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Multidrug  resistance  is quite common  among  non-fermenting  Gram-negative  rods,  in particular  among

clinically  relevant  species  including  Pseudomonas  aeruginosa  and  Acinetobacter  baumannii.  These  bacte-

rial  species,  which  are  mainly  nosocomial  pathogens,  possess  a diversity  of resistance  mechanisms  that

may  lead  to  multidrug  or  even  pandrug  resistance.  Extended-spectrum  �-lactamases  (ESBLs)  conferring

resistance  to  broad-spectrum  cephalosporins,  carbapenemases  conferring  resistance  to carbapenems,

and  16S  rRNA  methylases  conferring  resistance  to all  clinically  relevant  aminoglycosides  are  the  most

important  causes  of concern.  Concomitant  resistance  to fluoroquinolones,  polymyxins  (colistin)  and  tige-

cycline  may  lead  to pandrug  resistance.  The  most  important  mechanisms  of  resistance  in  P.  aeruginosa
and  A. baumannii  and  their  most  recent  dissemination  worldwide  are  detailed  here.

1. Introduction

The emergence and spread of bacteria resistant to multiple
antibiotics and at  the origin of severe infections is currently of
great concern. This is particularly true for nosocomial pathogens
isolated in hospitals, where these superbugs may  compromise
advanced medicine, including surgery, transplantation, efficient
treatment of immunocompromised and haematological patients,
etc. Among the increasingly reported and commonly identi-
fied multidrug-resistant or even pandrug-resistant bacteria, the
lactose-non-fermenting Gram-negative pathogens Acinetobacter
baumannii and Pseudomonas aeruginosa occupy an important place.
These bacterial species are quick to become multidrug-resistant
owing to their additional intrinsic resistance mechanisms. They are
responsible for hospital-acquired infections (bloodstream, urinary
tract, pulmonary and device-related infections) and are frequently
isolated from immunocompromised patients hospitalised in the
intensive care unit. Resistance to multiple antibiotic classes, and
notably to the �-lactam cephalosporins and carbapenems, is on the
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rise worldwide. In this review, the emerging antibiotic resistance
mechanisms in A. baumannii and P. aeruginosa are highlighted, with
a special focus on the most prescribed antimicrobial agents, i.e.
�-lactams, aminoglycosides and fluoroquinolones.

2. Resistance to �-lactams

2.1.  Class A ˇ-lactamases

2.1.1.  Extended-spectrum ˇ-lactamases (ESBLs)
The class A ESBLs confer resistance to expanded-spectrum

cephalosporins and are inhibited in vitro by clavulanic acid and
tazobactam [1]. They have been extensively identified in mem-
bers of the Enterobacteriaceae family but are also reported from
non-fermenters.

2.1.1.1. Acinetobacter baumannii. The most common ESBLs
described in A. baumannii are the PER-, GES- and VEB-type �-
lactamases. The first ESBL identified in A. baumannii was PER-1,
being later widely detected in  Turkey [2]. PER-1-producing A.
baumannii are also considered to  be widespread in  South Korea
[3], Hungary [4], Romania [5], Russia [6], Belgium [7] and the USA
[8]. They have also been identified in  Bulgaria, India, China, Iran
and Kuwait [9–13] (Table 1). In A. baumannii, the blaPER-1 gene is
part of a  composite transposon named Tn1213, bracketed by  two
different insertion sequences (ISPa12 and ISPa13) sharing similar
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Table  1

Ambler class A extended-spectrum �-lactamases (ESBLs) known in Acinetobacter baumannii and Pseudomonas aeruginosa.

�-Lactamase Host Genetic supporta Country of isolation Reference(s)

PER-1 Acinetobacter
baumannii

C, P  Turkey [2]

C, P  South Korea [3]

? Hungary [4]

C Romania [5]

C Russia [6]

C Belgium [7]

? USA [8]

? Bulgaria [9]

C India [10]

? China [11]

? Iran  [12]

P Kuwait [13]

Pseudomonas
aeruginosa

C France [42]

C, P  Turkey [2]

? Belgium [43]

C Italy [44]

C Spain [45]

C Poland [46]

P Hungary [47]

C Serbia [47]

? Tunisia [48]

? Japan [49]

? China [50]

C Greece [51]

? Iran  [52]

PER-2 Acinetobacter baumannii ? Argentina [15]

Pseudomonas aeruginosa ? Bolivia [38]

PER-3  Acinetobacter baumannii C  Egypt [16]

PER-7 Acinetobacter
baumannii

C France [17]

P United Arab Emirates [18]

PER-8  Acinetobacter baumannii ? Nepal Accession no.  AB985401

VEB-1 Acinetobacter
baumannii

C France [19–21]

C Belgium [7]

? Argentina [15]

? Iran  [12]

Pseudomonas
aeruginosa

C France [53]

C, P  Thailand [54]

C, P  Kuwait [55]

C India [56]

? Bulgaria [57]

? UK [58]

? Denmark [59]

? Iran  [12]

VEB-2  Pseudomonas aeruginosa C Thailand [54]

VEB-3 Acinetobacter baumannii ? Taiwan [23]

Pseudomonas aeruginosa ? China [60]

VEB-7  Acinetobacter baumannii ? USA Accession no.  FJ825622

GES-1 Pseudomonas
aeruginosa

C France [61]

C Brazil [62]

? Argentina [63]

GES-8  (IBC-2) Pseudomonas aeruginosa C Greece [64]

GES-9  Pseudomonas aeruginosa C France [66]

GES-11 Acinetobacter
baumannii

P France [25]

P Belgium [26]

? Sweden [27]

P Kuwait [28]

? Turkey [29]

P Tunisia [30]

GES-12  Acinetobacter baumannii P  Belgium [26]

GES-13  Pseudomonas aeruginosa C Greece [65]

GES-22  Acinetobacter baumannii P  Turkey [32]

SHV-2a Pseudomonas
aeruginosa

C France [67]

C Tunisia [68]

SHV-5 Acinetobacter baumannii C France (from USA) [33]

Pseudomonas aeruginosa C Greece [71]

SHV-12 Acinetobacter baumannii P  The Netherlands [35]

Pseudomonas
aeruginosa

C Thailand [69]

C Japan [70]

TEM-4  Pseudomonas aeruginosa C France [72]

TEM-21  Pseudomonas aeruginosa C France [73]
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Table  1 (Continued)

�-Lactamase Host Genetic supporta Country of isolation Reference(s)

TEM-24 Pseudomonas aeruginosa P France [74]

TEM-42  Pseudomonas aeruginosa P France [75]

TEM-92  Acinetobacter baumannii ? Italy [34]

TEM-116  Acinetobacter baumannii P The Netherlands [35]

CTX-M-1  Pseudomonas aeruginosa ? The Netherlands [76]

CTX-M-2 Acinetobacter
baumannii

P Japan [36]

? USA [37]

Pseudomonas
aeruginosa

C Brazil [77,78]

? Bolivia [38]

CTX-M-3  Pseudomonas aeruginosa ?  China [50]

CTX-M-14  Pseudomonas aeruginosa ?  China [50]

CTX-M-15 Acinetobacter baumannii P India [39]

C Haiti [40]

Pseudomonas aeruginosa ? China [50]

CTX-M-43 Acinetobacter baumannii ? Bolivia [38]

Pseudomonas aeruginosa ? Bolivia [38]

RTG-4  Acinetobacter baumannii P France [41]

