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FIG. 1. (a) X-ray diffractometry data at T = 21 K (in the t-AF phase) in a region of reciprocal

space around the (1, 1, 14) Bragg peak. Note the log scale. Panel (b) shows a fit to the T = 21 K

data. Panels (c) and (d) show the data and fit at T = 35 K (in the o-AF phase), respectively.

X-RAY DIFFRACTION DATA

In the high-temperature tetragonal phase above TN1, Ba1−xKxFe2As2 has the space group

I4/mmm. As the temperature is lowered, the tetragonal (1, 1, 14) Bragg-peak is known to

split into two peaks below the tetragonal to orthorhombic structural transition. Below we

denote the distance in reciprocal space in the (1, 1, 0) direction as Qx′ . This splitting of the

Bragg peak in the Qx′ direction we observe with x-ray diffraction, as shown in Fig. 1(a) of the

main paper and in Fig. S1(c). In the t-AF phase between TN2 and TN3, the intensity of these

split orthorhombic peaks decreases strongly whilst a third Bragg-peak at intermediate Qx′

grows in intensity. This is shown in Fig. S1(a) which plots the diffracted x-ray intensity in a

region of reciprocal space around the (1, 1, 14) Bragg-peak in the t-AF phase at T = 21 K.

The main feature is this Bragg-peak at intermediate Qx′ = 0.3631 Å−1 whilst only a weak

remnant of one of the split orthorhombic peaks can be seen at larger Qx′ . This demonstrates

that the majority of the sample is tetragonal (or has an orthorhombic splitting smaller than

our experimental resolution) in the t-AF phase.

In order to estimate what fraction of the sample remains with this orthorhombic symmetry
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FIG. 2. The measured dc conductivity (solid line) and the extrapolated values of the optical

conductivity at ω = 0 (squares).

in the t-AF phase, each of the three Bragg peaks were fitted to an asymmetric 2-dimensional

Gaussian function;

I = A exp

[
−(Qx′ − µx′)2

2σ2
x′

− (Qz − µz)2

2σ2
z

]
The volume of this function is 2πAσx′σz, which we call here the weight. From the fit shown

in Fig. S1(b) we find that in the t-AF phase, the weight of the one observable orthorhombic

peak is 10(1)% the weight of the main tetragonal peak. It is also 10(1)% of the combined

weight of the two orthorhombic Bragg reflections in the o-AF phase.

LOW-FREQUENCY EXTRAPOLATION OF THE OPTICAL CONDUCTIVITY

In the normal-state, the optical conductivity was extrapolated to zero-frequency by fitting

two Drude terms (and several higher-frequency Lorentz terms) to the FIR reflectivity and

MIR ellipsometry data. The use of two Drude terms in fitting the optical conductivity

data in the pnictides has been discussed at length in the literature, see [1, 2] and references

therein. Fig. S2 shows the extrapolated σ1(ω = 0) values from the optics data against the

DC conductivity measured by the conventional 4-probe technique.

In the superconducting state below T = 28 K, the low-frequency extrapolation of the

reflectivity data was achieved using the so-called gapped Drude model and implemented in
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the RefFIT program written by Alexey Kuzmenko [3]. These extrapolations, shown as dotted

lines in Fig. 2(b), were then used in the determination of the superconducting condensate

density, ω2
pl,SC ∝ ns , where the reduction of the spectral-weight over the spectral range 0+

to 2000 cm−1 below Tc with respect to T > Tc is taken to be equal to ω2
pl,SC . As stated in

the main text, the accuracy of these extrapolations was checked against estimates of ω2
pl,SC

utilizing the real part of the dielectric function, ε1. The contribution to ε1 for a Drude term

with zero scattering rate (representing SC charge-carriers) is ε1,δ = 1 − ω2
pl/ω

2, where the

plasma frequency ωpl = 2e
√
πn/m∗ is related to the charge-carrier density, n, and effective-

mass, m∗. However, the measured ε1 also contains additional contributions from finite-

frequency oscillators which must be accounted for in order to estimate the plasma frequency

of the superconducting condensate, ωpl,SC . This is achieved by taking the Kramers-Kronig

transformation of the measured σ1(ω) in the range 0+ < ω < 4000 cm−1 (or, equivalently,

of ε2(ω) since σ(ω) = iω
4π

[1− ε(ω)]) which yields a function, εreg1 (ω), that would be measured

in the absence of a superconducting condensate. One then obtains an upper estimate of

ωpl,SC by equating ε1,δ with ε1 − εreg1 . The two methods give similar values of ωpl,SC across

the entire temperature range and in Fig. 3(e) of the main text we show an average of ω2
pl,SC

from these two methods at each temperature and indicate the difference between the two

methods in the error bars.

