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Power functional theory provides an exact generalisation of equilibrium density functional theory to non-equilibrium systems
undergoing Brownian many-body dynamics. Practical implementation of this variational approach demands knowledge of
an excess (over ideal gas) dissipation functional. Using functional line integration (i.e. the operation inverse to functional
differentiation), we obtain an exact expression for the excess free power dissipation, which involves the pair interaction
potential and the two-body, equal-time density correlator. This provides a basis for the development of approximation
schemes.
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1. Introduction

Classical density functional theory (DFT) provides an exact
variational framework for addressing the thermodynam-
ics and static microstructure of inhomogeneous fluids in
equilibrium [1–3]. Within DFT, the non-trivial many-body
physics due to the interparticle interactions follows from
the intrinsic excess Helmholtz free-energy functional. The
functional is intrinsic in the sense that it is independent of
external potential energy fields and hence depends solely
on the interparticle interaction potential. However, the ex-
cess free energy is only known exactly in a few limiting
cases and for special models, such as the low-density func-
tional virial expansion and one-dimensional hard-rod model
[4]. Approximations are hence unavoidable for any realistic
model fluid. Even though the DFT formalism was essen-
tially complete by the late 1970s, the development of ap-
proximate ‘fundamental measures’ [5] excess free-energy
functionals, capable of accurately describing realistic three-
dimensional models, required several decades of intense
research.

Power functional theory (PFT) has recently been pro-
posed as an exact generalisation of DFT for Brownian
dynamics of many-body systems out-of-equilibrium [6].
The framework consolidates DFT (which follows when im-
posing an equilibrium condition on the power functional)
and dynamical density functional theory (DDFT) as special
cases into a unified variational scheme. Furthermore, PFT
facilitated the development of a non-equilibrium Ornstein–
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Zernike equation [7,8] for time-dependent two-body corre-
lation functions. This has opened up new possibilities for
the description of structural relaxation in dense systems and
presents intriguing connections with mode-coupling theory.

Within PFT, the interparticle interactions are solely con-
tained in the intrinsic excess (over ideal gas) free power
functional, which is a dynamical analogue of the excess
Helmholtz free energy in equilibrium. However, in contrast
to the equilibrium case, our knowledge about the intrinsic
excess free power is presently very limited. Although some
(physically motivated) forms for this functional have been
suggested [6], explicit expressions for this central object
have so far been lacking.

In this paper, we employ methods of dynamical func-
tional calculus in order to gain further insight into the ex-
cess intrinsic power functional. In the previous work [6], a
physically intuitive splitting of this quantity into the sum of
adiabatic and superadiabatic contributions was suggested,
where the former is related to the equilibrium free energy
and the latter remained unspecified. We here demonstrate
how the splitting arises naturally from the application of
functional line integration (which is the operation inverse
to functional differentiation) and how this leads to a well-
defined, statistical mechanical expression for the excess dis-
sipation, given in terms of a two-point density correlator.
These developments pave the way for systematic approxi-
mation schemes, which treat many-body colloidal dynamics
at the superadiabatic level.
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The paper is structured as follows. In Section 2, we
specify the method of functional line integration, which ap-
pears to be an under-used tool for formulating perturbative
solutions to variational problems. In Section 3, we show
how this method is applied in equilibrium to obtain exact
sum rules connecting the free energy with spatial correla-
tion functions. In Section 4, we generalise the methodology
to non-equilibrium, working now within the framework of
PFT. Our central result is a formally exact expression for
the excess dissipation functional (Equations (43) and (44)).
This provides a basis for the development of approximation
schemes. Finally, in Section 5, we give some conclusions
and provide an outlook for future work.

2. Functional line integration

In elementary calculus, integration is the operation inverse
to differentiation: a derivative can be integrated up to re-
cover the original function to within an integration constant.
In the multidimensional case, the gradient of a function can
be integrated along a line in the multidimensional space in
order to recover, again up to a constant, the original func-
tion. (The relationship between a conservative force and its
potential energy might serve as a prime physical example.)
For singly connected integration domains, the integration
line can be chosen arbitrarily.

