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We study the unitary time evolution of antiferromagnetic order in the Hubbard model after a quench
starting from the perfect Néel state. In this setup, which is well suited for experiments with cold atoms, one
can distinguish fundamentally different pathways for melting of long-range order at weak and strong
interaction. In the Mott insulating regime, melting of long-range order occurs due to the ultrafast transfer of
energy from charge excitations to the spin background, while local magnetic moments and their exchange
coupling persist during the process. The latter can be demonstrated by a local spin-precession experiment.
At weak interaction, local moments decay along with the long-range order. The dynamics is governed by
residual quasiparticles, which are reflected in oscillations of the off-diagonal components of the momentum
distribution. Such oscillations provide an alternative route to study the prethermalization phenomenon and
its influence on the dynamics away from the integrable (noninteracting) limit. The Hubbard model is solved
within nonequilibrium dynamical mean-field theory, using the density-matrix renormalization group as an
impurity solver.
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I. INTRODUCTION

Ultrafast pump-probe experiments on condensed-matter
systems and experiments with cold gases in optical lattices
have opened the intriguing possibility of controlling
transitions between complex phases on microscopic time
scales. This has motivated intensive theoretical efforts to
understand fundamental aspects of the dynamics in inter-
acting many-body systems and led to predictions in marked
contrast to the naive expectation that interactions imply
rapid thermalization [1]: Integrable systems can keep
memory of the initial state for all times and relax to a
generalized Gibbs ensemble [2,3], but also away from
integrability thermalization can be delayed by pretherma-
lizaton [4–7], and one can identify regimes of different
dynamical behavior that are clearly separated by non-
thermal critical points [8–13].
Of particular interest with respect to complex phases in

condensed matter is the dynamics of symmetry-broken
states [14–16]. While the relevant relaxation mechanisms

after a perturbation are hard to disentangle in a solid, cold
atoms in optical lattices provide a versatile platform to
investigate isolated quantum systems in ideal situations.
The preparation of thermodynamic long-range ordered
phases in cold atoms is still a challenge [17,18], but
advanced techniques for lattice design have made it
possible to prepare an ordered state on a lattice of isolated
sites and to probe its dynamics after tunneling between the
sites is switched on [19–22]. In the following, we consider
such a setup for the Fermi-Hubbard model, a paradigm
model for emergent long-range order in condensed matter
systems. We simulate the time evolution starting from a
classical Néel state in which neighboring lattice sites of a
bipartite lattice are occupied with particles of opposite spin.
In general, one can anticipate fundamentally different

pathways for melting of long-range antiferromagnetic order
in the weakly and strongly interacting Hubbard model:
For strong interaction, long-range order arises from anti-
ferromagnetically coupled local moments, which emerge
when charge fluctuations are frozen. Magnetic order could
thus possibly melt via the destruction of the local moments
themselves, through a reduction of the effective exchange
interaction [23] (while moments persist), or along a
quasithermal pathway, by the transfer of energy from
excited quasiparticles (hot electrons) to spins. The latter
mechanism is intensively studied in the context of
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photocarrier relaxation in high-Tc cuprates [24–29], where
the investigation of the spin-charge interaction challenges
the limits for the time resolution in state-of-the-art pump-
probe experiments [30–32]. For weak interaction, on the
other hand, quasiparticle states may be important to under-
stand relaxation processes. In the paramagnetic phase the
conservation of the quasiparticle momentum occupations
imposes constraints on the dynamics, which can lead to
prethermalization [4,5,9,33–35]. Prethermalizaton, which
was recently observed in a one-dimensional Bose gas [7],
has been suggested to be a universal feature of near-
integrable systems [6], but previous predictions for the
Hubbard model rely on a discontinuity of the momentum
distribution which is absent at nonzero temperature and
thus experimentally hard to observe. Here, we show that the
symmetry-broken initial state provides an alternative per-
spective to investigate this physics and its breakdown far
from integrability.
Quenches from a Néel state have been explored in

quantum spin models [10,36–38], and also as a way to
prepare ordered states in the Hubbard model [39], but a
pure spin model cannot describe the relevant dynamics of
charge excitations and local moments. The Hubbard model
has been studied in one dimension using the density-matrix
renormalization group (DMRG) [40]. For the dynamics of
lattice fermion models in more than one dimension, non-
equilibrium dynamical mean-field theory (DMFT) [41] is
the most promising approach. Quenches within the anti-
ferromagnetic phase of the Hubbard model at strong
coupling [25] are in line with the “quasithermal” pathway
discussed above. The regime of intermediate interactions,
where the notion of local moments becomes ambiguous,
or weak coupling, where prethermalization may be
expected, has been elusive thus far. Previous numerical
solutions of the DMFT equations were based on the self-
consistent strong-coupling expansion [42] or weak-
coupling impurity solvers [13,43,44], which both fail at
intermediate coupling, while weak-coupling quantum
Monte Carlo studies [9,42] are most efficient for non-
interacting initial states and restricted to short times. In this
work, we overcome these limitations using a recently
developed Hamiltonian-based formulation for the impurity
model of nonequilibrium DMFT [45], which has opened
the possibility to use wave-function-based techniques to
solve the DMFTequations [46,47]. Here, we use DMRG as
an impurity solver [47], which allows us to reach suffi-
ciently long times in the evolution to address the above
issues.

