SUPPORTING INFORMATION FOR

Thionine dye confined in zeolite L: synthesis location and optical properties

Lara Gigli[§], Rossella Arletti^{§,*}, Jenny G. Vitillo^{*,#}, Gabriele Alberto^{*,±}, Gianmario Martra^{*},±,André Devaux[¥], Giovanna Vezzalini^I

Figure S1. Observed and calculated diffraction patterns and final difference curve from Rietveld refinements of the pure ZL and of the ZL/0.15Th, ZL/0.27Th composites. The inset shows a zoom (the 2Θ range $2-10^{\circ}$) of the collected patters of ZL and of the ZL/0.15Th, ZL/0.27Th composites.

Table S1. Atomic coordinates, occupancy factors and thermal displacement parameters for the structures of the ZL/0.15Th, ZL/0.27Th composites.

Atom	x/a	y/b	z/c	Occ.	Uiso						
	ZL/0.15Th										
T1	0.0922(2)	0.3559(2)	0.5	1	0.010(5)						
T2	0.1651(2)	0.4971(1)	0.2105(2)	1	0.010(5)						
01	0	0.2707(4)	0.5	1	0.013(3)						
02	0.1638(3)	0.3276(5)	0.5	1	0.013(3)						
O 3	0.2638(2)	0.5276(4)	0.2507(5)	1	0.013(3)						
04	0.1015(3)	0.4128(2)	0.3250(5)	1	0.013(3)						
05	0.4230(1)	0.8460(3)	0.2744(9)	1	0.013(3)						
O 6	0.1447(4)	0.4777(4)	0	1	0.013(3)						
KB	0.33333	0.66667	0.5	1	0.011(2)						
KC	0.5	0	0.5	1	0.032(2)						
KD	0.2999(3)	0	0	0.779(5)	0.065(3)						
WH	0.1278(1)	0	0.3027(1)	0.484(5)	0.114(3)						
WF	0.0994(3)	0	0	0.281(2)	0.124(3)						
W3	0.2465(3)	0.1103(2)	0.0776(3)	0.261(2)	0.099(3)						
W4	0.1533(4)	0.0469(4)	0.5	0.166(2)	0.135(3)						
	Th										
S	0.1450(6)	0.0725(2)	0	0.032(1)	0.12(1)						
C1	0.0803(4)	0.0401(2)	0.1780(5)	0.032(1)	0.12(1)						
C2	0.0106(3)	0.0106(3)	0.1481(5)	0.032(1)	0.12(1)						
N1	0.0496(6)	0.0248(2)	0	0.032(1)	0.12(1)						
C3	0.1099(6)	0.0550(3)	0.3501(1)	0.032(1)	0.12(1)						
C4	0.0409(1)	0.0205(6)	0.4723(9)	0.032(1)	0.12(1)						
C5	0.0636(5)	0.0318(2)	0.2909(1)	0.032(1)	0.12(1)						
C6	0.0491(1)	0.0245(7)	0.4844(1)	0.032(1)	0.12(1)						
N2	0.0699(2)	0.0349(1)	0.3492(1)	0.032(1)	0.12(1)						
	ZL/0.27Th										
T1	0.0921(2)	0.3561(2)	0.5	1	0.010(5)						
T2	0.1653(2)	0.4971(1)	0.2105(2)	1	0.010(5)						
01	0	0.2707(5)	0.5	1	0.013(3)						
02	0.1642(3)	0.3284(5)	0.5	1	0.013(3)						
03	0.2642(2)	.2642(2) 0.5284(4)		1	0.013(3)						
04	0.1013(3)	0.4131(2)	0.3245(5)	1	0.013(3)						
05	0.4209(1)	0.8418(5)	0.2735(1)	1	0.013(3)						
06	0.1443(4)	0.4795(4)	0	1	0.013(3)						
KB	0.33333	0.66667	0.5	1	0.011(2)						
KC	0.5	0	0.5	1	0.032(2)						
KD	0.3002(3)	0	0	0.758(5)	0.065(3)						
WH	0.1292(1)	0	0.2982(1)	0.364(5)	0.058(3)						
WF	0.0986(3)	0	0	0.270(2)	0.163(3)						
W3	0.2432(3)	0.1059(2)	0.0775(3)	0.265(2)	0.079(3)						
W4	0.1561(4)	0.0397(4)	0.5	0.206(2)	0.100(3)						
•	0.4.1=0.(0)	T	h	0.054(1)	0.40(1)						
S	0.1450(6)	0.0724(2)	0	0.051(1)	0.12(1)						
C1	0.0803(4)	0.0401(2)	0.1780(5)	0.051(1)	0.12(1)						

