1,1,1,1,1,1,2,-1) | 2
(1,3,6,7,10,15,21, -3) | -3
1L1LLLLLL -1 | -1
(1,3,6,7,10,15,21, -7y | -7

.

O 0[N | = | W[ N+~

Table 5.3

Since the signed determinant is a commensurability invariant by The-
orem 5.4, we can already say that the groups Wy, ..., Wy fall into at
least 5 commensurability classes. In particular, the groups W3, Wy and
Wy are pairwise incommensurable, and incommensurable to the other
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groups as well. In order to distinguish between the remaining groups,
we make use of (5.5), (5.6), and Proposition 5.3, so that we can obtain
the Witt invariants c(g/). They are summarized in Table 5.4.

-

‘ c(q)

~.

1,-1)
1,-1)
1,-1)
1,-1)
(—15,—6)
(—15,-1) ® (2,-7)

(_
(_
(_
(_

N | N 0| |

Table 5.4

This allows us to say that the groups Wi, W4 and Wg are commensu-
rable, since they have the same Witt invariants. As for the groups Wa,
Ws and Wy, computations using basic number theoretical properties
show that P N Ram(c(q))) = {2} if i = 2, respectively {3} if i = 5,7.
Since the ideals (2) and (3) do not split in Q(v/—3), the groups Wa, W5

and W7 are commensurable.

5.2 Hyperbolic Coxeter pyramid groups

The graphs of all hyperbolic Coxeter pyramid groups are given in Tables 5.5,
5.6 and 5.7 (see also [59]).
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ri:

Table 5.5: Gluing together any two diagrams by the encircled vertices yields
the Coxeter diagram of a hyperbolic Coxeter pyramid group

rg;w

;@—.—I—.—.—.i‘
@—v—I—v—<
o>

2.

Fg: @—0—0—'—04 4
I @ﬂi<: ()7 - ®<I
4 »
F%: C
T
(F/)%; @&—eo—e
6
I‘g: ®<I k=2,3,4,506
k

Table 5.6: Gluing together any diagram from the left column with any
diagram from the right column by the encircled vertices yields the Coxeter
diagram of a hyperbolic Coxeter pyramid group
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’
F:i} : Fi : @—<::' (F/)‘% . @_._.L,

[?: @ —e—e" (3 - @—'<I
3:
b I rf: ot ) &

F%: 5
e [ | @
k

Table 5.7: Gluing together any diagram from the left column with any
diagram from the right column by the encircled vertices yields the Coxeter
diagram of a hyperbolic Coxeter pyramid group

5.3 Commensurability classes

We aim to classify up to commensurability all 200 Coxeter pyramid groups
in Isom(H"), n > 3.

Notation. In the sequel, we shall refer to a graph in Tables 5.(N + 4),
N = 1,2,3, as F]\N4, where M is the position of the graph in the table,
starting from top left and enumerating column by column (see Section 5.2).

e The graphs constructed from Table 5.5 are written as follows. The
graph F}Wl,MQ ey 0y Kol denotes the gluing of the graph le\/ll ey (with
parameters ki,l1, if any) with the graph F}WQ;,@’ZQ (with parameters
ka, o, if any) by the encircled vertices.

e For the graphs coming from Tables 5.(N +4), N = 2,3, we adopt the
following notation. The graph F%h M, : &, Will denote the gluing of the
graphs Fjl\\fh kel (with parameters k, [, if any) of the left column with
the graph (I )]\N/l2 from the right column by the encircled vertices.

The Cozxeter symbol of a Coxeter group W < Isom(H™) is a particularly
convenient way of describing it. It is constructed by using the following
basic conventions.

e For [ > 1, the symbol [mq,...,my] is the Coxeter symbol of the Cox-
ter group with linear graph of rank [ + 1 with consecutive labels
mi,...,my > 3. If my = ... = my =: m, we write simply [m!].

e For [ > 1, the symbol [(mi,...,m;)] is the Coxeter symbol of the
Coxeter group with cyclic graph of rank [ with consecutive labels
mi,...,my > 3. If my = ... = my =: m, we write simply [m!].
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e For [ > 1 and m > 3, the symbol [mi>4] is the Coxeter symbol of
the Coxeter graph with [ strings of Coxeter symbols [m], k =1, ..., [,
emanating from a common vertex.