Here we recall that in functional calculus, there is a sim-
ilar inverse operation to functional differentiation, by which
a functional can be reconstructed (up to an integration con-
stant) from its derivative [9]. As there does not appear to be
any standard terminology for this operation, we will hence-
forth refer to it as a ‘functional line integral’ (not to be
confused with the Feynman– Wiener path integral [10]).

Consider the functional H[g], where g(r) is an arbitrary
function of a spatial coordinate r. If we already know the
functional derivative

δH [g]

δg(r)
, (1)

then we can exploit this information to recover the original
functional by integration. The operation which achieves
this, the functional line integral, is given by

H [g] = H [gr ] +
∫

dr
∫ g(r)

gr (r)
dg̃(r)

δH [g̃]

δg̃(r)
, (2)

where gr(r) is a reference function. The notation g̃(r) de-
notes a dummy integration variable and we use the follow-
ing short-hand notation:

δH [g̃]

δg̃(r)
≡ δH [g]

δg(r)

∣∣∣∣
g(r)=g̃(r)

. (3)

The integration in (2) is a standard one-dimensional integral
over the value of g̃ at point r, from its reference value, gr(r),
to its target value, g(r). The integral is taken along a path in
function space and, provided that H[g] is unique, the result
will be path-independent.

Without loss of generality, we choose a linear parametric
path through function space:

g̃(r) ≡ gα(r) = gr (r) + α(g(r) − gr (r)), (4)

where the ‘charging parameter’ α varies within the range
0 ≤ α ≤ 1. Equation (2) thus becomes

H [g] = H [gr ] +
∫ 1

0
dα

∫
dr �g(r)

δH [gα]

δgα(r)
, (5)

where �g(r) ≡ g(r) − gr(r). The α integration requires
knowledge of the functional derivative for all values of α,
from the reference (α = 0) to the target (α = 1) function.

The derivative of a vector-valued functional Lwith vec-
torial argument v(r) can be integrated according to

L[v] = L[vr ] +
∫ 1

0
dα

∫
dr �v(r) · δL[vα]

δvα(r)
, (6)

where �v(r) ≡ v(r) − vr(r) is the deviation from the refer-
ence function vr(r) and the integrand is the scalar product
of two vector quantities.

The generalisation of Equation(5) to functionals of
functions with multiple arguments is straightforward. For
example, the first derivative of the functionalG[f(r, r′)] can
be integrated to obtain

G[f ] = G[fr ] +
∫ 1

0
dα

∫
dr

∫
dr′ �f (r, r′)

δG[fα]

δfα(r, r′)
,

(7)

where �f(r, r′) ≡ f(r, r′) − fr(r, r′), and we have again
assumed a linear integration path.

3. Equilibrium

As described very clearly by Evans [2], there are several
routes to the equilibrium free energy of an inhomogeneous
fluid via integration of appropriate correlation functions.
The required mathematical tool for expressing such rela-
tions is functional line integration. In this section, we will
review and extend (cf. Equation (19)) some equilibrium
results, in order to provide context for our subsequent non-
equilibrium considerations and to demonstrate how func-
tional line integration is a powerful method for constructing
approximations.
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3.1. Density functional theory

The key object in classical DFT is the grand potential func-
tional, given by [1,2]

β�[ρ ] = F id[ρ ] + F exc[ρ ]

−
∫

dr (μ − Vext(r)) ρ(r), (8)

where μ andVext(r) are the chemical and external potentials,
respectively. The first term in Equation (8) is the Helmholtz
free energy of the ideal gas:

F id[ρ] = kBT

∫
dr ρ(r)[ln(�3ρ(r, t)) − 1], (9)

where kB is Boltzmann’s constant, T is the temperature and
� is the thermal wavelength. Fexc[ρ ] is the excess (over
ideal) Helmholtz free energy, which is the only contribution
that contains interparticle interactions. The grand potential
satisfies the minimum condition

δ�[ρ ]

δρ(r)
= 0, (10)

at the physically realised equilibrium density distribution.
Equation (10) thus generates a formally exact equation for
the equilibrium one-body density.