C2	0.0106(3)	0.0106(3)	0.1481(5)	0.051(1)	0.12(1)
N1	0.0496(6)	0.0248(2)	0	0.051(1)	0.12(1)
C3	0.1101(6)	0.0550(3)	0.3501(1)	0.051(1)	0.12(1)
C4	0.0406(1)	0.0203(6)	0.4724(9)	0.051(1)	0.12(1)
C5	0.0635(5)	0.0317(2)	0.2911(1)	0.051(1)	0.12(1)
C 6	0.0493(1)	0.0246(7)	0.4845(1)	0.051(1)	0.12(1)
N2	0.0704(2)	0.0352(1)	0.3491(1)	0.051(1)	0.12(1)

ZL/0.15Th		ZL/0.27Th	ZL/0.15Th		ZL/0.27Th	ZL/0.15Th			ZL/0.27Th		
KB-	O3 [x6]	2.902(6)	2.905(7)		WF[x2]	2.62(2)	2.65(2)	W3-	KD	2.72(7)	2.69(3)
КС-	O5 [x4]	2.930(8)	3.043(7)		W4[x2]	1.83(6)	1.91(3)		KD	3.17(7)	3.23(3)
KD-	O4 [x4]	3.151(5)	3.146(5)		W4[x2]	2 24(6)	2 58(3)		S	1 73(2)	1 69(1)
	O6 [x2]	3.012(6)	3.025(7)		W4[x2]	2.24(0)	2.00(0)		N1	3 19(2)	3 15(1)
	W3[x4]	2.604(5)	2.772(5)	wн-	01	3.01(3)	2.10(0)		C2[v2]	2.21(c)	2.20(5)
S-	 WH[x2]	2.57(3)	2 55(2)		C6[x2]	2.19(3)	3.01(2)		C2[X2]	2.31(0)	2.30(3)
	 WF[x2]	1 16(1)	1 169(8)		C6[x2]	2.82(3)	2.23(2)		C1[x4]	2.60(5)	2 59(4)
	WF[x2]	2 95(4)	2 93(3)		C6[x2]	2.95(3)	2.99(2)		C1[x4]	1.65(3)	1 64(2)
	W3[x4]	1.73(2)	1.69(1)		C6[x2]	2.35(3)	2.38(2)		C3[x4]	2.796(7)	2.794(6)
C1-	WH[x2]	1.68(3)	1.68(2)		S[x2]	2.57(3)	2.55(2)		C5[x4]	2.44(3)	2.43(2)
	WH[x2]	2.83(2)	2.84(2)		N1[x2]	2.85(3)	2.83(2)		C5[x4]	3.03(4)	3.02(3)
	WF[x2]	1.65(3)	1.64(2)		C2[x2]	2.54(3)	2.55(2)		 N2[x4]	2.82(2)	2.81(2)
	WF[x2]	2.60(5)	2.59(4)		C2[x2]	2.71(3)	2.72(2)		WF[x2]	1.83(7)	1.81(5)
	W3[x2]	2.76(2)	2.71(1)		C2	2.79(3)	2.81(2)		WF[x2]	3.17(1)	3.14(9)
	W4[x2]	2.74(4)	2.79(2)		C2	2.44(3)	2.47(3)		W3[x4]	2.50(5)	2.46(3)
	W4[x2]	3.07(5)	3.07(2)		C1[x2]	1.68(3)	1.68(2)		W3[x4]	2.75(3)	2.64(3)
C2-	WH[x2]	2.54(3)	2.55(2)		C1[x2]	2.83(2)	2.84(2)	W4-	01	2.69(9)	2.55(4)
	WH[x2]	2.71(3)	2.72(2)		C3[x2]	1.26(2)	1.28(2)		02	2.83(7)	2.83(4)
	WH	2.44(3)	2.47(3)		C3[x2]	2.95(2)	2.98(2)		C6[x2]	1.75(7)	1.84(3)
