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ABSTRACT

Aim High intra-specific genetic diversity is necessary for species adaptation to

novel environments under climate change, but species tracking suitable condi-

tions are losing alleles through successive founder events during range shift.

Here, we investigated the relationship between range shift since the Last Glacial

Maximum (LGM) and extant population genetic diversity across multiple plant

species to understand variability in species responses.

Location The circumpolar Arctic and northern temperate alpine ranges.

Methods We estimated the climatic niches of 30 cold-adapted plant species

using range maps coupled with species distribution models and hindcasted spe-

cies suitable areas to reconstructions of the mid-Holocene and LGM climates.

We computed the species-specific migration distances from the species glacial

refugia to their current distribution and correlated distances to extant genetic

diversity in 1295 populations. Differential responses among species were related

to life-history traits.

Results We found a negative association between inferred migration distances

from refugia and genetic diversities in 25 species, but only 11 had statistically

significant negative slopes. The relationships between inferred distance and

population genetic diversity were steeper for insect-pollinated species than

wind-pollinated species, but the difference among pollination system was mar-

ginally independent from phylogenetic autocorrelation.

Main conclusion The relationships between inferred migration distances and

genetic diversities in 11 species, independent from current isolation, indicate

that past range shifts were associated with a genetic bottleneck effect with an

average of 21% loss of genetic diversity per 1000 km�1. In contrast, the

absence of relationship in many species also indicates that the response is spe-

cies specific and may be modulated by plant pollination strategies or result

from more complex historical contingencies than those modelled here.

Keywords

Arctic plants, climate change, climatic niche, Last Glacial Maximum,

migration, species distribution models

INTRODUCTION

Climate warming is shifting the geographical ranges of many

species to higher latitudes or elevations. Meta-analyses have

estimated a median poleward animal species migration rate

of 16.9 km decade�1 over the last century (Chen et al.,

2011). Estimates for plants have been documented only along

elevation with up to 29 meters decade�1 (Lenoir et al.,

2008). Terrestrial isotherms have been displaced at an even

faster rate with a median velocity of 27.3 km decade�1 over

the last 50 years (Burrows et al., 2011), and it is foreseen

that many species will not be able to track the similar or
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faster pace of climate change expected in the future (Corlett

& Westcott, 2013). To remain viable, many species will

depend on both migration and their potential to adapt to

novel climatic conditions (Corlett & Westcott, 2013; Jump

et al., 2009; Hoffmann & Sgr�o, 2011; Pauls et al., 2013).

Migration and adaptive potential are tightly linked (Reed &

Frankham, 2003) since adaptive potential depends on genetic

diversity, which is related to species’ demographic history,

range contractions and expansions following climate changes

(Excoffier et al., 2009). A better understanding of species

vulnerabilities to genetic erosion is needed to evaluate demo-

graphic consequences of climate change (Pauls et al., 2013).

Investigating species historical responses might provide clues

on future outcomes of ongoing climate change.

Migration allows movement of alleles, both among existing

populations and at the advancing front of a species range

when colonizing new areas (Bialozyt et al., 2006; Excoffier

et al., 2009). Successive founder events during colonization

of new areas typically lead to decreasing genetic diversity in

the leading edge populations (Hewitt, 1996; Excoffier et al.,

2009; Dlugosch & Parker, 2008; Yannic et al., 2014). Such

genetic erosion is predicted as a consequence of recoloniza-

tion after the Quaternary glaciations (Esp�ındola et al., 2012;

Yannic et al., 2014). Since the Last Glacial Maximum

(LGM), when massive ice sheets covered large parts of North

America and Eurasia, many species, which survived in ice

free refugia, progressively colonized the distribution range

they currently occupy as the ice retreated (Taberlet et al.,

1998; Hewitt, 2000; Eidesen et al., 2013). Historical range

expansions left a signature of decreasing genetic diversity,

which is expected to be more marked with increasing migra-

tion distance (Excoffier et al., 2009; Yannic et al., 2014). In

contrast, populations in or close to areas where the species

has persisted over long periods of time, including the glacial

periods, usually have preserved more genetic diversity

(Hampe & Petit, 2005; Yannic et al., 2014). While the link

between migration distance and genetic erosion has been

evaluated in a few species (Prugnolle et al., 2005; Yannic

et al., 2014), our knowledge regarding the variability of

responses among species remains limited.