3.2. Integration of the direct correlation
functions

Repeated functional differentiation of the excess Helmholtz
free energy with respect to the one-body density generates
the hierarchy of direct correlation functions [1,2]. The first
member of the hierarchy is the one-body direct correlation
function, which is defined by

c(1)(r ; [ρ ]) = −δβF exc[ρ ]

δρ(r)
, (11)

where β = (kBT)−1 and we make the functional dependence
on the density explicit in the notation. Higher body direct
correlation functions are defined by the recursion relation

c(n)(r1, . . . , rn ; [ρ ]) = δc(n−1)(r1, . . . , rn−1 ; [ρ ])

δρ(rn)
. (12)

Functional line integration of the direct correlation
functions yields the excess Helmholtz free energy. Choos-
ing a linear path through the space of density functions,

ρα(r) = ρr (r) + α(ρ(r) − ρr (r)), (13)

and integrating Equation (11) yields a formal result for the
excess free energy

βF exc[ρ ] = βF exc[ρr ] −
∫ 1

0
dα

∫
dr�ρ(r)c(1)(r; [ρα]),

(14)

where �ρ(r) ≡ ρ(r) − ρr(r).
The integrand of Equation (14), which is a functional

of the parameterised density ρα(r), can be obtained by in-
tegrating Equation (12), with n = 2, along a linear path,

c(1)(r, [ρα]) = c(1)(r ; [ρr ]) (15)

+
∫ α

0
dα′

∫
dr′�ρ(r′)c(2)(r, r′; [ρα′ ]).

In bulk, the one-body direct correlation function becomes
spatially constant and Equation (15) is equivalent to the first
of Baxter’s sum rules [11]:

∂c(1)(ρb)

∂ρb

=
∫

dr c(2)(r ; ρb), (16)

where the two-body direct correlation function depends
only on a single scalar argument.

Substitution of Equation (15) into Equation (14) yields
the desired expression for the free-energy functional,

βF exc[ρ ] = βF exc[ρr ] −
∫

dr�ρ(r)c(1)(r ; [ρr ])

−
∫ 1

0
dα(1 − α)

∫
dr

×
∫

dr′�ρ(r)�ρ(r′)c(2)(r, r′; [ρα]). (17)

This is a formally exact result which provides a starting
point for approximation schemes. For example, taking the
reference density to be that of a bulk system, ρr (r) = ρb =
const, and neglecting the α dependence of the integrand
yields

βF exc
RY [ρ ] = βF exc[ρb] −

∫
dr�ρ(r)c(1)(ρb)

− 1

2

∫
dr

∫
dr′�ρ(r)�ρ(r′)c(2)(|r−r′|; ρb),

(18)

which is the well-known quadratic functional, first em-
ployed by Ramakrishnan and Youssouff (RY) in their study
of crystallisation [12]. Equation (18) requires as input the
bulk two-body direct correlation function, available for ex-
ample, from integral equation theory [3].

Equation (18) is identical to a truncated functional Tay-
lor expansion of the excess free energy. The remainder,

3

ht
tp

://
do

c.
re

ro
.c

h



given by the sum of all terms of cubic and higher order, is
known as the ‘bridge functional’ [13]. A closed-form ex-
pression for this quantity is found by integration of Equa-
tion (12), with n = 3, and substitution of the result into
Equation (17). This yields

βF exc[ρ]=βF exc
RY [ρ ]−1

2

∫ 1

0
dα(1−α)2

∫
dr

∫
dr′

∫
dr′′

×�ρ(r)�ρ(r′)�ρ(r′′)c(3)(r, r′, r′′ ; [ρα]), (19)

where the second term is the bridge functional.

3.3. Integration of the pair density

A further exact expression for the excess free energy can
be obtained by integrating the two-body density correlator
[2]. Starting from the grand canonical partition function, it
is straightforward to show that

δF exc[ρ ]

δφ(r, r′)
= 1

2
ρ(2)(r, r′), (20)

where φ(r, r′) is the interaction pair potential and
ρ(2)(r, r′) is the two-body density [3]. (Note that Equation
(20) remains valid if triplet and higher body interparticle
interactions are present.) Functional line integration in the
space of pair potentials yields

βF exc[ρ ] = βF exc[ρr ]

+ 1

2

∫ 1

0
dα

∫
dr

∫
dr′�φ(r, r′)ρ(2)(r, r′; [φα]), (21)

where the choice φα(r, r′) = φr(r, r′) + α�φ(r, r′) en-
ables a part of the interaction potential to be ‘turned on’
by increasing α. Here �φ(r, r′) = φ(r, r′) − φr(r, r′) is
the difference between the full pair potential and that of the
reference system.