II. MODEL AND METHODS

Throughout this work we consider the single-band
Hubbard model at half filling, with nearest-neighbor hop-
ping J and on-site Coulomb repulsion U. The Hamiltonian
is given by

H ¼ −JðtÞ
X

hijiσ¼↑;↓

c†iσcjσ þ U
X
i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
;

ð1Þ

where c†iσ (ciσ) are electron creation (annihilation) operators
for lattice site i and spin σ, and niσ ¼ c†iσciσ . The model is
solved using nonequilibrium DMFT [41], for a Bethe
lattice in the limit of infinite coordination number Z and
hopping J ¼ J�=

ffiffiffiffi
Z

p
, where the approach becomes exact

[48]. The energy unit is set by J� ¼ 1, and time is measured
in inverse energy, i.e., the free density of states is given
by DðϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − ϵ2

p
=ð2πÞ. To simulate the quench, we

choose a time-dependent hopping J�ðtÞ ¼ 0 for t ≤ 0
and J�ðtÞ ¼ 1 for t > 0. For t ≤ 0, the system therefore
consists of a set of isolated lattice sites, which are prepared
in a classical Néel state,

jΨNéeli ¼
Y
i∈A

c†i↑
Y
j∈B

c†j↓j0i; ð2Þ

where A and B are sublattices of the bipartite Bethe lattice.
In DMFT, the lattice model is mapped to a set of impurity

problems, one for each inequivalent lattice site j ¼ A; B,
with a time-dependent hybridization function Δjσðt; t0Þ.
(In this expression, time arguments lie on the Keldysh
contour; see Ref. [41] for a detailed description of non-
equilibrium DMFT and the Keldysh formalism.) For the
Bethe lattice, the latter is determined self-consistently by
ΔAðBÞ;σðt; t0Þ ¼ J�ðtÞGBðAÞ;σðt; t0ÞJ�ðt0Þ, where Gjσðt; t0Þ ¼
−ihTCcjσðtÞc†jσðt0Þi is the local Green function. To solve the
impurity model with a non-time-translationally-invariant
hybridization function, we derive an equivalent represen-
tation in terms of a time-dependent Anderson impurity
Hamiltonian [45] with up to L ¼ 24 bath orbitals, from
which the time-dependent Green functions are computed
using a Krylov time propagation for matrix product states
[47]. The Hamiltonian representation of the DMFT impu-
rity model is exact for small times, but an increasing
number of bath sites is needed to reach longer times [49].
We verify the convergence of the solution with the bath
size L. Up to L ¼ 12, the results have also been cross-
checked with a Krylov time propagation in the full Hilbert
space. For further details of the numerical solution, see
Appendix A.

III. RESULTS

Figure 1 shows the time evolution of the antiferromag-
netic order parameter MðtÞ and the double occupation
dðtÞ ¼ hn↑ðtÞn↓ðtÞi after the quench, for various values of
the Coulomb interaction. In order to account for the trivial
reduction of the local spin expectation value by virtual
charge fluctuations, we define MðtÞ as the staggered order
Mstagg≡ hnA↑ðtÞ−nA↓ðtÞi¼ hnB↓ðtÞ−nB↑ðtÞi, normalized
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by the probability P1 for a site to be singly occupied,
P1ðtÞ ¼ 1 − 2dðtÞ. To test whether the system thermalizes
after the quench, we compare to an equilibrium state at the
same internal energy (which is zero for the Néel state). The
corresponding effective temperature Teff [Fig. 1(c)] lies
above the Néel temperature TNéel for all values of U [50].
This implies a paramagnetic state after thermalization.

While MðtÞ indeed continues to decay throughout the
simulated time interval, the double occupancy saturates
to a nonthermal value for U ≳ 4 [arrows in Fig. 1(b) point
to the thermalized value dðTeffÞ], in agreement with earlier
studies on the lifetime of doublons in the paramagnetic
Mott regime [51–53]. At a first glance, the relaxation of
MðtÞ and dðtÞ therefore suggests different mechanisms for
small and large values of U, with a rapid and oscillatory
decay of MðtÞ, and a long-lived nonthermal state, respec-
tively. In the following, we analyze the two regimes in more
detail.

A. Weak coupling: Residual quasiparticles

For quenches to small U the Hamiltonian is close to
the integrable point U ¼ 0. This suggests to study the
relaxation in terms of the momentum occupation
nkðtÞ ¼ hc†kcki, which is conserved at U ¼ 0. For a state
with translational symmetry breaking, the single-particle
densitymatrixρkk0 ðtÞ ¼ hc†k0 ðtÞckðtÞi isno longerdiagonal in
momentum k. (The discussion holds for a general lattice like
the Bethe lattice when k denotes the eigenstates of the
translationally invariant hopping matrix.) For nearest-
neighbor hopping on a bipartite lattice, eigenstates come
in pairs k; k̄with single-particle energy ϵk ¼ −ϵk̄, where the
wave functions for k̄ andkdiffer by a staggeredphase ξi ¼ �
for i ∈ AðBÞ, and ρkk̄ ≠ 0 if the symmetry between sub-
lattices isbroken.Athalf filling, the systembecomesparticle-
hole symmetric, so that the Fermi surface is located at ϵ ¼ 0
andsatisfies aperfect nestingcondition. (On the cubic lattice,
k and k̄ ¼ kþ ðπ; π;…Þ are momenta related by the anti-
ferromagnetic nesting vector.) In Fig. 2, we plot the diagonal
and off-diagonal components of the single-particle density
matrix in terms of the two functions nðϵk; tÞ ¼ hc†kðtÞckðtÞi
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FIG. 1. (a) Time evolution of the order parameter MðtÞ ¼
Mstagg=½1 − 2dðtÞ� for different values of the Coulomb repulsion
in the range U ¼ 0 to U ¼ 10. (b) The double occupation dðtÞ at
the same values of U. Arrows indicate the double occupation in a
thermalized state at the same total energy as the quenched state
(as obtained from equilibrium DMFT, using a quantum
Monte Carlo impurity solver [54]). All thermalized states are
in the paramagnetic phase; the corresponding inverse temperature
1=Teff is plotted in (c).
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FIG. 2. Diagonal component nðϵk; tÞ ¼ hc†kcki of the momentum occupation [(a), (c), and (e)] and off-diagonal component ReπðϵkÞ ¼
hc†kck̄i [(b), (d), and (f)], where k and k̄ are pairs of single-particle states coupled by a staggered potential, plotted for quenches to three
different values of U as a function of the energy ϵk ranging from −2 to 2 in the band of the Bethe lattice. The bold lines indicate
momentum distributions obtained in the (paramagnetic) equilibrium state at the same energy. Note that the symmetry of the curves for
ϵ → −ϵ is a consequence of particle-hole symmetry.
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and πðϵk; tÞ ¼ hc†kðtÞck̄ðtÞi, which depend on k only
via ϵk due to the locality of the self-energy within DMFT.
In the thermalized state, πðϵÞ ¼ 0, because the state does not
break the sublattice symmetry, while in the localized initial
state, nðϵ; t ¼ 0Þ ¼ πðϵ; t ¼ 0Þ ¼ 1=2. In agreement with
the behavior of the double occupancy, nðϵ; tÞ does not
thermalize at large U [thermalized values πTeff