SPECTRAL WEIGHT OF THE SDW PAIR-BREAKING PEAK

In an itinerant magnetic model, the spectral-weight (SW) of the pair-breaking peak is

proportional to the magnitude of the AF moments. To estimate the SW of the pair-breaking

peak, we firstly fit the ‘normal state’ (i.e. T > TN1) σ(ω) = σ1(ω) + iσ2(ω) data between

0 and 4000 cm−1 using two Drude terms and three broad Lorentzian oscillators. Such a fit

is shown in Fig. S3(a) for our underdoped crystal at 100 K. Fitting the σ(ω) data below

TN1, we keep the Lorentzian oscillators fitted from the data above TN1 essentially fixed

(allowing only for small changes of the oscillator strength). The remainder of the spectra

are fitted by varying the Drude terms and introducing Gaussian oscillators to fit the pair-

breaking peak. Gaussian oscillators are used because they are more localized than Lorentz

oscillators and still give a phenomenological description of the data. The SW,
∫
σ1(ω)dω, of

the pair-breaking peak is then determined from the fitted Gaussian oscillators.
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FIG. 3. (a) σ1(ω) at 100 K (T > TN1) for our underdoped crystal showing the fitted Drude-Lorentz

oscillators. (b) The pair-breaking peak in σ1(ω) in the t-AF phase at 20 K, (c) in the o-AF phase

at 35 K and (d) for the parent compound, BaFe2As2, at 10K. In each spectrum, this feature is

fitted to a sum of Gaussian oscillators, shown shaded. The background from the broad Lorentz

oscillators is kept essentially fixed from the T > TN1 fits.

We consider three spectra; our underdoped crystal at 20 and 35 K representing typical

SDW weights in the t-AF and o-AF phases respectively, and the parent compound (K=0%)

at T = 10 K from Marsik et al. [2]. These data are shown in Fig. S3(b), (c) and (d)

respectively. These data represent averages of the a- and b-axis responses because of the

twinning of the samples. The SDW feature was previously found to have a slightly larger

SW, and to be slightly lower in energy in the a-axis response as compared with the b-axis

[4]. The fitted pair-breaking-peak features for our data are shown as shaded curves with the

backgrounds and overall fits shown as lines. From these we obtain the following SWs of the

pair-breaking peaks; (9.1, 4.6 and 7.6)×105 Ω−1cm−2 for our underdoped crystal at T = 20

and 35 K and the parent compound at 10 K respectively.
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FIG. 4. Configuration of the spin-structure as in the t-AF phase as in Fig. 4 of Ref. [5]. For

clarity, only the Fe sites are shown. The symbols T1, T2 and T3 indicate the primitive translations

for the parent body-centered tetragonal lattice [6]. Ionic displacements for the out-of-phase iron

mode are indicated by the blue/white arrows. Panel (b) Two neighboring Brillouin zones of the

body-centered tetragonal lattice, reproduced from Ref. [6]. The arrow indicates the relevant folding.

PHONONS

Finally, we have suggested that the main component of the satellite of the IR-active mode

at 259 cm−1 in the t-AF phase can be attributed to a specific out-of-phase iron mode. As

noted in the main text, a likely spin-structure of the t-AF phase is that shown in Fig.4 of

Ref. [5] which is reproduced here in Fig. S4(a) (for clarity, only the Fe sites are shown). The

ionic displacements corresponding to the out-of-phase iron mode are indicated by blue/white

arrows. From the point of view of the parent body-centered tetragonal (bct) structure, this

is a Z-point mode. This mode is normally not IR active (the related Γ mode, the one with

the highest frequency where the ions connected by T3 vibrate in-phase, is Raman active [7]).

However, it becomes a Γ point IR active mode in the t-AF phase due to the inequivalence

of the Fe1 and Fe2 sites. The oscillator strength of the mode is determined by the difference

between the dynamical effective charges of Fe1 and Fe2. Fig. S4(b) shows the first Brillouin

zone (BZ) of the bct lattice and a neighboring BZ (reproduced from Ref. [6], Fig.10). The

pink arrow shows the folding of the Z-point of the BZ of the bct lattice to the BZ of the

t-AF phase.
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