BEL-1  Pseudomonas aeruginosa C Belgium [79,80]

BEL-2  Pseudomonas aeruginosa C Belgium [81]

BEL-3  Pseudomonas aeruginosa ?  Spain [82]

PME-1  Pseudomonas aeruginosa P USA [83]

a C, chromosome; P, plasmid;?, unknown.

inverted repeat sequences [14]. Recently, the blaPER-1 gene was
identified in a composite transposon made of two  copies of ISPa12
in an A. baumannii isolate from Kuwait [13]. PER-2, which is quite
distantly related to PER-1 (86% amino acid identity), has so far been
found exclusively in South America [15]. Recently, the blaPER-3
gene, initially identified from Aeromonas punctata and Aeromonas
caviae, has been identified in a single A. baumannii isolate in  Egypt
[16]. In addition, PER-7 (four amino acid substitutions compared
with PER-1) has been identified in a  single A. baumannii clinical
isolate in France [17] and in  the United Arab Emirates (UAE) [18].
The blaPER-7 gene was associated with the insertion sequence (IS)
element ISCR1 that was also involved it its expression [17]. PER
variants identified in A. baumannii are summarised Table 1.

Another  important ESBL in  A. baumannii is  the Vietnamese
extended-spectrum �-lactamase (VEB). VEB-1 is distantly related
to other ESBLs, sharing only 38% amino acid identity with the clos-
est ESBL, namely PER-1 [19]. VEB-1-producing A. baumannii were
first identified in France, where a single clone was originally iden-
tified as the source of a  hospital outbreak [20]. Genotyping analysis
showed that this VEB-1-producing A. baumannii belonged to one of
the two major clonal complexes of A. baumannii, termed worldwide
clone 1 [20]. Further studies showed a  nationwide dissemination
of VEB-1 in France [21] and its neighbouring country Belgium [7].
In most cases, the blaVEB-1 gene is identified as a  gene cassette
in class 1 integrons varying in size and structure [19]. However,
in several A. baumannii isolates from Argentina, the blaVEB-1 gene
was associated with an ISCR2 element, which was likely at the ori-
gin of the mobilisation of this ESBL gene [22]. VEB-1-producing A.
baumannii have also been identified in Iran [12]. The blaVEB-3 vari-
ant was reported in a  single A. baumannii isolate from Taiwan [23]
(Table 1).

Since  2010, GES-type ESBLs are increasingly reported from A.
baumannii. Actually, GES-1 was firstly reported in 2000, being iden-
tified from a single K. pneumoniae isolate [24]. GES-11, differing
from GES-1 by two amino acid substitutions and consequently pos-
sessing increased activity towards aztreonam, was first identified
in 2009 from an A. baumannii isolate from France [25]. GES-11 was
then detected in the same species in Belgium, Sweden, Kuwait,
Turkey and Tunisia [26–30] and in the Middle East, which might
act as a reservoir for multidrug-resistant bacteria [28]. Another

GES  variant, namely GES-12, differs from GES-11 by a single
Thr237Ala substitution. It has been identified from several isolates
in Belgium [26] and possesses increased hydrolytic activity towards
ceftazidime [31]. More recently, GES-22, differing from GES-11 by
one amino acid substitution, was  reported from two  A. baumannii
isolates from Turkey [32]. It was reported that GES-22 possessed
a hydrolytic profile similar to that of GES-11 and that the blaGES-22
gene was located on a  class 1 integron inserted into a  75-kb plasmid
[32].

On the other hand, the TEM- and SHV-type ESBLs, being
widespread among Enterobacteriaceae, have been scarcely iden-
tified in  A. baumannii. The corresponding blaSHV and blaTEM genes
have been identified either on the chromosome (blaSHV-5)  or on
plasmids (blaSHV-12,  blaTEM-92,  blaTEM-116) [33–35]. Likewise, the
genes encoding the CTX-M-type ESBLs, known to  be  extremely
widespread among Enterobacteriaceae, have been rarely identified
in A. baumannii. CTX-M-2-producing isolates have been identified
in Japan and the USA [36,37], and a  CTX-M-43-producing isolate
has been found in Bolivia [38]. More recently, CTX-M-15-producing
A. baumannii have been identified in India and Haiti [39,40]. The
blaCTX-M-15 gene was found to be associated with ISEcp1 in a  trans-
poson that integrated into the chromosome of A. baumannii [40].
A novel ESBL, named RTG-4, which is the first carbenicillinase to
possess ESBL properties, was identified from an A. baumannii iso-
late from France in 2009 [41]. This is  an atypical ESBL since it
significantly hydrolyses cefepime and cefpirome, but hydrolyses
ceftazidime only weakly [41].

Although widespread among Enterobacteriaceae, the rare iden-
tification of these ESBLs in  A. baumannii may  be due to limited
horizontal gene transfer occurring between these different bac-
terial genders as a  consequence of narrow-spectrum plasmid
replication properties.

2.1.1.2.  Pseudomonas aeruginosa. The PER-1 �-lactamase was the
first ESBL identified in P. aeruginosa [42]. It was identified in  a  P.
aeruginosa isolate from a Turkish patient hospitalised in the Paris
area of France in 1991 [42]. National surveys from Turkey then
showed that PER-1-producing P. aeruginosa isolates are widespread
in Turkey [2]. PER-1 has been reported in European countries with
no geographical border with Turkey, such as Belgium [43], Italy
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[44], Spain [45], Poland [46], Hungary and Serbia [47] and Tunisia
[48] as well as in Asian countries [49,50]. In addition, it was iden-
tified in Greece and Iran [51,52] (Table 1). Epidemiological surveys
have shown that a predominant P. aeruginosa sequence type (ST)
and single-locus variants, corresponding to  international clonal
complex CC11, is associated with wide dissemination of PER-1-
producing P. aeruginosa isolates in  Turkey, Belgium and Italy as well
as in several Eastern European countries [46,47,51]. The PER-2 �-
lactamase, which shares 86% amino acid identity with PER-1 and
therefore represents another lineage of the PER-type enzymes, was
identified only from a P. aeruginosa strain isolated in Bolivia [38]
(Table 1).

Another ESBL from P. aeruginosa is  VEB-1, which was  identified
from P. aeruginosa isolates recovered from patients hospitalised in
France but transferred from Thailand [53]. Nosocomial spread of
VEB-1-producing P. aeruginosa isolates was identified in Thailand
[54]. Later, other VEB-like producing isolates were reported from
Kuwait and India [55,56], but also in Iran, Bulgaria, the UK and
Denmark, highlighting the worldwide dissemination of these VEB-
producing strains [12,57–59] (Table 1). Isolates producing VEB-2 or
VEB-3 were identified in  Thailand and China, with these ESBLs dif-
fering from VEB-1 by  only a  single or two amino acid substitutions,
respectively [54,60].

Other  ESBLs are the GES enzymes, which have been detected
in P. aeruginosa (Table 2). The blaGES-1 gene was  identified from P.
aeruginosa isolates from France and South America [61–63]. The
structurally related ESBLs IBC-2 (differing from GES-1 by a single
amino acid residue and then renamed GES-8) and GES-13 were
isolated from two P. aeruginosa isolates in  Greece [64,65]. Another
variant, named GES-9, possessing a broad-spectrum hydrolysis pro-
file extended to aztreonam, was identified in  a  single P. aeruginosa
isolate from France [66].

