Supplementary Tables

Strain	Genotype	Source	Figure
YL515	[BY4741/2] MAT α ; his3 $\Delta 1$, leu2 $\Delta 0$, ura3 $\Delta 0$	[1]	1A-F
MB27	[YL515] gtr1Δ::HIS3	[1]	1A-F, 2C
MB28	[YL515] <i>gtr2</i> Δ:: <i>HIS3</i>	[1]	1A-F, 2C
NP52-2A	[YL515] $ego2\Delta$:: $kanMX$	This study	1A-F
NP44	[YL515] $ego4\Delta$:: $kanMX$	This study	1A-F
NP51-3C	[YL515] $ego2\Delta$:: $kanMX$, $gtr1\Delta$:: $kanMX$	This study	1A, C- D, F, 2C
NP54-4D	[YL515] $ego2\Delta$:: $kanMX$, $gtr2\Delta$:: $kanMX$	This study	1A, C- D, F, 2C
NP48-5C	[YL515] $ego4\Delta$:: $kanMX$, $gtr1\Delta$:: $kanMX$	This study	1A, C- D, F, 2C
NP60-10D	[YL515] $ego4\Delta$:: $kanMX$, $gtr2\Delta$:: $kanMX$	This study	1A, C- D, F, 2C
KT1961	MAT a ; trp1, leu2, his3, ura3-52	[2]	5C-D
CDV213	[KT1961] EGO1-GFP::TRP1	[3]	2A
CDV221-1A	[KT1961] ego3∆::natMX, EGO1-GFP::TRP1	This study	2A
KP12-1C	[KT1961] ego2A::kanMX, EGO1-GFP::TRP1	This study	2A, 3B
KP37-4B	[KT1961] ego2∆::kanMX, ego3∆::natMX EGO1-GFP::TRP1	This study	2A
KP22-2C	[KT1961] ego4∆::kanMX, EGO1-GFP::TRP1	This study	2A, 3B
CDV214	[KT1961] EGO3-GFP::TRP1	[3]	2A
CDV219-4A	[KT1961] ego1A::natMX, EGO3-GFP::TRP1	This study	2A, 5B
KP13-2D	[KT1961] ego2A::kanMX, EGO3-GFP::TRP1	This study	2A, 3B
KP39-6D	[KT1961] ego2∆::kanMX, ego1∆::natMX, EGO3-GFP::TRP1	This study	2A
KP35-2D	[KT1961] ego4∆∷kanMX, EGO3-GFP::TRP1	This study	2A, 3B
CDV210	[KT1960] $egol\Delta$::natMX	[3]	2B, 5C-D
KP27-5A	[KT1961] $ego1\Delta$::natMX, $ego2\Delta$::kanMX	This study	2B, 3F, 5B
KP33-3C	[KT1961] $ego1\Delta$::natMX, $ego4\Delta$::kanMX	This study	2B
MP268-2B	[KT1961] $gtr1\Delta$::natMX, $gtr2\Delta$::natMX	This study	2D-E, 5C-D, 6A-C
KP29-3B	[KT1961] gtr1 Δ ::natMX, gtr1 Δ ::natMX, ego2 Δ ::kanMX	This study	2D-E, 3F
KP34-1A	[KT1961] gtr1 Δ ::natMX, gtr1 Δ ::natMX, ego4 Δ ::kanMX	This study	2 D- Е
NMY51	MAT a ; his3Δ200, trp1-901, leu2-3,112, ade2, LYS2::(lexAop)4- HIS3, ura3::(lexAop)8- lacZ, ade2::(lexAop)8-ADE2, GAL4	Dualsystems	3A, 5A
FLJ1	[NMY51] $ego3\Delta$::kanMX	[4]	3G
KP12-2D	[KT1961] $ego2\Delta$::kanMX	This study	3E-F
KP02	[KT1961] $ego4\Delta$::kanMX	This study	3E-F
KP28-3D	[KT1961] $ego2\Delta$:: $kanMX$, $ego3\Delta$:: $natMX$	This study	3F
MP279-18B	[KT1960] $gtr1\Delta$::natMX, $ego1\Delta$::kanMX	This study	5B
MP279-18A	[KT1961] gtr2 Δ ::natMX, ego1 Δ ::kanMX	This study	5B
KP41-9C	[KT1961] gtr1 Δ ::natMX, gtr2 Δ ::natMX, ego1 Δ ::kanMX, ego2 Δ ::kanMX, ego3 Δ ::kanMX (egoc Δ)	This study	6A-C
KP41-10C	[KT1961] gtr1 Δ ::natMX, ego1 Δ ::kanMX, ego2 Δ ::kanMX, ego3 Δ ::kanMX	This study	6D-E

Table S1. Strains used in this study.