ðϵÞ and
nTeff

ðϵÞ are shown by solid lines]. For U ≤ 2, however, the
differences between nðϵ; tÞ and nTeff

ðϵÞ become tiny. This
is in stark contrast to thebehavior of theparamagnetic system
after a quench from U ¼ 0, where prethermalization man-
ifests itself precisely in the difference between nðϵ; tÞ and
nTeff

ðϵÞ [5]. Thermalization of nðϵÞ implies that the kinetic
energyEkin thermalizes,which is in analogy toRef. [5], but in
the present case, Teff becomes large for small U, so that the
whole functional form of nTeff

ðϵÞ is already determined by
Ekin. Moreover, around U ¼ 3, the relaxation of πðϵ; tÞ
changes from an oscillatory to a monotonic decay. [In
Fig. 2, we plot the real part of πðϵ; tÞ; the imaginary part
shows a similar crossover from oscillatory to nonoscillatory
behavior.]
This observation may be explained following the per-

turbative arguments of Refs. [5,6]. To second order in U,
the Hamiltonian (1) is unitarily equivalent to a model
H ¼ P

k ~ϵk ~c
†
k ~ck þOðU2Þ that is quadratic in terms of

quasiparticle operators ~ck; we have ck ¼ Rk ~ck þ incoh,
with a finite residue Rk, where incoh denotes incoherent
contributions, i.e., an admixture of particle-hole excitations
to higher order in U. Hence, the momentum occupation is
given by nkðtÞ ¼ R2

kh~c†kðtÞ~ckðtÞi þ incoh. The term propor-
tional to R2

k (the coherent part) is unchanged by the time
evolution to second order in U. We transform nkðtÞ ¼
R2
kh~c†kð0Þ~ckð0Þi þ incoh back to the original basis using

the inverse transformation ~ck ¼ R0
kck þ � � �. Assuming

that Rk is real, one has Rk ¼ R0
k, because f~ck; ~c†k0 g ¼

fck; c†k0g ¼ δkk0 . Thus, the backtransformation gives
nkðtÞ ¼ R4

knkð0Þ þ incoh, where the incoherent contribu-
tion is a smooth function of k. For quenches in the
paramagnetic phase, nkðtÞ thus preserves the initial dis-
continuity at the Fermi surface, which can be taken as a
measure of prethermalization [5]. In the symmetry broken
state, however, nkð0Þ is independent of k, and thus nkðtÞ
does not clearly exhibit the existence of residual quasi-
particles. In fact, the numerical results suggest that
the incoherent part can accurately be described by a
thermal distribution. In contrast, a similar argument
for the off-diagonal component shows that πkðtÞ¼
R2
kh~c†kðtÞ~ck̄ðtÞiþ incoh¼R4

ke
i2~ϵktπðϵ; t¼ 0Þþ incoh, where

we use the time evolution of the quasiparticle, ~ckðk̄ÞðtÞ ¼
e∓i~ϵkt ~ckðk̄Þð0Þ, and Rk ¼ Rk̄. Hence, we find that the
residual quasiparticle dynamics leading to prethermaliza-
tion close to the integrable point U ¼ 0 can be studied very
conveniently with the symmetry-broken initial state in

terms of oscillations in the off-diagonal components of
the momentum occupation.
Similar to the interaction quench in the paramagnetic

phase [9,11], we find that the “prethermalization” regime in
which residual quasiparticles dominate the dynamics is
limited to small interactions; at large interactions, πðϵ; tÞ
relaxes to zero monotonically [see the U ¼ 6 data in
Fig. 2(b)] and the distribution becomes flat over the
Brillouin zone. Below, we see that the dynamics at large
U can be analyzed in terms of well-defined localized
moments. In contrast to the quench in the paramagnetic
phase, the crossover between the weak- and strong-
coupling regimes is relatively smooth and occurs between
U ¼ 2 and U ¼ 3: In Fig. 3(a), we exemplarily plot
Reπðϵ; tÞ for fixed ϵ ¼ −1.5 and various U. For U ≲ 2,
the curves can be accurately fit (after a transient t0 needed
to reach the prethermalized state) with decaying oscilla-
tions f1ðtÞ ¼ a exp½−Γðt − t0Þ� cosð−2ϵ0tþ ϕÞ, where, in
agreement with the discussion above, the quasiparticle
energy ϵ0 → ϵ, and Γ ∼U2 for U → 0 [solid lines in
Fig. 3(a), fit parameters in Fig. 3(b)]. For U ≳ 3, on the
other hand, a good fit is a monotonically decaying curve
f2ðtÞ ¼ b exp½−cðt − t0Þ�. For 2≲ U ≲ 3, there is a cross-
over between the two behaviors, as evidenced by the
dependence of the amplitudes a and b of the monotonic
and the oscillating component on U [Fig. 3(b)].
Before discussing the strong-coupling regime, we note

that off-diagonal momentum distributions can, in principle,
be measured by a modified time-of-flight measurement, if
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FIG. 3. (a) Line cut of πðϵ; tÞ for ϵ ¼ −1.5 and various values of
U. Solid lines are fits with the sum of a decaying exponential
background and decaying oscillations, fðtÞ ¼ b exp½−cðt −
t0Þ� þ a exp½−Γðt − t0Þ� cosð2ϵ0tþ ϕÞ for t > t0 ¼ 1.5. (b) Am-
plitudes of the background b, the oscillations a, the quasiparticle
energy ϵ0, and the quasiparticle decay rate Γ as a function of U.
(Note that Γ and ϵ0 are no longer well defined if a becomes small.)
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before releasing the cloud one would switch off the
interaction and the tunneling (so that ϵk ¼ 0), switch on
a staggered potential, which is �Δ on the A and B
sublattice, respectively, and evolve for a given time tm.
Time of flight measures the regular momentum occupation
nk ¼ hc†kcki after that procedure. In the k; k̄ basis, the
staggered potential is given by H ¼ Δ