The SHV-type ESBLs have been identified in  very rare isolates
of P. aeruginosa, being SHV-2a in  France and Tunisia [67,68] and
SHV-12 in Thailand [69] and Japan [70] (Table 1). A nosocomial
outbreak of SHV-5-producing P. aeruginosa was also described in
Greece [71]. TEM-type ESBLs have also been rarely reported from P.
aeruginosa, being TEM-4 [72], TEM-21 [73], TEM-24 [74] and TEM-
42 [75]. CTX-M-type ESBLs, with in  some cases evidence of their
horizontal transfer from Enterobacteriaceae to P. aeruginosa, are
very rarely identified in P. aeruginosa. A single CTX-M-1-producing
P. aeruginosa isolate has been reported from The Netherlands in
2006 [76], and CTX-M-2- or CTX-M-43-positive P. aeruginosa have
been identified in South America [38,77,78]. Recently, CTX-M-3,
CTX-M-14 and CTX-M-15 were identified from several P. aeruginosa
isolates from China [50] (Table 1).

In 2005, another ESBL that had weak amino acid identity with
other class A ESBLs but had similar biochemical properties was
reported; the gene encoding BEL-1 was located in a  class 1 integron
inserted into the chromosome of a  P. aeruginosa isolate recovered
in a single hospital in Belgium [79]. Later, another study reported
the dissemination of BEL-1-producing P. aeruginosa isolates in sev-
eral hospitals located in different geographical areas in Belgium
[80]. BEL-2 and BEL-3, each differing from BEL-1 by a  single amino
acid substitution, were identified in  2010 in  a strain recovered in
Belgium and Spain, respectively [81,82] (Table 1). Compared with
BEL-1, BEL-2 possesses enhanced hydrolytic properties against
expanded-spectrum cephalosporins [81].

The ESBL PME-1 is  the latest identified ESBL from a clinical
P. aeruginosa isolate and was recovered in  Pennsylvania, USA, in
2008 [83]. This enzyme shares 43% amino acid identity with the
closest ESBL CTX-M-9. PME-1 confers a  high level of resistance to
penicillins, ceftazidime and aztreonam and to  a  lesser extent cefo-
taxime, but spares cefepime and the carbapenems. The blaPME-1

gene was found to be located on an ca.  9-kb plasmid, flanked on
both extremities by two copies of ISCR24 [83].

2.1.2. Carbapenemases
2.1.2.1. Acinetobacter baumannii. Although almost all class A ESBLs
do not possess any significant carbapenemase activity, specific GES
variants have been shown to possess the ability to compromise the
efficacy of carbapenems (Table 2). These are  GES enzymes possess-
ing specific residues enlarging their hydrolysis spectrum, and some
of them such as GES-5 have been identified in  Enterobacteriaceae
[84].  The GES-14 variant is one of these GES-type carbapenemases
and has been identified in  A. baumannii in France in 2011 [85], the
blaGES-14 gene being part of a  class 1 integron located on a self-
transferable plasmid [85].

Another  class A carbapenemase that is commonly identified
among Enterobacteriaceae is KPC, with KPC-type enzymes pos-
sessing intrinsic high carbapenemase and ESBL activity [86]. These
enzymes all confer resistance to all �-lactams, and the correspond-
ing genes are located on mobile genetic elements, enhancing their
spread [87]. Despite wide dissemination among enterobacterial
species, only a  few KPC-type �-lactamases have been identi-
fied in  A. baumannii, being from a series of isolates recovered in
Puerto Rico [88]. In that study, ten A. baumannii isolates producing
KPC-type enzymes were detected, corresponding to KPC-3 (7 iso-
lates) and KPC-2, KPC-4 and KPC-10 in  single isolates, respectively
[88].

2.1.2.2. Pseudomonas aeruginosa. As highlighted earlier, several
GES-type ESBLs exhibit some carbapenemase properties. Actu-
ally, the first GES-type carbapenemase was  identified from a  P.
aeruginosa isolate, being GES-2, differing from GES-1 by  a single
amino acid substitution [89]. This isolate was recovered from a
patient hospitalised in  South Africa and was actually part of  an
outbreak that occurred in the same hospital [90]. The GES-5 vari-
ant possessing significant carbapenemase activity has also been
reported from P. aeruginosa isolates in China [91], South Africa
[92], Brazil [93] and Turkey [94]. These blaGES-type genes are  part
of class 1 integron structures [92]. Recently, a  novel GES variant,
GES-18, was  identified from a P. aeruginosa isolate from Belgium.
GES-18 differed from GES-5 by one amino acid substitution and
also hydrolysed carbapenems [95].

Although rarely identified, KPC-producing P. aeruginosa iso-
lates have been reported, first in Colombia in  2006 [96] and then
in Puerto Rico [97,98], Trinidad and Tobago [99], the USA [100]
and China [101]. They are  increasingly identified in  the Amer-
icas and the Caribbean region [102–104]. No clear evidence of
horizontal transfer of the blaKPC gene from Enterobacteriaceae to
non-fermenters has been observed.

2.2. Class B ˇ-lactamases

These  �-lactamases, also named metallo-�-lactamases (MBLs),
hydrolyse carbapenems and other �-lactams (except monobac-
tams) very efficiently and they are not inhibited by the clinically
available �-lactamase inhibitors such as clavulanic acid or  tazobac-
tam. However, their activity is  inhibited by metal ion chelators
[105,106].

2.2.1. Acinetobacter baumannii
Carbapenem resistance in this species is  most often (if  not

always) linked to the production of carbapenemases. MBL  enzymes
are not the most commonly identified carbapenemases in A. bau-
mannii; when identified, they are either IMP-like, VIM-like, SIM-1
or NDM-like enzymes [107]. Nine IMP  variants have been identi-
fied in  A. baumannii, namely IMP-1 in  Italy [108], Japan [109], South
Korea [110], India [111], Taiwan [112] and Kuwait [113], IMP-2 in
Japan and Italy [109,114], IMP-4 in  Hong-Kong [115], Australia and
Singapore [116,117], IMP-5 in Portugal [118], IMP-6 in Brazil [119],
IMP-8 in  China [120], IMP-11 in Japan (accession no. AB074436),
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Table  2

Ambler class A carbapenemases known in Acinetobacter baumannii and Pseudomonas aeruginosa.

�-Lactamase Host Genetic supporta Country of isolation Reference(s)

GES-2 Pseudomonas aeruginosa P  South Africa [89,90]

GES-5 Pseudomonas
aeruginosa

?  China [91]

?  South Africa [92]

C  Brazil [93]

?  Turkey [94]

GES-14  Acinetobacter baumannii P  France [85]

GES-18  Pseudomonas aeruginosa C Belgium [95]

KPC-2 Acinetobacter baumannii ? Puerto Rico [88]

Pseudomonas
aeruginosa

C,  P Columbia [96,102]

?  Puerto Rico [97]

?  Trinidad and Tobago [99]

P  USA [100]

C  China [101]

?  Argentina [103]

?  Brazil [104]

KPC-3  Acinetobacter baumannii ?  Puerto Rico [88]

KPC-4  Acinetobacter baumannii ? Puerto Rico [88]

KPC-5  Pseudomonas aeruginosa ?  Puerto Rico [98]

KPC-10  Acinetobacter baumannii ?  Puerto Rico [88]

a C, chromosome; P, plasmid;?, unknown.