Plasmid	Genotype	Source	Figure
pRS413	CEN, HIS3	[5]	1A, D-F, 2A-E, 5B-D
pRS414	CEN, TRP1	[5]	3E-F, 5B-D
pRS415	CEN, LEU2	[5]	1A-C, 2A-B, D-E, 3B, E-F, 5B-D
pRS416	CEN, URA3	[5]	1A-F, 2A, C, 3B, E-F, 5B-D
pJU1064	[pRS413] SCH9 ^{T570A} -HA5	[6]	1B-C, 5D
pJU1058	[pRS415] SCH9 ^{T570A} -HA5	[6]	1D-E
YCplac111	CEN, LEU2	[7]	
pNP2529	[YCplac111] ADH1p-EGO2	This study	1C
pNP2530	[YCplac111] ADH1p-EGO4	This study	1C
YCplac33	CEN, URA3	[7]	
pMB1394	[YCplac33] Teton-GTR1 ^{Q65L}	[1]	1D-E
pMB1395	[YCplac33] Teton-GTR1 ^{S20L}	[1]	1D-E
pPM1619	[YCplac33] Teton-GTR2 ^{Q66L}	This study	1D-E
pPM1620	[YCplac33] TetoN-GTR2 ^{S23L}	This study	1D-E
pJU650	[pRS416] GTR1	[4]	1F, 2D-E
pJU653	[pRS416] GTR1 ^{Q65L}	[1]	1F
pJU652	[pRS416] GTR1 ^{S20L}	[1]	1F
pJU651	[pRS416] GTR2	[1]	1F
pJU655	[pRS416] GTR2 ^{Q66L}	[1]	1F
pJU654	[pRS416] <i>GTR2^{S23L}</i>	[1]	1F
pFLJ1973	[YCplac33] EGO1-GST	This study	2B
pNP2572	[pRS416] ADH1p-EGO1-TAP	This study	2B
pMP1639	[pRS415] GTR1-GFP	[1]	2C, 5B
pMP1642	[pRS415] GTR2-GFP	[1]	2C, 5B
pMP1640	[pRS415] GTR1 ^{Q65L} -GFP	This study	2C
pMP1644	[pRS415] GTR2 ^{S23L} -GFP	This study	2C
pNP2441	[pRS413] EGO2-GFP	This study	3E-F, 5B
pNP2442	[pRS413] EGO4-GFP	This study	3E-F, 5B
pMB1344	[YCplac33] GTR1-TAP	[1]	2D-E
pMB1371	[YCplac33] GTR1 ^{S20L} -TAP	[1]	2E
pMB1372	[YCplac33] GTR1 ^{Q65L} -TAP	[1]	2E
pMP2177	[pRS414] GTR2-V5-6HIS	[4]	2D-E
pAI-Alg5	2 µ, ADH1-HA-NUB1, TRP1	Dualsystems	3A, G, 5A
pDL2-Alg5	2 µ, ADH1-HA-NUBG, TRP1	Dualsystems	3A, G, 5A
pCabWT	CEN, CYC1-CUB-LexA, LEU2	Dualsystems	3A, G, 5A
pFLJ2393	[pCabWT] CYC1-EGO2-CUB-LexA	This study	3A, G, 5A
pFLJ2394	[pCabWT] CYC1-EGO4-CUB-LexA	This study	3A, G
pPR3-N	2 µ, CYC1-NUBG-HA, TRP1	Dualsystems	3A, G
pNP1689	[pPR3-N] CYC1-NUBG-HA-GTR1	[1]	3A, G
pNP1690	[pPR3-N] CYC1-NUBG-HA-GTR1 ^{S20L}	[1]	3A, G
pNP1691	[pPR3-N] CYC1-NUBG-HA-GTR1 ^{Q65L}	[1]	3A, G
pNP1692	[pPR3-N] CYC1-NUBG-HA-GTR2	This study	3A, G
pNP1693	[pPR3-N] CYC1-NUBG-HA-GTR2 ^{S23L}	This study	3A, G
pNP1694	[pPR3-N] CYC1-NUBG-HA-GTR2 ^{Q66L}	[4]	3A, G
pNP1696	[pPR3-N] CYC1-NUBG-HA-EGO1	[1]	3A, G, 5A

Table S2. Plasmids used in this study.

Table 52. Flashilus useu in this study - continueu					
Plasmid	Genotype	Source	Figure		
pMPG2221	[pPR3-N] CYC1-NUBG-HA-EGO3	[4]	3A, G, 5A		
pKP2623	[pRS413] <i>EGO2-HA</i> 3	This study	3B		
pKP2622	[pRS413] <i>EGO4-HA</i> 3	This study	3B		
pET-15b	PT7lac, HIS6, lacI, ApR	Novagen			
pNP2564	[pET-15b] HIS6-EGO1, EGO2, EGO3, EGO4	This study	3C-D		
pFLJ2220	[pCabWT] CYC1-EGO3-CUB-LexA	[4]	5A		
pFLJ2734	[pPR3-N] CYC1-NUBG-HA-EGO1 ^{Δ152-184}	This study	5A		
pFLJ2735	[pPR3-N] <i>CYC1-NUBG-HA-EGO1</i> ^{∆169-184}	This study	5A		
pKP2736	[YCplac33] EGO1-HA3	This study	5B-C		
pKP2737	[YCplac33] <i>EGO1</i> ^{△152-184} -HA ₃	This study	5B-C		
pKP2738	[YCplac33] <i>EGO1</i> ^{△169-184} -HA ₃	This study	5B-C		
pKP2739	[YCplac33] EGO1	This study	5C-D		
pKP2740	[YCplac33] <i>EGO1</i> ^{△152-184}	This study	5C-D		
pKP2741	[YCplac33] <i>EGO1</i> ^{△169-184}	This study	5C-D		
pKP2801	[YCplac33] EGO1 ^{NT} -vhhGFP4	This study	6A-D		
pNSlm-vhhGFP4	pcDNA3-NSlmb-vhhGFP4	[8]			
pRH2776	[pPRS413] VAC8-vhhGFP4	This study	6E		