All species are generally expected to lose genetic diversity

during range shift (Excoffier et al., 2009). Nevertheless,

genetic erosion will be influenced by the level of gene flow,

which can be highly species specific (Thiel-Egenter et al.,

2009). In plants, gene flow results from both pollen and seed

dispersal, and differences in genetic diversity among popula-

tions are expected to be related to both the frequency of

reproduction and the distances over which pollen and seeds

typically disperse (Hamrick & Godt, 1996; Bialozyt et al.,

2006; Thiel-Egenter et al., 2009). Also, local conditions affect-

ing establishment and survival will influence demographic

processes and thus levels of genetic diversity (Thiel-Egenter

et al., 2009). Gene flow will also be indirectly influenced by

factors like growth form, as plant height strongly influence

dispersal distance (Thomson et al., 2011), and niche breadth,

which influence dispersal efficiency (McCauley et al., 2014).

As a consequence, variable degree of genetic erosion among

species might be related to different life-history traits, includ-

ing reproduction, morphology and species abundance pat-

terns. Previous studies have shown that the spatial variability

in genetic diversity among populations is linked to plant life-

history traits (Thiel-Egenter et al., 2009). However, there is

no empirical comparison across a large number of plant spe-

cies to assess the generality of the theoretical prediction of

loss of diversity via post-glacial migration.

To calculate a species’ post-glacial migration distance, the

location of putative glacial refugia needs to be identified.

Classically, the location of glacial refugia have been inferred

from fossils (e.g. Frenzel, 1968; Tarasov et al., 2000; Birks &

Willis, 2008) or molecular phylogeographical evidence (e.g.

Sch€onswetter et al., 2005; Eidesen et al., 2013). However,

most species do not have fossil records with sufficient spatial

or taxonomic resolution (e.g. species-level identification of

pollen) to identify glacial distribution. Moreover, sampling

for molecular phylogeography studies are usually limited to

extant populations (Gavin et al., 2014; but see Lorenzen

et al., 2011). In contrast, species distribution models (SDMs)

relate species range information to current climatic condi-

tions (Guisan & Zimmermann, 2000) and model forecasts

can accommodate high-resolution, species-specific responses

to climatic change (Waltari et al., 2007; Yannic et al., 2014;

Gavin et al., 2014). Although SDMs rely on assumptions of

causal species-climate relationships, and that these relation-

ships remain static despite changed environment and biotic

interactions (Guisan & Thuiller, 2005; Gavin et al., 2014),

SDMs provide useful approximations of the potential distri-

bution of the species under past climatic conditions (Waltari

et al., 2007; Forester et al., 2013).

Here we investigated the relationship between genetic diver-

sity at the population level and migration distance since the

LGM in 30 cold-adapted plant species with distinct tolerance

to temperature and precipitations conditions. We calibrated

the climatic niche of each species, using SDMs, which were

used to infer the location of glacial refugia. We computed the

inferred migration distances from refugia to current location

of the populations and tested whether the genetic diversity loss

per unit of migration distance was related to plant traits asso-

ciated with important demographic and ecological functions

(including life-form, seed dispersal, and pollination mode).

We expected a general decrease in within-population genetic

diversity with increased migration distance since the LGM, but

that this loss would vary across species according to their life-

history traits. Finally, we discuss how examining the way spe-

cies have responded to past climate change can provide novel

insights into ongoing climate change.

MATERIALS AND METHODS

AFLP data

We analysed 30 plant species typically occurring in the bio-cli-

matic zones at the tree line and above, i.e. the alpine and Arc-
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tic zones. For each species, leaf samples were collected from 5–
11 individuals per population and dried in silica gel (see

Table S1 in Appendix S1 in Supporting Information). A stan-

dard amplified fragment length polymorphisms (AFLPs) pro-

cedure was followed (Alsos et al., 2012, 2015). In total, we

analysed 10,073 individual plant samples across 1295 popula-

tions for genetic diversity. On average, 336 individuals (range:

73–958), from 43 populations (range: 14–131) were collected

per species (see Table S1 in Appendix S1). The full details of

data collection and genetic structuring have been published

elsewhere (Alsos et al., 2012; Espindola et al., 2012; Alsos et

al., 2015). Intra-population genetic diversity was estimated as

the average proportion of pairwise differences (a measure

identical to gene diversity/expected heterozygosis for binary

markers such as AFLPs; Kosman, 2003).