The three Coxeter symbols described above can be combined in order to
describe more elaborated Coxeter graphs.

For the sake of brevity, we will use the same letter I' for the Coxeter graph,
the related Coxeter group and the Coxeter polyhedron.

5.3.1 The classification

We shall use the methods described in Section 5.1 in order to classify the
groups described in Section 5.2 In the arithmetic case, we shall determine
representatives given by cofinite Coxeter simplex groups (see [31]), whenever
possible. Recall that for most of these graphs, (non-)arithmeticity can be
read off from the graph thanks to Corollary 2.1 (see Section 2.3.4). The
results outlined in the sequel can be found in [24].

Dimension 3

There are 33 Coxeter pyramid groups in Isom(#H?). They are given by
the graphs F%2,12;k1, ko o ki,ke = 2,3,4, l1,lo = 3,4, T2 i = 1,2,

U 8,i;r?
r=2,..6, and F%j;s, 7 =3,4, s = 2,3,4,5. The groups F%2,12;k1,11,3,47
ki =234, 1 = 3,4, T3,;.,, i =12, r=345and I3, , j =34,
s = 2,3,4,5 are the only non-arithmetic ones amongst them.

Dissection arguments according to Section 5.1.1 yield the following subgroup
relations :

1 1 1 - -
® One has Iy 153333 < I'1212,2333 < T'i212,2323, each time with
index 2.

e The groups F%2,12;k1,3,k2747 for k1 = 2,3 and ke = 2,4 are finite index
subgroups of I‘%2712;273’274.

1 1 1 - -
® One has T'iy 154444 < Ti212.2444 < T'i212,2424, cach time with
index 2.

e The groups Fgmr, for j = 1,2 and r = 2,6, are finite index subgroups
of F§,2;2.

e One has Fb 12: ks < F%Q 12:9.k34 With index 2, for k = 3,4. Let
11 7l
Wi = F12,12;2,3,3,4 and Wy := F12,12;2,4,3,4~

e One has I'g,., <T§,.,, for r =3,4,5. Let W, :=T%,.,, r = 3,4,5.

e The groups I‘%j;s, for j = 3,4 and s = 2,5, are finite index subgroups
Of F%’4;2 = WG
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e One has F%&S < F;A;s with index 2, for s = 3,4. Let Wy = F§’4;3
and Wy 1= F§74;4.

Dissection arguments also show that the group F%2,12;273,273 is a subgroup
of index 2 in the simplex group [3,4,4], and that the group F%2712;2’47274 is
an index 2 subgroup of the simplex group [4,4,4]. Since the group [4,4, 4]
is an index 3 subgroup of the group [3,4,4] (see [31]), one deduces that the
groups F%2’12;273’2,3 and F%2,12;2,4’2,4 are commensurable.

The group [3,4,4] is arithmetic and is associated to the diagonal form
(1,3,6,—2) of signed determinant 6, = —1. Moreover, the group I'15 15.5 394
corresponds to the diagonal form (1, 3,6, —1) of signed determinant j, = —2,
the group 1%72;2 to the diagonal form (1,3,3,—3) of signed determinant
d3 = —3, and the simplex group [3,3,6] to the diagonal form (1, 3,6, —6)
of signed determinant 0, = —3. By Section 5.1, this implies that the arith-
metic Coxeter pyramid groups in Isom(H?) fall into three commensurabil-
ity classes, and that the commensurability classes of the groups 1%12;2 and
[3, 3, 6] coincide.

Let Wy := F%2712;3’47374. In order to distinguish between the commensu-
rability classes of the non-arithmetic pyramid groups W;, i = 1,...,9, we
first determine the associated fields le of suitable matrix representations,
k > 1 (see Example 5.5). One observes that TF = T} for all k,1 > 1 and all

~k
i =1,...,9. Hence, we simply write T; := T; . These fields are collected in
Table 5.8.