Table S2. Plasmids used in this study - continued

References

- 1 Binda M, P di-Gulli MP, Bonfils G *et al.* The Vam6 GEF controls TORC1 by activating the EGO complex. *Mol Cell* 2009; **35**:563-573.
- 2 Pedruzzi I, Dubouloz F, Cameroni E *et al.* TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G₀. *Mol Cell* 2003; **12**:1607-1613.
- 3 Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. *Mol Cell* 2005; **19**:15-26.
- 4 Zhang T, P di-Gulli MP, Yang H, De Virgilio C, Ding J. Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the EGO complex to activate TORC1. *Structure* 2012; **20**:2151-2160.
- 5 Brachmann CB, Davies A, Cost GJ *et al.* Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast* 1998; **14**:115-132.
- 6 Urban J, Soulard A, Huber A *et al.* Sch9 is a major target of TORC1 in *Saccharomyces cerevisiae*. *Mol Cell* 2007; **26**:663-674.
- 7 Gietz RD, Sugino A. New yeast-*Escherichia coli* shuttle vectors constructed with *in vitro* mutagenized yeast genes lacking six-base pair restriction sites. *Gene* 1988; **74**:527-534.
- 8 Caussinus E, Kanca O, Affolter M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. *Nat Struct Mol Biol* 2012; **19**:117-121.

Supplementary Figures

Figure S1. TAP pull-down experiments showing that the reduced interaction between Gtr1-TAP and Gtr2-V5 in an $ego2\Delta$ strain can be rescued by re-introduction of EGO2 expressed from a plasmid. Lysates from cells expressing the indicated fusion proteins (input) and TAP pull-down fractions were analyzed by immunoblotting with anti-TAP and anti-V5 antibodies. Cells expressing untagged Gtr1 were used as a control.

Figure S2. *In vitro* functional analyses of the Ego1-Ego2-Ego3 ternary complex (EGO-TC). (**A**) Analysis of the oligomeric state of the Ego proteins in solution by size-exclusion chromatography. The Ego1-Ego2 complex was purified in a similar way as the Ego1-Ego2-Ego3 complex as described in the experimental procedures. The Ego1, Ego2, and Ego3 proteins were fused with a C-terminal His₆-tag. Absorbance at 280 nm is plotted against the elution volume. Positions of the molecular weight standards are indicated. (**B**) *In vitro* GST-pull down binding assays of GST-fused Ego2, Ego3, or Ego4 with full-length or truncated Ego1 and/or Ego2 and Ego3. The results were visualized by Coomassie blue staining on SDS-PAGE. (**C**) *In vitro* GST-pull down binding assays of GST-fused wild-type or mutant Ego2 with Ego1 and Ego3. The results were visualized by Coomassie blue staining on SDS-PAGE of the purified EGO-TC used in the crystallization (S1) and the protein sample obtained from the crystallization solution (S2). The N-terminal region of Ego1 was degraded in the crystallization solution. The loaded proteins were visualized by Coomassie blue staining. Molecular weight markers are indicated on the left.

Figure S3. Structural comparisons of the Ego proteins and several representative Roadblock domaincontaining proteins. (**A**) Superposition of Ego2 (colored in yellow) and LAMTOR5 (colored in wheat). (**B**) Superposition of the Ego3 monomer in the EGO-TC (colored in green), LAMTOR2 (PDB code 3CPT, colored in blue) and LAMTOR3 (PDB code 3CPT, colored in cyan). (**C**) Superposition of the Ego3 monomer in the EGO-TC (colored in green) and the Ego3 homodimer (PDB code 4FTX, one monomer colored in orange and the other in gray). (**D**) Superposition of Ego2 (colored in yellow) and Ego3 (colored in green) in the EGO-TC with the Ego3 homodimer showing that the position for Ego2 binding was occupied by the other monomer in the Ego3 homodimer. (**E**) Superposition of the EGO-TC with *Drosophila melanogaster* dynein intermediate chain and light chain complex (PDB code 3L9K). Ego1, Ego2 and Ego3 of the EGO-TC are colored in purple and skyblue, respectively.