Species distribution modelling

Using SDMs coupled with past climatic reconstructions (Hij-

mans et al., 2005), we modelled species-specific climatic

niches and reconstructed the migration distance from

inferred glacial refugia. Species distribution models were cali-

brated using the Hult�en and Fries distribution maps (Hult�en

& Fries, 1986) or occurrences from Global Biodiversity Infor-

mation Facility (www.gbif.org) when ranges were unavailable

(i.e. for Arenaria humifusa, Juncus biglumis, Sagina cespitosa,

Saxifraga rivularis, see Figs S1 & S2 in Appendix S2). Range

maps were related to Worldclim bioclim parameters includ-

ing (1) total annual precipitation, (2) summer precipitation

(months 6, 7, 8), (3) winter precipitation (months 12, 1, 2),

(4) annual mean temperature, (5) summer mean tempera-

ture and (6) winter mean temperature as done in Esp�ındola

et al. (2012). Those variables represent known physiological

limits to alpine plant distribution including water and energy

availability during the growing season and protective snow

cover during the winter season (K€orner, 2003). One thou-

sand presence points were selected randomly across the spe-

cies ranges and pseudo-absences were generated by selecting

10,000 random points across the Northern Hemisphere fol-

lowing the recommendation of Wisz & Guisan (2009) and as

implemented in Yannic et al. (2014).

Four statistical methods were used to calibrate SDMs: gen-

eralized linear models, generalized additive models, boosted

regression trees and random forest. To evaluate the models,

we calculated the Boyce index (Hirzel et al., 2006) by ran-

dom split sampling of 70% of the data for calibration and

30% for evaluation, and this was repeated 10 times. Cali-

brated models were then used to project species’ potential

distribution under current and past climates. We used

palaeo-climatic maps at a 15 km spatial resolution from

three Earth-System Model coupling the ocean, the atmo-

sphere and the land surface (general circulation model,

GCMs, CCSM4, MIROC-ESM, MPI-ESM-P available from

http://cmip-pcmdi.llnl.gov/cmip5/ processed on www.world-

clim.org) hindcasted to LGM (21,000 years ago) and the

mid-Holocene (6,000 years ago). We calculated an average of

the four modelling techniques for each projection. We trans-

formed the projected probabilities into presences/absences

using the thresholds that maximize percentage of presences

and absences correctly predicted. In addition, we considered

as unsuitable those regions known to have been covered by

ice during each time period (thus ignoring potential micro-

refugia on e.g. nunataks). We obtained the putative location

of the refugia for each of the three GCMs considered. For

two species with available fossil records at the LGM (Dryas

octopetala from the European pollen database, Binney et al.,

2009; Salix herbacea from Alsos et al., 2009), we evaluated

the model performance to predict the location of fossils

records using the Boyce index (Yannic et al., 2014).

Predictors of genetic diversity

We computed the migration distance from refugia needed to

track suitable habitat from the LGM, through the mid-Holo-

cene and to current distribution range for each of the GCM

considered. For each time-step (LGM, mid-Holocene, cur-

rent), once a given cell became suitable for the species in the

time frame (t + 1), we summed the minimum distance from

the closest cell suitable at time t. We obtained the total dis-

tance required to recolonize a given cell from the LGM refu-

gia through the Holocene and to the current distribution.

Because difference in genetic diversities among populations

may result from current limited gene flow and not necessar-

ily be associated with post-glacial range dynamic, we com-

puted a variable representing the current level of isolation of

populations. For each cell of the current species potential

distribution, we computed the mean distance to the 1000

closest suitable cells. For each population with genetic infor-

mation, we extracted the value of past migration and current

isolation from the rasters.

For each species, we computed linear regressions between

genetic diversity and distance from refugia and current pop-

ulation isolation accounting for spatial non-independence

among sampled locations using spatial autoregressive models

(SARs) as suggested by Kissling & Carl (2008). We used a

spatial weight matrix with neighbourhoods defined as all

cells within 2000 km of the focal cell, and applied a Moran’s

I global test to determine whether residual autocorrelation

persisted in the SAR models. We calculated the standardized

slope coefficient (beta) of each predictor in the SAR models.