IMP-14 in Thailand [121] and IMP-19 in Japan [122] (Table 3).
Noteworthy, VIM-type enzymes that have been widely identified
in Enterobacteriaceae have rarely been identified in  A. baumannii.
There are few reports of VIM-1-producers in Greece [123], VIM-2
in South Korea [110] and Kuwait [113], VIM-4 in Italy [124], VIM-
6 in India (accession no. EF645347) and VIM-11 in  Taiwan [23]
(Table 3).

The  SIM-1 carbapenemase has been reported only in  the A. bau-
mannii species so far, and only in South Korea, where this resistance
trait appears to be widespread [125]. Analysis of the genetic sup-
port of the MBL-encoding genes identified in A. baumannii shows
similar structures, with the blaIMP,  blaVIM and blaSIM genes being all
embedded in class 1 integron structures [107].

NDM-1 is one of the most recently identified MBLs [126]. Whilst
most studies indicate wide dissemination of the blaNDM-1-like genes
in Enterobacteriaceae, many studies reported on the acquisition
of blaNDM-1-like genes in A. baumannii. Indeed, NDM-1 was first
reported in India from Enterobacteriaceae and then in A. bauman-
nii [126,127]. Other reports are  from different European countries
and from China, Japan, Kenya, Brazil, Algeria and Syria [128–137].
An outbreak of NDM-1-producing A. baumannii, belonging to ST85,
was recently reported in  France [138], underscoring the growing
concern related to the spread of these isolates in Europe. Identi-
fication of several ST85 isolates possessing the blaNDM-1 gene and
originating from North Africa, with no obvious link to the Indian
subcontinent, strongly suggests that the source of NDM-producing
A. baumannii strains could be  North Africa [139]. Another variant,
NDM-2, was identified in A. baumannii strains recovered in  Egypt
[140], Israel [141] and the UAE [142]. Interestingly, it was  evidenced
that these NDM-2-producing isolates were clonally related, sug-
gesting that the Middle East as well as the Balkan region and
the Indian and China regions might act as reservoirs of NDM-2-
producing Acinetobacter [143]. In these isolates, the blaNDM gene
was surrounded by two copies of ISAba125, thus forming a  10 099-
bp composite transposon named Tn125 [144]. As opposed to  what
is observed in Enterobacteriaceae, the ISAba125 element located
upstream of blaNDM and that plays a  role in  its expression, is  not
truncated [144]. Our extensive studies showed that A. baumannii
was likely the first target of blaNDM-1 gene acquisition before its
transfer to Enterobacteriaceae and P. aeruginosa [144]. This repre-
sents a new paradigm in antibiotic resistance since it highlights that
Acinetobacter spp. may  be a  source of an important resistance trait
for Enterobacteriaceae.

2.2.2. Pseudomonas aeruginosa
Carbapenem  resistance in P. aeruginosa is  mostly related to porin

(OprD) deficiency and more rarely to carbapenemases. Carbapen-
emases in  P. aeruginosa are mainly MBLs of the IMP, VIM, SPM
and GIM types. IMP-1 was first reported in  Enterobacteriaceae and
P. aeruginosa in  Japan and is now globally distributed, suggesting
horizontal transfer of blaIMP-1 between unrelated Gram-negative
species [145]. IMP-like enzymes may  be divided into several sub-
groups and the percentage amino acid identity within these groups
actually ranges from 90% to 99% [106]. These variants possess very
similar hydrolytic activities. Among the 51 known IMP variants, 32
have been reported from P. aeruginosa and have been identified
throughout the world (Table 3).

Although VIM enzymes share <40% amino acid identity with
the IMP-type enzymes, they share the same hydrolytic spectrum
[186]. VIM-1 was  the first MBL  identified in  P. aeruginosa [187] and
has been reported in  several European countries (Table 3). How-
ever, VIM-2 is now the most widespread MBL  in P. aeruginosa as a
source of multiple outbreaks [106]. Twenty-three of the forty-six
VIM variants have been identified in P. aeruginosa (Table 3).

�-Lactamase  SPM is  quite different from VIM and IMP  and,
accordingly, represents a  new subfamily of MBLs. SPM-1 was first
isolated in Brazil in 1997 from a  P. aeruginosa clinical isolate [207],
which was  highly resistant to  all anti-Gram-negative antibiotics
except colistin. Dissemination of multidrug-resistant P. aeruginosa
producing SPM-1 was  demonstrated in  distinct regions of  this
country, however they have not disseminated in other countries
[208], with the only exception of a  single isolate identified in
Switzerland from a  patient who had previously been hospitalised
in Brazil [209]. The blaSPM-1 gene is  either chromosomal or plasmid-
encoded. In addition, it is associated with the IS element ISCR4 at
the origin of its acquisition and expression and is likely transposed
through a  rolling-circle replication mechanism [210].

In  2002, a  new type of acquired MBL, named GIM-1, was
identified in  clonally related P. aeruginosa isolates from Germany
[211,212]. This enzyme also produced by enterobacterial species
has only been identified in Germany.

NDM-1-producing P. aeruginosa isolates were first reported in
2011, with two  strains recovered from Serbia [213]. In 2012, a single
NDM-1-producing P. aeruginosa belonging to ST235 was  isolated in
France from a patient previously hospitalised in  Serbia [214,215].
More recently, NDM-1-positive P. aeruginosa isolates were recov-
ered in India (four isolates), Italy (a single isolate belonging to
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Table  3

Ambler class B metallo-�-lactamases known in Acinetobacter baumannii and Pseudomonas aeruginosa.

�-Lactamase Host Genetic environment or supporta Country of isolation Reference(s)

IMP-1 Acinetobacter
baumannii

?  Italy [108]

I Japan [109]

? South Korea [110]

? India [111]

? Taiwan [112]

? Kuwait [113]

Pseudomonas
aeruginosa

I Japan [146]

I South Korea [110]

?  Brazil [147]

? China [148]

I Turkey [149]

? Singapore [150]

I Thailand [151]

IMP-2 Acinetobacter
baumannii

I  Japan [109]

I Italy [114]

Pseudomonas aeruginosa I Japan [109]

IMP-4 Acinetobacter
baumannii

I  Hong Kong [115]

? Australia [116]

I Singapore [117]

Pseudomonas
aeruginosa

? Malaysia [152]

I Australia [153]

IMP-5 Acinetobacter  baumannii I Portugal [118]

Pseudomonas aeruginosa I Portugal [154]

IMP-6 Acinetobacter  baumannii ? Brazil [119]

Pseudomonas
aeruginosa

I South Korea [155]

? China [156]

IMP-7 Pseudomonas
aeruginosa

I  Canada [157]

? Malaysia [158]

? Slovakia [159]

I Japan [160]

? Singapore [150]

I Czech Republic [161]

? Denmark [162]

IMP-8  Acinetobacter baumannii I China [120]

IMP-9  Pseudomonas aeruginosa I China [163]

IMP-10  Pseudomonas aeruginosa I Japan [164]

IMP-11 Acinetobacter  baumannii ? Japan Accession no. AB074436

Pseudomonas aeruginosa ? Japan Accession no. AB074437

IMP-13 Pseudomonas
aeruginosa

I  Austria [165]

I Italy [166]

I France [167]

I Belgium [168]

IMP-14 Acinetobacter  baumannii I Thailand [121]

Pseudomonas aeruginosa I Thailand [169]

IMP-15 Pseudomonas
aeruginosa

I  Mexico [170]

I Spain [171]

? Germany [172]

IMP-16  Pseudomonas aeruginosa I Brazil [173]