1 ‘ W; ‘ Coxeter symbol ‘ T;

1 F%2,12 :2,3,3,4 [00, 3, (3, 00,4)] Q(ﬂ)

2 | Mo19.0434 [00,4, (3,00,4)] Q(v2)

3| TRaus [00,3, (3,00, 6)] Q(v3)

4 F§,2;4 [0, 3, (4, 00,6)] @(\/6)

5 T3a.5 [00,3,(5,00,6)] | Q(+v/3,V5)
6 [340 [0, 3,5, 0] Q(V5)
7| s [00,3, (3,00, 5)] Q(v5)

8 F$,4;4 [0, 3, (4,00, 5)] Q(\/i \/5)
9 r‘%2,12;3,4,3,4 [(3,00,4),(3,00,4)] @(\/é)

Table 5.8
Hence, by (5.1), we only have to study the commensurability problem for

the groups W7, Wy and Wy, and for the groups Wy and W7, the other ones
being pairwise incommensurable. By Proposition 5.1 (see Example 5.3), the
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groups Wg and Wy are incommensurable. By Example 5.6, the group Wy is
not commensurable with the groups W; and Wa.

Remark 5.3. The procedures above fail to decide about the commensura-
bility of the groups W and Wy with Coxeter symbols [00, 3, (3, 00,4)] and
[00,4, (3,00,4)]. This question can be related to a conjecture of Milnor about
certain values of the Lobachevsky function as follows.

In [65, Part I, Section 7,3.5], Vinberg gives a formula for the volume of an

N-sided hyperbolic pyramid P C H? whose apex lies in OH3 (his formula
contains some minor sign errors). The formula in terms of the Lobachevsky
function JI is the following :

vol(P) = ;i [ﬂ(%-) T (;(w b+ i — m) T (;(w +a; — i — w)

i=1
1 1
+ﬂ (Q(ﬂ' — Oy +Ck7;+1 —’%)) —JI (2(0[1 + Q41 +")/,L — 7T)>:| 5

where aq, ..., an are the dihedral angles at the base of P, and 71, ..., vy are
the dihedral angles at the edges of P meeting at its apex.
In our setting, N =4 and v; = § for i = 1,..., N, so that the covolumes of

[00, 3, (3,00,4)] and [00,4, (3, 00,4)] are given by
covol([0o, 3, (3,00,4)]) = 3JI(m/4) + §J1(w/6) + JI(57/24) — JI(/24), 58)
covol([00, 4, (3,00,4)]) = JI(n/4) + $JI(/6) + JI(5m/24) — JI(7/24).

Let us write
~ covol([oo, 3, (3,00,4)]) 2

= covol([co, 4, (3, 00,4)]) and [ := m (5.9)

By using the functional properties of the Lobachevsky function JI (see Section
2.3.2), it can be shown that (5.8) and (5.9) yield

T(r/8) = =5

TI(n/4). (5.10)

Suppose now that the groups [0, 3, (3, 00,4)] and |00, 4, (3,00,4)] are com-
mensurable. Then, « is rational, as well as 8. By (5.10), JI(7/8) and JI(7/4)
are therefore linearly dependent over Q. This would imply that JI(7/8)
and JI(37/8) are linearly dependent over Q, contradicting the following
conjecture due to Milnor [58, Chapter 7|.

Conjecture (Milnor). Fixing some integer denominator M > 3, the real
numbers JI(kw /M), with k relatively prime to M and 0 < k < M/2, are
linearly independent over the rationals.

Remark 5.4. In [24], we provide a proof of the incommensurability of W;
and Wj based on (5.9), a numerical estimation of o, and an argument related
to the so-called commensurator of a subgroup.
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Dimension 4

There are 27 Coxeter pyramid groups of rank 6 in Isom(H*) : le,12;k,l7
i=T,,11, k=234,1=34T3, .j=12 m=234,5 and I},
r = 3,4, s = 5,6. The groups le,12;3,4> 1 =17,...,11 and F% =1,2,
m = 2,3,4,5, are the non-arithmetic ones amongst them.