Equation (21) forms the basis of virtually all liquid state
perturbation theories. Neglecting the dependence of the in-
tegrand on α yields a first-order theory [14]. Furthermore, if
the two-body density of the reference system is factorised,
ρ(2)(r, r′) = ρ(r)ρ(r′)g(2)(r, r′) ≈ ρ(r)ρ(r′), such that the in-
homogeneous pair correlation function g(2)(r, r′) ≈ 1, then
we recover the familiar mean-field approximation [1,2]

βF exc[ρ] = βF exc[ρr ]+1

2

∫
dr

∫
dr′�φ(r, r′)ρ(r)ρ(r′),

(22)

which is frequently employed to treat the attractive part
of the interparticle attraction, �φ(r, r′) ≡ φatt(r, r′), as a
perturbation to the hard-sphere reference system.

4. Non-equilibrium

The PFT [6] is the generalisation of DFT to treat
non-equilibrium systems undergoing Brownian dynamics.
Derivatives of the power functional with respect to external,
density or current fields are related to dynamic correlation
functions [7,8]. We will here focus on functional line inte-
gration with respect to the current.

4.1. Power functional theory

The central mathematical object within PFT is the free
power functional Rt [ρ, J], which depends on time t and is
a functional of the density and current [6]. One can split off
the external contributions,

Rt [ρ, J] = Wt [ρ, J]−
∫

dr (X(r, t)−∇Vext(r, t)) · J(r, t)

+
∫

dr V̇ext(r, t) ρ(r, t), (23)

where X(r, t) is a non-conservative external force and the
overdot indicates a time derivative of the external potential,
which can be time-dependent. The intrinsic partWt[ρ, J] of
the power functional can be split into two contributions:

Wt [ρ, J] = W id
t [ρ, J] + W exc

t [ρ, J], (24)

where the non-interacting, ideal intrinsic power is given by
the sum of dissipative and adiabatic contributions:

W id
t [ρ, J] =

∫
dr

γ J2(r, t)

2ρ(r, t)
+

∫
dr J(r, t) · ∇ δF id[ρ ]

δρ(r, t)
,

(25)

where γ is the friction coefficient (related to the bare dif-
fusion coefficient by γ = kBT/D0), and the ideal gas free-
energy functional is given by Equation (9). The excess part
of the intrinsic power depends solely upon the interparticle
interactions and thus specifies the system under investiga-
tion.

The variational principle of PFT implies the minimisa-
tion

δRt [ρ, J]

δJ(r, t)
= 0, (26)

where the functional derivative is taken at fixed time, and
ρ(r, t) and J(r, t) are treated as independent fields. In equi-
librium, Equation (26) reduces to Equation (8), thus recov-
ering DFT as a special case. Application of Equations (26)–
(23) yields a force balance equation as follows:

γ J(r, t)

ρ(r, t)
= −kBT ∇ ln

(
�3ρ(r, t)

) + X(r, t) − ∇Vext(r, t)

−δW exc
t [ρ, J]

δJ(r, t)
. (27)
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When supplemented by the continuity equation,

∂ρ(r, t)

∂t
= −∇ · J(r, t), (28)

Equation (27) provides a formally exact equation of mo-
tion for the one-body density. However, the excess intrin-
sic power functional, containing the non-trivial physics, re-
mains to be determined. Expressing this quantity in terms of
statistical mechanical correlation functions is the objective
of the following section.

4.2. Functional line integration in PFT

Many-body Brownian dynamics can be described using
the Smoluchowski equation of motion for the N-body con-
figurational probability distribution [15]. Integrating the
Smoluchowski equation over all but one of the particle
coordinates yields an exact equation for the current [16]:

γ J(r, t)

ρ(r, t)
= −kBT ∇ ln

(
�3ρ(r, t)

) + X(r, t) − ∇Vext(r, t)

−
∫

dr′ ρ(2)(r, r′, t)
ρ(r, t)

∇φ(r, r′), (29)

where ρ(2)(r, r′, t) is the non-equilibrium equal-time density
correlation function. Comparison of Equation (27) with
Equation (29) enables the identification

δW exc
t [ρ, J]

δJ(r, t)
=

∫
dr′ ρ(2)(r, r′, t)

ρ(r, t)
∇φ(r, r′), (30)

which makes explicit the fact that the functional derivative
of the excess intrinsic power with respect to the current
generates (up to a minus sign) the interparticle interaction
forces acting at position r. The right-hand side of Equation
(30) is easily generalised to account for triplet and higher
body potential interactions [16], but for clarity of presenta-
tion, we restrict ourselves to systems with pairwise additive
interaction potentials.