IMP-18 Pseudomonas
aeruginosa

?  USA [174]

I Mexico [175]

I Puerto Rico [97]

IMP-19 Acinetobacter  baumannii ? Japan [122]

Pseudomonas
aeruginosa

? Japan Accession no. AB184876

I  Italy [176]

IMP-20  Pseudomonas aeruginosa I Japan Accession no. AB196988

IMP-21  Pseudomonas aeruginosa Japan Accession no. AB204557

IMP-22 Pseudomonas
aeruginosa

I  Austria [165]

I Italy [177]

IMP-25  Pseudomonas aeruginosa I China Accession no. EU352796

IMP-26 Pseudomonas
aeruginosa

I  Malaysia [178]

? Singapore [179]

IMP-29  Pseudomonas aeruginosa I France [180]

IMP-30  Pseudomonas aeruginosa ? Russia [181]

IMP-31  Pseudomonas aeruginosa ? Germany Accession no. KF148593

IMP-33  Pseudomonas aeruginosa I Italy [182]

IMP-35  Pseudomonas aeruginosa I Germany [183]

IMP-37  Pseudomonas aeruginosa ? France Accession no. JX131372

IMP-40  Pseudomonas aeruginosa ? Japan Accession no. AB753457
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Table  3 (Continued)

�-Lactamase Host Genetic environment or supporta Country of isolation Reference(s)

IMP-41 Pseudomonas aeruginosa ? Japan Accession no.  AB753458

IMP-43 Pseudomonas aeruginosa I Japan [184]

IMP-44  Pseudomonas aeruginosa I  Japan [184]

IMP-45  Pseudomonas aeruginosa I China [185]

IMP-48  Pseudomonas aeruginosa ? USA Accession no.  KM087857

VIM-1 Acinetobacter baumannii I Greece [123]

Pseudomonas
aeruginosa

I Italy [187]

I  France [188]

I  Greece [189]

?  Germany [172]

I  Italy [176]

VIM-2 Acinetobacter
baumannii

I South Korea [110]

?  Kuwait [113]

Pseudomonas
aeruginosa

I Tunisia [190]

?  Thailand [169]

I  Austria [165]

I  Mexico [170]

?  India [191]

?  Kenya [192]

I  Hungary [193]

I  Malaysia [194]

I  South Korea [106]

I  Japan [106]

I  France [106]

I  Greece [106]

I  Italy [106]

I  Portugal [106]

?  Spain [106]

I  Croatia [106]

I  Poland [106]

I  Chile [106]

I  Venezuela [106]

?  Argentina [106]

I  USA [106]

?  Belgium [172]

?  Germany [172]

?  Turkey [172]

VIM-3  Pseudomonas aeruginosa ? Taiwan [195]

VIM-4 Acinetobacter baumannii ? Italy [124]

Pseudomonas
aeruginosa

I Greece [106]

?  Sweden [106]

I  Poland [106]

I  Hungary [193,196]

?  France [172]

VIM-5 Pseudomonas
aeruginosa

? India [191]

I  Turkey [106]

VIM-6 Acinetobacter baumannii ? India Accession no.  EF645347

Pseudomonas
aeruginosa

I India [191]

I  Indonesia [197]

I  South Korea [197]

I  Philippines [197]

VIM-7  Pseudomonas aeruginosa I USA [198]

VIM-8  Pseudomonas aeruginosa ? Columbia [199]

VIM-9  Pseudomonas aeruginosa ? UK Accession no.  AY524988

VIM-10 Pseudomonas aeruginosa ? UK [58]

VIM-11 Acinetobacter baumannii I Taiwan [23]

Pseudomonas
aeruginosa

I India [191]

?  Argentina [200]

?  Italy Accession no.  AY635904

I Malaysia [194]

VIM-13  Pseudomonas aeruginosa I Spain [201]

VIM-14 Pseudomonas
aeruginosa

? Spain Accession no.  EF055455

I Italy [202]

VIM-15  Pseudomonas aeruginosa I Bulgaria [203]

VIM-16  Pseudomonas aeruginosa I Germany [203]

VIM-17  Pseudomonas aeruginosa I Greece [204]

VIM-18  Pseudomonas aeruginosa I India [191]

VIM-20  Pseudomonas aeruginosa ? Spain [205]

VIM-28  Pseudomonas aeruginosa I Egypt [206]

VIM-30  Pseudomonas aeruginosa I France Accession no.  JN129451

VIM-36 Pseudomonas aeruginosa ? Belgium [172]
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Table  3 (Continued)

�-Lactamase Host Genetic environment or supporta Country of isolation Reference(s)

VIM-37 Pseudomonas aeruginosa ?  Poland [172]

VIM-38  Pseudomonas aeruginosa I Turkey [94]

SIM-1  Acinetobacter baumannii I South Korea [125]

NDM-1 Acinetobacter
baumannii

C  Czech Republic [128]

C Germany [129,131]

C Belgium [130]

C Slovenia [131]

C France [131]

C Switzerland [131]

? India [127]

P China [132]

? Japan [133]

? Kenya [134]

P Brazil [135]

? Algeria [136]

? Syria [137]

Pseudomonas
aeruginosa

C Serbia [213]

C France [214,215]

P India [216]

C Italy [217]

? Egypt [218]

? Slovakia [219]

NDM-2 Acinetobacter
baumannii

C  Egypt [140]

C Israel [141]

? United Arab Emirates [142]

SPM-1 Pseudomonas
aeruginosa

ISCR4  Brazil [207]

ISCR4 Switzerland [209]

GIM-1  Pseudomonas aeruginosa I Germany [211,212]

FIM-1  Pseudomonas aeruginosa C Italy [221]

a I, integron present; C,  chromosome; P, plasmid;?, unknown.

ST235), Egypt and Slovakia [216–219]. Interestingly, the emergence
of multidrug-resistant VIM-2-producing P. aeruginosa in  Russia is
also linked to a ST235-like dominant clone [220]. Association of
ST235-like strains with MBL  genes has been reported in  several
European countries [220], such as in Italy with VIM-1-producers,
in Greece, Sweden, Hungary and Belgium with VIM-4-producers,
in Spain with VIM-13-producers, and in France with IMP-29-
producers [220]. This clone might therefore possess some specific
traits enhancing its clonal dissemination.

Recently, a novel MBL named FIM-1, exhibiting its highest sim-
ilarity (40% amino acid identity) with NDM-type enzymes, was
reported in a P. aeruginosa isolate from Italy [221]. The blaFIM-1 gene
was chromosomally located and was associated with ISCR19-like
elements that were likely involved in its capture and mobilisation
[221]; its origin remains unknown.

2.3. Class C ˇ-lactamases

2.3.1.  Acinetobacter baumannii
Acinetobacter baumannii naturally produces a gene encoding an

AmpC-type cephalosporinase. This gene is  usually expressed at a
basal and low level, therefore the amount of AmpC produced does
not have a significant impact on the activity of expanded-spectrum
cephalosporins [222]. The presence of a specific IS element ISAba1
(belonging to the IS4 family) upstream of this naturally occurring
ampC gene provides promoter sequences enhancing its expres-
sion, resulting in resistance to broad-spectrum cephalosporins
(but sparing carbapenems) [223]. By studying a series of A. bau-
mannii strains, a variety of AmpC variants may be identified
and these variants have been named ADC-type (Acinetobacter-
derived cephalosporinase) enzymes [224]. Some ADC variants,
such as ADC-33 and ADC-56, possess a slight extended activ-
ity towards expanded-spectrum cephalosporins, which allows the
classification of these enzymes as extended-spectrum AmpC (ESAC)
[225,226]. Indeed, they do hydrolyse ceftazidime more efficiently,

and  in addition they hydrolyse fourth-generation cephalosporins
such as cefepime, whereas wild-type AmpC enzymes do  not. The
true clinical significance of these enzymes remains unknown. No
acquired AmpC-type-encoding gene has been identified so  far in  A.
baumannii.