In addition, we quantified the relative loss of genetic diversity

per distance unit for each species with a significant relationship

in the SAR models. Because maximum intrapopulation genetic

diversity differed between species, we standardized the slope

coefficient by the maximum genetic diversity for each species to

obtain the relative decrease in genetic diversity (%) per unit of

distance expressed per 1000 km.

Meta-analysis of association with species traits

To test for the effect of plant traits on the species-specific

association between migration distance and genetic diversity,
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we related the standardized slope of the distance from refu-

gia from the SAR models to those plant traits that are

expected to influence population size or genetic exchange

through seed dispersal or pollen (growth form, reproduction,

pollination, dispersal, see Table S2 in Appendix S1) using the

mcmcglmm package in R (Hadfield, 2010), which accommo-

dates random effects. Because we had three estimates per

species (one for each GCM), we included species as the ran-

dom effect in the models and GCM as a fixed effect. We fur-

ther checked that the relationship between slope coefficients

and relevant traits was robust to phylogenetic relatedness by

adding species phylogenetic autocorrelation as a second ran-

dom effect in the model. We used the ‘Daphne’ phylogeny of

central European flora (Durka & Michalski, 2012). Four spe-

cies (Arenaria humifusa, Cassiope tetragona, Saxifraga foli-

olosa, Sagina cespitosa) were missing in the phylogeny, and

thus they were replaced with a congeneric species. We esti-

mated the mean of the posterior distribution of each factor

coefficient as well as of the phylogenetic signal ‘lambda’.

RESULTS

Model performances and hindcasted distributions

Most models showed good predictive power when validated

using repeated split samples (see Table S1 in Appendix S1)

and predicted accurately the fossil distribution of D. octope-

tala (CCSM4: boyce index bi = 0.71, MIROC-ESM:

bi = 0.61, MPI-ESM-P: bi = 0.54). The fossil distribution of

S. herbacea was also well predicted, but with higher variabil-

ity associated with the GCMs (CCSM4: bi = 0.41, MIROC-

ESM: bi = 0.68, MPI-ESM-P: bi = 0.39, see Figs S1 & S2 in

Appendix S2 and S3 in Appendix S3). We found consider-

able variation among hindcasted suitable areas at the LGMs

for the 30 Arctic, Arctic-alpine and north boreal species

(Figs 1 & 2). North-western Europe was suitable for most

species during LGM. Beringia and northern Asia, on the

contrary, were inferred to be unsuitable for many of the pre-

sently amphi-Atlantic species such as Micranthes stellaris,

Sagina caespitosa or Ranunculus glacialis. The area south of

the ice in North America, including some locations both in

the west and in the east, was inferred to have been suitable

for many species during the LGM (Fig. 1, see Figs S1 & S2

in Appendix S2). Distance from refugia was low, where cur-

rent suitable ranges are close to locations that were suitable

and not covered by ice during the LGM such as in Beringia.

In contrast, Eastern North America and Greenland, together

with Svalbard or Iceland showed high values of distances

from refugia as those regions were covered by ice during gla-

cial periods (Fig. 3). We found low variability in migration

distance among estimates from the three different GCMs

(Table 1, Fig. 1) except for S. caespitosa, which could be

explained by a more fragmented extant range possibly more

difficult to model.

Relationship between genetic diversity and

migration distance

Among the 30 species analysed, 25 showed a negative rela-

tionship between migration distance from inferred refugia

and level of genetic diversity (11 of them significantly so),

indicating genetic erosion (Table 1). Across the species with

a significant relationship, on average 21% of genetic diversity

was lost per 1000 km of range shift from their LGM. In the

most extreme negative cases, migration distance was

associated with severe genetic bottlenecks, as in Ranunculus

glacialis (�85% 9 1000 km�1), Micrantes stellaris

(�40% 9 1000 km�1) and Arabis alpina (�22% 9 1000

km�1), with no diversity left in populations most distant

from LGM refugia. In contrast, many species showed no sig-

nificant relationships with inferred migration distance, with

flat relationships and a few positive ones (Table 1). In addi-

tion, seven species had a significant relationship between

population genetic diversity and current isolation (Table 1).