Moreover, there is one further cofinite noncocompact rank 6 Coxeter group
I'* < Isom(#H*) whose Coxeter polyhedron is neither a prism nor a pyramid.
It has the graph

gimo J

I

and is arithmetic. Combinatorially, the polyhedron I'* is the product of two
triangles (see [59]). Let Wy :=T"™.

Dissection arguments lead to the following subgroup relations :

e The groups I‘} 12:k63 ¢ =17,8,9, k= 2,3, are finite index subgroups of
Fé13,12;2,3 =: Wa.

e The groups le,12;k,47 1=17,8,9, k= 2,3, are finite index subgroups of

1 .
P8,12 12,4 —- WS.

e The groups Fil 12:63> ¢ = 10,11, k = 2,3, are finite index subgroups of
I‘%1,12;2,3 =: Wy,

e The groups Fil,12;k,47 i =10,11, k = 2, 3, are finite index subgroups of
11%1,12;2,4 =: Ws.

e The groups FE’S, r = 5,6, s = 3,4, are finite index subgroups of
I3, = Ws.

e One has Fé712;3’4 < F%’12;3,4 < F§712;374 =: Wg. Both subgroup rela-
tions are of index 2.

[ ] One haS F%0712;374 < F;{1712;374 = Wg Wlth lndeX 2.

e The groups F§71;5, F%,z;s and F%Q;Z are finite index subgroups of
3 _.
1—‘7’172 —. WlO‘

e One has 1"%2;3 < F§71;3 := Wiy, and F$72;4 < F§71;4 =: Wi, both
with index 2.
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Let W7 be the arithmetic simplex group [3,4,3,4]. In Table 5.9, we provide
the arithmetic groups W;, ¢ = 1,...,7, the associated diagonal quadratic
forms ¢}, the Witt invariants c(g}), and the ramification sets Ram(c(g})),
i =1,...,7. The simplex group W7 is a representative of the (unique) com-
mensurability class of arithmetic Coxeter 4-simplex groups (see [31]).

i W; ‘ Coxeter symbol ‘ q} ‘ c(q}) ‘ Ram(c(g}))
1 r (1,1,1,3,-3) | (—1,-1) {2, 00}
2| T§i9.03 [42,32, 0] (1,1,1,2,-2) | (—1,—-1) {2,00}
3| Tg19.24 [42,3,4,00] | (1,1,2,2,-2) | (=1,-1) {2, 00}
4 | T} 12.03 6,33, ] (1,3,3,6,—6) | (—1,-3) {3, 00}
5| Mi1g.04 | [6,3%,4,00] | (1,3,6,6,—6) | (—1,—1) {2,00}
6 ri, [6,3,4,3,00] | (1,3,3,6,-3) | (—1,—1) {2,00}
7 | B34 | (1,2,3.6-1) | (-1,-1) | {200}
Table 5.9

Hence, by Theorem 5.3, all the above arithmetic non-cocompact Coxeter
groups of rank at most 6 in Isom(H*) fall into two commensurability classes,
represented by the groups [3,4,3,4] and T'}; 15 53, for example.

It remains to determine the commensurability classes of the non-arithmetic
groups W;, i = 8,...,12. We start by considering the fields Tik7 k>1,
generated by the trace of the k-power of a matrix representation of a Coxeter
element of the group W; as in Example 5.5. Computations similar to the
ones of Example 5.5 show that Tzk = Til =: T; for all k,l > 1. They are
collected in Table 5.10.

) W; ‘ Coxeter symbol ‘ T;
Ffls,12;3,4 [427 3,(3,00,4)] @(\/i)
Tli19.34 | [6,3%(3,00,4)] Q(v2)

10 F%,1;2 (6,37, 5, 00 Q(v5)

1) T8 [163%3005] | QW5

12 F%,1;4 [6,3%,(4,00,5)] | Q(v2,V5)

Table 5.10

Notice that the associated total simplex groups V[//; and V[//\g are /@ﬁned
over Q(v/2), the groups Wiy and Wiy over Q(v/5), and the group Wiy over
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Q(v/2,/5). Hence, we only have to study the commensurability between Wy
and Wy, and between W1y and Wi1, respectively, since other commensura-
bility relations are impossible by (5.1). By Theorem 5.2 and Proposition 5.1,
these groups are pairwise incommensurable (see Examples 5.4 and 5.3). As a
consequence, there are 5 commensurability classes of non-arithmetic Coxeter
pyramid groups in Isom ().