P
kðc†kck̄ þ H:c:Þ,

so that nkðtþ tmÞ ¼ nkðtÞcos2ðtmΔÞ þ nk̄ðtÞsin2ðtmΔÞ þ
sinð2tmΔÞImπkðtÞ after propagation in the pure staggered
potential from time t to tþ tm, and ImπkðtÞ can be
extracted.

B. Dynamics of local moments

In a Mott insulator at large U one can expect the
existence of well-defined local moments. It is an intriguing
question whether these moments persist in the quenched
state while the long-range order disappears, and to what
extent the crossover in relaxation behavior from weak to
strong coupling can be characterized in terms of these local
moments. In the following, we propose a simple experi-
ment to distinguish the existence and strength of moments
in the quenched state: one spin in the initial Néel state on a
given site (the probe site “o”) is flipped to the x direction
[see Fig. 4(d), inset]. Choosing o on the A sublattice of the
Néel state, the initial state [Eq. (2)] of the dynamics is
changed to ðjΨNéel;↑iþjΨNéel;↓iÞ=

ffiffiffi
2

p
, where jΨNéel;σi¼

c†o;σco↑jΨNéeli. In a perfect local moment picture, the spin
should then precess in the exchange field of its neighbors.
The inhomogeneous setup with one probe spin can be

solved within DMFT, where it corresponds to a modified
impurity problem at site o, while the rest of the lattice is

unchanged (see Appendix A). Figures 4(a)–4(c) show the
local spin expectation values hSzi, hSyi, and hSxi at site o
for various values of the interaction. In Fig. 4(d), we show
the trajectory of the spin in the Sx-Sy plane, starting from
Sx ¼ 1, Sy ¼ 0 at time t ¼ 0. For large U, one can indeed
observe a precessional motion in the Sx-Sy plane, as
expected for a local moment subject to an exchange field
in the z direction. For U ¼ 0, on the other hand, the spin
dynamics is entirely longitudinal, showing no sign of
well-defined local moments. [For U ¼ 0, the dynamics
can be solved analytically, yielding Sx;o ¼ J1ðtÞ2=t2, while
So;y ¼ 0 for the Bethe lattice at Z ¼ ∞, where J1ðxÞ is the
first Bessel function (see Appendix C)]. There is a cross-
over between the two relaxation regimes.
Although the exchange interaction is, in principle, not

an instantaneous interaction on the time scale of the
electronic hopping [23], it is illustrative to quantify the
precession dynamics in terms of an effective exchange
field. For this purpose we follow Refs. [23,55] and define
Beff such that hSðtÞi satisfies the equation of motion
d=dthSðtÞi ¼ Beff × hSðtÞi. We can assume that Beff ¼
Beff ẑ acts only in the z direction (parallel to the order
parameter Mstagg on the neighboring sites) and use the
parametrization Beff ¼ JexMstagg to define an effective
exchange interaction Jex; the latter is then given by
Jex ¼ _ϕðtÞ=jMstaggj, where ϕðtÞ ¼ arctan½SyðtÞ=SxðtÞ� is
the angle of the spin in the x-y plane. The resulting value
Jex is plotted in Fig. 4(e). For large U, Jex shows very good
agreement with the perturbative value of the exchange in
the Hubbard model, 4J2�=U, and is not substantially
decreasing with time even for quenches at intermediate
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FIG. 4. Dynamics at a probe site o, where the spin is initially flipped to the x direction. (a)–(c) Expectation values hSzðtÞi, hSyðtÞi, and
hSxðtÞi for various values of U [see legend in (d)]. (d) Trajectory of the spin hSi in the Sx-Sy plane. The inset illustrates the initial state,
with one spin flipped to the x direction, and the effective exchange field. (e) Effective exchange interaction, dϕðtÞ=dt=jMstaggj, where
ϕðtÞ ¼ arctanðSy=SxÞ is the angle in the Sx-Sy plane, for U ¼ 3; 4; 5; 7; 10. The dotted lines correspond to the perturbative value of the

exchange interaction, Jex ¼ 4J2�=U. (f) Temperature-dependent local moment in equilibrium, defined by ð1=βÞ R β
0 dτhSzðτÞSzð0Þi,

obtained using a continuous-time quantum Monte Carlo impurity solver.
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interaction (U ≈ 4) where the order parameter quickly
decays to zero (see Fig. 1) [56]. Equilibrium estimates
of the local moment in the intermediate-coupling regime
[Fig. 4(f)] furthermore show tendencies of moment for-
mation at elevated temperatures, which may explain why
some spin precession occurs even for U ¼ 2. The combi-
nation of these results shows that the melting of long-range
order proceeds by the quasithermal pathway discussed in
the Introduction, i.e., a disordering of exchange-coupled
moments, rather than by a change of the exchange
interaction or a destruction of the moments.