(a) (b) (c)

Figure 1 Stacked climatic suitability (probability of occurrence) of the 30 investigated species during the Last Glacial Maximum

(�21 Ky) provided by the 30 model ensembles, with the three general circulation models (GCMs) (a) CCSM4, (b) MPI-ESM-P, (c)
MIROC-ESM. Model hindcasting indicates four main disconnected refugia: Central Europe, Beringia, eastern North America and

western North America. Blue colour indicates surfaces covered by ice. The numbers on the bar represent the summed suitability values

across all species. The three GCMs are largely congruent for Central Europe and western North America, but show more variability in
the summed suitabilities for eastern North America and Beringia.
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We found no spatial autocorrelation in the SAR model

residual of each species.

Association with species traits

Among the different life-history traits tested, we found that

only pollination mode was associated with interspecific

differences in the rate of genetic diversity shift along a

migration gradient (in: post.mean = �0.29; se: post.mean =
0.27, P = 0.23; wi: post.mean = 0.29, P = 0.03), with

no effect of GCM (me: post.mean = �0.05, P = 0.28; mr:

post.mean = 0.007, P = 0.89). We also ran the models

excluding the self-pollination category with low sample size

(n = 2), and the significant differences between insect- and

wind-pollinated species persisted (in: post.mean = �0.29; wi:

post.mean = 0.29, P = 0.03). Nevertheless, the relationship

between pollination mode and the rate of genetic diversity

shift was only marginally significant in the MCMCglmm

model when accounting for phylogenetic dependency among

species (in: post.mean = �0.29; wi: post.mean = 0.29,

P = 0.0501, k = 0.27), indicating that the effect of pollina-

tion mode is partially associated with a phylogeny signal.

(a) (b) (c)

(d) (e) (f)

Figure 2 Maps of species current distribution (in green), together with hindcasted climatic suitability for the species during the Last
Glacial Maximum (LGM) computed as the average between the projections using the three general circulation models. Shown are: (a)

Betula nana, (b) Carex bigelowii, (c) Epilobium angustifolium, (d) Loiseleuria procumbens, (e) Ranunculus glacialis, (f) Vaccinium
uliginosum. The ice cover at the LGM is shown in blue. The figures illustrate how distance between current distribution and past

suitable area differs across current species ranges. Other species maps are provided in Appendix S2. Shown observed ranges are based on
central distribution shapes of Hultén & Fries (1986).

(a) (b)

Figure 3 Maps of migration distance

(expressed in kilometres) since the Last
Glacial Maximum (LGM) and sampled

genetic locations. Variation in estimated
range shifts since the LGM, exemplified

with two species (a) Cassiope tetragona, (b)
Trollius europaeus. Darker shades of red

indicate larger migration distances from
refugia. Symbol sizes in green are

proportional to intrapopulation genetic
diversity. The current ice cover is shown in

blue.
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DISCUSSION

Species or clade responses to past (Sandel et al., 2011; Pel-

lissier et al., 2014) or ongoing climate change (Lenoir et al.,

2008; Chen et al., 2011) are highly variable. Some species or

species groups are more able to track suitable climatic condi-

tions than others. Our results indicate the genetic conse-

quence of species range shift under climate change is also

highly variable among the species considered in the study. In

11 species, we found evidences of serious genetic erosion

associated with species range shifts since the LGM. In con-

trast, many others showed no relationship to inferred migra-

tion distance. Variability in species response may arise from

several reasons, including differences among species life-his-

tory traits (Matteodo et al., 2013), differences in historical

contingencies (including admixture, nunataks and non-linear

dispersal routes), or differences in the accuracy of the hind-

casted suitable glacial refugia among species.

Although many arctic species seem to be able to track

their suitable habitats and demonstrate remarkable capability

of long-distance dispersal (Alsos et al., 2007, 2015), some of

them appear to be unable to carry large amounts of genetic

variation and to homogenize diversity across their ranges. In

the most extreme cases, populations at the forefront of the

range expansion have almost no genetic variation left (e.g.