Taking Equation (30) as a starting point, we perform a
functional line integral to reconstruct the excess intrinsic
free power functional. We choose the reference system to
be an equilibrium state, Jr(r, t) = 0, and integrate along the
parameterised path Jα(r, t) = αJ(r, t), from α = 0 to α =
1, while holding the density fixed. This yields

W exc
t [ρ, J] =

∫ 1

0
dα

∫
dr J(r, t) · δWt [ρ, Jα]

δJα(r, t)
, (31)

where we have used the fact that W exc
t [ρ, 0 ] = 0 (i.e. for

an equilibrium system). The integration in Equation (31)
is only over spatial coordinates, because the derivative
is taken at fixed time. Substitution of Equation (30) into

Equation (31) leads to

W exc
t [ρ, J] =

∫ 1

0
dα

∫
dr

∫
dr′ ρ

(2)(r, r′, t ; [ρ, Jα])

ρ(r, t)

× J(r, t) · ∇φ(r, r′), (32)

where we have indicated the functional dependence in the
notation explicitly. Equation (32) constitutes an exact re-
lation of the excess intrinsic power functional to a well-
defined equal-time pair correlator.

The integral expression (32) has the appealing property
that the well-established DDFT is recovered by neglecting
the dependence of the integrand on the charging parameter

ρ(2)(r, r′, t ; [ρ, Jα]) ≈ ρ(2)(r, r′, t ; [ρ, 0 ]). (33)

The right-hand side of Equation (33) defines the adiabatic
two-body density, ρ

(2)
ad (r, r′, t , [ρ ]) ≡ ρ(2)(r, r′, t ; [ρ, 0 ]),

namely the two-body density of an equilibrium system with
one-body density profile ρ(r, t). Substituting Equation (33)
into the force integral (30) enables us to use the following
equilibrium sum rule [1]:

∫
dr′ ρ

(2)
ad (r, r′, t ; [ρ ])

ρ(r, t)
∇φ(r, r′) = ∇ δF exc[ρ ]

δρ(r, t)
, (34)

which relates the interaction forces to the excess Helmholtz
free energy. We thus obtain the DDFT approximation to the
excess intrinsic power functional

W exc
t [ρ, J] ≈

∫
dr J(r, t) · ∇ δF exc[ρ ]

δρ(r, t)
. (35)

Equations (27), (28) and (35) recover the familiar DDFT
equation for the one-body density [16,17].

4.3. Exact excess dissipation functional

We now proceed to further develop the exact expression
(32). We will see that this leads to a splitting of the excess
intrinsic power into the sum of adiabatic and superadiabatic
contributions. Defining the interaction force,

f(r, t ; [ρ, J]) ≡ −δW exc
t [ρ, J]

δJ(r, t)
, (36)

enables Equation (31) to be rewritten as

W exc
t [ρ, J] = −

∫ 1

0
dα

∫
dr J(r, t) · f(r, t ; [ρ, Jα]). (37)

The parameterised force, f(r, t ; [ρ, Jα]), that appears
in the integrand of Equation (37) can be found by integra-
tion of its derivative (starting from an equilibrium reference
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state). At this point, it is important to clarify the nature of
the functional derivative. The expression (31) involves a
space integral, but no time integral, in recognition of the
fact that Equation (26), and thus Equation (30), is a func-
tional derivative taken at fixed time. However, when using
functional line integration to formally re-express f(r, t ;
[ρ, Jα]), we are no longer constrained by the fixed-time
differentiation of the power functional variational princi-
ple. The most general choice is to consider functional line
integration of the full functional derivative. This yields

f(r, t ; [ρ, Jα]) = f(r, t ; [ρ, 0 ])

+
∫ α

0
dα′

∫
dr′

∫ t

t0

dt ′ J (r′, t ′) · δf(r, t[ρ, Jα])

δJα(r′, t ′)
,

(38)

where t0 is an initial time.
Substitution of Equation (38) into Equation (37) then

enables the exact expression (32) for the excess intrinsic
power functional to be re-expressed as a sum of two terms:

W exc
t [ρ, J] = −

∫
dr J(r, t) · f(r, t ; [ρ, 0 ]).