2.3.2. Pseudomonas aeruginosa
A chromosomal gene encoding an AmpC-type cephalosporinase

is also intrinsic to  P. aeruginosa. This ampC gene is associated with
a LysR-type regulatory gene with which some �-lactam molecules
may interact, leading to  overexpression of this ampC gene [227].
Some �-lactams such as carbapenems are inducers of ampC gene
expression, although they are not  substrates of these cephalospori-
nases. Selection of mutants overproducing the ampC gene is
frequently observed in P. aeruginosa, leading to acquired resistance
to ticarcillin, piperacillin and broad-spectrum cephalosporins (cef-
tazidime) [227]. In addition, insertion of the IS1669 element into the
LysR regulatory gene (also known as the ampR gene) of ampC may
lead to the overexpression of this enzyme [228]. Apart from these
mechanisms leading to  increased resistance to expanded-spectrum
cephalosporins, very peculiar AmpC-type enzymes of P. aeruginosa
have been identified possessing a broadened hydrolytic activity
towards imipenem [229]. They correspond to  naturally occurring,
chromosomally encoded AmpC-type �-lactamases possessing an
alanine residue at position 105 conferring an additional weak car-
bapenemase activity [229,230]. The true clinical significance of
these enzymes as a  source of carbapenem resistance remains to
be clarified.

2.4. Class D ˇ-lactamases

Class  D  �-lactamases, also known as oxacillinases, are �-
lactamases grouped in a  heterogeneous class of enzymes either
with respect to their structural or biochemical properties [231].
These enzymes all hydrolyse amoxicillin and cefalotin and their

8

ht
tp

://
do

c.
re

ro
.c

h



Table  4

Ambler class D �-lactamases known in Acinetobacter baumannii and Pseudomonas aeruginosa.

Host Enzyme subfamily Additional OXA members Phenotype Reference(s)

Acinetobacter
baumannii

OXA-23 (ARI-1) OXA-27, OXA-49 CHDL [107,236,237]

OXA-40  OXA-25, OXA-26, OXA-72 CHDL [232,238–245]

OXA-58 OXA-96,  OXA-97 CHDL  [117,246–248]

OXA-143  CHDL [249]

OXA-235  OXA-236, OXA-237 CHDL [250]

Pseudomonas
aeruginosa

OXA-2  OXA-15, OXA-32, OXA-34, OXA-36, OXA-141, OXA-161 ES-OXA [231,252–254]

OXA-10  OXA-11, OXA-13, OXA-14, OXA-16, OXA-17, OXA-19, OXA-28, OXA-129, OXA-142,

OXA-145, OXA-147, OXA-183

ES-OXA [231,255–262]

OXA-1  OXA-31 ES-OXA [263]

OXA-56 OXA-128 ES-OXA  [261]

OXA-18  ES-OXA [264]

OXA-45  ES-OXA [265]

OXA-40  CHDL [267]

OXA-198  CHDL [268]

CHDL, carbapenem-hydrolysing class D  �-lactamase; ES-OXA, extended-spectrum oxacillinase.

activities are usually not significantly inhibited by clavulanic acid
[232]. Some class D �-lactamases hydrolyse expanded-spectrum
cephalosporins and a few have been identified in  P. aeruginosa,
but none in A. baumannii. Most of these broad-spectrum class D
�-lactamases, also called ES-OXA, are point-mutant derivatives
of narrow-spectrum �-lactamases [231]. In  contrast, carbapen-
emase activity is  also an intrinsic property of many class D
�-lactamases, therefore terming them carbapenem-hydrolysing
class  D �-lactamases (CHDLs) [231].

2.4.1. Acinetobacter baumannii
Acinetobacter baumannii possesses naturally occurring class D  �-

lactamases, known as OXA-51-like enzymes [233]. These enzymes
exhibit weak carbapenemase activity and are classified as CHDLs.
Noticeably, the corresponding genes are not  (or only weakly)
expressed in most isolates. However, once overexpressed they may
subsequently be involved in reduced susceptibility to carbapen-
ems [234]. Overexpression of these genes encoding OXA-51-like
enzymes is often driven by the insertion of an ISAba1 element
upstream of the blaOXA-51-like gene, providing strong promoter
sequences.

In addition to these naturally occurring class D  �-lactamases,
several acquired class D �-lactamases have been identified as
a source of carbapenem resistance in A. baumannii [107]. These
CHDLs confer only reduced susceptibility to  carbapenems, but they
spare broad-spectrum cephalosporins. Therefore, the high resis-
tance to carbapenems often observed in many A. baumannii strains
results from the association between a CHDL and other resistance
mechanisms, including porin loss and overexpression of efflux
systems [107]. Five main groups of acquired CHDLs have been
described in A. baumannii, corresponding to OXA-23-, OXA-40-,
OXA-58-, OXA-143 and OXA-235-like enzymes. The first and most
common subgroup of CHDLs is made of OXA-23, OXA-27 and OXA-
49 (Table 4) [107]. The blaOXA-23-like genes are chromosome- or
plasmid-encoded and they are part of transposons, namely Tn2006
and Tn2007 [235]. OXA-23-like enzymes are  the most widespread
CHDLs in A. baumannii worldwide and they have been identified on
all continents [107,236]. OXA-23-producing A. baumannii are the
most common sources of nosocomial outbreaks with carbapenem-
resistant A. baumannii [231,237]. A second group of acquired CHDLs
in A. baumannii comprises OXA-25, OXA-26, OXA-40 (formerly
known as OXA-24) and OXA-72 (Table 4). OXA-25 has been identi-
fied in carbapenem-resistant A. baumannii isolates recovered from
Spain, and OXA-26 in Belgium [238]. The OXA-40 CHDL was  orig-
inally identified in  a  carbapenem-resistant A. baumannii isolate
in France recovered from a  Portuguese patient [239], and then
extensively identified in Portugal and Spain, as in  other parts of

the world [231,240,241]. The blaOXA-40-like genes may  be either
chromosome- or  plasmid-located. OXA-72 has also been identi-
fied in different parts of the world (Brazil, Lithuania, Croatia),
but predominantly in Asia (China, South Korea, Taiwan, Japan)
[231,242–245]. A third group of CHDLs corresponds to OXA-58
and its structurally related enzymes (OXA-96 and OXA-97), first
identified from a carbapenem-resistant A. baumannii isolate recov-
ered in  France [246] in  the context of a  nosocomial outbreak in a
burn unit [247]. This blaOXA-58 gene has now been reported world-
wide [231], being always plasmid-borne and associated with IS
elements at the origin of its expression [107]. OXA-96 and OXA-97
are point-mutant variants of OXA-58 sharing the same hydrolytic
properties and identified in  Singapore and Tunisia, respectively
[117,248].

The OXA-143 CHDL was identified in 2009 from a  clinical A. bau-
mannii isolate that had been recovered in Brazil [249]. It shares
88% amino acid identity with OXA-40, 63% with OXA-23 and 52%
with OXA-58. Its substrate profile was similar to  those of  other
CHDLs and its corresponding gene was  not integron- or transposon-
encoded [249].