populations of R. glacialis, A. alpina, M. stellaris). For those

species, our results corroborate the role of successive founder

events during migration under past climate change leading

to decreasing genetic diversity (Hewitt, 1996; Excoffier et al.,

2009). Populations currently close to areas climatically suit-

able during the LGMs show a much higher genetic diversity,

such as populations near the large LGM unglaciated Arctic

regions in Beringia (Fig. 2). In agreement with a stronger

founder effect in insect-pollinated species colonizing Arctic

islands (Alsos et al., 2015), we found that genetic erosion

was more pronounced for insect- than wind-pollinated spe-

cies, although this was only marginally independent from a

phylogenetic signal. Ten of the eleven species showing signifi-

cant genetic erosion (the exception is the selfing R. pyg-

maeus) are insect pollinated. Wind pollination may promote

more frequent and more massive genetic exchange over

larger distances than insect pollination, and therefore be

Table 1 Summary of the spatial autoregressive model parameters relating population genetic diversity and the distance from the refugia

(migration) as well as current level of isolation (isolation). The means and standard deviations across the three general circulation
models (GCMs) of the standardized regression slopes coefficient (beta) are provided. The statistical significance of the relationships

computed with a slope z-test (*, < 0.05, when significant for the three GCMs) are shown. For significant relationships, the decrease in
genetic diversity per 1000 km relative to the most diverse population observed (rate) is provided.

Pollination Isolation P Migration P Rate

Angelica archangelica L. Insect �0.44 � 0.08 * �0.27 � 0.05 * �14.27 � 1.59

Arabis alpina L. Insect 0.05 � 0.10 �0.44 � 0.09 * �21.58 � 1.47

Arctous alpinus (L.) Nied. Insect 0.46 � 0.09 �0.26 � 0.09

Arenaria humifusa Insect 0.36 � 0.08 �0.08 � 0.09

Avenella flexuosa (L.) Drejer Wind �0.17 � 0.05 0.31 � 0.04

Betula nana L. Wind �0.58 � 0.02 * �0.01 � 0.02

Carex atrofusca Schkuhr Wind �0.37 � 0.04 �0.37 � 0.03

Carex bigelowii Torr. ex. Schwein. Wind 0.00 � 0.03 �0.08 � 0.11

Cassiope tetragona (L.) D.Don Insect �0.36 � 0.02 * �0.34 � 0.01 * �39.91 � 5.00

Chamerion angustifolium (L.) Holub Insect �0.18 � 0.04 �0.19 � 0.04

Dryas octopetala L. Insect 0.36 � 0.09 0.04 � 0.01

Empetrum nigrum L. s.lat. Wind �0.17 � 0.02 �0.28 � 0.06 * �12.72 � 3.20

Juncus biglumis L. Wind 0.19 � 0.13 0.38 � 0.13

Juniperus communis L. Wind �0.36 � 0.02 * �0.06 � 0.02

Loiseleuria procumbens (L.) Desv. Insect �0.11 � 0.06 �0.15 � 0.02

Minuartia biflora (L.) Schinz & Thell. Insect �0.20 � 0.38 �0.37 � 0.22

Micranthes foliolosa (R.Br.) G. Insect 0.31 � 0.41 �0.33 � 0.08

Micranthes stellaris (L.) G. Insect �0.07 � 0.02 �0.40 � 0.06 * �39.69 � 8.50

Pedicularis oederi Vahl Insect 0.12 � 0.15 �0.07 � 0.03

Ranunculus glacialis L. Insect �0.05 � 0.02 �0.06 � 0.04 * �85.12 � 6.49

Ranunculus pygmaeus Wahlenb. Selfing �0.59 � 0.19 * �0.59 � 0.47 * �3.51 � 2.70

Rubus chamaemorus L. Insect �0.33 � 0.10 * �0.12 � 0.23 * �8.29 � 5.22

Sagina cespitosa Insect 0.67 � 0.84 �1.07 � 0.79 * �17.07 � 8.54

Salix herbacea L. Insect �0.50 � 0.06 * �0.22 � 0.15

Saxifraga rivularis L. Selfing 0.10 � 0.07 0.61 � 0.03 * 21.67 � 0.76

Sibbaldia procumens Insect �0.11 � 0.25 �0.09 � 0.08

Thalictrum alpinum L. Insect �0.18 � 0.08 �0.14 � 0.12

Trollius europaeus Insect 0.01 � 0.04 �0.49 � 0.01 * �9.58 � 2.03

Vaccinium uliginosum L. Insect �0.25 � 0.07 0.14 � 0.01

Vaccinium vitis-idaea L. Insect �0.10 � 0.06 �0.54 � 0.01 * �20.17 � 0.09
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associated with lower loss of genetic diversity under range

shifts. This would corroborate previous results of pollination

system as a major driver of genetic exchange and genetic

variation among populations (Thiel-Egenter et al., 2009;

Friedman & Barrett, 2009). In addition, wind-pollinated

species are not dependent on the presence of pollinators for

colonization and establishment in a new area. Nevertheless,

our sample contained a higher number of insect- than wind-

pollinated species and future studies on wind pollination are

required to make firm conclusions on this point.