−
∫ 1

0
dα(1 − α)

∫
dr

∫
dr′

∫ t

t0

dt ′ J(r, t)J(r′, t ′) :

× δf(r, t ; [ρ, Jα])

δJα(r′, t ′)
, (39)

where the colon represents a full contraction between the
current–current dyadic and the second-rank tensor func-
tional derivative. The first term in Equation (39) involves
the interaction force arising from an inhomogeneous den-
sity distribution in equilibrium (vanishing current). Us-
ing Equations (30), (34) and (36)), we obtain the exact
expression

W exc
t [ρ, J] =

∫
dr J(r, t) · ∇ δF exc[ρ ]

δρ(r, t)

−
∫ 1

0
dα(1 − α)

∫
dr

∫
dr′

∫ t

t0

dt ′ J(r, t)J(r′, t ′) :

× δf(r, t ; [ρ, Jα])

δJα(r′, t ′)
, (40)

where the first term now explicitly accounts for the adia-
batic intrinsic power. By employing the continuity equation
and the functional chain rule, this adiabatic contribution
can be identified as the time derivative of the excess free-
energy functional, Ḟ exc[ρ ]. The second, ‘superadiabatic’
term describes the excess dissipation due to interparti-
cle interactions. In deriving Equation (40), we have thus
found a natural splitting of the excess intrinsic power into

adiabatic and superadiabatic contributions:

W exc
t [ρ, J] = Ḟ exc[ρ ] + P exc

t [ρ, J], (41)

where the excess dissipation functional, P exc
t [ρ, J], corre-

sponds to the second term in Equation (40). The decompo-
sition (41) is identical to the physically motivated splitting
introduced in [6].

Differentiation of Equation (36) with respect to the cur-
rent, at fixed time and using Equation (30) enables the func-
tional derivative of the force appearing in Equation (40) to
be expressed in terms of the two-body density correlator:

δf(r, t ; [ρ, J])

δJ(r′, t ′)
=

∫
dr′′ δρ(2)(r, r′′, t ; [ρ, J])

δJ(r′, t ′)
∇φ(r, r′′)
ρ(r, t)

,

(42)

where the integrand is a dyadic product of two vector
functions. Substitution of Equation (42) into Equation (40)
yields our final form for the exact excess dissipation func-
tional,

P exc
t [ρ, J] =

∫
dr

∫
dr′

∫ t

t0

dt ′ J(r, t) ·

× K(r, r′, t, t ′ ; [ρ, J]) · J(r′, t ′), (43)

where the dyadic matrix Kernel is given exactly by

K(r, r′, t, t ′ ; [ρ, J]) =
×

∫ 1

0
dα(1−α)

∫
dr′′ δρ(2)(r, r′′, t ; [ρ, Jα])

δJα(r′, t ′)
∇φ(r, r′′)
ρ(r, t)

.

(44)

Equations (43) and (44) constitute the main result of the
present paper. The excess dissipation functional accounts
for the fact that the pair correlations are not equilibrated
during the time evolution of the system, and hence corrects
the adiabatic approximation. The kernel (44) depends ex-
plicitly on the interaction forces and thus, when substituted
into Equation (43), corrects the ideal gas dissipation given
by the first term in Equation (25). It is intuitive that scat-
tering events arising from the interaction forces will lead
to a coupling between different components of the current
vector, and this is reflected in the tensorial character of
the kernel. For systems under external driving, the ability
of the excess dissipation functional to capture non-affine,
interaction-induced flows will, in general, be essential to ob-
tain physically realistic predictions (see e.g. [18,19], which
highlight some situations where DDFT fails).