Dimension 5

There are 35 cofinite Coxeter pyramid groups in Isom(#®) Fil,j, 1,] =
T ILT) 19y P=5,6,k=2,3,4,1=3,4,T7,r=56,7,5s=1,2,T},

t=5,6, u=1,2. Amongst them, the groups F%712;3’4 and Fé712;3’4 are the
only non-arithmetic ones.

Dissection arguments lead to the following subgroup relations :

e The groups F71~,12;k,3v r =15,6, k = 2,3, are finite index subgroups of
1ﬂ%,12;273 =: Wi.

e The groups I‘i 12:640 7 = 5,6, k = 2,4, are finite index subgroups of
1%,12;2,4 =: Wa.

1

e The groups I'; ;,

1,7 =17,8,9, are finite index subgroups of Fé’g =: Ws.

e The groups I'' ., i = 7,8,9, j = 10,11, are finite index subgroups of

1,37
Pé,ll =. W4.

e The groups F%’s, r = 5,6, s = 1,2, are finite index subgroups of
1—‘372 = W6.

e One has I‘%Q < F%l =: Wy with index 2.

3

e The groups I';;, r = 5,6, s = 1,2, are finite index subgroups of

3 _.
F5’1 —. WS'
e One has I‘é712;374 < F%712;3?4 with index 2.

Let Wy be the arithmetic simplex group [3,3,3,4,3] and Wiy be the arith-
metic simplex group [3, 3[5]]. Table 5.11 collects the diagonal quadratic forms
ql-5 associated to the groups W;, i = 1, ..., 10, as well as their signed determi-
nants 9;.
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i ‘ W; ‘ Coxeter symbol ‘ ql-5 0;
1 | T8is.03 [4,313, 0] (1,1,2,2,2,-1) 2
2 [ T}i9.04 4,312 4, 00] (1,1,1,2,2,—1) 1
3 Tz [42,32,42] (1,1,1,1,2,-2) 1
4 T8 [42,33, 6] (1,1,1,2,3,-2) 3
51 in [6,4%, 6] (1,1,3,3,6,—6) 1
6 I, [4,3,4,3% o] =q 1
7 r7, [0,3,(3,4,3,4,3)] =q 1
8 I, [6,3,4,32,6] (1,2,3,3,6,-3) | 1
9 3,3,3,4,3] (1,3,6,10,10,-2) | 1
10 3,30)] (1,3,6,10,15,—15) | 5
Table 5.11

Since no prime ideal splits in Q, we deduce from Theorem 5.4 that the
above arithmetic cofinite noncocompact Coxeter groups of rank at most 7
in Isom(#H?°) fall into 4 commensurability classes. They are represented by
the groups [3,3,3,4, 3], [4,3"%, 0c], [42,32,6] and [3,30)], for example.

Dimension 6

There are 27 cofinite Coxeter pyramid groups in Isom(#°) : I‘}’ j11=5,6,j=
ZWJLHMWWr:Z&&kzl&&l:&&F%aMFh.ﬂwywm
Fi’12;3’4 = F%712;4,3, r = 2,3,4, are the only non-arithmetic groups amongst
them. By dissection arguments and Maxwell’s Theorem (see Theorem 5.1),
the groups F}ﬂ’l2;3’4, r = 2,3,4, are finite index subgroups of F§,12;374, the
groups F71~,12;k,37 r=2,3,4, k = 2,3 are finite index subgroups of F%712;273,
and the groups F’}',lQ;k,ZS’ r = 2,3,4, k = 2,4 are finite index subgroups of
1
1=15,6, 7 =7,8,9, are finite index subgroups of 1%78’ that the groups Fz{j,
t=15,6, j = 10,11 are finite index subgroups of Fé,na and that Fi?) < F§L4
(with index 2).

r %712;274. Moreover, dissection arguments also show that the groups I'

Hence, there is a unique commensurability class of non-arithmetic Coxeter
pyramid groups in Isom(#°), repesented by the group F%,m 3.4, for example.