Distinct historical contingencies might also have promoted

differential genetic responses to past range shifts among spe-

cies. In our estimations, we considered the shortest migration

distance for each population, although species do not always

follow the shortest route when tracking shifting climatic con-

ditions (e.g. long-distance dispersal) and may also use multi-

ple routes (Alsos et al., 2007; Esp�ındola et al., 2012; Eidesen

et al., 2013). For instance, Alsos et al. (2015) showed that

species colonized North Atlantic islands post-glacially via

multiple dispersal routes from several source regions. Such

complex and multiple colonizations routes may lead to

admixture effects (Petit et al., 2004), which may blur the

pattern between genetic diversity and minimal distance from

refugia as quantified in our study. In addition, we found a

significant positive relationship between genetic diversity and

migration distance in the case of Saxifraga rivularis. The

genetic structure of this species indicates glacial survival in

northern glacial nunatak microrefugia (Westergaard et al.,

2010, 2011), a possibility not accounted for in our coarse

resolution estimates of refugia. Therefore, more complex his-

torical contingencies than those modelled here such as multi-

ple colonizations, admixture effects or nunatak refugia might

have given rise to the large variability in responses observed

in our study.

Finally, difference may arise from variation among the

model predictive power and quality of the reconstruction of

species past ranges. In our validations with fossil records,

while the reconstruction of D. octopetala matched fossil

records well, only the glacial refugia of S. herbacea modelled

using the MPI-ESM-P was able to correctly predict fossil

occurrences in eastern North America at the LGM (see

Fig. S3 in Appendix S3). While we found generally low vari-

ability among reconstructed migration distances from the

three GCMs, we cannot exclude that uncertainty in both

reconstructed ice distribution and climatic conditions may

have led to poor identification of glacial refugia for some

species generating uncertainty in the modelled responses.

Nevertheless, the areas that were identified as refugia corre-

sponded to areas formerly considered as refugia based on

phytogeographical (Hult�en, 1937; Abbott & Brochmann,

2003), fossil record (Brubaker et al., 2005) and genetic evi-

dence (Eidesen et al., 2013, see Figs S1 & S2 in

Appendix S2).

Because the observed velocity of ongoing climate change is

faster than that observed in the Holocene (Burrows et al.,

2011), we can expect that future range shifts will cause ero-

sion of genetic diversity at an even higher rate than observed

for the past. This increased velocity of climate change is also

occurring on top of other anthropogenic disturbances, such

as habitat fragmentation, which will also impact rates of

genetic erosion beyond what we can model from the past.

Nevertheless, our results indicate a complex relationship

between population genetic diversity and historical species

range shift. Therefore, it is not trivial to understand and pre-

dict species demographic response to climate change that

may vary according to species traits or historical contingency

(Dullinger et al., 2012). Care should be taken when forecast-

ing the demographic and genetic consequences for species

under climate change. Our result indicate that a portion of

the species conserve the highest level of genetic diversity in

populations of southern latitudes, whereas expanding popu-

lations at the leading edges often show low genetic diversity

(Fig. 2). High diversity populations at the trailing edge of

species range shift under ongoing climate change have the

best raw genetic material to adapt to new climatic condi-

tions, but might also be the most threatened with local

extinction if climate change velocity is too high compared to

adaptation abilities. This raises conservation questions, as to

whether it is important to transplant individuals from high

diversity populations to the expanding front as higher stand-

ing genetic diversity offer better possibility for long-term sur-

vival under changing environments (Reed et al., 2003;

Hampe & Petit, 2005). Ethical problem of moving individu-

als within the same species to preserve genetic diversity

might be less pronounced that moving species into new loca-

tions (McLachlan et al., 2007). Together, our study high-

lights how understanding species historical responses might

bring new insights into the consequence of ongoing climate

change on biodiversity.
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