C. Strong coupling: Spin-charge interaction

At large U, a quench within a Mott insulator freezes
virtual charge fluctuations, leaving behind a certain density
nδ of long-lived mobile carriers [25]. The mechanism for
the decay of the antiferromagnetic order is thus expected to
be the transfer of energy from excited quasiparticles to the
spins, which is currently intensively investigated in con-
densed-matter pump-probe experiments. Although this
mechanism is rather well understood in contrast to the
dynamics at intermediate coupling, it is worthwhile to see
how it can be investigated in the cold-atom setup, because
experiments in solids are very challenging.
To investigate the decay of long-range order system-

atically, one has to vary the excitation density. Here, we
use a quench protocol where, in addition to switching
on the hopping at time t ¼ 0, the interaction is changed
to an intermediate interaction value Ui for a short time
0 ≤ t ≤ 0.5 before it is set to the final value U for
t > 0.5. (Note that various other protocols, such as an
intermediate time-dependent modulation of the hopping,
would have the same effect.) Small values Ui lead to a
larger double occupancy [Fig. 5(a)], and indeed also a
more rapid decay of MðtÞ [Fig. 5(b)]. We also note that
an exponential fit MðtÞ ∼ ae−t=τ þ b would be consistent
with a threshold behavior in which MðtÞ extrapolates to
a finite value b for small excitation density (Ui close to
Ui ¼ 8) and to b ¼ 0 for large excitation density,
consistent with earlier quench studies based on the
noncrossing approximation impurity solver [25], but
the times are not sufficient to analyze this long-time
behavior in detail.
For a quantitative analysis of the short-time behavior, we

determine the number nδ of doublons and hole carriers in
the quenched state [Fig. 5(c), inset]. Because of virtual
charge fluctuations, nδ is not exactly given by an instanta-
neous expectation value dðtÞ in the Hubbard model, and we
compute nδ from the total weight in the upper Hubbard
band (Apprndix B) [57]. For small times, the curves MðtÞ
for various values Ui can then be scaled on top of each
other by plotting ½1 −MðtÞ�=nδ [Fig. 5(c)]. Such a scaling
implies that the number of flipped spins, 1 −MðtÞ, is
proportional to the number of carriers. This is consistent
with the picture that spin flips are inserted by mobile

carriers, which are initially localized and thus act inde-
pendently up to times depending on nδ. For large times
there is a deviation from the scaling due to the gradual
melting of the order parameter.
To further corroborate this picture, we analytically

compute the spin-flip rate per carrier in the low-density
limit from the behavior of a single carrier that is initially
localized at a given site 0 in an Ising spin background.
Following Ref. [29], we omit the transverse dynamics
of the spins, which is on the time scale of Jex and much
slower than the hopping, and keep only the z component of
the exchange coupling Jex (t-Jz model). The model can
then be reduced to a tight-binding model for a single
particle on the lattice, with effective Hamiltonian H ¼
−J�=

ffiffiffiffi
Z

p P
hiji c

†
i cj þ J�ex=2

P
j jjjc†jcj (J�ex ≡ ZJex, which

is finite for Z → ∞ and J ¼ J�=
ffiffiffiffi
Z

p
). The number of

flipped spins is simply given by the displacement jjj from
the origin, and the second term in the Hamiltonian accounts
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FIG. 5. Data for the following quench protocol: t < 0: J� ¼ 0
(Néel state); 0 ≤ t < 0.5: J� ¼ 1, U ¼ Ui; t ≥ 0.5: J� ¼ 1,
U ¼ 8. The intermediate step controls the excitation density in
the final state. (a) Time evolution of the double occupancy or
various values of Ui. (b) Time evolution of the order parameter
MðtÞ. (c) Number of spin flips per charge-carrier density nδ,
½1 −MðtÞ�=nδ, compared to the mean displacement RðtÞ of
the initially localized particle in the t-Jz model for J�ex ¼ 0
and J�ex ¼ 0.5 (dotted and dashed black lines; see text). The inset
shows the average of dðtÞ for 2 ≤ t ≤ 5 (open circles), and the
density of mobile carriers nδ, obtained from the integrated weight
in the upper Hubbard band (red crosses).
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for the corresponding exchange energy cost; i.e., the
particle is bound to the origin by a linear potential due
to the “string” of flipped spins left behind [58]. The dotted
line in Fig. 5(c) shows the mean displacement RðtÞ of the
particle in this model, which indeed coincides with the
mean number of flipped spins per particle in the numerical
DMFT results. As is evident from a comparison of the two
curves for Jex ¼ 0 and Jex ¼ 0.5 [the perturbative value for
the Hubbard model at U ¼ 8, see also Fig. 4(e)], the effect
of Jex becomes important only at longer times (when
numerical data already depend on nδ), because initially the
kinetic energy of the carrier is much larger than Jex. In
order to measure the effect of Jex on the charge-carrier
interaction, one would have to reduce the number of
excitations (e.g., by switching on the hopping slowly),
which, however, makes an accurate determination of nδ
increasingly difficult.

IV. CONCLUSION

In conclusion, we study the short-time relaxation dynam-
ics of the Néel state in the single-band Hubbard model by
means of nonequilibrium DMFT, using DMRG to solve the
quantum impurity model. We find qualitatively different
relaxation behaviors for weak and strong interactions,
separated by a crossover around U ≈ 0.6 × bandwidth:
For strong interaction, local magnetic moments persist
while their order is destroyed by spin flips due to the
hopping of mobile charges. The latter resembles the
femtosecond carrier spin interaction, which is relevant
for the dynamics of photoinduced states in high-Tc cuprates
[32]. To demonstrate the persistence of local moments,
we propose a spin-precession experiment, which could be
implemented similar to the proposed measurement of
dynamic spin-spin correlation functions in equilibrium
[59]. At weak interaction, the dynamics of the Néel state
is governed by almost conserved quasiparticles, which are
also the origin for prethermalization in nearly integrable
systems [4,6,7]. In the symmetry-broken state, the break-
down of these quasiparticles away from integrability leads
to a crossover from oscillatory to nonoscillatory relaxation
behavior, which can provide a clear experimental signature
that does not rely on a quantitative comparison to the
thermal equilibrium state.
Our simulations within DMFT are exact in the infinite-