Ultimately,  a  novel subclass of CHDLs has recently been reported
from isolates recovered in the USA and Mexico. This subgroup
includes OXA-235, OXA-236 and OXA-237 [250], and the corre-
sponding genes have been identified either on chromosomes or
plasmids, and bracketed by two  copies of ISAba1 [250].

2.4.2.  Pseudomonas aeruginosa
Pseudomonas  aeruginosa produces a  naturally occurring class

D �-lactamase, OXA-50, that does not contribute to the overall
�-lactam resistance pattern of P. aeruginosa, except for lata-
moxef [251]. Most of the class D  �-lactamases able to  hydrolyse
expanded-spectrum cephalosporins have been identified in  P.
aeruginosa. There are two main types of expanded-spectrum
class  D �-lactamases (ES-OXAs). Some are point-mutant deriva-
tives of narrow-spectrum class D �-lactamases, with amino acid
substitutions enlarging their spectrum of hydrolysis towards
expanded-spectrum cephalosporins. These ES-OXAs mainly derive
from the narrow-spectrum �-lactamases OXA-10 (OXA-11, -13,
-14, -16, -17, -19, -28, -129, -142, -145, -147 and -183), OXA-
2 (OXA-15, -32, -34, -36, -141 and -161) and OXA-1 (OXA-31)
(Table 4) [231,252–263]. Other ES-OXAs share only weak amino
acid identity with these latter enzymes. OXA-18, which is inhibited
by clavulanic acid, was the first identified ES-OXA in a  P. aeruginosa
isolate in Paris from a patient previously hospitalised in  Sicily
[264]. This enzyme shares <50% amino acid identity with the other
class D  �-lactamases. OXA-45 is another ES-OXA, identified from
a multidrug-resistant Texan P. aeruginosa isolate co-expressing
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the class B �-lactamase VIM-7 [265]. OXA-45 shares the high-
est identity with OXA-18 (66%) and, as for OXA-18, its activity is
well inhibited by clavulanic acid. Interestingly, the blaOXA-45 gene,
located on a 24-kb plasmid, was not found as a  form of a gene
cassette but associated with two copies of an ISCR5-like element
[266].

Only two acquired class D  �-lactamases compromising the effi-
cacy of carbapenems have been reported from P. aeruginosa. One
is OXA-40, known to be widespread in A. baumannii, which was
reported in a P. aeruginosa isolate in Spain in  2006 [267]. The other
is OXA-198 characterised in a  P. aeruginosa isolate from Belgium
[268], sharing <30% amino acid identity with other CHDLs reported
in Gram-negative organisms. The blaOXA-198 gene was harboured
by a class 1 integron carried by a non-typeable ca. 46-kb plasmid
[268].

3. Broad resistance to aminoglycosides

Aminoglycosides are used in the treatment of a  broad range
of life-threatening infections. The activity of aminoglycosides
depends on binding to a highly conserved motif of 16S rRNA. Mech-
anisms of aminoglycosides resistance include decreased outer
membrane permeability, active efflux and amino acid substitutions
in ribosomal proteins, whereas the most common resistance mech-
anism is enzymatic leading to modification of the drug. Methylation
of 16S ribosomal RNA has recently been demonstrated to be
another mechanism of resistance encountered in Gram-negative
organisms, corresponding to a  modification of the antibiotic tar-
get [269]. Methylases actually interfere in the binding of these
antibiotics to their site of action. These 16S rRNA methylases con-
fer a high level of resistance to  clinically useful aminoglycosides
such as amikacin, gentamicin and tobramycin [269,270]. The cor-
responding genes are associated with transposon structures, which
are themselves located on transferable plasmids, enhancing their
horizontal spread. Isolates producing 16S rRNA methylases are
multidrug-resistant, in particular to broad-spectrum �-lactams
through the production of ESBLs or MBLs. This multidrug resis-
tance pattern makes treatment of these infections particularly
challenging. Ten 16S rRNA methylases have been identified among
Gram-negative isolates, namely ArmA, RmtA, RmtB, RmtC, RmtD,
RmtD2, RmtE, RmtF, RmtG and NpmA [270–273]. The origin of these
genes is likely Streptomyces [271] and their prevalence remains
unknown depending on the geographical location (possibly more
frequent in Asia).

3.1.  Acinetobacter baumannii

The  ArmA enzyme has been reported in  many A. baumannii
worldwide, conferring high-level resistance to  all aminoglyco-
sides. Such isolates have been identified in China [274], South
Korea [275,276], Vietnam [277], Japan [278], North America [279],
Norway [280], Italy [281], Bulgaria [282], Iran [283] and Algeria
[136]. The armA gene was always found to be located on a func-
tional composite transposon Tn1548 [279]. Despite being quite
widespread among A. baumannii strains, the armA gene possesses
a GC content of 30%, which significantly differs from that of the A.
baumannii core genome estimated at ca. 39%. This highlights the
fact that this gene was acquired horizontally from a  source that
still remains unknown [279]. Noteworthy, the ArmA-encoding gene
is often identified among OXA-23-producing A. baumannii strains,
however both resistance genes are not physically linked on a  single
plasmid [280–282].

Apart  from numerous reports of ArmA-producing A. baumannii
isolates, the 16S rRNA methylase RmtB has recently been identified
in nine A. baumannii isolates from Vietnam [277].

3.2. Pseudomonas aeruginosa

The  first 16S rRNA methylase recovered in P. aeruginosa was
identified in 2003. It was a clinical isolate from Japan producing
RmtA [284,285]. Other RmtA-producing P. aeruginosa were then
identified in  South Korea in 2009 [286]. The rmtA gene is located
on mobile genetic elements such as transposon Tn5041 [285].

In  2007, the RmtD methylase was firstly reported from a
pandrug-resistant P. aeruginosa clinical isolate co-producing the
MBL SPM-1 in Brazil [287]. RmtD shares 40% amino acid identity
with RmtA, and the genetic structures surrounding both cor-
responding genes shared similar features [287]. Subsequently,
another study underscored that co-production of the MBL SPM-1
and the 16S rRNA methylase RmtD was common among imipenem-
resistant P. aeruginosa isolates recovered in  hospitals in São Paulo,
Brazil [288]. In these isolates, both the blaSPM-1 and rmtD genes
were found to  be chromosomally located. The ArmA enzyme was
also identified in  P. aeruginosa co-producing the MBL IMP-1 in South
Korea [289].

4.  Broad resistance to  fluoroquinolones

In  Gram-negative organisms, acquisition of resistance to
quinolones may  be related to  chromosomal mutations in  genes
encoding the topoisomerases or to mutations in  the efflux pump
regulation systems. In addition, plasmid-mediated quinolone resis-
tance genes (coding for the Qnr proteins) have been identified in
Enterobacteriaceae. These acquired Qnr proteins have not  been
identified in non-fermenters. In P. aeruginosa and A. baumannii, a
single mutation in the gyrA gene encoding DNA gyrase is  sufficient
to confer clinically high-level resistance levels to fluoroquinolones.
This is due to the fact that these species intrinsically possess a
decreased susceptibility to  these antibiotics owing to low perme-
ability or  constitutive expression of efflux pumps.