	WH	2.79(3)	2.81(2)		C3[x2]	2.87(3)	2.91(2)		C6[x2]	2.39(8)	2.51(3)
	WF[x2]	2.07(6)	2.05(4)		C4[x2]	2.21(3)	2.26(2)		C6[x2]	3.09(7)	3.19(3)
	WF[x2]	2.23(6)	2.22(4)		C4[x2]	2.75(3)	2.79(2)		C6[x2]	2.84(7)	2.88(3)
	WF	1.98(5)	1.97(4)		C4[x2]	3.19(3)	3.16(3)		C6[x2]	2.06(7)	2.09(3)
	WF	2.31(6)	2.30(5)		C4[x2]	2.96(3)	3.00(2)		C1[x2]	2.74(4)	2.79(1)
C3-	WH[x2]	1.26(2)	1.28(1)		C4[x2]	2.48(3)	2.52(2)		C1[x2]	3.07(5)	3.07(2)
	WH[x2]	2.95(2)	2.98(2)		C5[x2]	1.56(2)	1.58(2)		C3[x2]	1.43(5)	1.51(2)
	WH[x2]	2.87(3)	2.91(2)		C5[x2]	2.56(2)	2.58(2)		C3[x2]	2.82(9)	2.96(3)
	WF[x2]	2.796(7)	2.794(6)		N2[x2]	1.53(2)	1.56(2)		C3[x2]	2.16(7)	2.12(3)
	W3[x2]	2.99(3)	2.96(2)		N2[x2]	2.62(2)	2.65(2)		C4[x2]	1.88(7)	1.98(3)
	W4[x2]	1.43(5)	1.51(2)		N2[x2]	3.01(3)	3.05(2)		C4[x2]	2.40(8)	2.51(3)
	W4[x2]	2.16(7)	2.12(3)		WH[x2]	2.35(3)	2.37(2)		C4[x2]	2.99(7)	2.97(7)
	W4[x2]	2.82(9)	2.96(4)		WH	2.97(6)	3.04(5)		C4[x2]	3.15(7)	3.08(3)
C4-	WH[x2]	2.21(3)	2.26(2)		WF[x2]	3.12(3)	3.10(2)		C4[x2]	2.78(7)	2.82(3)
	WH[x2]	2.75(3)	2.79(2)		WF	2.33(3)	2.32(2)		C4[x2]	2.13(7)	2.17(3)
	WH[X2]	3.19(3)	3.16(3)		W3[x2]	2.65(2)	2.54(2)		C5[x2]	2.19(5)	2.26(2)
	WH[X2]	2.96(3)	3.00(2)		W3[x2]	2.95(1)	2.76(1)		C5[x2]	2.87(7)	2.98(3)
	₩4[x2]	2.48(3)	2.52(2)		W4[x2]	1.67(2)	1.75(2)		C5[x2]	2.52(6)	2.53(2)
	₩4[x2] ₩4[~2]	1.88(7)	1.98(3)		W4[x2]	2.35(2)	2.48(1)		N2[x2]	1.83(6)	1.91(3)
	₩4[x2] ₩//[v2]	2.13(7)	2.17(3)	WF-	S[x2]	1.16(1)	1.169(8)		N2[x2]	2.67(8)	2.79(3)
	W4[v2]	2.78(7)	2.75(7)		S[x2]	2.95(4)	2.93(3)		N2[x2]	2.24(6)	2.58(3)
	₩ <i>Δ</i> [~2]	3.15(7)	3.08(3)		N1[x2]	1.21(6)	1.20(5)		WH[x2]	1.66(5)	1.65(2)
	W/4[~2]	2.99(7)	2.82(3)		N1[x2]	1.99(6)	1.98(5)		WH[x2]	2.31(8)	2.46(3)
	vv4[X∠]	2.40(8)	2.51(3)	I	N1[x2]	2.54(7)	2.53(5)	I	W4[x2]	2.50(7)	2.58(3)

Table S2. Extraframework bond distances < 3.2 Å for ZL/0.15Th, ZL/0.27Th composites.