dimensional limit, and it is thus interesting to compare
to recent results for one dimension [40]. Similar to our
results, in d ¼ 1 one finds a rapid saturation of the double
occupancy and a slower dynamics of the order parameter at
large U, but the decay of antiferromagnetic order is of a
different origin: In large dimensions, the fastest melting
processes after the quench take place on the time scale of
the hopping due to the strong charge-spin interaction, while
the latter is absent in d ¼ 1 so that the dynamics happens
on the time scale of the exchange interaction [40]. The
quasiparticle physics at weak coupling and in the crossover

regime has not been addressed in Ref. [40], but based on the
perturbative argument given above, the signatures in the
off-diagonal components of the momentum distribution
should persist also in lower dimensions. (Also in the
paramagnetic case, a long-lived jump in the momentum
distribution function is found in d ¼ 1 [33,35,60] and
d ¼ 2 [34,35].)
Quench experiments starting from the Néel state have

recently been performed with noninteracting fermions in
one dimension [21] and bosons in two dimensions [22].
Hence, this setup should be a feasible approach to study
fundamental aspects of the decay of antiferromagnetic
long-range order in the paradigmatic Hubbard model.
We expect the predictions to be robust for an inhomo-
geneous trapping potential as long as there is a large half
filled region (which is guaranteed by the preparation of the
state in the Mott regime). If the tails are not magnetically
ordered, they give a contribution to the signal discussed
above only on longer time scales that allow for substantial
mass transport between different regions of the trap.
Moreover, on the numerical side, our work emphasizes
the high potential of DMRG as an impurity solver for future
applications of nonequilibrium DMFT to explore the
intermediate-coupling regime, which is inaccessible by
weak- or strong-coupling perturbation theory.
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APPENDIX A: DMRGþ DMFT SETUP

1. General setup

To simulate the dynamics of a lattice model that is
initially in equilibrium at temperature T ¼ 1=β, we
adopt the formulation of dynamical mean-field theory
within the Keldysh framework (nonequilibrium DMFT),
for an L-shaped time contour C that extends from initial
time t ¼ 0 to a maximal time tmax along the real-time
axis, back to time 0, and along the imaginary time axis
to −iβ. For a general description of the formalism, as
well as the notation and definition of contour-ordered
functions, we refer to Ref. [41]. In this Appendix, we
summarize the specific setup for the quench from the
Néel state and the solution of the DMFT equations
using DMRG.
In DMFT, the lattice model is mapped to a set of impurity

problems, one for each inequivalent lattice site j, with time-
dependent hybridization functions Δjσðt; t0Þ. The action of
the impurity model is given by
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Sj ¼ −i
Z
C
dtUn↑ðtÞn↓ðtÞ

− i
X
σ

Z
C
dt1dt2c

†
σðt1ÞΔjσðt1; t2Þcσðt2Þ ðA1Þ

on the Keldysh contour C, which yields the local
contour-ordered Green function Gjσðt; t0Þ ¼
−iTr½TCeSjcσðtÞc†σðt0Þ�=Z. The hybridization function
Δjσðt; t0Þ must be defined self-consistently. For the Bethe
lattice, one has [61]

Δjσðt; t0Þ ¼
X
l

JðtÞGlσðt; t0ÞJðt0Þ�; ðA2Þ

where the sum runs over nearest neighbors of j. In the
antiferromagnetic state, all sites on the A and B sublattices
are equivalent, respectively. With the additional symmetry
GA;σ ¼ GB;−σ, only one impurity model must be solved
with Δσðt; t0Þ ¼ J�ðtÞG−σðt; t0ÞJ�ðt0Þ, where we use the
scaling JðtÞ ¼ J�ðtÞ=

ffiffiffiffi
Z

p
with the coordination number Z.

For the initial product state with J�ðtÞ ¼ 0 for t < 0,
Δðt; t0Þ ¼ 0 if one time argument is on the imaginary
branch of C. Furthermore, equivalence under a simulta-
neous spin and particle-hole transformation implies the
symmetry

Δ>
σ ðt; t0Þ ¼ Δ<

−σðt; t0Þ�: ðA3Þ

To compute the Green function, we follow Ref. [45] and
map the impurity model to a time-dependent Anderson
Hamiltonian

Himp ¼ Un↑n↓ þ
X
pσ

ϵpσa
†
pσapσ

þ
X
pσ

½VpσðtÞc†σapσ þ H:c:�; ðA4Þ

in which the impurity is coupled to L bath orbitals
(p ¼ 1;…; L). The parameters VpσðtÞ and ϵp are deter-
mined such that the local Green functions obtained from
Eqs. (A1) and (A4) are identical. As derived in Ref. [45],
for J�ðt < 0Þ ¼ 0, one can choose VpσðtÞ ¼ 0 for t < 0,
and the mapping condition is satisfied by (assuming L
even)

Δ<
σ ðt; t0Þ ¼ i

XL=2
p¼1

VpσðtÞV�
pσðt0Þ; ðA5Þ

Δ>
σ ðt; t0Þ ¼ −i

XL
p¼L=2þ1

VpσðtÞV�
pσðt0Þ; ðA6Þ

where ϵpσ ¼ 0, and the bath orbitals p ¼ 1;…; L=2 and
p ¼ L=2þ 1;…; L are initially doubly occupied and

empty, respectively. Equations (A5) and (A6) are solved
by a Cholesky fit of the real-time matrix Δðt; t0Þ, which
quickly converges for small times with the number of bath
orbitals required [49]. Because of the symmetry [Eq. (A3)],
we use

Vp;−σðtÞ ¼ VL=2þp;σðtÞ� for p ≤ L=2: ðA7Þ

The impurity site is initially occupied with a spin σ ¼ ↑
(for a site on the A sublattice), i.e., the initial state
for the impurity model is a product state jΨimp;Ai ¼
c†↑

QL=2
i¼1 a

†
p↑a

†
p↓j0i, and the Green function is obtained

by solving

G<
A;σðt; t0Þ ¼ ihΨimp;Ajc†σðt0ÞcσðtÞjΨimp;Ai; ðA8Þ

G>
A;σðt; t0Þ ¼ −ihΨimp;AjcσðtÞc†σðt0ÞjΨimp;Ai; ðA9Þ

where time evolution is determined by Eq. (A4). We use a
Krylov time propagation for matrix product states [47] with
up to L ¼ 24 bath orbitals.