As for the arithmetic case, by Example 5.7, (1), there are 3 commensurability
classes of arithmetic Coxeter pyramid groups in Isom(H®), represented by
the 3 groups 1%78, Fé,n and FiA, for example.
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Dimension 7

There are 26 Coxeter pyramid groups in Isom(H") : F}jj, 1=2,3,4, 5 =
7,511, Th 5, Db, T, T30, Taq, T35, T8, T35, T3, T3 and T ,. All
are arithmetic. Dissection arguments and Maxwell’s Theorem show that all

groups of the form I‘il,j, i = 2,3,4, j = 7,8,9 are finite index subgroups

of I‘%78, and that all groups of the form Fl{j, i = 2,3,4, j = 10,11, are
finite index subgroups of I‘%’ll. Moreover, dissection arguments show that
[is < The < Igg (each time with index 2), I'}, < T'j, (with index 2),
I}, <T3, (with index 2), and that I3 5, I'§ 5 and I'§ ; are finite index sub-
groups of F§,4'

By Example 5.7, (2), one has 5 commensurability classes of cofinite non-
cocompact Coxeter groups of rank at most 9 in Isom(#7), with respective
representatives F%,S’ F%A’ F%,nv Fiﬁ’ and the simplex group with Coxeter

symbol [3, 3], for example.

Dimension 8

There are 16 Coxeter pyramid groups in Isom(#®) : F}J, 1=2,3,4,j=5,6,

T3, T3, T3, T3, I3, 9, T3, T3, I3, T3, All are arithmetic.
Dissection arguments and Maxwell’s Theorem show that the groups of the
form I'! ., i = 2,3,4, j = 5,6 are finite index subgroups of F%75, that F%’Q,

17]7
Fi2’>71 and F§72 are finite index subgroups of F%J, that F%Q, Fg,1 and F§72 are

finite index subgroups of I' |, and that I'} 3 < T’} ; (with index 2).

The group F§75 is associated to the diagonal form
¢ =(1,1,1,2,2,2,6,12, 1),
the group F%l to the diagonal form
¢ =(1,1,1,1,1,1,1,2, 1),
the group F%,l to the diagonal form
g5 = (1,2,3,3,6,6,6,9, —6),
and the group F?A to the diagonal form
¢t =(1,1,1,2,3,6,10,15, —2).

Futhermore, by [31, Theorem 8], all Coxeter simplex groups in Isom(H?®) are
arithmetic and commensurable with the group T's of Coxeter symbol [34’3’1],
associated to the diagonal form

¢ =1(1,1,2,3,3,6,10,15, —2).
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By computing the respective Witt invariants and using Propositions 5.3 and
5.4, one sees that Ram(c(¢})) = 0, i = 1,...,5. Therefore, by Theorem 5.3,
the Coxeter simplex groups and the Coxeter pyramid groups in Isom(H?®)
belong to the same commensurability class.

Dimension 9

There are 10 Coxeter pyramid groups in Isom(#?) : I‘%Q, I‘%73, F%A, Fil’),37
F%A, F}l,47 F%’l, I‘%Q, Fil and F:f,? All are arithmetic. Dissection arguments
and Maxwell’s Theorem show that the groups of the form Fz{j, 1,7 =2,3,4
are all finite index subgroups of I'y 5, that I'f | < I'?, (with index 2), and
that 'Y, <7, (with index 2).

The group F%Q is associated to the diagonal form
) =(1,1,1,2,2,3,3,6,6, 1),
the groups F%Q and Fil to the diagonal form
¢ =(1,1,1,2,3,3,6,10,15, —2).

Both forms have signed discriminant §; = do = 1, so that for both groups,
the field Q(v/9) of Theorem 5.4 is Q. Since no prime ideal of Q splits in
Q, one deduces that both groups have the same invariant : {Q,1,0}. By
Theorem 5.4, one deduces that there is only one commensurability class of
Coxeter pyramid groups in Isom(H?).