CE	WH[x2]	1 56(2)	1 59(1)	C2[×4]	2.07(6)	2.05(4)	W/4	1 50(2)	1 41/9)
69-	WU[v2]	1.00(3)	1.56(1)	C2[X4]	2.07(6)	2.05(4)	VV4	1.50(2)	1.41(6)
	wnixzj	2.56(3)	2.58(1)	C2[x4]	2.23(6)	2.22(4)	W4	1.09(2)	1.27(8)
	WF[x2]	2.44(3)	2.43(2)	C2[x2]	2.31(6)	2.30(5)			
	WF[x2]	3.03(4)	3.02(3)	C2[x2]	1.98(5)	1.97(4)			
	W4[x2]	2.19(5)	2.26(2)	C1[x4]	2.60(5)	2.59(4)			
	W4[x2]	2.52(6)	2.53(3)	C1[x4]	1.65(3)	1.64(2)			
	W4[x2]	2.87(7)	2.98(3)	C3[x4]	2.796(7)	2.794(6)			
N1-	WH[x4]	2.85(3)	2.83(2)	C5[x4]	2.44(2)	2.43(2)			
	WF[x2]	1.21(6)	1.20(5)	C5[x4]	3.03(4)	3.02(3)			
	WF[x2]	1.99(6)	1.98(5)	N2[x4]	2.82(2)	2.81(1)			
	WF[x2]	2.54(7)	2.53(5)	WF[x2]	1.83(7)	1.81(5)			
	W3[x4]	3.19(2)	3.15(1)	WF[x2]	3.17(2)	3.14(9)			
N2-	WH[x2]	1.53(2)	1.56(2)	W3[x4]	2.50(5)	2.46(3)			
	WH[x2]	3.01(3)	3.05(2)	W3[x4]	2.75(3)	2.64(2)			

Frequency (cm ⁻¹)	Assignment	References		
Thionine (Th; ac				
3352, 3235	$\nu_{asym}NH_2,\nu_{sym}NH_2$ (observable in Th	N.B. Ref 48, p. 321		
	in ZL)			
3200-2800 (range)	$\nu NH_{3^{+}}$ (Th in the acetate salt) [*]	N.B. Ref 48, p. 324		
2950	vCH_3 (acetate ions)	N.B. Ref 48, p. 223		
1650	$\delta_{\text{asym}}\text{NH}_3^+$ (Th in the acetate salt)*	N.B. Ref 48, p. 324		
1645	δNH_2 (Th in ZL, contribution to the	N.B. Ref 48, p. 321		
	peak, together with δH_2O)			
1608	δNH_2 (Th in the acetate salt,	N.B. Ref 48, p. 321		
	contribution to the peak, togheter			
	with a skeletal ring mode, see			
	below)			
1544	$v_{asym}COO^{-}$ (acetate ions)	Ref 49, p. 232		
$1608^{a}, 1604^{b}, 1486^{a,b}, 1464^{a,b},$	ring modes of polycyclic			
1320 ^{a,b}	compounds; ^a : Th in the acetate	N.B. Ref 48, p. 270		
	salt; ^b : Th in ZL			
1425-1340 (range, complex signal)	ν C=N in the ring (thionine) ^c and	° Ref 50		
	$v_{sym}COO^{-}$ (acetate ions) ^d	^d Ref 49, p. 232		
1222	νCNH_2 (both acetate salt and in	Ref 51, p. 287		
	ZL)			
Zeolite (including w				
3700-3000 (range)	vH2O	Ref 52		
1645	$\delta H_2 O$ (contribution to the peak,	Ref 52		
	together with δNH_2 of Th)			
1001	vT-O-T (T= Si, Al)	Ref 52		
764, 718	δT-O-T (T= Si, Al)	Ref 52		

Table S3. Assignment of the main signals present in the spectra shown in Figure 4

* likely resulting from the salification by reaction with CH_3COOH of some $-NH_2$ groups