2. Inhomogeneous setup

For the inhomogeneous setup, we assume that in the
initial state on the lattice the spin at one site o of the lattice
is flipped in the x direction. Without loss of generality,
we assume that o is on the A sublattice. From the self-
consistency equation (A2), one can see that the hybridi-
zation on all other sites differs from the homogeneous
case only in order 1=Z; i.e., for Z → ∞ the backaction of
the probe site on the rest of the lattice can be neglected.
On the probe site we solve an impurity problem with the
same (nonequilibrium) hybridization function ΔA as on all
remaining A sites, i.e., an impurity problem [Eq. (A4)] with
the same parameters Vpσ but with a different initial state:

jΨimp;oi ¼
�
c†↑

YL=2
i¼1

a†p↑a
†
p↓j0i þ c†↓

YL=2
i¼1

a†p↑a
†
p↓j0i

�
=

ffiffiffi
2

p
:

ðA10Þ

3. Observables

Local observables hOjðtÞi≡ hΨimp;jjOðtÞjΨimp;ji are
directly measured in the impurity model (j ¼ o; A), in
particular, the density O≡ nσ, the double occupancy
O≡ n↑n↓, and the spin O≡ Sα¼x;y;z ¼ 1

2

P
σσ0 c

†
σταcσ0

(τα are the Pauli matrices).
In the translationally invariant case (no probe site), we

also determine diagonal and off-diagonal components of
the momentum occupations nðϵ; tÞ and πðϵ; tÞ, which are
obtained from the momentum resolved Green function (for
the definition of k and k̄, see the main text):
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Gϵkðt; t0Þ ¼
�−ihTCckðtÞc†kðt0Þi −ihTCckðtÞc†k̄ðt0Þi
−ihTCck̄ðtÞc†kðt0Þi −ihTCck̄ðtÞc†k̄ðt0Þi

�
:

ðA11Þ

(Here and in the following, bold-faced quantities denote
2 × 2matrices and we omit spin indices for simplicity.) The
self-energy is local in space but depends on the sublattice
and spin; in the k, k̄ representation, it thus assumes the
(2 × 2) form

Σðt; t0Þ ¼ 1

2
½ΣAðt; t0Þ þ ΣBðt; t0Þ�1

þ 1

2
½ΣAðt; t0Þ − ΣBðt; t0Þ�τx; ðA12Þ

so that Gϵ is obtained from the lattice Dyson equation
Gϵ ¼ ði∂t þ μ − ϵ − ΣÞ−1, where the dispersion in the k,k̄
representation reads ϵ ¼ ϵτz because ϵk ¼ −ϵk̄. The com-
ponents Σj of the self-energy (j ¼ A;B) are obtained from
the impurity Dyson equation ði∂t þ μ − Δj − ΣjÞ−1 ¼ Gj.
In praxis, we solve an integral equation Gj ¼ Zj þ Zj �
Δj � Gj for Zj ¼ ði∂t þ μ − ΣjÞ−1. We then have Z ¼
ði∂t þ μ − ΣÞ−1 ¼ 1

2
ðZA þ ZBÞ1þ 1

2
ðZA − ZBÞτx, and Gϵ

is obtained from the integral equationGϵ ¼ Zþ Z � ϵ � Gϵ.

APPENDIX B: MOBILE CARRIER DENSITY
IN THE EXCITED STATE

In the Mott insulating phase of the Hubbard model,
a well-defined measure for the number of doublon
or hole carriers is given by the total occupied spectral
weight in the upper Hubbard band and the total unoccupied
weight in the lower Hubbard band, respectively. The
double occupancy, in contrast, depends on virtual charge
fluctuations, which are nonzero also in the insulating
ground state. Specifically, we define the occupied
density of states as the partial Fourier transform
Nσðt;ωÞ ¼ Im

R
t
0 ds expð−s2=2δ2Þ expð−isωÞG<

σ ðt − s; tÞ,
where G<

σ ðs; s0Þ ¼ ihc†σðs0ÞcσðsÞi is the local Green func-
tion and δ ¼ 1.5 ensures a smooth cutoff (which does not
influence the results unless its inverse width is longer than
the inverse of the gap). The spectrum Nσðω; tÞ is plotted in
Fig. 6(a) for two different times, for the same quench
parameters as in Fig. 5 of the main text. The right-
hand panel shows the integrated density WσðtÞ ¼R∞
0 dωNσðω; tÞ. While the weight in the upper and lower
band differs considerably between majority and minority
spin, the integrated weight WσðtÞ reflects the doublon
density and is thus independent of σ. It is interesting to
point out that as a function of time spectral weight is
redistributed both between the lower Hubbard bands of the
two spin components (which reflects the decay of the Néel
order) and within the upper Hubbard band (which reflects
the change of the kinetic energy of the doublons), while the

total weight in the upper band is roughly constant (see,
e.g., Ref. [25]). For the analysis in the main text, we
take nδ ¼ ½W↑ðtmaxÞ þW↓ðtmaxÞ�=2.

APPENDIX C: SOLUTION FOR U ¼ 0

For U ¼ 0, the time evolution of the Néel state on the
Bethe lattice can be obtained analytically by solving the
Heisenberg equations of motion for the c operators, which
provides a good check for the numerical implementation.
For completeness, we provide this solution here. We choose
site 0 to be the origin of the Bethe lattice, which is on the A
sublattice without loss of generality. One can map the
solution of equations of motion on the Bethe lattice to a
one-dimensional semi-infinite chain by introducing oper-
ators that are invariant under all permutations of the
branches of the Bethe lattice [62],

Cn ¼
1ffiffiffiffiffiffi
Zn

p
X

i∶ji−0j¼n

ci; ðC1Þ

where Zn ¼
P

i∶ji−0j¼n is the number of sites on the nth
nearest-neighbor shell. Then the action of the Hamiltonian
is determined by ½H;Cj� ¼ −

P∞
i¼0 hjiCi, with

h ¼

0
BBBBB@

0 1 0 0 � � �
1 0 1 0

0 1 0 1

..