Moreover, by [31, Theorem 9], there is only one commensurability class of
Coxeter simplex groups in Isom(#?), represented by the arithmetic group
Ty of Coxeter symbol [3%21]) for example. This group is associated to the

quadratic form
¢ = (1,1,2,3,4,7,10,15,21, —2),

of signed determinant 03 = 1. By Theorem 5.4 one deduces that the com-
mensurability class of T'g coincides with the one of Fég.

Dimension 10

There are 5 Coxeter pyramid groups in Isom(#!°) : Fi12;273, F%712;2’4,
F%712;373, F%,12 .34 and I‘%712;374. The group F%712;374 is the only non-arithmetic
one and forms a single commensurability class (observe that this group is
algebraically a Gromov - Piatetski-Shapiro mixture, see [66]). Moreover,
dissection arguments show that F%712;373 < F%,12;2,3 and F%712;4’4 < Fi12;274
(each time with index 2).

The group F%712;273 is related to the diagonal quadratic form

q° =(1,1,1,2,3,3,6,6,10, 10, —2),
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and the group F}712;274 to the diagonal quadratic form
=(1,1,2,2,3,3,6,6,10,10, —2),

of respective Witt invariants c(qi?) = (5, —1) and c(q 10) = (2,-1).
Proposition 5.4, one deduces that Ram(c(qi")) = Ram(c(¢i?)) = 0. Hence
by Theorem 5.3, the arithmetic Coxeter pyramid groups in Isom(’HlO) form
a single commensurability class.

Dimension 11

There are 5 Coxeter pyramid groups in Isom(H!'!) : Fii, i=17,..11. All
are arithmetic, and dissection arguments show that Fig < F%j < Fig (each
time with index 2) and I'f ;y < T} }; (with index 2).

The group FI’S is related to the diagonal quadratic form

=(1,1,1,1,2,3,3,6,6,10,10, —1),
and the group Fill to the diagonal quadratic form
=(1,1,1,2,3,3,3,6,6, 10,10, —2).

The corresponding (squarefree) signed determinants are 63 = —2 and dp =
—3, respectively. Hence, by Theorem 5.4, one can already deduce that the
groups Fig and Fill are not commensurable, so that there are only two
such commensurability classes in Isom(H!!).

Dimension 12

The Coxeter pyramid groups Fi5 and FiG are the only Coxeter groups
in Isom(H'?). Both are arithmetic. By a dissection argument, one has
Il < T} (with index 2). Hence, there is a single commensurability class
of such groups.

Dimension 13

There are exactly 3 Coxeter pyramid groups in Isom(#H!3) : '} 29 I‘i3 and
F%A‘ They are all arithmetic. By Maxwell’s Theorem one has F173 < FiZ
(with index 3), and by a dissection argument, one can see that I'l ; < T'l 4
(with index 2). Hence, all the 3 groups are commensurable. ’ 7

Dimension 17

The pyramid group Fil is the unique such group in Isom(#!7). It is there-
fore the only commensurability class in this dimension. It is arithmetic, and
plays an eminent role in the context of minimal volume orientable arithmetic
n-orbifolds, n > 2 (see Section 2.3.4).
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5.3.2 Summary

Theorem 5.5 ([24]). The commensurability classes of non-arithmetic Coz-
eter pyramid groups in Isom(H"™) are characterized in Table 5.12.

n ‘ Representative ‘ Coxeter symbol ‘ Cardinality
F%2,12;2,3,3,4 00,3, (3,00,4)] 2
F%2,12;2,4,3,4 (00,4, (3, 00, 4)] 2
Tio12.3434 | (3,00 4) (3,00,4)] 1

323 [00,3, (3,00, 6)] 2

854 [0, 3, (4,00,4)] 2

I3s.5 [oo,3, (3,00,5)] 2

F74 9 [00, 3,5, 0] 4

2,3 00,3, (3,00,5)] 2

2,4 [0, 3, (4,00,5)] 2

4 T§12.3.4 [4 (3,00, 4)] 3
1111 12;3,4 [6,3%, (3, 00,4)] 2

F%M 6,32, 5, o0 4

F%l;:g 6,32, (3, 00,5)] 2

T3, ., 6,32, (4,00, 5)] 2

T 12.34 4,312, (3, 00,4)] 2
1ﬂ%,12;3,4 3,4, 37, (3,00,4)] 3

10 Tl12.34 [3%1,35(3, 00, 4)] 1

Table 5.12
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Theorem 5.6 ([24]). The commensurability classes of arithmetic Cozeter
pyramid groups in Isom(H™) are given in Table 5.13.