Substitution of the split excess intrinsic power (41) into
the force balance (27) shows that the interaction-induced
dissipative force (‘superadiabatic’ force) is given by the
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derivative

Fsad(r, t) = −δP exc
t [ρ, J]

δJ(r, t)
, (45)

with the excess dissipation given by Equation (43). The
superadiabatic force has been studied in detail for a simple
one-dimensional model, where a non-trivial dependence on
particle density was revealed [20].

4.4. Perturbation approximation

By neglecting the α-dependence of the integrand (44) and
choosing a zero reference current, we obtain the following
approximation to the kernel:

K0(r, r′, t, t ′ ; [ρ])

=
∫

dr′′ δρ(2)(r, r′′, t ; [ρ, J])

δJ(r′, t ′)

∣∣∣∣∣
J=0

∇φ(r, r′′)
2ρ(r, t)

, (46)

which is a functional of the instantaneous density, but inde-
pendent of the current. We have thus constructed a leading-
order (in current) perturbation theory about the adiabatic
state. Equation (46) requires as input the flow-distorted pair
correlations close to equilibrium.

It is interesting to note the similarity of the pertur-
bative excess dissipation functional, obtained by substi-
tuting Equation (46) into Equation (43), with the exact
non-interacting form (the first term in Equation (25)).
This suggests to revert to the total dissipation as the sum
of ideal and excess contributions P [ρ, J] = P id

t [ρ, J] +
P exc

t [ρ, J], such that the perturbation approximation to this
quantity takes the following form:

P 0
t [ρ, J] =

∫
dr

∫
dr′

∫ t

t0

dt ′

× J

(r, t)J(r′, t ′)
2ρ(r, t) : γ 0(r, r′, t, t′ ; [ρ ]), (47)

where the effective friction tensor depends solely on the
density and is given by

γ 0(r, r′, t, t′ ; [ρ ]) = γ δ(r − r′)δ(t − t′)1

+
∫

dr′′ δρ(2)(r, r′′, t ; [ρ, J])

δJ(r′, t ′)

∣∣∣∣∣
J=0

∇φ(r, r′′). (48)

The first term in Equation (48) generates the exact non-
interacting dissipation, while the second term incorpo-
rates the spatial non-locality arising from interparticle
interactions.

5. Conclusions

In the framework of PFT, we have used the method of func-
tional line integration to derive a formally exact expres-
sion for the excess power dissipation functional, given by
Equations (43) and (44). The excess dissipation requires as
input information about how the inhomogeneous two-body
density is distorted by flow (i.e. a non-vanishing current). It
is precisely this feature of the non-equilibrium microstruc-
ture which is not resolved in the standard, adiabatic DDFT
approximation. By neglecting the ‘charging’ integral in
Equation (44), we have generated a perturbation theory
about the adiabatic state, characterised by the kernel (46).
Given that the adiabatic approximation often performs quite
well, we anticipate that using a perturbative excess dissipa-
tion functional will generate the most important corrections
to DDFT.

In Section 4.3, we employed functional line integra-
tion to decompose the excess intrinsic power into a sum of
adiabatic and excess dissipation terms. This is certainly a
convenient choice for the application of the theory, because
it enables the many excellent approximations for the equi-
librium free energy to be exploited, but does not represent
a fundamental constraint on the theory. The power func-
tional approach is a general and exact dynamical theory,
which does not have to make any reference to the adiabatic
state. This independence of any adiabatic assumption is
made explicit in Section 4.2, where we formulate an exact
expression, Equation (32), for the excess intrinsic power,
Wt[ρ, J]. This quantity could be made the focus of direct
approximation schemes and is the most fundamental ob-
ject to be approximated within PFT. It is only when one
chooses to formulate the theory about the adiabatic state,
thus adopting DDFT as a zeroth-order approximation, that
the excess dissipated power, P exc

t [ρ, J], becomes the main
object of attention.

For bulk systems, it is known that the flow-induced
distortion of the pair correlations contributes to both the
shear and bulk viscosities [21]. For general inhomogeneous
situations, the excess power dissipation thus takes account
of these interaction-induced contributions, which are absent
from the ideal dissipation functional and are consequently
absent from DDFT. Our formal results provide a solid basis
for the development of practical approximation schemes.
The next step in our research programme will be to develop
and test explicit approximations to the excess dissipation
for simple model systems. Work along these lines is in
progress.
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