. . .
.

1
CCCCCA
: ðC2Þ

Hence, eigenvectors for the eigenvalue ϵ satisfy the
equations
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FIG. 6. (a) Occupied density of statesNσðω; tÞ after the quench:
t < 0: v ¼ 0 (Néel state); 0 ≤ t < 0.5: v ¼ 1, U ¼ Ui; t ≥ 0.5:
v ¼ 1, U ¼ 8, for various values of Ui; N↑ðω; tÞ and N↓ðω; tÞ
refer to majority and minority spin, respectively, and the upper
Hubbard band is scaled by a factor of 5. Dashed and solid lines
denote time t ¼ 4 and the largest simulation time t ¼ tmax,
respectively. (b) Integrated weight in the upper Hubbard band
(red crosses and blue stars).
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ϕðϵÞ0 ¼ 1; ðC3Þ

ϕðϵÞ1 ¼ ϵ; ðC4Þ

ϵϕðϵÞn ¼ ϕðϵÞnþ1 þ ϕðϵÞn−1; ðC5Þ

and are thus given by the Chebychev polynomials of the
second kind [63], ϕðϵÞn ¼ Unðϵ=2Þ for −1 ≤ ϵ=2 ≤ 1. The
Un can be conveniently written as

Un½cosðθÞ� ¼
sin½ðnþ 1Þθ�

sinðθÞ ; ðC6Þ

from which one can also see the orthogonality

Z
1

−1
dxwðxÞUnðxÞUmðxÞ ¼ δmn; ðC7Þ

with wðxÞ ¼ ð2=πÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
. Thus, the solution of the

Heisenberg equations of motion for the local c operator
[Eq. (C1)],

d
dt

C0ðtÞ ¼ i½H;C0ðtÞ�; C0ð0Þ ¼ C0; ðC8Þ

is given by

C0ðtÞ ¼
X∞
n¼0

ψnðtÞCn; ðC9Þ

ψn ¼
Z

1

−1
dxwðxÞe−i2xtUnðxÞ: ðC10Þ

This can be transformed to

ψn ¼
2

π

Z
1

−1
d½cosðθÞ� sinðθÞe−i2 cosðθÞt sin½ðnþ 1Þθ�

sinðθÞ
¼ 2

π

Z
π

0

dθ sin½ðnþ 1Þθ� 1

2it
∂θe−i2 cosðθÞt

¼ i
πt

Z
π

0

dθe−i2 cosðθÞt∂θ sin½ðnþ 1Þθ�

¼ iðnþ 1Þ
πt

Z
π

0

dθe−i2 cosðθÞt cos½ðnþ 1Þθ�

¼ iðnþ 1Þ
πt

Z
π

0

dθei2 cosðθÞt cos½ðnþ 1Þθ�ð−1Þnþ1

¼ ð−iÞnðnþ 1Þ Jnþ1ð2tÞ
t

: ðC11Þ

The second-to-last line is a variable transformation
θ → π − θ, and in the last line we use the integral
representation of the Bessel function [63],

JnðzÞ ¼
ð−iÞn
π

Z
π

0

dθ cosðnθÞeiz cosðθÞ: ðC12Þ

The explicit form of the C operators can be used to
obtain local observables,

hΨjc†σðtÞcσ0 ðtÞjΨi ¼
X
n;m

ψ�
nðtÞψmðtÞhΨjC†

nσCmσ0 jΨi

ðC13Þ

¼
X
n

jψnðtÞj2hΨjC†
nσCnσ0 jΨi; ðC14Þ

where the expectation values are simple initial state values.
We start by evaluating the time evolution of the magnetic
order, n↑ − n↓, at site 0, in the classical Néel state. For the
latter, we have

hΨNéeljC†
n↑Cn↑ − C†

n↓Cn↓jΨNéeli ¼ ð−1Þn; ðC15Þ

and hence,

hΨNéeljn↑ðtÞ − n↓ðtÞjΨNéeli ¼
X∞
n¼0

ð−1Þn ðnþ 1Þ2Jnþ1ð2tÞ2
t2

ðC16Þ

(where the summation index has been shifted by one). We
can now use Gegenbauer’s addition theorem for Bessel
functions [63] to obtain the final result,

hΨNéeljn↑ðtÞ − n↓ðtÞjΨNéeli ¼
J1ð4tÞ
2t

; ðC17Þ

which fits the numerics.
Next, we compute site 0 expectation values on the probe

site. Now the initial state is a superposition:

jΨi ¼ ðjΨNéel;↑i þ jΨNéel;↓iÞ=
ffiffiffi
2

p
; ðC18Þ

jΨNéel; σi ¼ c†0;σc0;↑jΨNéeli: ðC19Þ

We evaluate the cross-spin expectation values:

hSþ0 ðtÞi ¼ hΨjc†0↑ðtÞc0↓ðtÞΨi
¼

X
n

jψnðtÞj2hΨjC†
n↑Cn↓jΨi: ðC20Þ

Spin-flip expectation values are only nonzero in the initial
state at site 0, where we have
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hSþ0 ðtÞi ¼ jψ0ðtÞj2hΨjc†0↑c0↓jΨi ðC21Þ

¼ J1ð2tÞ2
2t2

: ðC22Þ

Hence, Sþ0 ðtÞ is purely real, so that the dynamics is entirely
longitudinal in the Sx-Sy plane:

hSx0ðtÞi ¼
J1ð2tÞ2
2t2

; ðC23Þ

hSy0ðtÞi ¼ 0: ðC24Þ
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