n | Representative ‘ Coxeter symbol ‘ Cardinality H Simplex representative

F%2,12 :2,3,2,3 00,3, 3, o] 6 3,4, 4]
F§,2;2 [00, 3, 6, 0] 4 (3,3, 6]
F%z,lz :2,3,2,4 [00, 3,4, 00] 4 -

4 Fsls,lz;z,:a 47,37, o0 21 (3,4, 3,4]

11%1,12;2,3 (6,33, 0] 4 -

5 Tgs [47,3%,47] 23 3,3,3,4, 3]

Fé,m 12,3 4, 313, oo -
T8 [42, 33, 6] _

6 519,03 [3,4,3", 0] 18 [4,32,3%1]
511 [4,3"4, 6] 3, 36)]
I, [00, 32, 30]] _

7 Tg [42,3%, 4, 3] 12 [4,33,321]
ISR [6,3°,4, 3] 8 [32:2:2]
r3, [4, 32,313, oc] 4 _

s, 6,33, 30]] 2 _
T35 [4,31° 4, 3] 16 [3431]
F%’Q [3,4,35,4, 3] 8 [36:2:1]
10 1,12;2,3 [32’17 37, o] 4 -
11 Iig [3%137,42] 3 _
IS 321,38, 6] 2 _
12 s 4,358 312 2 _
13 T, (321,394, 3] 3 -
17 F%,l [32,1’ 3127 31,2] 1 _

Table 5.13

Remark 5.5. Table 5.13 includes the ”bow tie” Coxeter group I'* < Isom(#H?).
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5.4 Commensurability classes of ideal Coxeter 3-
cubes

In this section, we study the commensurability problem for the 7 ideal Cox-
eter 3-cubes described in Section 3.2.2. Recall that their graphs I'y,....I'y
are given in Figure 3.1, the weights of their dotted edges in Table 3.1, and
their volumes in Table 3.2. For i = 1,...,7, let C; C H3 be the ideal Coxeter
3-cube of graph I';, with Coxeter group W; < Isom(H?).

By Vinberg’s criterion stated in Theorem 2.13, the groups Wi, W3, Wy and
Wy are arithmetic (over Q), while the groups Wy, Wy and W5 are non-
arithmetic.

The invariants of the arithmetic groups can be computed by using Sec-
tion 5.1.2. Consider for instance the cube C3. It is not hard to show that
the rows ey, ..., eg of the matrix M3 given by

1 0 0 0

1 3
-3 -¢ o0 0
| = B 33 33
Mg— 2 2 1 1
_V3 5 _23 25
2 2 4 4
R

are normal vectors for C3. Then, the vectors described by (5.7) are given by
vi=e1, va=e, v3=e3 vi=V3es, v5=+V3es, vg=+3e

One can check that {vy,...,v4} is a basis of R?, leading to the diagonal form
g3 = (1,3,6,—6) of signed determinant 3 = —3. Hence, by Section 5.3.1,
the group W3 is commensurable to the simplex group [3, 3, 6].

A similar procedure shows that the groups W; and Wg are also commensu-
rable to the simplex group [3, 3, 6], while the group W7 is commensurable to
the simplex group [3,4, 4].

As for the non-arithmetic groups Wy, W4 and W5, we observe that none
of the methods described in Section 5.1.1 allows us to decide about their
commensurability relations. Moreover, since their volumes are rational mul-
tiples of JI(7/3), nothing can be deduced from a volume comparison.
Direct computations using (5.3) show that the invariant trace fields of the
respective rotational subgroups VV2Jr , Wj and W; are given by

EWSE = Q(V3,V3i) = kW, = kW
Hence, by Example 5.6 and Table 5.12 (see Section 5.1), these groups are

incommensurable with the non-arithmetic pyramid groups in Isom(#?).
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