4.1. Acinetobacter baumannii

Overexpression of efflux pumps is  a source of acquired resis-
tance to fluoroquinolones in this species. Involvement of  the
adeABC operon encoding the AdeA, AdeB and AdeC proteins forming
a resistance–nodulation–cell division (RND) efflux system has been
demonstrated [290]. In this case, not  only fluoroquinolones but  also
aminoglycosides, tetracyclines, chloramphenicol and trimetho-
prim are substrates of this efflux system. Therefore, co-selection of
this kind of mechanism with non-quinolone antibiotic molecules
is possible. Similarly, overexpression of the adeIJK operon encoding
another RND efflux system of A. baumannii has also been shown to
interfere with different antibiotics, including the fluoroquinolones
[291]. Finally, overproduction of the AbeM efflux system [belonging
to the multi-antimicrobial extrusion protein (MATE) family] also
contributes to  acquired resistance to fluoroquinolones [292].

4.2.  Pseudomonas aeruginosa

As  shown in A. baumannii, acquired resistance to  flu-
oroquinolones, apart from being related to mutations in
topoisomerase-encoding genes, is  mainly related to efflux systems.
Their downregulation or upregulation (depending on whether the
regulator is positive or negative) contribute significantly to reduced
activity of fluoroquinolones. In P. aeruginosa, involvement of  the
MexAB–OprM RND-type system, which expression is  constitutive,
has been demonstrated, and its wide effect has been highlighted,
conferring reduced susceptibility also to chloramphenicol, tetra-
cyclines and �-lactams [293]. Likewise, the mexCD–oprJ operon
confers extrusion ability with regard to quinolones, penicillins
and tetracyclines. Nevertheless, this impact is  seen only when the
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negative regulatory protein NfxB is altered, indicating that consti-
tutive expression of this efflux system does not contribute to this
resistance trait [294]. Another efflux system is  MexEF–OprN, which
is also not involved in reduced susceptibility unless overexpression
is observed [295].

5.  Resistance to tigecycline

Tigecycline,  a semisynthetic derivative of minocycline, has a
peculiar mechanism of action and overcomes the widely dis-
tributed tet gene-encoded resistance mechanism known to confer
resistance to tetracycline. Tigecycline shows good activity towards
Gram-negative pathogens that may  produce a large array of resis-
tance mechanisms, including ESBLs and carbapenemases [296].
The activity of tigecycline against A. baumannii is overall good,
and successful results have been reported clinically [296]. Resis-
tance has been noted on several occasions and might be  due to
upregulation of the AdeABC multidrug efflux pump [297]. Another
A. baumannii-specific efflux system, named AdeIJK, has also been
shown to interfere with the efficacy of tigecycline, acting syner-
gistically with AdeABC [291]. Despite the fact that tigecycline has
been shown to also be a  substrate of the AdeFGH efflux pump [298],
only AdeABC and AdeIJK efflux pumps appear to  be involved in
its resistance in clinical isolates [298–300]. Noteworthy, tigecy-
cline resistance levels in A. baumannii isolates may  increase during
therapy with tigecycline in  the case of brief exposure to  the drug,
compromising its efficiency [301]. It  was recently reported that
a mutation in the trm gene, encoding a  methyltransferase, was
associated with decreased susceptibility to  tigecycline in  an A. bau-
mannii strain [302]. This Trm enzyme could therefore play a  role
in resistance to tigecycline, however further studies are needed to
clarify the possible role of this methyltransferase in the decreased
susceptibility to tigecycline [302].

6. Resistance to colistin

During  the past decade, we  have witnessed a  renewal of
clinical interest in polymyxins (colistin) owing to two concomi-
tant facts: (i) the emergence of carbapenem-, cephalosporin-
and aminoglycoside-resistant Gram-negative isolates; and (ii) the
paucity of novel marketed antibiotic molecules. Actually, polymyx-
ins remain most often active against these multidrug-resistant
isolates [303]. Emergence of colistin resistance in  relation to
increased usage is  worrisome since polymyxins are the last
remaining therapeutic option in  many cases. Acquisition of resis-
tance is mostly related to modifications of the lipopolysaccharide
(LPS) biosynthesis pathway.

6.1.  Acinetobacter baumannii

Two  mechanisms of resistance to colistin have been described
in A. baumannii: (i) alterations of the lipid A  component of LPS
resulting from mutations in  the PmrAB two-component system
[304,305]; and (ii) complete loss of LPS production resulting from
mutations in the lpxA, lpxC and lpxD genes encoding the enzymes
that catalyse the first steps in LPS biosynthesis [306]. Resistance to
colistin in A. baumannii clinical isolates is  rarely reported, however
evaluation of colistin susceptibility is difficult and often inac-
curate, considering that many laboratories do not use the gold
standard technique for testing, which is  microdilution [307]. The
first report of colistin-resistant A. baumannii was from South Korea
in 2005 [303]. High colistin resistance rates were then reported in
other Korean hospitals in 2007 [308], and an outbreak of pandrug-
resistant (including colistin) A. baumannii strains was  reported in
Spain in 2009 [309]. More recently, colistin-resistant A. baumannii

were  recovered in  Iran and the USA [310,311]. Noteworthy, devel-
opment of heteroresistance to  colistin in an in vitro model might
compromise the use of colistin as a  therapeutic option [312].

6.2.  Pseudomonas aeruginosa

The  emergence of colistin-resistant P. aeruginosa isolates has
also been reported worldwide [313–315]. As  observed in A. bau-
mannii, resistance to polymyxins is  associated with modifications
of the lipid A component of LPS. Several two-component regula-
tory systems, such as PmrAB, PhoPQ, ParRS, CprRS and ColRS, are
involved in resistance to polymyxins in P. aeruginosa [316–318].
A recent study identified nine genes with amino acid alterations
and altered expression levels in colistin-resistant P. aeruginosa iso-
lates compared with an isogenic colistin-susceptible isolate [319].
Thus, resistance to colistin is  basically mediated by a complicated
regulatory network involving a  large array of chromosomal genes,
which is currently under investigation worldwide, with some side
experiments aiming to evaluate the fitness cost of such resistance.

7. Concluding remarks

Increasing  rates of bacterial resistance among non-fermenters
are threatening the effectiveness of antibiotics used as last-resort
therapeutic options. In A. baumannii and P. aeruginosa, acquisition
of resistance traits to these molecules is  becoming more and more
frequent, leading to multidrug and pandrug resistance. The last
years have shown that: (i)  most of the broad-spectrum resistance
patterns identified in  Enterobacteriaceae may  be also identified
in P. aeruginosa and A. baumannii; (ii) accumulation of  unrelated
resistance mechanisms (e.g. to  �-lactams and aminoglycosides)
is observed daily worldwide; and (iii) A. baumannii, although
being a  weak pathogen compared with P. aeruginosa, may  play a
significant role in spreading broad-spectrum resistance genes to
other Gram-negative organisms. International travel and transfer
of hospitalised patients further enhances this spread. In parallel,
antibiotic selective pressure is also on the rise, in  particular for
these last-resort antibiotics that have been used only scarcely
until recently. Since very few novel and effective antibiotics for the
treatment of infections due to multidrug-resistant Gram-negatives
isolates are going to be launched in a  near future, there is an urgent
need to implement strategies that may  slow the development of
acquired resistance. Use of rapid diagnostic techniques for detec-
tion of resistance traits, development of selective media for early
recognition of colonised patients, and improvement of antibiotic
stewardship may  contribute to this containment strategy against
antibiotic resistance.
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